The presently disclosed subject matter relates to imaging. Particularly, the presently disclosed subject matter relates to systems and methods for imaging and quantifying tissue magnetism with magnetic resonance imaging (MRI).
Magnetic resonance imaging (MRI) is a non-destructive method for the analysis of materials and represents a new approach to medical imaging. It is generally non-invasive and does not involve ionizing radiation. In very general terms, nuclear magnetic moments are excited at specific spin precession frequencies which are proportional to the local magnetic field. The radio-frequency signals resulting from the precession of these spins are received using pickup coils. By manipulating the magnetic fields, an array of signals is provided representing different regions of the volume. These are combined to produce a volumetric image of the nuclear spin density of the body.
MRI signals for reconstructing an image of an object are obtained by placing the object in a magnetic field, applying magnetic gradients for slice selection, applying a magnetic excitation pulse to tilt nuclei spins in the desired slice or volume, and then detecting MRI signals emitted from the tilted nuclei spins while applying readout gradients. The detected signals may be envisioned as traversing lines in a Fourier transformed space (k-space) with the lines aligned and spaced parallel in Cartesian trajectories or emanating from the origin of k-space in spiral trajectories.
An MRI may be used for scanning a patient's brain or other tissue. The MRI may be useful for measuring development of the brain, particularly for scanning white-matter within the brain. White matter is a component of the central nervous system and consists of myelinated axons. MRI is the preferred reference test for diagnosing and monitoring the evolution of white-matter development and related diseases due to its excellent soft tissue contrast, high spatial resolution, and non-radioactive nature.
In typical MRI systems, phase information present in MRI images are commonly discarded except in a limited number of cases such as measuring of flow in angiography and enhancing image contrast in susceptibility weighted images. Traditionally, phase images are typically noisy and lack tissue contrast, hence these images have limited diagnostic utility. The emerging ultra-high field (7T and higher) MRI have started to reveal more interesting contrast in the phase images with improved signal-to-noise ratio (SNR). Gradient-echo MRI at 7T showed that phase contrast within gray matter exhibited characteristic layered structure. Despite these advances, one intrinsic limitation of signal phase is that phase contrast is non-local, orientation dependent, and thus not easily reproducible. Therefore, it is of great interest to determine the intrinsic property of the tissue, i.e. the magnetic susceptibility, from the measured signal phase.
The quantification of susceptibility from phase images is an ill-posed problem, since the Fourier transform of susceptibility, denoted as χ(k), cannot be accurately determined in regions near conical surfaces defined by k2−3kz2=0. Previous approaches have been proposed to address this issue. For example, threshold techniques have been used to avoid division by zero and approximate the χ(k) values at the two conical surfaces. Although these techniques are often straightforward to implement; the accuracy, however, can be limited. Residual artifacts and noise amplification in the reconstructed susceptibility maps may hamper the visualization of subtle tissue structures, especially at ultra-high resolution. Numerical optimization relying on nonlinear regularization has shown some capability in suppressing the streaking artifacts. Typically, regularized optimization requires a careful choice of the regularization parameters. One common concern is the introduction of excessive external constraints that may cause degradation of intrinsic tissue susceptibility contrast.
For at least the aforementioned reasons, it is desired to provide improved MRI techniques for analyzing brain and other tissues.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Disclosed herein are systems and methods for imaging and quantifying tissue magnetism with MRI. More particularly, the presently disclosed subject matter provides methods for quantifying a making images of tissue magnetic susceptibility based on data acquire with MRI. In accordance with an aspect, the presently disclosed subject matter provides methods for acquiring data at high speed and resolution. In another aspect, the presently disclosed subject matter describes a mathematical relationship between magnetic susceptibility and phase. In another aspect, the presently disclosed subject matter describes an algorithm for computing magnetic susceptibility. Magnetic susceptibility maps generated in accordance with the present disclosure are of high resolution and are free of streaking artifacts. In addition, techniques disclosed herein for visualization provide a unique image contrast. In a particular example, the presently disclosed subject matter demonstrates direct application in measuring brain tissue composition of, for example, but not limited to, calcium, iron, and myelin.
According to an aspect, a method for MRI includes using an MRI system to acquire multiple image echoes of an object. The method also includes combining the image echoes. Further, the method includes generating an image of the object based on the combined image echoes for depicting a characteristic of the object.
