The present invention relates generally to measurements of disks of a hard disk drive (HDD), and more specifically to systems and methods for improving the accuracy of test measurements involving aggressor tracks written to the disks.
Spin stand testing systems (spinstands) are used for multiple purposes with respect to HDD disks, including disk characterization, testing, and development. In order to perform such operations, the systems need to provide accurate and precise positioning of read-write heads at various track offsets for the purposes of reading and writing to disks. Additionally, though most measurements on a spinstand write at offset 0, certain measurements can also involve accurate and precise positioning of the head at off-track positions for writing. Accordingly, positioning of a head for spinstands is facilitated by using a servo in combination with servo marks (also known as “servo patterns”) in a closed-loop system. The servo marks are written in small sectors on each disk and are used to accurately position the head at different read or write offsets.
Unfortunately, the quality of the servo patterns can greatly affect the repeatability of some essential measured results from spinstands. In general, the head positioning of a conventional servo in a spinstand (e.g., from Guzik Technical Enterprises of Mountain View, Calif.) varies over a range of read or write offsets and is not repeatable from servo-to-servo write. Furthermore, though approaches to improve head positioning accuracy have been developed (e.g., Guzik Servo Improvement Package), these solutions can suffer from drawbacks such as mechanical limitations that limit accuracy and a significant increase in operation time of the spinstand.
Many recording measurements involving a spinstand use a sequence like (1) write a central track, (2) write additional “aggressor” tracks at off track locations, and (3) assess how much the central track has changed. A servo pattern written on the disk before a sequence of tests is used to position the head at the desired radial location. However, this servo pattern is not perfect. There are variations from one writing of the servo to the next. In addition, the servo system may have a minimum step size which limits where the head can be positioned. Both of these problems degrade the accuracy for writing the “aggressor” tracks at precisely the desired location.
Embodiments of systems and methods described herein can substantially improve the accuracy of measurements that involve aggressor track writes in two ways. First, the systems and methods described herein can measure the actual location where the aggressor tracks were written. Present measurements just request the desired location and assume it has been achieved accurately. Using the techniques disclosed here one can determine precisely where these tracks were written, not just where they were intended to be written. Second, in the systems and methods described herein, the aggressors tracks can be written at several off-track locations, both closer and further away than desired from the central track. This gives data over a range of aggressor track locations which can be interpolated to the desired aggressor track location.
In several instances, the systems and methods are described herein in relation to a squeeze measurement. However, the same concepts can be applied to other measurements that involve off-track aggressor track writing such as magnetic track width measurements (MTW), signal to noise measurements (e.g., wsSNRfinal), error margin measurements (e.g., EMfinal), shingled error margin measurements (ShEM), and other suitable measurements.
The positioning device 104 is configured to position the head 108 to a desired position on the disk 102, for example, with a combination of coarse and fine positioners for translating the HGA 106. As shown in
Turning first to the coarse positioners, the HGA 106 is secured to a base 110 on a first platform 112. The first platform 112 includes a set of rails 114 upon which the base 110 can move back and forth in a first direction relative to the first platform 112. A motor (not shown) is one example of a mechanism for driving the base 110 relative to the first platform 112. Similarly, the positioning device 104 also has a second platform 116 including a set of rails 118. In this embodiment the first platform 112 is configured to move upon the rails 118 relative to the second platform 116 in a second direction.
By moving the base 110 relative to the first platform 112, and by moving the first platform 112 relative to the second platform 116, the head 108 can be positioned at a desired disk radius, r, and skew angle, a (an angle formed between a longitudinal axis of the HGA 106 and a tangent to a radial line through the head 108). It will be appreciated, however, that various types of coarse positioning means, and not just that employed by the positioning device 104 to move the base 110 relative to the disk 102, may be used in accordance with embodiments of the invention.
In addition to the orthogonal rail system for coarse positioning, the positioning device 104 also includes the secondary mover 122. The secondary mover 122 provides a finer positioning capability in a lateral direction than is provided by the orthogonal rail system. The secondary mover 122 provides fine positioning, for example, through the use of an actuator based on a piezoelectric material. Preferably, the secondary mover 122 is able to move the head 108 in steps that are on the order of a micro-inch or less.
The positioning device 104 further includes a processor 124 that may be electrically coupled to the head 108, the microactuator 109, the secondary mover 122, and the coarse and fine positioners. The processor 124 can include a memory configured to store information such as instructions to be executed on the processor 124 or other information. In some embodiments, the memory is integrated with processor 124. In other embodiments, the memory is not integrated with processor 124. The processor 124 is configured to execute instructions for operating the spin stand testing system 100.
