The present technology is generally directed to systems and methods for improving quenched coke recovery. More specifically, some embodiments are directed to systems and methods utilizing one or more of a screen, barrier, or reflector panel to contain or redirect coke during or after quenching.
Quenching is an important step in many types of mineral processing, including coke processing. During quenching, a quench tower releases a large amount of water onto heated coke in a quench car in order to quickly cool the coke. The pre-quench coke is extremely hot, sometimes having a temperature greater than 2,000 degrees Fahrenheit. Once the coke is cooled, it can be handled on transfer belts and be screened and sent to the customer.
Traditionally, a large amount of coke is lost in the quenching process. More specifically, the combination of the force of the quench spray and the expansion of the quench water as it forms steam causes some of the coke to pop or fly out of the top and upper side edges of the quench car. This coke then falls by the wayside or is passed into a collecting water pit. To recover this coke, the water pit must be dredged, a costly and time-consuming process. The coke recovered from the pit is high in moisture and requires drying and sieving to reclaim, as the coke must have a relatively low moisture content to be useful to many customers. Therefore, there exists a need to improve coke recovery during the quench process.
The present technology is generally directed to systems and methods for improving quenched coke recovery. More specifically, some embodiments are directed to systems and methods utilizing one or more of a screen, barrier, or reflector panel to contain or redirect coke during or after quenching. In a particular embodiment, a quench car system for containing coke includes a quench car having a base, a plurality of sidewalls, and a top portion. The system can further include a permeable barrier covering at least a portion of the top of the quench car, where the permeable barrier has a plurality of apertures therethrough.
In another embodiment, a coke quenching system includes a quench car having a plurality of sidewalls for containing coke and a quench tower configured to supply fluid for quenching the coke. The quench tower includes a deflection barrier positioned over the quench car and configured to contain coke in the car.
In another embodiment, a coke quench car includes a base and a plurality of sidewalls extending generally orthogonally upward from the base and surrounding a central region configured to contain coke. Individual sidewalls can comprise a lower portion adjacent to the base and an upper portion opposite the lower portion. The upper portion of at least one sidewall can be angled laterally inward toward the central region.
Specific details of several embodiments of the technology are described below with reference to
The quench car 100 includes a permeable deflection barrier 106 having a top portion 108 and one or more sidewall portions 110. In some embodiments, the barrier 106 comprises only one of a top portion 108 or sidewall portion 110, or extends across only a portion of the top of the quench car 100. In various embodiments, the top portion 108 is integral with the sidewall portions 110 or can be detachably coupled to the sidewall portions 110 or to the sidewalls 102. While the barrier sidewall portion 110 is illustrated as occupying only an upper portion of the sidewalls 102, in further embodiments more or less of the sidewalls 102 can comprise the permeable barrier. For example, including apertures or a permeable barrier on a lower portion of the sidewalls 102 can allow quench water to exit the car 100 after the quench and prevent the coke from sitting in quench fluid.
The permeable barrier 106 can be removably or permanently coupled to the quench car 100, or it can be spaced apart from (e.g., positioned above) the quench car 100. For example, as will be discussed in further detail below, the barrier 106 can be held above the car 100 by the quench tower 104 or other structure. In embodiments where the permeable barrier 106 is removably coupled to the quench car 100, the permeable barrier can be latched, friction fit, draped over, or held by cords, chains, hinges, or hooks to the car 100. For example, the barrier 106 can be coupled to the car 100 (e.g., to a sidewall 102) with a hinge or similar device and can open like an automobile hood. In some embodiments, the barrier 106 can have a lock or latch to fix the barrier 106 in a closed or open configuration. In some embodiments, the permeable barrier 106 can lift or otherwise be moved during car loading or unloading. In further embodiments, other attachment mechanisms can be used. The barrier 106 can be angled or generally horizontal. In some embodiments, the car 100 can include quench spray nozzles under the barrier 106 that can provide all or a portion of the quench fluid.
The permeable barrier 106 can comprise one or more of a screen, curtain, mesh, or other structure configured to contain coke during the quench process while allowing quench fluid to pass therethrough and reach the contained coke. In particular embodiments, the permeable barrier 106 comprises a screen having apertures therein. In some embodiments, the apertures have a diameter of approximately 0.25 inch to about 0.75 inch. In another particular embodiment, the apertures have dimensions of about 1.6 inch by about 0.56 inch. In still further embodiments, different portions of the barrier 106 can have different size apertures. For example, in some embodiments, one sidewall portion 110 can have larger apertures than an opposing sidewall portion 110. In another embodiment, an aperture pattern on the barrier 106 can match or complement a nozzle pattern in the quench tower 104. For example, the barrier 106 can have larger apertures on regions of the top portion 108 that are positioned under nozzles in the quench tower 104. These larger apertures can better receive quench water. In still further embodiments, apertures are exclusively placed under quench tower nozzles. In other embodiments, other aperture patterns are used to optimize quench water distribution in the quench car 100. Further, the apertures can have different shapes in different embodiments of the technology.