The foregoing summary, as well as the following detailed description of various embodiments, is better understood when read in conjunction with the appended drawings. For the purposes of illustration, there is shown in the drawings exemplary embodiments; however, the presently disclosed subject matter is not limited to the specific methods and instrumentalities disclosed.
In the drawings:
The presently disclosed subject matter is described with specificity to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or elements similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the term “step” may be used herein to connote different aspects of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly described. Like numbers refer to like elements throughout.
The presently disclosed subject matter provides susceptibility acquisition and mapping systems and methods that are fast and insensitive to phase wrapping. In techniques disclosed herein, the k-space may be divided into trusted regions and ill-posed regions. In the trusted regions, solutions may be obtained with direct inversion; in the ill-posed regions, two approaches may be used: one utilizing the compressed sensing technique and the other utilizing an additional derivative relationship. In numerical simulations, methods disclosed herein offer a direct inversion, which results in a near exact solution. Combining the two equations allows, for example, high quality reconstruction of susceptibility maps of human brain in vivo. The resulting maps allowed quantitative assessment of the susceptibility contrast at various anatomical structures (e.g., the iron-rich deep brain nuclei and white matter bundles) and the dependence of susceptibility on the white matter microstructures and composition.
A Fourier relationship between phase and magnetic susceptibility is disclosed in this section. Given a susceptibility distribution, χ(r), and the applied magnetic field, H0, the resonance frequency offset, Δf(r), can be determined using the following equation:
where k is the spatial frequency vector, k=(kx2+ky2+kz2)1/2, D2(k)=(⅓−kz2/k2). Δf(r) can be determined from the phase offset divided by the time of echo (TE). The non-local property of phase data, and its orientation dependence is apparent from the term D2(k).
Next, θ(r)=2πf(Δr)/γH0 is defined, and a Fourier transform is taken of both sides of Eq. [1]. The equation may be rewritten as:
θ(k)=D2(k)χ(k) [2]
Here, θ(k) and χ(k) is the Fourier transform of θ(r) and χ(r), respectively. Given the frequency shift, the susceptibility can be calculated with a direct inversion as follows:
χ(k)=D2(k)−1θ(k) [3]
However, at the conical surface in the frequency domain defined by D2(k)=0 (or k2−3kz2=0), the inversion for susceptibility calculation is invalid. On the other hand, the forward problem of Eq. [2], which is to determine the phase distribution from a given susceptibility distribution, seems to suggest that the resulting phase distribution may lack certain frequency components defined by k2−3kz2=0.
Susceptibility Mapping by k-Space Partitions
The k-space can be partitioned into two basic regions: a trusted region and an ill-posed region. In accordance with embodiment of the present disclosure, the trusted region may be the location in the k-space where D2(k)≧ε. The ill-posed (or ill-conditioned) region may be where D2(k)<ε. Here, ε is a predetermined threshold level. Partitions may also take noise statistics into consideration. An ill-posed region may also include locations where the raw data is expected to be noisy or unreliable. In the trusted region, susceptibility can be mapped with direct inversion. In the ill-posed region, two basic techniques may be used. Technique 1, referring to as a weighted k-space derivative (WKD) method, may utilize an additional derivative relationship on top of the Fourier relationship. Technique 2 may utilize a compressed sensing (CS) methodology.
Technique 1: Susceptibility Mapping Using Weighted k-Space Partial Derivatives
To calculate the χ(k) values on the conical surfaces, the first-order derivatives of Eq. [2] in the frequency domain may be utilized. The rationale is that although D2(k)=0 on the conical surfaces, its derivative is not. Utilizing the gradient field to compute χ(k) requires the spectrum of susceptibility distribution to be first-order differentiable. Such an assumption is reasonable due to the spatial continuity of brain tissues and may always be compatible with digital evaluation using Fourier transform. The resulting derivative relationship at the conical surfaces can provide an effective complement to Eq. [2] so that the zero-coefficient surface can be completely eliminated or significantly reduced.
Derivatives can be taken along any axis or combination of axes. In one or more embodiments, the first-order differentiation of Eq. [2] with respect to k is evaluated as follows:
θ′(k)+[2(kx2+ky2)kz/k4]·χ(k)−D2(k)·χ′(k)=0 [4]
Here, the partial differentiations of θ(k) and χ(k) are both carried out with respect to kz, which can be evaluated using Fourier transform.