In this context, the processor 124 refers to any machine or selection of logic that is capable of executing a sequence of instructions and should be taken to include, but not limited to, general purpose microprocessors, special purpose microprocessors, central processing units (CPUs), digital signal processors (DSPs), application specific integrated circuits (ASICs), signal processors, microcontrollers, and other suitable circuitry. Further, it should be appreciated that the term processor, microprocessor, circuitry, controller, and other such terms, refer to any type of logic or circuitry capable of executing logic, commands, instructions, software, firmware, functionality, or other such information.
FIG. 2—Block 202:
The process first erases a circumferential band of a disk in block 202. In several embodiments, the process can erase a range of write offsets to be used in the process.
FIG. 2—Block 204:
The process then writes a central track on the circumferential band of the disk in block 204.
FIG. 2—Block 206:
The process then measures and stores a first track profile of the central track in block 206. In several embodiments, the process measures the amplitude as a function of radial offset at the central track to generate the first track profile of the central track.
FIG. 2—Block 208:
The process then writes an aggressor track on each side of the central track at a preselected aggressor track offset from the central track in block 208. In some embodiments, the process generates a list of off-track positions where the aggressor tracks will be written on each side of the central track. In one such embodiment for a squeeze measurement, two additional off-track locations are used on each side in addition to the location where the first aggressor track is intended to be written. For example, if squeeze is desired for aggressor tracks located at plus and/or minus a preselected desired offset (e.g., aggressor_offset0) from the central track location, the three values on one side will be offset1, offset2, and offset3, which are equal to <aggressor_offset0> plus or minus Npos multiplied by (piezo actuator step size) where Npos is an integer and <aggressor_offset0> is the discretized version of aggressor_offset0 in units of the piezo actuator step size. Similarly, the off-track locations for aggressors on the other side will be offset4, offset5, and offset6, which are equal to negative <aggressor_offset0> plus or minus Nneg multiplied by (piezo actuator step size), where Nneg is an integer.
In some embodiments, the process writes the aggressor tracks only to preselected sectors of the disk in block 208. In such case, the process can generate a list of preselected sectors for aggressor tracks and associate the sectors with the off-track locations for aggressor tracks. Examples of sector layouts that can be used are shown in
FIG. 2—Block 210:
Returning now to
In several embodiments, the process measures and stores the track profile of the aggressor tracks at the preselected aggressor track offset from the central track in block 210 by performing a servo calibration procedure and thereby generating a read offset correction table, and applying the read offset correction table to the track profiles of the aggressor tracks thereby generating corrected track profiles of the aggressor tracks, where the process then determines the estimated distance between the aggressor tracks based on the respective track profiles based on the respective corrected track profiles in block 216, to be discussed in more detail below. In one such embodiment, the process performs the servo calibration procedure by writing a series of tracks over a range of read offsets to be calibrated, measuring a set of raw track profiles from the series of tracks, sampling the set of raw track profiles at a series of signal amplitude levels, constructing a reference track profile from the set of sampled track profiles, calculating a set of read offset deltas from each sampled track profile, and merging the sets of read offset deltas into a set of average read offset deltas stored in the read offset correction table. More details on the server calibration procedure can be found in U.S. patent application Ser. No. 13/115,307, entitled, “SYSTEM AND METHOD FOR IMPROVING HEAD POSITIONING”, the entire content of which is incorporated herein by reference. In some embodiments, the process performs the servo calibration procedure prior to erasing the circumference band of the disk in block 202.
FIG. 2—Block 212:
The process then measures and stores a second track profile of the central track in block 212. In several embodiments, the process generates a list of sectors for reading back the center track after the aggressor writes. For example and in reference to table of
FIG. 2—Block 214:
The process then performs blocks 202 through 212 exactly n times where n is greater than or equal to 1 in block 214. In one embodiment, n is greater than or equal to 2. In another embodiment such as that illustrated in
FIG. 2—Block 216:
The process then determines an estimated distance between the aggressor tracks based on the respective track profiles in block 216. In one embodiment, the process is applied for a squeeze measurement. In such case and in order to obtain the dependence of squeeze on the aggressor distance, an accurate assessment of the distance between aggressor tracks is needed. This goal can be achieved in two steps. First, the aggressor tracks are measured by means of track profiles in particular sectors established in the discussion of block 208 above. In one aspect, three track profiles (TPN1, TPN2, TPN3) are obtained at negative offsets, representing the aggressor tracks written at offs1, offs2, offs3, respectively, and similarly three track profiles (TPP1, TPP2, TPP3) are obtained at the positive offsets, representing the aggressor tracks written at offs4, offs5, offs6, respectively. An example of such measured track profiles is shown in
The process can estimate the distance between the aggressors located on opposite sides with respect to the central track by using the measured track profiles and the servo correction function for read offsets (determined in block 210).
