A weak point in many zippers that are intended to be waterproof is at the final closure point of the zipper. In many zipper configurations, a small but significant aperture will exist at the zipper closure point. Depending on the performance required by the waterproof nature of the zipper, even such a small aperture is unacceptable.
Most, if not all, polymer zipper systems are made from Olefin-based polymers like polypropylene or polyethylene. Polymer zipper profiles are manufactured using an extrusion process. Olefin-based systems are prevalent in many polymer zipper systems due to the inherent low cost of the polymer resin and its low coefficient of friction properties. A low coefficient of friction is important so that the ball and socket of the zipper can be pushed together with minimal effort. However, Olefin-based zipper systems have their limitations. Most Olefin-based zipper systems made from polypropylene and polyethylene are not durable when used in exterior environments where temperature extremes affect the performance of the material. Polypropylene and polyethylene zipper profiles lack tensile and tear strength and good elongation properties. They also have excessive compression set when exposed to stress loads at higher temperatures. Therefore, they are not used for extreme applications such as “drybags” and “wet-suits” that are often used in hot environments. Rather, they are used for sandwich bags and other low performance applications.
In one embodiment, a slider garage includes an overmolded body, the overmolded body oriented on a zipper, the overmolded body including an overmolded male portion and an overmolded female portion, the overmolded male and female portions positioned on an end of the zipper, such that each is on one side of the zipper, the overmolded male portion being shaped such that it fits in the overmolded female portion in a watertight fashion and the overmolded body is molded over a portion of the zipper. Alternatively, the zipper includes a male side and a female side, and the overmolded male portion is positioned on the male side of the zipper and the overmolded female portion is positioned on the female side of the zipper. In one alternative, the overmolded body forms a u-shape and the overmolded male portion and the overmolded female portion are part of the u-shape. In another alternative, the overmolded male portion and the overmolded female portion are on the interior of the overmolded body where a first and second side of the overmolded body meet when a slider is engaged in the slider garage. Alternatively, the zipper interfaces with the overmolded body without interruption. In another alternative, the zipper includes a continuous top edge. Alternatively, a flange of the zipper is not exposed between the zipper and the overmolded body. In another alternative, there is no break in the zipper in the along a length of the zipper. Alternatively, there is no break between the zipper along the length of the zipper and the slider garage.
In one embodiment, a slider garage includes an overmolded body, the overmolded body located on an end of a zipper, the overmolded body providing a waterproof seal when engaged with a slider, wherein the overmolded body is molded over a portion of the zipper. In on alternative, the overmolded body forms a u-shape and an overmolded male portion and an overmolded female portion are part of the u-shape. In another alternative, the overmolded male portion and the overmolded female portion are on the interior of the overmolded body where a first and second side of the overmolded body meet when a slider is engaged in the slider garage. Alternatively, the zipper interfaces with the overmolded body without interruption. In another alternative, the zipper includes a continuous top edge. Alternatively, a flange of the zipper is not exposed between the zipper and the overmolded body. In another alternative, there is no break in the zipper in the along a length of the zipper. Alternatively, there is no break between the zipper along the length of the zipper and the slider garage.
In one embodiment, a slider garage includes an overmolded body, the overmolded body oriented on a zipper, the overmolded body including an overmolded male portion and an overmolded female portion, the overmolded male and female portions positioned on an end of the zipper, such that each is on one side of the zipper, the overmolded male portion being shaped such that it fits in the overmolded female portion in a watertight fashion, wherein the overmolded body is molded over a portion of the zipper. Alternatively, the zipper includes a male side and a female side, and the overmolded male portion is positioned on the male side of the zipper and the overmolded female portion is positioned on the female side of the zipper. In one alternative, the overmolded body forms a u-shape and the overmolded male portion and the overmolded female portion are part of the u-shape. In another alternative, the overmolded male portion and the overmolded female portion are on the interior of the overmolded body where a first and second side of the overmolded body meet when a slider is engaged in the slider garage.