Next, D3(k)=(kx2ky)+kz/πk4 is defined, and then Eq. [4] can be rewritten as:
D
3(k)·χ(k)+D2(k)·FT[i·rzχ(r)]=FT[i·rzθ(r)] [5]
Near the conical surfaces, D2(k) is very small, such that the term D2(k)·FT[i·rzχ(r)] is negligible. Under this condition, Eq. [5] can be reduced to:
D
3(k)·χ(k)≈FT[i·rzθ(r)] [6]
Here, rz represents the z-axis of the image domain. Although Eq. [6] is derived directly from Eq. [2], the non-local property of differentiations eliminates the zero-coefficient scenario that exists in Eq. [2]. In addition, the magnitude of D3(k) is only large in proximity to the conical surface. Hence, the derivative relationship shown in Eq. [6] is restricted to regions on or close to the conical surface in k-space.
Combining Eq. [3] and Eq. [6], the complete solution for susceptibility mapping is given as follows:
χ(k)=D2(k)−1θ(k), when D2(k)≧ε [7]
χ(k)≈D3(k)−1·FT[irzθ(r)], when D2(k)<ε[8]
Here, ε is a predetermined threshold level.
Once χ(k) is computed from Eqs. [7-8], the susceptibility map in the spatial domain can be calculated using an inverse Fourier transform. As a comparison, χ(k) at conical surfaces is also calculated with the “threshold” method by replacing Eq. [8] with the following approximation:
χ(k)≈ε−1·θ(k), when D2(k)<ε [9]
It is noted that the derivation of Eq. [7] and [8] is based on the assumption that the phase values within the entire field of view (FOV) are available. In simulated data, phase values can be generated for the entire FOV. For in vivo brain imaging, however, the phase outside of the brain is not available. Therefore, the lack of phase information in parts of the FOV must be taken into consideration. Hence, Eqs. [2] and [5] can be rewritten as:
FT[M
brain·θ(r)]=FT[MbrainD2(k)χ(k)] [10]
M
D3
·FT{M
brain
·FT
−1
{D
3(k)·χ(k)+D2(k)FT[irzχ(r)]}}=MD3·FT[irzMbrainθ(r)] [11]
Here, Mbrain is i a binary mask with ones in the tissue and zeros in the background. MD3 is a smooth weighting function, which is to emphasize the derivative relationship near the conical surfaces. An example form of the weighting function may be given by:
M
D
(k)=α·{[β−min(β)]/max(β)}3·exp[−(rx2+ry2+rz2)/2·r02], when rz>5
M
D
(k)=0, when rz≦5 [12]
where rz=N/2, . . . , 1, 0, 1, . . . , N/2 1; α=15, β=1/(D2(k)|0.1) and r0=48 for N=256.
Eqs. [10] and [11] constitute the relationship between phase and susceptibility. Due to the presence of the brain mask Mbrain, these two equations can no longer be solved through direct voxel-by-voxel inversion. Instead, we propose to solve them iteratively using the orthogonal and right triangular decomposition (LSQR) method. Prior to solving the equations, both sides of Eq. [10] were multiplied by the conjugate transpose of the coefficient matrix, i.e. CTC·χ(r)=CT·θ(r), to improve the numerical stability. Here C is the matrix representation of relationship between phase and susceptibility as defined in Eq. [10]. For simplicity, this method is referred to as the weighted k-space derivative (WKD) method. To evaluate the effect of including the derivative relationship shown in Eq. [11], we also calculated the susceptibility map only with Eq. [10] by using the same LSQR algorithm. As a comparison, the method of using LSQR to solve Eq. [10] alone is referred to as “LSQR” method.
