The invention is generally related to systems and methods of light field imaging, and, more specifically, to systems and methods reducing computational complexity of light field imaging.
Indicia scanners often have fixed focus optics because mechanical focusing systems lack robustness to mechanical shocks, among other issues. The result is that scanners have limited depth of field, and the onus is on a user to position the object within that depth of field; various sub-models of a given scanner are made to address different scan ranges.
Additionally, the acceptable processing time for barcode readers is very short, as they are used in high-throughput settings such as grocery checkout counters. As such, there is a need to develop barcode readers that allow for a larger scanning depth of field while (a) still being robust to mechanical shocks and/or (b) providing a rapid response to the user.
To remove these limitations, there is an interest in using light field cameras for scanning. Light field cameras use a microlens array in the optical path to capture a set of light rays that can be combined in software to produce images focused at various distances. Light field imaging systems allow a user to capture four dimensional (4D) images that provide additional imaging information than can be provided by typical imaging systems. For example, a light field imaging array system can provide both spatial and angular light ray information.
A drawback associated with light field scanning is that the computational complexity of the refocusing operation is high compared to more traditional two dimensional image sensors. For example, typically, when light field imaging systems are utilized, the image data is analyzed, segmented into parts, and several re-focused images are created wherein each corresponding image is focused on different depths within the image as a whole. In order to do this, an objective function (e.g. sharpness) is maximized over the several re-focused images in order to determine the one providing highest contrast, and corresponding to the depth of the barcode in the scene. This higher computational complexity can cause unacceptably long delays between image capture and symbol decoding (e.g., decoding a barcode in the captured image).
An alternative to this approach is to analyze the scene in the Fourier domain, but this is slow because a large matrix must be transformed into the Fourier domain. The processing time of these methods can be slower than is desirable, in some applications.
In one aspect of the invention, an imaging device comprises: a light field imager comprising a microlens array, and a light field sensor positioned proximate to the microlens array, having a plurality of pixels and recording light field data of an optical target from light passing through the microlens array; and a processor configured to: receive the light field data of the optical target from the light field sensor, estimate signal to noise ratio and depth of the optical target in the light field data, select a subset of sub-aperture images based on the signal to noise ratio and depth, combine the selected subset of sub-aperture images, and perform image analysis on the combined subset of sub-aperture images.
In an embodiment, the light field data comprises a plurality of sub-aperture images.
In an embodiment, estimating the signal to noise ratio is performed using sensor characterization.
In an embodiment, sensor characterization includes sensor noise level, gain, exposure time, or any combination thereof.
In another embodiment, sensor characterization is determined from pixel intensities.
In an embodiment, estimating depth of the optical target from the light field imager is directly determined from the light field data.
In another embodiment, estimating depth of the optical target from the light field imager is through registration of two sub-aperture images.
In an embodiment, a pre-determined table of optimal subsets of sub-aperture images at different signal to noise ratios and depths of a theoretical optical target from the light field imager.
In an embodiment, the subset of sub-aperture images is selected from the pre-determined table.
In another embodiment, combining the subset of sub-aperture images includes a quantized shifting and adding together the subset of sub-aperture images.
In an embodiment, the imaging device is an indicia scanner.
In an embodiment, the image analysis is facial recognition.
In an embodiment, the image analysis is iris recognition.
In another aspect of the invention, a method comprises: capturing light field data of an optical target with a light field sensor; estimating signal to noise ratio and depth of the optical target in the light field data; selecting a subset of sub-aperture images based on the signal to noise ratio and depth; combining the selected subset of sub-aperture images; and performing image analysis on the combined subset of sub-aperture images.
In an embodiment, the light field data comprises a plurality of sub-aperture images.
In another embodiment, estimating the signal to noise ratio is performed using sensor characterization of sensor noise level, gain, exposure time, or any combination thereof.
In another embodiment, estimating depth of the optical target from the light field imager is determined directly from the light field data.
In yet another embodiment, estimating depth of the optical target from the light field imager is through registration of two sub-aperture images.