In one embodiment, a slider garage includes an overmolded body, the overmolded body oriented on a zipper, the overmolded body including an overmolded male portion and an overmolded female portion, the overmolded male and female portions positioned on an end of the zipper, such that each is on one side of the zipper, the overmolded male portion being shaped such that it fits in the overmolded female portion in a watertight fashion. Optionally, the zipper includes a male side and a female side, and the overmolded male portion is positioned on the male side of the zipper and the overmolded female portion is positioned on the female side of the zipper. Alternatively, the slider garage further includes an inner wall in the overmolded body, wherein the inner wall is sized to have a height that causes the inner wall to seal against a slider when it is advanced to an end of the slider garage distal from the zipper. Optionally, the inner wall includes an incline portion, such that the incline portion forms a ramp for the slider to gradually seal against the inner wall. In one configuration, the inner wall of the slider garage includes a portion distal from the zipper, the portion distal from the zipper having an approximate u-shape and the inner wall of the slider garage includes a zig-zag shaped portion, the zig-zag shaped portion having a first portion on a male side of the zipper which is the side including the overmolded male portion and a second portion on a female side of the zipper which is the side including the overmolded female portion, an end of the zig-zag shaped portion proximate to the zipper having a first position and a second position, the first position characterized by the first portion on the male side of the zipper being immediately adjacent to the second portion on the female side of the zipper when the slider is engaged in the slider garage and the second position characterized by the first portion on the male side of the zipper being away from the second portion on the female side of the zipper when the slider is not engaged in the slider garage, and the first and second portions include the incline portion. Optionally, the overmolded female portion and the overmolded male portion have a first position and a second position, the first position characterized by the overmolded female portion and the overmolded male portion not being engaged, and the second position characterized by the overmolded female portion and the overmolded male portion being engaged. Alternatively, the shape and positioning of the overmolded female portion and the overmolded male portion cause the overmolded female portion to be pushed vertically upward and the overmolded male portion to be pushed vertically downward when the overmolded female portion and the overmolded male portion have a first position and a second position and are in the second position. Optionally, the inner wall is surrounded by a side wall, and the side wall is interconnected with the inner wall via a plurality of supports. Alternatively, the overmolded body includes a transition line wherein the transition line defines the line which the slider must pass to complete a seal of the zipper and slider garage. In one alternative, the transition line is approximately in line with the male and female overmolded portions. In another alternative, a first portion of the zipper on a first side where the overmolded male portion is located extends further into the overmolded body than a second portion of the zipper on a second side where the overmolded female portion is located. Optionally, the overmolded body is made of thermoplastic polyurethane. In another alternative, the overmolded body has a durometer between 60 and 90 shore A. Alternatively, the overmolded body portion is textured to reduce adhesion. Optionally, the thermoplastic polyurethane includes a slip agent.
In another embodiment, a slider garage includes an overmolded body, the overmolded body located on an end of a zipper, the overmolded body providing a waterproof seal when engaged with a slider. Optionally, the overmolded body includes a male overmolded portion and a female overmolded portion, wherein the male overmolded portion fits into the female overmolded portion to form the waterproof seal when engaged with the slider. Alternatively, a height of the overmolded body is such that the overmolded body seals against the slider when the slider engages the overmolded body. Optionally, the overmolded body includes a ramp to ease the transition from a sealed to a non-sealed state. Alternatively, the overmolded body is made of thermoplastic polyurethane. In one alternative, the overmolded body has a durometer between 60 and 90 shore A.
In another embodiment, a slider garage includes an overmolded body, the overmolded body oriented on a zipper, the overmolded body including an overmolded male portion and an overmolded female portion, the overmolded male and female portions positioned on an end of the zipper, such that each is on one side of the zipper, the overmolded male portion being shaped such that it fits in the overmolded female portion in a watertight fashion. The overmolded female portion and the overmolded male portion have a first position and a second position, the first position characterized by the overmolded female portion and the overmolded male portion not being engaged, and the second position characterized by the overmolded female portion and the overmolded male portion being engaged. Optionally, the shape and positioning of the overmolded female portion and the overmolded male portion cause the overmolded female portion to be pushed vertically upward, the overmolded male portion to be pushed vertically downward when the overmolded female portion and the overmolded male portion have a first position and a second position and are in the second position. Alternatively, the slider garage further includes an inner wall in the overmolded body, wherein the inner wall is sized to have a height that causes the inner wall to seal against a slider when it is advanced to an end of the slider garage distal from the zipper. Alternatively, the inner wall includes an incline portion, such that the incline portion forms a ramp for the slider to gradually seal against the inner wall.
Described herein are embodiments of an improved zipper slider garage (referred to as “slider garage” at times) and methods of using it and making it. Of the many advantageous aspects of the improved zipper slider garage, the slider garage includes a shape that provides for an interference fit between the slider of the zipper and the slider garage. This interference fit provides for a seal at the end of the zipper making the zipper waterproof. Although this is a feature that makes the slider garage waterproof, there are many additional features that serve to make the slider garage function in a user friendly and optimal fashion. These features include the male side of the zipper extends further into the slider garage than the female side, the sliding lock mechanism of the zipper, the material of the zipper and the slider garage, and the flexible design of the slider garage.