In CS compensated susceptibility estimation, ill-posed k-space regions may be treated as missing data, and CS may be used to retrieve them. The extent to which the k-space regions need to be estimated can be determined by a threshold value in D2. The overall susceptibility estimation can be a two-step process. In a first step, a partial k-space estimate can be obtained by performing a direct inversion using Eq. [3] up to a set threshold level. In a second step, the void in the resulting k-space dataset can be compensated using compressed sensing. Mathematically, the proposed approach can be written as:
χ′(k)=θ(k)D2(k)−1 [13]
where χk′(k) denotes the susceptibility estimate using direct inversion, and then
χ=minχ∥χ′htdiag(ht−)Wχ∥2+α∥Φχ∥1+β·TV(x) [14]
where ht is a binary mask determined by the threshold level ε, i.e.:
h=1 when D2(k)>ε
h
t=0 when D2(k)≦ε [15]
W is a Fourier matrix multiplication by which the Fourier transform can be produced, and diag(h) denotes a diagonal matrix with the elements of h on the diagonal. Φ is a linear transform (such as wavelet) chosen such that Φχ is sparse. The 1st norm ∥Φχ∥1 promotes sparsity in Φχ. TV(χ) represents the total variation (TV) constraint for mitigating rapid variation caused by error in the transform domain. The symbols α and β are respective weighting coefficients.
The abovementioned approach is referred to herein as the CS compensated method, as the reconstruction in Eq. [5] is mainly focused on the missing k-space regions rather than the alternative L1 norm regularized approach, i.e.:
χ′=minχ∥θkDkWχ−∥2α∥χ+∥1βΦTV(+χ) [16]
where the entire k-space spectrum is estimated and regularized using the transform domain based L1 norm. A drawback of this approach compared to the CS compensated method is that the entire k-space spectrum can be affected by the strong smoothing power exercised to compensate for the streaking artifacts caused by the presence of the ill-conditioned filter inversion in some k-space regions, as will be shown herein below.
To calculate the susceptibility, the Fourier transform of the phase image may be all that is needed. Here, methods are disclosed to calculate the phase image and to remove the background phase in the k-space. These methods may involve two steps and may be inherently insensitive to phase wrapping. In a first step, a Laplacian operator may be applied to the phase image that only uses the trigonometric functions of the phase. The Laplacian operator is not only insensitive to phase wraps, but also automatically removes the phase components originating from outside of the FOV, since they satisfy the Laplacian equation (∇2θ=0). In a second step, background phase can be further cleaned with a sphere mean value filtering method. Specifically, for example, the Laplacian of the phase can be calculated using only cosine and sine functions of the phase as follows:
∇2θ=cos θ2∇ sin θ sin θ2∇ cos θ [16]
This operation is intrinsically indifferent to phase wrapping. From Eq. [16], the Fourier transform of phase can be derived as follows:
θ(k)=FT{cos θFT−1[k2FT(sin θ)]−sin θFT−1[k2FT(cos θ)]}/k2 [17]
Here θ includes both background phase (i.e., the coil phase and phase generated by tissue outside of region of interest) and brain local phase. The θ(k) calculated from Eq. [17] can be directly used in the subsequent background phase removal following the spherical mean value (SMV) method. Briefly, the background phase satisfied the Laplacian equation. In other words, the background phase is the harmonic phase inside the brain that is generated by susceptibility sources outside the brain. For solutions of Laplacian equation, the SMV property of Laplacian holds, i.e. the mean value of the harmonic phase on a spherical shell equals the harmonic phase at the sphere center. Therefore, the background harmonic phase can be removed using SMV filtering followed by a deconvolution operation to restore the low frequency local phase. These operations can be performed in Fourier domain with an adaptive filter width.
In accordance with embodiments of the present disclosure, three-dimensional (3D), multi-echo, multi-shot techniques are disclosed that achieve motion navigated fast image acquisition and tissue-optimized signal-to-noise ratio (SNR).
d shows an example list of sequence and reconstruction modules that are built in image formation.
SNR of Image Phase at a Single Echo
The Rician distributed magnitude of a magnetic resonance (MR) signal may be approximated with additive white noise in the limit of high SNR. In gradient echo, the SNR of signal magnitude decays exponentially as characterized by the T2* tissue relaxation time, and hence the shortest echo time is most desirable for maximal SNR of the magnitude. However, the SNR behavior of the image phase may be less intuitive as it is non-linear and is a function of both resonance frequency and T2*. In other words, the phase behavior is tissue dependent. Knowledge of this behavior may be needed for optimizing the echo time to maximize phase SNR.