In an embodiment, the subset of sub-aperture images is selected from a pre-determined table comprising optimal subsets of sub-aperture images at different signal to noise ratios and depths of a theoretical optical target from the light field imager.
In an embodiment, combining the subset of sub-aperture images includes a quantized shifting and adding together the subset of sub-aperture images.
The invention will now be described by way of example, with reference to the accompanying Figures, of which:
While the following description is directed towards the field of indicia scanners and resolution of decodable indicia, those of ordinary skill in the art would recognize that the apparatus and methods described herein are generally applicable to other imaging applications. Thus, the use of indicia scanners is exemplary, and the invention should not be limited thereto. U.S. patent application Ser. No. 14/566,464 discloses a method to find a barcode within an image frame and to determine a distance from the scanner to a target object. The following disclosure improves upon existing methods for combining multiple rays to produce an image.
In industrial imaging applications, large volumes of imagery are captured for non-aesthetic uses, which would incur high computational costs if image processing were performed with standard methods. However, while high quality images are often desired in consumer photography, image quality is binary for pattern recognition systems: the image quality is either above or below a predetermined threshold level that supports reliable recognition. Once that threshold is surpassed, any additional effort to improve image quality is wasted. Pattern recognition systems, such as indicia scanners, need light field processing which produce satisfactory image quality at the least computational expense. Light field cameras, such as the light field camera 1 shown in an embodiment of
The computational complexity of processing is proportional to the number of views combined, and to the precision of view-to-view registration. While computational effort can always be reduced at the expense of image quality, selecting SAIs via a naive or greedy algorithm is sub-optimal, because the selected SAIs may not be the computationally simplest to combine. Thus, by determining the optimal number and selection of SAIs to be combined in refocusing, the computational complexity of light field rendering (i.e. refocusing) can be greatly reduced.
In an embodiment, the computational complexity of light field rendering can be reduced by making a poorer quality image. In other words, one of the general objectives is to generate an image which is just above the threshold of decodability, using a minimal amount of computation, rather than generating an aesthetically-pleasing image. Since the computational complexity of light field rendering is proportional to the number of angular views combined, fast refocusing can be obtained by using a minimal number of such views (SAIs), and choosing the minimal number with respect to how much computation is needed.
In the embodiments shown in
In the embodiment shown in
Memory 503 can include volatile memory 514 and non-volatile memory 508. Computer 500 includes or has access to a computing environment that includes—a variety of computer-readable media, such as volatile memory 514 and non-volatile memory 508, removable storage 510 and non-removable storage 512. Computer storage includes random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM) & electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technologies, compact disc read-only memory (CD ROM), Digital Versatile Disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium capable of storing computer-readable instructions.
Computer 500 can include or have access to a computing environment that includes input 506, output 504, and a communication connection 516. Output 504 can include a display device, such as a touchscreen, that also can serve as an input device. The input 506 can include one or more of a touchscreen, touchpad, mouse, keyboard, camera, one or more device-specific buttons, one or more sensors integrated within or coupled via wired or wireless data connections to the computer 500, and other input devices. The computer can operate in a networked environment using a communication connection to connect to one or more remote computers, such as database servers. The remote computer can include a personal computer (PC), server, router, network PC, a peer device or other common network node, or the like. The communication connection can include a Local Area Network (LAN), a Wide Area Network (WAN), cellular, WiFi, Bluetooth, or other networks.
Computer-readable instructions stored on a computer-readable medium are executable by the processing unit 502 of the computer 500. A hard drive, CD-ROM, and RAM are some examples of articles including a non-transitory computer-readable medium such as a storage device. The terms computer-readable medium and storage device do not include carrier waves. For example, a computer program 518 capable of providing a generic technique to perform access control check for data access and/or for doing an operation on one of the servers in a component object model (COM) based system can be included on a CD-ROM and loaded from the CD-ROM to a hard drive. The computer-readable instructions allow computer 500 to provide generic access controls in a COM based computer network system having multiple users and servers.