The servo correction function for read offsets is used to correct the track profiles of the aggressor tracks such that TPN1, TPN2, TPN3 are converted to corrTPN1, corrTPN2, corrTPN3. The corrected track profiles from the negative offset side, corrTPN1,2,3, are paired with those from the positive side, corrTPP1,2,3, to calculate the distance between them where the aggressor distance (i,j) or “aggr_disti,j” is equal to the distance between (corrTPNi, corrTPPj). Several techniques can be used to calculate the distance between two track profiles. In one embodiment, for example, the process can use the algorithm implemented in the U.S. patent application Ser. No. 13/115,307, incorporated by reference above, where the two aggressor tracks are re-sampled at equal values of amplitude and numerically offset-shifted to find the optimal overlap of the track profiles in a least-squares sense. In other embodiments, other suitable techniques can be used.
With the squeeze measurement values determined in block 212 and the aggressor distances estimated in block 216, the process can provide the dependence of a squeeze measurement on the aggressor distance, or Squeeze(aggr_disti,j). In one aspect, this dependence is linear for the range of parameters that are typically used in head/media testing. The slope and intercept of the Squeeze(aggr_disti,j) can be used to calculate squeeze at the desired aggressor_offset0, thus overcoming issues caused by the finite radial step size of the piezo actuator described above. This is another feature of the present process that allows the user to overcome the hardware limitation associated with the finite step size of the radial positioning system. An example of Squeeze(aggr_disti,j) dependence is shown in
FIG. 2—Block 218:
Returning now to
In several embodiments, each of the preselected aggressor track offsets from the central track is different for each iteration of the process such that each is unique (e.g., organized to maximize the number of unique track separations).
In several embodiments, track profiles of the central track and/or aggressor tracks can be measured and stored. The track profiles can be thought of as a set of data reflecting the measuring and storing of an amplitude over a preselected radial offset range including the track of interest (e.g., central track or aggressor track).
In some embodiments, the process is performed using a spin stand device such as the one described above and depicted in
In several embodiments, the process is configured to determine the selected measurement as a squeeze measurement. In other embodiments, the selected measurement is a magnetic track width measurement, a signal to noise ratio measurement, an error margin measurement, a shingled error margin measurement, and/or another measurement that involves writing one or more aggressor tracks adjacent to a central track on a disk.
In several embodiments, the preselected measurement offset is a non-integer multiple of a minimum piezo-step size of a servo sub-component of a test instrument performing the writing the aggressor tracks on each side of the central track. In such case, the process can allow measurements to be made, often by way of interpolation, at locations that a spin stand or other disk testing machine cannot actually write directly to, or measure directly from.
In some embodiments, the process repeatedly writes the aggressor tracks on each side of the central track at the preselected aggressor track offset from the central track for a preselected number of iterations in block 208. In one, embodiment, the preselected number of iterations is about 1 iterations (e.g., for a squeeze measurement). In another embodiment, the preselected number of iterations can be 3, 10, 100, 300, 1000, or 5000 iterations depending on the type of measurement value desired.
In one embodiment, the process 200 can perform the sequence of actions in a different order. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.
In several embodiments, the process can seek to avoid duplicate data. For example, for the case when Npos is equal to Nneg which is also equal to N (see block 208 of the process where sectors are selected for aggressor tracks, and for example equal separations of offsets of sectors 0, 4, 8 in
3 times: 2*<aggressor_offset0>
2 times: 2*<aggressor_offset0>+N*(piezo actuator step size)
2 times: 2*<aggressor_offset0>−N*(piezo actuator step size)
1 time: 2*<aggressor_offset0>−2*N*(piezo actuator step size)
1 time: 2*<aggressor_offset0>+2*N*(piezo actuator step size)
To avoid this scenario, a non-symmetrical configuration (e.g., where Npos is not equal to Nneg) can be used in measurements on the spinstand. One additional benefit of the non-symmetrical configuration is that the range of aggressor distances becomes wider, and thus the linear fit Squeeze(aggr_disti,j) is more reliable. An example of such data in shown in
In several embodiments, the processes and test configurations described herein provide a number of advantages. For example, the processes and test configurations can improve the repeatability of spinstand measurements (e.g., squeeze measurements) over several servo writes by accurately determining where the aggressor tracks have been written. In one aspect, the processes and test configurations do not require additional hardware. In addition, the processes and test configurations can circumvent the hardware limitation imposed by the finite step size of the piezo actuator. The processes and test configurations can also be extended to more complex measurements such as wsSNR and Error Rate/Error Margin with aggressor writes.