The MR signal M at time t may be written as:
where nre and nim represents white noise in real and imaginary parts with the same noise power, M0 is the transverse magnetization, i is the imaginary unit and f is the frequency offset. It can be shown that the noise in signal phase, nθ, in a first-order approximation, may be written as:
If the real and imaginary channel has equal noise variance, i.e. if σre2=σim2σ2=, the noise power in the
Then the SNR of the image phase at time t may be written as:
It shows that the SNR of the image phase is dependent on the frequency offset source, the transverse magnetization, and the T2* tissue relaxation time. It is then easy to derive the echo time at which the
The image phase reaches its maximal SNR when the echo time is equal to T2* (
Tissue-Optimized SNR by Combining Multiple Echoes and Multiple Coils
Assuming that the noise levels in the phase images acquired with different echo times are temporally uncorrelated, algebraic averaging can improve the SNR level. Direct averaging of the frequencies at N echoes leads to a SNR of:
where tn denotes the n-th TE out of the N echoes, and
denotes the signal magnitude at tn. An example technique for combining the frequencies measured at different TE is to weigh the frequencies with their respective SNR prior to the combination, similar to that used in fMRI. Specifically, the frequency map at echo time tn may be weighted by:
In this way, the SNR of the weighted combination is given as:
The two aforementioned techniques of calculating resonance frequency may be referred to as multi-echo (ME) averaging and multi-echo weighted (MEW) averaging respectively.
Calculating the SNR of multi-echo weighted frequency may require knowledge of M0, f and T2*. It can be informative to calculate the SNR ratios when comparing the two SNRs. The ratios of the SNR gains from multi-echo acquisition may be, for example:
In Eqs. [26] and [27], only the T2* of the tissues may be needed for calculating SNR gains. For a T2* of 30 milliseconds (ms), the theoretical SNR gains by combining the frequency maps at 10 ms, 20 ms, 30 ms, 40 ms and 50 ms are 1.88 and 1.96 respectively for multi-echo averaging and multi-echo weighted averaging. These gains are approximately equivalent to the SNR gain that can be obtained from averaging 4 acquisitions (a gain of 2).
When multiple coils are used, each coil adds to the image a coil specific phase that is associated with the coil sensitivity. In an example, several steps may be taken to combine phase maps from multiple coils. In a first step, the phase may be unwrapped from each coil with the Laplacian operator or other suitable techniques. In a second step, a reference phase may be chosen, for example, the mean of phases from all coils. In a third step, the phase difference between coils may be removed. In a fourth step, the resulting phases may be combined with the magnitude of corresponding coil images to form a complex image for each coil. In a fifth step, all complex images may be added together to calculate the resulting phase. The procedure of combining multiple coils can be interchanged with the procedure of combining multiple echoes. The procedure may also be used to combine original phase without unwrapping. Magnitude may be used in a linear or nonlinear weighting function.
Referring to
The method of
The method of
In accordance with embodiments of the present disclosure, a varying diameter scheme may be used to achieve a better compromise between the two (see
In an experiment, a 3D 128×128×128 Shepp-Logan phantom was generated to evaluate the accuracy of susceptibility mapping. The phantom was composed of multiple ellipsoids placed in a homogenous background with zero susceptibility. The susceptibility values for the ellipsoids were 0, 0.2, 0.3 and 1 ppm, respectively. To minimize Gibbs ringing, the phantom was further zero padded to 256×256×256 for accurate simulation of the corresponding resonance frequency map. The quantification of susceptibility involves D2(k), D3(k) and MD3.
Accordingly, the streaking artifact was obvious using the threshold method (
In an experiment, in vivo brain imaging of healthy adult volunteers was conducted on a GE MR750 3.0T scanner (available from GE Healthcare, of Waukesha, Wis.) equipped with an 8-channel head coil.
Additional examples are shown in
An example comparison of the calculated normalized root mean square (NRMS) at different noise levels for truncation levels ranging from 0.0125 to 0.2 are shown in
In the CS compensated method, a threshold level of 0.0625 was used. It is seen that the image magnitude shows poor contrast in the gray/white matter interface in the cortical regions compared to the image phase map. The phase map, however, has difficulty delineating iron rich regions due to its non-local property, including regions containing red nucleus and substantia nigra, and those containing the globus pallidus and putamen. On the contrary, good contrast and clear delineations of these regions are seen in the susceptibility maps calculated using the CS compensated method. The susceptibility map calculated using the L1 norm regularized method still shows residual streaking artifacts despite the apparent smoothing appearance, due to the reason discussed previously. The magnitude image regularized susceptibility map shows a considerably reduced level of streaking artifacts due to the spatial gradient regularization. However, this magnitude image seems to feature a lack of contrast in regions with low susceptibility variations (i.e. the grey/white matter interfaces at the cortex) compared to the susceptibility map obtained using the CS compensated method, most likely because the magnitude image used as an a priori estimate has a lack of contrast in those regions (as indicated by arrows).