Baseline Complexity
Conventional light field processing for pattern recognition involves at least three steps which are computationally intensive: (1) interpolating SAIs from the raw sensor image, (2) locating and estimating the depth of the target region, and (3) combining the SAIs to a refocused image. The complexity of steps (1) and (3) is proportional to the number of SAIs which are combined during refocusing, so minimizing the number of SAIs reduces the computational complexity. In an embodiment, correspondence based depth estimation is employed for time-constrained applications, because correspondence based depth estimation can be used with as few as two SAIs. Additionally, domain-specific depth estimation methods can eliminate the need to interpolate SAIs from the sensor image, such as described in U.S. patent application Ser. No. 14/566,464, which has been incorporated by reference, which describes in detail domain-specific depth estimation for 1D barcodes, although those of ordinary skill in the art would understand that other known depth estimation methods can also be used, such as Fourier domain methods.
In conventional shift-and-add refocusing algorithms, the light field is represented as a set L of sub-aperture images (SAIs), each of whose pixels record light passing through a specific region of the main lens aperture. The central SAI L0,0 is made up of light passing through the center of the main lens aperture, with the central SAI pixels being located at the center of a spot behind each microlens. In general, SAIs are denoted L(u,v), where u and v respectively denote the horizontal and vertical displacement of the constituent rays/pixels relative to aperture/spot center; umax to denote the radius of the microlens spots, so u, v≦umax. Each target depth corresponds to a unique value Δ (the ‘shift’) such that the refocused image at pixel (x, y) is sharply focused at that depth when:
R(x,y)|=∫u∫vL(u,v)(x+uΔ,y+vΔ)du dv. (1)
Because microlens sampling in u,v is usually sparse, out of focus regions of R may appear aliased without interpolating additional views. In an embodiment, interpolation and integrating additional views can be avoided by only rendering a target region, where different views are added as:
In an embodiment, the complexity of the shift-and-add refocusing algorithm for each pixel in the refocused image according to equation 2, is that combining n SAIs involves the summation of n terms. If Δ is an integer, the summands can be found via lookup in the corresponding SAI, and equation 2 is n−1 additions. When uΔ and vΔ are not integers, though, refocusing also involves n−1 2D interpolations. Thus, in an embodiment, when Δ is an integer, shifting and adding one SAI to another is approximately 4× faster than a 2D interpolation with a non-integer shift.
Quantizing the Refocus Parameter
The drawback of quantization is that the multiple views are misregistered before the summation, causing defocus in R. When Δ is rounded to the nearest integer, quantization error is bounded by 0.5 pixel, and a radius of the blur spot is bounded by umax/2 pixels in R.
In an embodiment using 1D and 2D barcode scanning as an example, empirically, barcode decoders do not support integer quantization of the refocus shift when applied to light field images, such as those captured by the Lytro™ camera, where umax=5. This is shown by refocusing light field images of a barcode 200 taken at a distance where the smallest bar maps to about 1.5 pixels.
As shown for example in
R(x,y)=R(0,0)(x,y)+R(1,0(x+Δq,y)+R(0,1)(x,y+Δq)+R(1,1)(x+Δq,y+Δq) (3)
where the superscripts on R represent the residue of (u, v) modulo q.
As an example,
with the appropriate bounds on u and v. Generating these Rs avoids interpolation because qΔq is necessarily an integer, i.e. the SAIs in this sum all have integer shifts with respect to one another. Sets containing the summands of the various R are referred to as ‘integer shift classes’ R since each member can be combined with any other via an integer shift and, e.g., denote as R(0,0) the summands in equation 4. The number of interpolations needed to produce R is reduced to 3 when q=2, and q2−1 in general. Additionally, while R(1,1) still requires bi-linear interpolation in equation 3, R(0,1) and R(1,0) require only linear interpolation. So when q=2, refocusing is reduced from n−1 2D interpolations to 2 1D and 1 2D interpolation.