To assess some of the benefits of the proposed technique, several sets of measurements have been performed on a commercial Guzik spinstand tester. After writing a servo pattern, ten consecutive measurements were performed with the same testing conditions. A new servo was written and the procedure was repeated. In the end, a total of 100 measurements were performed, with ten new servo writes and ten measurements for each servo write. The goal of this procedure was to assess the repeatability of the measurements. An example of such data which were acquired is shown in
The raw data 506, which were measured without enabling the servo correction algorithm, exhibit a significant scatter due to the systematic and non-systematic errors that affect the radial positioning system. The implementation of the servo correction algorithm decreases the data scatter by reducing the systematic errors. However, it appears that the servo correction algorithm cannot reduce the non-systematic errors. The range of squeeze values is larger than about 4%, which is associated with about plus or minus 0.04 uIn (corresponding to about plus or minus 1 nanometer or nm) radial positioning error. The proposed algorithm reduces even further the systematic errors due to the inaccuracies of the servo pattern, as shown in
In one aspect, a penalty of the proposed algorithm can be the test time. In some embodiments, for example, the aggressors are written at more than one location on each side of the central track, and the aggressor tracks are profiled, such that the testing time is higher compared to a conventional squeeze algorithm. However, the use of particular sectors can reduce the testing time.
It shall be appreciated by those skilled in the art in view of the present disclosure that although various exemplary fabrication methods are discussed herein with reference to magnetic recording disks, the methods, with or without some modifications, may be used for fabricating other types of recording disks, for example, optical recording disks such as a compact disc (CD) and a digital-versatile-disk (DVD), or magneto-optical recording disks, or ferroelectric data storage devices.
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
For example, in several embodiments, the methods described herein can be used to improve disk media characterization of magnetic disks used in hard disk drives. However, in other embodiments, the methods described herein can be used to improve spinstand testing of other devices under test.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. In addition, certain method, event, state or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other suitable manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
This application claims priority to and the benefit of U.S. Provisional Application No. 61/809,231, filed on Apr. 5, 2013, entitled, “METHODS FOR IMPROVING THE ACCURACY OF SPINSTAND MEASUREMENTS INVOLVING AGGRESSOR WRITES”, the entire content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4513333 | Young et al. | Apr 1985 | A |
6013161 | Chen et al. | Jan 2000 | A |
6063248 | Bourez et al. | May 2000 | A |
6068891 | O'Dell et al. | May 2000 | A |
6086730 | Liu et al. | Jul 2000 | A |
6099981 | Nishimori | Aug 2000 | A |
6103404 | Ross et al. | Aug 2000 | A |
6117499 | Wong et al. | Sep 2000 | A |
6136403 | Prabhakara et al. | Oct 2000 | A |
6143375 | Ross et al. | Nov 2000 | A |
6145849 | Bae et al. | Nov 2000 | A |
6146737 | Malhotra et al. | Nov 2000 | A |