An example application of the subject matter disclosed herein involves imaging of brain tissue. Particularly, brain tissue contains a number of molecular compounds that can significantly affect the tissue susceptibility and the resultant resonance frequency shift, including nonheme iron, iron in deoxyhemoglobin, myelin, and proteins. In basal ganglia, the iron content is relative high and myelin content is relative low. Hence, the nonheme iron, especially that in the iron storage protein ferritin, may present a major source of magnetic susceptibility in these regions. Experiments show that the iron-enriched deep brain nuclei, including red nucleus, substantia nigra, globus pallitus, dentate nuclei, and the like exhibited strong paramagnetic shift comparing to CSF and the surrounding white matter. In addition to ferritin, changes in magnetic susceptibility due to accumulation of hemosidersin, degradation product of ferritin, can also reflect iron overload and hemorrhage. There has been great interest in mapping brain iron due to its value in the disease diagnosis and the understanding of disease pathogenesis. Alteration in iron content has been documented in many neurological diseases, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis, chronic hemorrhage, traumatic brain injury, and the like. Previous studies have utilized the R2* map to evaluate the iron distribution inside the brain. However, R2* is not only affected by iron distribution, but may also be affected by other factors, such as water content and calcium. Alternatively, the susceptibility map may provide a more quantitative and physically meaningful index, thus warrants further application of susceptibility mapping for assessment of brain iron content in vivo.
The presently disclosed subject matter may also be applied for quantification of brain myelination. In contrast to deep nuclei, brain white matter has lower iron content, but high myelin content. As a result, myelin may present as a major factor that affects tissue susceptibility in white matter. Consistent with the diamagnetic property of myelin, white matter is more diamagnetic than gray matter. Evidently, the susceptibility map shows excellent contrast between gray and white matter. The importance of myelin in susceptibility contrast was supported by that dysmyelination in genetically manipulated shiverer mice can lead to an almost complete loss of phase and susceptibility contrast.
Tissue calcification is generally evaluated with CT. In T2*-weighted MRI images, signal dropout due to the susceptibility of calcium ions cannot be distinguished from other susceptibility sources such as microbleeds. However, the susceptibility of calcium compounds is diamagnetic while microbleeds are paramagnetic. Thus, quantitative susceptibility could be used to quantify tissue calcification encountered, e.g. in arteries, kidney stones and breast cancers.
The various techniques described herein may be implemented with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the disclosed embodiments, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the presently disclosed subject matter. In the case of program code execution on programmable computers, the computer will generally include a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device and at least one output device. One or more programs may be implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language, and combined with hardware implementations.
The described methods and apparatus may also be embodied in the form of program code that is transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via any other form of transmission, wherein, when the program code is received and loaded into and executed by a machine, such as an EPROM, a gate array, a programmable logic device (PLD), a client computer, a video recorder or the like, the machine becomes an apparatus for practicing the presently disclosed subject matter. When implemented on a general-purpose processor, the program code combines with the processor to provide a unique apparatus that operates to perform the processing of the presently disclosed subject matter.
Features from one embodiment or aspect may be combined with features from any other embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, system, product, or component aspects of embodiments and vice versa.
While the embodiments have been described in connection with the various embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function without deviating therefrom. Therefore, the disclosed embodiments should not be limited to any single embodiment, but rather should be construed in breadth and scope in accordance with the appended claims.
The present invention claims priority to U.S. Application Ser. No. 61/497,296, filed Jun. 15, 2011, the disclosure of which is hereby incorporated by reference in its entirety.
The technology disclosed herein was made with government support under award number 4R00 EB0077182-3 awarded by National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH). The United States government may have certain rights in the technology.
Number | Date | Country | |
---|---|---|---|
61497296 | Jun 2011 | US |