In a microlens-based light field camera, each view of the scene is taken through the same aperture size, so combining additional views doesn't improve sharpness. Combining multiple views maintains the sharpness associated with tin times the f-number, but gives a SNR consistent with the full lens aperture (f/2 in the case of the Lytro™ camera). But, depending on the illumination conditions, the full aperture may not be needed to produce a recognizable image; if the exposure time is long enough, the central SAI may itself be recognizable and refocusing unnecessary. The purpose of refocusing in a recognition system is to produce an image of the target which meets or exceeds a threshold SNR—in as little time as possible. So this section describes how to dynamically (i.e., taking into account image exposure) find the number of views needed to produce a recognizable image.
Since each image-based recognition algorithm will have its own signal to noise ratio (SNR) requirements, a function SNR(A) can be generalized, and quantifies the quality of an image refocused using the SAIs in A, and a threshold r on this quantity, satisfying: SNR(A∪B)=SNR(A)+SNR(B)−SNR(A∩B), where zero bias is SNR({ })=0. A minimum threshold where a refocused target will be recognizable is if SNR(•)>=τ. The ordering is reflected by: SNR({L(u1,v1)})>SNR({L(u2,v2)}) if ∥(u1, v1)∥<∥(u2, v2)∥.
Ordering reflects the fact that, because of microlens vignetting, the signal component of an SAI decreases with ∥(u,v)∥ while significant noise sources (from dark current and readout) remain fixed. In an embodiment, de-vignetting of the SAIs in the raw image is avoided during pre-processing, because vignetting the SAIs amplifies noise in proportion to ∥(u,v)∥. This keeps the dark noise level consistent between SAIs, making it easier to know whether a given image will be decodable. After sorting the SAIs in increasing order of ∥(u,v)∥, the minimum value k is reflected in that:
SNR({L(u1,v1),L(u2,v2), . . . L(uk,vk)})>τ. (5)
In an embodiment shown in Equation 5, the minimum number of SATs needed to reach a given SNR threshold is determined. Sorting the SAIs in increasing order of ∥(u,v)∥, and then summing the first k of them, implicitly acts as a greedy algorithm where the next SAI added is the brightest among unused SAIs. However, as described above, the optimal SAIs having minimal processing complexity, are those SAIs where the quantized shift parameter Δq is an integer, since those SAIs do not need interpolation.
On the other hand if, for example, Δq=1.5 pixels and SNR({L(0,0)}) is so close to τ that adding any other SAI would produce a recognizable image, the greedy algorithm would sub-optimally choose one of L(1,0), L(−1,0), L(0,1), or L(0,−1) depending on how ties are broken during sorting. Since all of these require interpolation to effect the quantized shift, the computational complexity is higher than adding L(2,0) to L(0,0), which only requires memory lookups, since 2Δq is an integer. Likewise, when Δq is quantized to thirds of pixels, adding L(3,0) is optimal because it is the brightest non-central SAIs whose use avoids interpolation. So determining an optimal set of SAIs to combine must consider both) SNR({L(0,0)}) and Δq. Formally, the optimization problem is defined as selecting a set {L(u1,v1), L(u2,v2), . . . }⊂L such that refocusing with these SAI provides SNR greater than τ and that no other subset of L does so at lower computational cost. Thus, w=SNR({L(0,0)}) and denotes our desired set LwΔq. The number of subsets of L is exponential in the number of SAIs so, if Dansereau's toolbox is used, giving 121 SAIs, there are 2121≈2.7*1036 subsets and a brute force approach is simply unpractical. Instead, in an embodiment, a tractable algorithm observes the optimal sub-structure property of property of LwΔq with respect to the integer shift classes.
To determine an Optimal sub-structure lemma: LwΔq represents a least-cost set of SAIs providing a refocused image with SNR(LwΔq). If we remove from LwΔq all SAIs from a given integer shift class R, the then remaining set of SAIs LwΔq\R must be the least cost subset producing a refocused image with SNR(LwΔq\R).