6149696 | Jia | Nov 2000 | A |
6150015 | Bertero et al. | Nov 2000 | A |
6156404 | Ross et al. | Dec 2000 | A |
6159076 | Sun et al. | Dec 2000 | A |
6164118 | Suzuki et al. | Dec 2000 | A |
6200441 | Gornicki et al. | Mar 2001 | B1 |
6204995 | Hokkyo et al. | Mar 2001 | B1 |
6206765 | Sanders et al. | Mar 2001 | B1 |
6210819 | Lal et al. | Apr 2001 | B1 |
6216709 | Fung et al. | Apr 2001 | B1 |
6221119 | Homola | Apr 2001 | B1 |
6248395 | Homola et al. | Jun 2001 | B1 |
6261681 | Suekane et al. | Jul 2001 | B1 |
6265868 | Richter | Jul 2001 | B1 |
6270885 | Hokkyo et al. | Aug 2001 | B1 |
6274063 | Li et al. | Aug 2001 | B1 |
6283838 | Blake et al. | Sep 2001 | B1 |
6287429 | Moroishi et al. | Sep 2001 | B1 |
6290573 | Suzuki | Sep 2001 | B1 |
6299947 | Suzuki et al. | Oct 2001 | B1 |
6303217 | Malhotra et al. | Oct 2001 | B1 |
6309765 | Suekane et al. | Oct 2001 | B1 |
6358636 | Yang et al. | Mar 2002 | B1 |
6362452 | Suzuki et al. | Mar 2002 | B1 |
6363599 | Bajorek | Apr 2002 | B1 |
6365012 | Sato et al. | Apr 2002 | B1 |
6381090 | Suzuki et al. | Apr 2002 | B1 |
6381092 | Suzuki | Apr 2002 | B1 |
6387483 | Hokkyo et al. | May 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6395349 | Salamon | May 2002 | B1 |
6403919 | Salamon | Jun 2002 | B1 |
6408677 | Suzuki | Jun 2002 | B1 |
6426157 | Hokkyo et al. | Jul 2002 | B1 |
6429984 | Alex | Aug 2002 | B1 |
6482330 | Bajorek | Nov 2002 | B1 |
6482505 | Bertero et al. | Nov 2002 | B1 |
6500567 | Bertero et al. | Dec 2002 | B1 |
6528124 | Nguyen | Mar 2003 | B1 |
6548821 | Treves et al. | Apr 2003 | B1 |
6552871 | Suzuki et al. | Apr 2003 | B2 |
6565719 | Lairson et al. | May 2003 | B1 |
6566674 | Treves et al. | May 2003 | B1 |
6571806 | Rosano et al. | Jun 2003 | B2 |
6628466 | Alex | Sep 2003 | B2 |
6650491 | Suzuki et al. | Nov 2003 | B2 |
6664503 | Hsieh et al. | Dec 2003 | B1 |
6670055 | Tomiyasu et al. | Dec 2003 | B2 |
6682807 | Lairson et al. | Jan 2004 | B2 |
6683754 | Suzuki et al. | Jan 2004 | B2 |
6730420 | Bertero et al. | May 2004 | B1 |
6743528 | Suekane et al. | Jun 2004 | B2 |
6759138 | Tomiyasu et al. | Jul 2004 | B2 |
6778353 | Harper | Aug 2004 | B1 |
6795274 | Hsieh et al. | Sep 2004 | B1 |
6801377 | Kasajima et al. | Oct 2004 | B2 |
6855232 | Jairson et al. | Feb 2005 | B2 |
6857937 | Bajorek | Feb 2005 | B2 |
6893748 | Bertero et al. | May 2005 | B2 |
6899959 | Bertero et al. | May 2005 | B2 |
6916558 | Umezawa et al. | Jul 2005 | B2 |
6939120 | Harper | Sep 2005 | B1 |
6946191 | Morikawa et al. | Sep 2005 | B2 |
6967798 | Homola et al. | Nov 2005 | B2 |
6972135 | Homola | Dec 2005 | B2 |
7004827 | Suzuki et al. | Feb 2006 | B1 |
7006323 | Suzuki | Feb 2006 | B1 |
7016154 | Nishihira | Mar 2006 | B2 |
7019924 | McNeil et al. | Mar 2006 | B2 |
7045215 | Shimokawa | May 2006 | B2 |
7070870 | Bertero et al. | Jul 2006 | B2 |
7088535 | Kim et al. | Aug 2006 | B2 |
7090934 | Hokkyo et al. | Aug 2006 | B2 |
7099112 | Harper | Aug 2006 | B1 |
7105241 | Shimokawa et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7147790 | Wachenschwanz et al. | Dec 2006 | B2 |
7161753 | Wachenschwanz et al. | Jan 2007 | B2 |
7166319 | Ishiyama | Jan 2007 | B2 |
7166374 | Suekane et al. | Jan 2007 | B2 |
7169487 | Kawai et al. | Jan 2007 | B2 |
7174775 | Ishiyama | Feb 2007 | B2 |
7179549 | Malhotra et al. | Feb 2007 | B2 |
7184139 | Treves et al. | Feb 2007 | B2 |
7196860 | Alex | Mar 2007 | B2 |
7199977 | Suzuki et al. | Apr 2007 | B2 |
7208236 | Morikawa et al. | Apr 2007 | B2 |
7220500 | Tomiyasu et al. | May 2007 | B1 |