Many aspects of the slider garage 100 are visible in
When broken down to the simple components that seal the zipper 101, transition point 185 is important to recognize. As a slider moves down zipper 101 and begins to engage slider garage 100, the inner portion of the slider begins to engage the incline portions 171, 172. After the down facing inner portion of the slider passes transition point 185, the waterproof seal is formed. The seal may form for a number of reasons including, but not limited to, the engagement of the male and female overmolded portions and the engagement of the slider with the slider garage. This might be accomplished without incline portions 171, 172; and slider garage 100 might have a hard transition, in some alternatives, at point 185, from providing no contact and/or interference with the down facing inner portion of the slider to an amount of interference that seals the zipper 101 and slider garage 100. As can be discerned, the slider would be difficult to operate in such a scenario, since the slider and the slider garage 100 would have to flex significantly over a short distance. This would require a lot of force from the user. Therefore, a first aspect of the innovation in the slider garage 100 is that the slider seals against inner wall 170, making the closure waterproof. Another innovation is that incline portions 171, 172 make the transition of the slider into a sealed position gradual, utilizing the wedge that incline portions 171, 172 provide. Pulling the slider towards the wedge provides an upward force approximately perpendicular to the movement of the slider. The aspect of incline portions 171, 172 make the zipper 101 easier to operate.
In some configurations, even with the inclusion of incline portions 171, 172, the zipper may still be difficult to operate. In order to have a strong seal, inner wall 170 must be rigid enough to avoid flexing in such a way to break the seal between the slider and the inner wall 170. In order to accomplish this, inner wall 170 may be thickened or made of stiffer material. Although this ensures a seal, engaging and disengaging a slider from slider garage 100 may be more difficult due to the lack of give and flex. In order to enable a thinner and more flexible inner wall 170, side wall 140, supports 150, 151, 152, 153, 154, and voids 160-165 have been included in many embodiments. These side walls 140, supports 150, 151, 152, 153, 154, and voids 160-165 provide for both flexibility of slider garage 100 and stiffness to resist unwanted release of the seal between the slider and slider garage 100.
Note that supports 150, 154 approximately coincide with transition point 185. This is an important location on slider garage 100. Since transition point 185 is the primary point where seal is achieved, this point in many configurations is optimized by including supports 150, 154 at the same point. Therefore, slider garage 100 is prevented from flexing greatly at this point, while at the same time more flex is enabled before and after the transition point 185 by voids 160, 161, 164, 165. The other supports and voids function in a similar fashion to enable flexion and support. Similarly, flange 180 may assist in providing give and flexion to the entire device.
In addition to the structure of slider garage 100, the material that is used is optimized as well. Typically, zipper 101, the slider, and slider garage 100 are composed of TPU (Thermoplastic polyurethane). Unlike Olefin-based plastics, TPUs are crosslinked polymer elastomers that exhibit rubber-like properties at high and low durometers. TPU polymers exhibit extremely high tensile and tear strengths and high elongation properties at high and low temperature extremes. TPU polymers also exhibit superior compression set resistance. TPU polymers are designed for use in extreme outdoor applications. In sealing applications, such as slider garage parts, relatively low durometer material is used because of its excellent sealing properties that include being soft/malleable and tacky/being able to stick to itself. The side effect of these excellent sealing properties is that they also tend to be tacky and “stick” to other materials on contact. In a slider garage application, because of the interference fit between the slider and slider garage 100, this effect is amplified, making the slider somewhat problematic to fully engage and disengage slider garage 100. As a solution in some alternatives, slider garage 100 is made of a compounded material. The compound consists of a 75A durometer TPU material and a slip agent. This specific combination of materials produces a part that retains excellent sealing properties and at the same time allows the slider to easily engage and disengage slider garage 100. Additionally, in alternatives, the TPU material may be textured. Light regular and irregular textures may be applied to the TPU material. These textures are typically between 0.01 millimeters and 1 millimeter in depth, size, and spacing, where the arrangement may be a combination of different depths, sizes, and spacing as well. Typically, these textures are less than 0.1 millimeters in depth. The textured nature of the TPU may prevent the TPU from sticking or adhering to itself and may increase ease of use in sliding parts past each other.
In many embodiments, the interior of the zipper garage itself includes a male and female portion. This can be seen in
The previous detailed description is of a small number of embodiments for implementing the systems and methods for creating a slider garage and the systems of slider garages and zippers and is not intended to be limiting in scope. The following claims set forth a number of the embodiments of the systems and methods for creating slider garages and the systems of slider garages disclosed with greater particularity.
This application is a continuation of U.S. patent application Ser. No. 16/211,128, filed Dec. 5, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/612,926 filed Jun. 2, 2017 which is a continuation of PCT Application No. PCT/US2015/063451 filed on Dec. 2, 2015, which PCT application claims the benefit of U.S. Provisional Application No. 62/087,687 filed Dec. 4, 2014. The above patent applications are hereby incorporated by reference to the same extent as though fully contained herein.
Number | Date | Country | |
---|---|---|---|
62087687 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16211128 | Dec 2018 | US |
Child | 16278550 | US | |
Parent | 15612926 | Jun 2017 | US |
Child | 16211128 | US | |
Parent | PCT/US2015/063451 | Dec 2015 | US |
Child | 15612926 | US |