For example, suppose that there is a lower cost set X⊂L\R producing a refocused image with SNR(LwΔq\R). In that case, by the additivity property, the set X∪(LwΔq∩R) must have a lower cost than LwΔq while producing the same SNR, and the premise that LwΔq is least-cost is contradicted.
In light of the optimal sub-structure lemma, LwΔq can be found by dynamic programming. Let M(i,t) represent the maximum SNR that can be achieved in at most t milliseconds of computation using only the first i integer shift classes. The amount of time is denoted as the time it takes to extract an SAI from the sensor image and add that SAI to another SAI in its integer shift class as ta, and the amount of time needed to interpolate the summed result of SAIs selected from the ith integer shift class Ri as ti. The integer shift classes are sorted by increasing ti, and thus
M(i,t)=M(i−1,w) if ti+ta>t, (6)
when there is insufficient time to interpolate and add even a single SAI from the ith integer shift class. Otherwise
with the terms in the max( ) representing the use of 0, 1, . . . k SATs from the ith integer shift class, whose members are sorted in increasing order of ∥(u,v)∥ k is the lesser of the number of SAIs in the ith integer shift class and the value [(t−ti)/ta], i.e. the maximum number of SAIs that can be combined within the time limits.
In order to solve for LwΔq, entries are filled of M for I=1, where the first integer shift class contains L(u,v) where u=0 mod q and v=0 mod q. The maximum value of t can be capped at tmax where M(1, tmax)>τ, and the remaining values of M can be computed using equations 6 and 7. As in other applications of dynamic programming, the computation of M's values can be sped up by dividing ta and ti by their greatest common divisor.
In an embodiment shown in
The embodiment of
Table 1 shows empirically derived timing information using the methods described herein, providing performance of embedded recognition systems without high-end modern processors. In Table 1, elements of shift-and-add refocusing according to the methods described herein, were performed on a Freescale Semiconductor iMX25 development board, which has a 32-bit ARM926EJS processor with a single 400 MHz core. The components of shift-and-add refocusing were timed on several images of different sizes, and show the average complexity of per-pixel per-SAI operations. Because the iMX25 doesn't have hardware support for floating point arithmetic, and software emulation is extremely expensive, multiplications and divisions by noninteger quantities are approximated by the nearest rational number, e.g. multiplication by 0.66 is implemented by multiplication by 2 followed by a division by 3.
In a baseline implementation, shift-and-add refocusing involves independently registering each of the non-central SAIs via 2D interpolation and then adding to L(0,0). This has a complexity of 120 SAIs*335 ns/SAI=0.040 ms per pixel, so refocusing a 256×256 pixel grayscale image would take about 2.6 seconds. A more efficient baseline, where all SAIs with a given value of u are combined via 1D interpolation before a second 1D interpolation in the v direction reduces this to 120 1D interpolations taking ˜0.031 ms per pixel or 2 seconds for the same sized image.
Since the set LwΔq of SAIs combined using the embodiments of the method depends on both w and the quantized shift parameter Δq, the computational complexity of the method depends on both the exposure level and the target's position relative to the main lens' plane of focus. In an ideal case, when LwΔq={L(0,0)} because the central SAI is sufficiently well exposed, the method's refocusing is a nonoperation and does not require any processing time. In the ideal case, the light field camera, such as the Lytro™ camera, is simply acting like a traditional camera with a small aperture.
In an embodiment shown in
As shown in an embodiment of
The method 300 includes estimating signal to noise ratio and depth of the optical target in the light field data at block 315. In an embodiment, estimating the signal to noise ratio is performed using sensor characterization of sensor noise level, gain, exposure time, or any combination thereof. In another embodiment, sensor characterization is determined from pixel intensities of the light field sensor 30. In an embodiment, estimating depth of the optical target from the light field imager is determined directly from the light field data. In an embodiment, estimating depth of the optical target from the light field imager is through registration of two sub-aperture images.