7229266 | Harper | Jun 2007 | B2 |
7239970 | Treves et al. | Jul 2007 | B2 |
7252897 | Shimokawa et al. | Aug 2007 | B2 |
7277254 | Shimokawa et al. | Oct 2007 | B2 |
7281920 | Homola et al. | Oct 2007 | B2 |
7292329 | Treves et al. | Nov 2007 | B2 |
7301726 | Suzuki | Nov 2007 | B1 |
7302148 | Treves et al. | Nov 2007 | B2 |
7305119 | Treves et al. | Dec 2007 | B2 |
7314404 | Singh et al. | Jan 2008 | B2 |
7320584 | Harper et al. | Jan 2008 | B1 |
7329114 | Harper et al. | Feb 2008 | B2 |
7375362 | Treves et al. | May 2008 | B2 |
7420886 | Tomiyasu et al. | Sep 2008 | B2 |
7425719 | Treves et al. | Sep 2008 | B2 |
7457075 | Liu et al. | Nov 2008 | B2 |
7471484 | Wachenschwanz et al. | Dec 2008 | B2 |
7498062 | Calcaterra et al. | Mar 2009 | B2 |
7529050 | Shen et al. | May 2009 | B2 |
7531485 | Hara et al. | May 2009 | B2 |
7537846 | Ishiyama et al. | May 2009 | B2 |
7549209 | Wachenschwanz et al. | Jun 2009 | B2 |
7569490 | Staud | Aug 2009 | B2 |
7597792 | Homola et al. | Oct 2009 | B2 |
7597973 | Ishiyama | Oct 2009 | B2 |
7608193 | Wachenschwanz et al. | Oct 2009 | B2 |
7632087 | Homola | Dec 2009 | B2 |
7639447 | Yu et al. | Dec 2009 | B1 |
7656615 | Wachenschwanz et al. | Feb 2010 | B2 |
7663835 | Yu et al. | Feb 2010 | B1 |
7682546 | Harper | Mar 2010 | B2 |
7684152 | Suzuki et al. | Mar 2010 | B2 |
7686606 | Harper et al. | Mar 2010 | B2 |
7686991 | Harper | Mar 2010 | B2 |
7695833 | Ishiyama | Apr 2010 | B2 |
7722968 | Ishiyama | May 2010 | B2 |
7733605 | Suzuki et al. | Jun 2010 | B2 |
7736768 | Ishiyama | Jun 2010 | B2 |
7755861 | Li et al. | Jul 2010 | B1 |
7758732 | Calcaterra et al. | Jul 2010 | B1 |
7768729 | Moser et al. | Aug 2010 | B2 |
7833639 | Sonobe et al. | Nov 2010 | B2 |
7833641 | Tomiyasu et al. | Nov 2010 | B2 |
7843658 | Kiyono | Nov 2010 | B2 |
7903366 | Michinaga | Mar 2011 | B2 |
7907361 | Deng et al. | Mar 2011 | B2 |
7910159 | Jung | Mar 2011 | B2 |
7911736 | Bajorek | Mar 2011 | B2 |
7924519 | Lambert | Apr 2011 | B2 |
7944165 | O'Dell | May 2011 | B1 |
7944643 | Jiang et al. | May 2011 | B1 |
7955723 | Umezawa et al. | Jun 2011 | B2 |
7982989 | Shi et al. | Jul 2011 | B1 |
7983003 | Sonobe et al. | Jul 2011 | B2 |
7993497 | Moroishi et al. | Aug 2011 | B2 |
7993765 | Kim et al. | Aug 2011 | B2 |
7998912 | Chen et al. | Aug 2011 | B2 |
8002901 | Chen et al. | Aug 2011 | B1 |
8003237 | Sonobe et al. | Aug 2011 | B2 |
8012920 | Shimokawa | Sep 2011 | B2 |
8038863 | Homola | Oct 2011 | B2 |
8057926 | Ayama et al. | Nov 2011 | B2 |
8062778 | Suzuki et al. | Nov 2011 | B2 |
8064156 | Suzuki et al. | Nov 2011 | B1 |
8076013 | Sonobe et al. | Dec 2011 | B2 |
8092931 | Ishiyama et al. | Jan 2012 | B2 |
8100685 | Harper et al. | Jan 2012 | B1 |
8101054 | Chen et al. | Jan 2012 | B2 |
8125723 | Nichols et al. | Feb 2012 | B1 |
8125724 | Nichols et al. | Feb 2012 | B1 |
8137517 | Bourez | Mar 2012 | B1 |
8142916 | Umezawa et al. | Mar 2012 | B2 |
8163093 | Chen et al. | Apr 2012 | B1 |
8171949 | Lund et al. | May 2012 | B1 |
8173282 | Sun et al. | May 2012 | B1 |
8178480 | Hamakubo et al. | May 2012 | B2 |
8189286 | Chen et al. | May 2012 | B1 |
8206789 | Suzuki | Jun 2012 | B2 |
8218260 | Iamratanakul et al. | Jul 2012 | B2 |
8247095 | Champion et al. | Aug 2012 | B2 |
8257783 | Suzuki et al. | Sep 2012 | B2 |
8298609 | Liew et al. | Oct 2012 | B1 |
8298689 | Sonobe et al. | Oct 2012 | B2 |
8309239 | Umezawa et al. | Nov 2012 | B2 |
8316668 | Chan et al. | Nov 2012 | B1 |
8331056 | O'Dell | Dec 2012 | B2 |
8354618 | Chen et al. | Jan 2013 | B1 |
8367228 | Sonobe et al. | Feb 2013 | B2 |
8383209 | Ayama | Feb 2013 | B2 |
8394243 | Jung et al. | Mar 2013 | B1 |
8397751 | Chan et al. | Mar 2013 | B1 |
8399809 | Bourez | Mar 2013 | B1 |
8402638 | Treves et al. | Mar 2013 | B1 |
8404056 | Chen et al. | Mar 2013 | B1 |
8404369 | Ruffini et al. | Mar 2013 | B2 |
8404370 | Sato et al. | Mar 2013 | B2 |
8406918 | Tan et al. | Mar 2013 | B2 |
8414966 | Yasumori et al. | Apr 2013 | B2 |
8425975 | Ishiyama | Apr 2013 | B2 |
8431257 | Kim et al. | Apr 2013 | B2 |
8431258 | Onoue et al. | Apr 2013 | B2 |
8441750 | Nangare et al. | May 2013 | B1 |
8453315 | Kajiwara et al. | Jun 2013 | B2 |
8488276 | Jung et al. | Jul 2013 | B1 |
8491800 | Dorsey | Jul 2013 | B1 |
8492009 | Homola et al. | Jul 2013 | B1 |
8492011 | Itoh et al. | Jul 2013 | B2 |
8496466 | Treves et al. | Jul 2013 | B1 |
8517364 | Crumley et al. | Aug 2013 | B1 |
8517657 | Chen et al. | Aug 2013 | B2 |
8524052 | Tan et al. | Sep 2013 | B1 |
8530065 | Chernyshov et al. | Sep 2013 | B1 |
8546000 | Umezawa | Oct 2013 | B2 |
8551253 | Na'im et al. | Oct 2013 | B2 |
8551627 | Shimada et al. | Oct 2013 | B2 |
8556566 | Suzuki et al. | Oct 2013 | B1 |
8559131 | Masuda et al. | Oct 2013 | B2 |
8562748 | Chen et al. | Oct 2013 | B1 |
8565050 | Bertero et al. | Oct 2013 | B1 |
8570844 | Yuan et al. | Oct 2013 | B1 |
8576507 | Rub | Nov 2013 | B2 |
8580410 | Onoue | Nov 2013 | B2 |
8584687 | Chen et al. | Nov 2013 | B1 |
8591709 | Lim et al. | Nov 2013 | B1 |
8592061 | Onoue et al. | Nov 2013 | B2 |
8596287 | Chen et al. | Dec 2013 | B1 |
8597723 | Jung et al. | Dec 2013 | B1 |
8603649 | Onoue | Dec 2013 | B2 |
8603650 | Sonobe et al. | Dec 2013 | B2 |
8605388 | Yasumori et al. | Dec 2013 | B2 |
8605555 | Chernyshov et al. | Dec 2013 | B1 |
8608147 | Yap et al. | Dec 2013 | B1 |
8609263 | Chernyshov et al. | Dec 2013 | B1 |
8619381 | Moser et al. | Dec 2013 | B2 |
8623528 | Umezawa et al. | Jan 2014 | B2 |
8623529 | Suzuki | Jan 2014 | B2 |
8625224 | Lin et al. | Jan 2014 | B1 |
8634155 | Yasumori et al. | Jan 2014 | B2 |
8658003 | Bourez | Feb 2014 | B1 |
8658292 | Mallary et al. | Feb 2014 | B1 |
8665541 | Saito | Mar 2014 | B2 |
8668953 | Buechel-Rimmel | Mar 2014 | B1 |
8674327 | Poon et al. | Mar 2014 | B1 |
8685214 | Moh et al. | Apr 2014 | B1 |
8696404 | Sun et al. | Apr 2014 | B2 |
8711499 | Desai et al. | Apr 2014 | B1 |
8743495 | Chen et al. | Jun 2014 | B1 |
8743666 | Bertero et al. | Jun 2014 | B1 |
8758912 | Srinivasan et al. | Jun 2014 | B2 |
8787124 | Chernyshov et al. | Jul 2014 | B1 |
8787130 | Yuan et al. | Jul 2014 | B1 |
8791391 | Bourez | Jul 2014 | B2 |
8795765 | Koike et al. | Aug 2014 | B2 |
8795790 | Sonobe et al. | Aug 2014 | B2 |
8795857 | Ayama et al. | Aug 2014 | B2 |
8800322 | Chan et al. | Aug 2014 | B1 |
8811129 | Yuan et al. | Aug 2014 | B1 |
8817410 | Moser et al. | Aug 2014 | B1 |
8837065 | Mircea et al. | Sep 2014 | B1 |
20020060883 | Suzuki | May 2002 | A1 |
20030022024 | Wachenschwanz | Jan 2003 | A1 |
20030072097 | Li et al. | Apr 2003 | A1 |
20040022387 | Weikle | Feb 2004 | A1 |
20040132301 | Harper et al. | Jul 2004 | A1 |
20040202793 | Harper et al. | Oct 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040209123 | Bajorek et al. | Oct 2004 | A1 |
20040209470 | Bajorek | Oct 2004 | A1 |
20050036223 | Wachenschwanz et al. | Feb 2005 | A1 |
20050142990 | Homola | Jun 2005 | A1 |
20050150862 | Harper et al. | Jul 2005 | A1 |
20050151282 | Harper et al. | Jul 2005 | A1 |
20050151283 | Bajorek et al. | Jul 2005 | A1 |