The method 300 includes selecting a subset of sub-aperture images based on the signal to noise ratio and depth at block 320. In an embodiment, the subset of sub-aperture images is selected from a pre-determined table comprising optimal subsets of sub-aperture images at different signal to noise ratios and depths of a theoretical optical target from the light field imager.
The method 300 includes combining the selected subset of sub-aperture images at block 325. In an embodiment, combining the subset of sub-aperture images includes a quantized shifting and adding together of the subset of sub-aperture images.
The method 300 includes performing image analysis on the combined subset of sub-aperture images at block 330. In an embodiment, the image analysis is identifying and decoding a decodable indicia. In another embodiment, the image analysis is facial recognition. In yet another embodiment, the image analysis is iris recognition.
Accordingly, the methods described herein optimally selects a set of SAIs which, after quantized shift-and-add refocusing, produce a recognizable image with the least possible computation compared to conventional approaches. Utilizing the recognition algorithm's dynamic range and robustness to defocus permits the selection of a minimal number of SAIs that need to be combined, and to manipulate the precision with which those SAIs are registered to one another. Jointly optimizing over the number of SAIs and the precision of registration achieves up to a 99% reduction in computational complexity over the conventional approaches.
To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications:
The present application claims the benefit of U.S. Patent Application No. 62/150,352 for Systems and Methods for Imaging filed Apr. 21, 2015, which is hereby incorporated by reference in its entirety. The present application is related to U.S. patent application Ser. No. 14/566,464 for Barcode Imaging filed Dec. 10, 2014 (and published Jun. 11, 2015 as U.S. Patent Publication No. 2015/0161427), which claims the benefit of U.S. Patent Application No. 61/914,256 for Bar Code Identification filed Dec. 10, 2013. Each of the foregoing patent applications and patent publication is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602308 | He et al. | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8811769 | Pitts | Aug 2014 | B1 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8973826 | He et al. | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988317 | Liang | Mar 2015 | B1 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van Horn et al. | Aug 2016 | B2 |
D766244 | Zhou et al. | Sep 2016 | S |
9443123 | Hejl | Sep 2016 | B2 |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130161399 | He | Jun 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130222633 | Knight | Aug 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140097252 | He | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140133755 | McCloskey | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140146201 | Knight | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Liu et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140239071 | Hennick | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | Digregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140300646 | Pitts | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van Horn et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161427 | Guo | Jun 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chen et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160125873 | Braho et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160173844 | Knight | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Wilz, Sr. et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20160353007 | Sabater | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
3086281 | Oct 2016 | EP |
2013096104 | Jun 2013 | WO |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
Xinqing Guo et al., “Barcode Imaging Using a Light Field Camera”, Sep. 6-7 and 12, 2014, ECCV, 2014 workshops, pp. 519-532. |
Extended European search report in related EP Application No. 16165188.0, dated Sep. 16, 2016, 11 pages. |
Gou et al. “Barcode Imaging Using a Light Field Camera,” Computer Vision—ECCV 2014 Workshops, dated Mar. 20, 2015, pp. 519-532, [Retrieved from the Internet: URL: http://rd.springer.com/content/pdf/10.1007/978-3-319-16181-5—40.pdf; [Retrieved on Sep. 12, 2016]]. |
Ng, Ren “Digital light field Photography,” Dissertation Department of Computer Science, Stanford University, Dated Jul. 1, 206, pp. 1-203. [URL: http: //stanford. edu/class/ee367/reading/ Ren%20Ng-thesis%20Lytro.pdf [retrieved on Oct. 20, 2011]]. |
McCloskey Scott: “Masking Light Fields to Remove Partial Occlusion”,International Conference on Pattern Recognition, IEEE Computer Society, US, Aug. 24, 2014 (Aug. 24, 2014), pp. 2053-2058, [retrieved on Dec. 4, 2014]. |
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages. |
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages. |
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned. |
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages. |
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages. |
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages. |
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages. |
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages. |
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages. |
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages. |
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages. |
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages. |
Number | Date | Country | |
---|---|---|---|
20160316190 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62150352 | Apr 2015 | US |