20050151300 | Harper et al. | Jul 2005 | A1 |
20050155554 | Saito | Jul 2005 | A1 |
20050167867 | Bajorek et al. | Aug 2005 | A1 |
20050263401 | Olsen et al. | Dec 2005 | A1 |
20060147758 | Jung et al. | Jul 2006 | A1 |
20060181697 | Treves et al. | Aug 2006 | A1 |
20060207890 | Staud | Sep 2006 | A1 |
20070070549 | Suzuki et al. | Mar 2007 | A1 |
20070245909 | Homola | Oct 2007 | A1 |
20080062550 | Lu | Mar 2008 | A1 |
20080075845 | Sonobe et al. | Mar 2008 | A1 |
20080093760 | Harper et al. | Apr 2008 | A1 |
20090117408 | Umezawa et al. | May 2009 | A1 |
20090136784 | Suzuki et al. | May 2009 | A1 |
20090169922 | Ishiyama | Jul 2009 | A1 |
20090191331 | Umezawa et al. | Jul 2009 | A1 |
20090202866 | Kim et al. | Aug 2009 | A1 |
20090311557 | Onoue et al. | Dec 2009 | A1 |
20100143752 | Ishibashi et al. | Jun 2010 | A1 |
20100190035 | Sonobe et al. | Jul 2010 | A1 |
20100196619 | Ishiyama | Aug 2010 | A1 |
20100196740 | Ayama et al. | Aug 2010 | A1 |
20100209601 | Shimokawa et al. | Aug 2010 | A1 |
20100215992 | Horikawa et al. | Aug 2010 | A1 |
20100232065 | Suzuki et al. | Sep 2010 | A1 |
20100247965 | Onoue | Sep 2010 | A1 |
20100261039 | Itoh et al. | Oct 2010 | A1 |
20100279151 | Sakamoto et al. | Nov 2010 | A1 |
20100300884 | Homola et al. | Dec 2010 | A1 |
20100304186 | Shimokawa | Dec 2010 | A1 |
20110097603 | Onoue | Apr 2011 | A1 |
20110097604 | Onoue | Apr 2011 | A1 |
20110171495 | Tachibana et al. | Jul 2011 | A1 |
20110206947 | Tachibana et al. | Aug 2011 | A1 |
20110212346 | Onoue et al. | Sep 2011 | A1 |
20110223446 | Onoue et al. | Sep 2011 | A1 |
20110244119 | Umezawa et al. | Oct 2011 | A1 |
20110299194 | Aniya et al. | Dec 2011 | A1 |
20110311841 | Saito et al. | Dec 2011 | A1 |
20120069466 | Okamoto et al. | Mar 2012 | A1 |
20120070692 | Sato et al. | Mar 2012 | A1 |
20120077060 | Ozawa | Mar 2012 | A1 |
20120127599 | Shimokawa et al. | May 2012 | A1 |
20120127601 | Suzuki et al. | May 2012 | A1 |
20120129009 | Sato et al. | May 2012 | A1 |
20120140359 | Tachibana | Jun 2012 | A1 |
20120141833 | Umezawa et al. | Jun 2012 | A1 |
20120141835 | Sakamoto | Jun 2012 | A1 |
20120148875 | Hamakubo et al. | Jun 2012 | A1 |
20120156523 | Seki et al. | Jun 2012 | A1 |
20120164488 | Shin et al. | Jun 2012 | A1 |
20120170152 | Sonobe et al. | Jul 2012 | A1 |
20120171369 | Koike et al. | Jul 2012 | A1 |
20120175243 | Fukuura et al. | Jul 2012 | A1 |
20120189872 | Umezawa et al. | Jul 2012 | A1 |
20120196049 | Azuma et al. | Aug 2012 | A1 |
20120207919 | Sakamoto et al. | Aug 2012 | A1 |
20120225217 | Itoh et al. | Sep 2012 | A1 |
20120251842 | Yuan et al. | Oct 2012 | A1 |
20120251846 | Desai et al. | Oct 2012 | A1 |
20120276417 | Shimokawa et al. | Nov 2012 | A1 |
20120300327 | Moser et al. | Nov 2012 | A1 |
20120308722 | Suzuki et al. | Dec 2012 | A1 |
20130040167 | Alagarsamy et al. | Feb 2013 | A1 |
20130071694 | Srinivasan et al. | Mar 2013 | A1 |
20130165029 | Sun et al. | Jun 2013 | A1 |
20130175252 | Bourez | Jul 2013 | A1 |
20130216865 | Yasumori et al. | Aug 2013 | A1 |
20130230647 | Onoue et al. | Sep 2013 | A1 |
20130314815 | Yuan et al. | Nov 2013 | A1 |
20140011054 | Suzuki | Jan 2014 | A1 |
20140044992 | Onoue | Feb 2014 | A1 |
20140050843 | Yi et al. | Feb 2014 | A1 |
20140151360 | Landdell et al. | Jun 2014 | A1 |
20140234666 | Knigge et al. | Aug 2014 | A1 |
Entry |
---|
U.S. Appl. No. 13/115,307, filed May 25, 2011, to Andreas Moser et al., 39 pages. |
Number | Date | Country | |
---|---|---|---|
61809231 | Apr 2013 | US |