In some embodiments, the barrier 106 comprises stainless steel, high-carbon steel, AR400-AR500 steel, or other suitable material that can withstand the temperature and humidity conditions of the quench process. In a particular embodiment, a chain-link-fence type of material can be used as a barrier 106. In another embodiment, steel chains can be used. The barrier 106 can be flexible or rigid.
In some embodiments, the quench car 100 includes a deflection or containment plate 112 coupled to the sidewall 102. In various embodiments, as will be described in further detail below, one or more containment plates 112 can be coupled to other sidewalls, quench car gates, the barrier 106, or the base of the quench car 100. In particular embodiments, the containment plate 112 can be positioned at a junction or corner between two sidewalls or between a sidewall and a top or base portion of the car 100. The containment plate 112 can overlap at least a portion of a sidewall 102 or car base.
The containment plate 112 can have different shapes in various embodiments of the technology. For example, the containment plate 112 can be shaped as a rectangle, circle, triangle, or other shape. The containment plate 112 can be curved or otherwise shaped to complement the shape of the quench car 100 or can be shaped to achieve a funneling or confining effect on the coke during processing. For example, as will be described in further detail below with reference to
In operation, the barrier 106 can serve to contain coke and/or reflect “popping” coke back into the quench car 100 during quenching. More specifically, the barrier 106 can be sufficiently permeable to allow quench fluid to pass through and reach the coke while having small enough apertures to prohibit coke from jumping or popping from the car 100. The barrier 106 further allows quench steam to escape the car. The barrier sidewall portions 110 can further allow a cross-breeze to flow over the cooling coke.
In several embodiments, the barrier 306 can further comprise one or more sidewall portions 372 that extend downward from the generally horizontal plane. In further embodiments, the barrier 306 exclusively has sidewall portions 372 and not an upper portion. The sidewall portions 372 can be rigid or flexible curtains and can channel coke that flies during the quench process back into the quench car 300. In various embodiments, the sidewall portions 372 can comprise numerous generally adjacent panels/chains or a single continuous panel. In still further embodiments, the sidewall portions 372 can be positioned on a track, rod, or other similar system to extend along or around the quench car 300 and then move away from the car 300 when not in use. In various embodiments, the barrier 306 or sidewall portions 372 are permanent in their placement relative to the quench tower 304 or can be retracted upward into the quench tower 304 and drop downward over the car 300. In other embodiments, the barrier 306 can be dropped over the car 300 and/or retracted upward outside of the quench tower 304 by a crane or other lifting/dropping device. In further embodiments, the barrier 306 can detach from the quench tower 304. In some embodiments, a bottom portion of the sidewall portions 372 can be positioned in the interior portion of the car 300, such that any coke that hits the sidewall portions 372 will slide back into the car 300. In further embodiments, a bottom portion of the sidewall portions 372 is exterior of the car 300.
While the sidewalls 502 can be generally orthogonal to the base of the car 500, the containment plates 572 can be angled inward at angle θ such that flying coke hits the bottom of the containment plates 572 and deflects downward. The angle θ can vary in alternate embodiments of the technology or can be adjustable (e.g., the containment plates 572 can be on hinges). In particular embodiments, the angle θ can be from about 10 degrees to about 90 degrees relative to a vertical plane. The containment plates 572 can reduce coke breeze from moving downstream or clogging process flow. In some embodiments, the car 500 can further include a top portion, such as the top portion 108 described above with reference to
1. A quench car system for containing coke prepared for quenching at a quenching site, the quench car system comprising:
2. The quench car system of example 1 wherein the permeable barrier is removably coupled to the quench car.
3. The quench car system of example 1 wherein the permeable barrier extends across the top of the quench car and at least one sidewall.
4. The quench car system of example 1 wherein the individual apertures have a diameter from about ¼ inch to about ¾ inch.
5. The quench car system of example 1 wherein the quench car further comprises a containment plate coupled to one or more sidewalls and configured to contain or funnel coke or quench water.
6. The quench car system of example 5 wherein an individual sidewall comprises a movable gate, and wherein the containment plate extends along the gate and is movable between a first position when the gate is open and a second position when the gate is closed.
7. The quench car system of example 5 wherein two sidewalls meet at a corner, and wherein the containment plate is positioned adjacent to the corner and overlaps at least one of the sidewalls.
8. The quench car system of example 1 wherein the permeable barrier is permanently coupled to the quench car.
9. The quench car system of example 1 wherein the permeable barrier comprises stainless steel.
10. The quench car system of example 1 wherein the permeable barrier is spaced apart from the top of the quench car.
11. The quench car system of example 1, further comprising a quench tower having a nozzle positioned above the quench car, wherein an individual aperture generally vertically aligned with the nozzle has a diameter larger than a diameter of another individual aperture.
12. A coke quenching system, comprising:
13. The coke quenching system of example 12 wherein the quench tower includes a nozzle, and wherein the deflection barrier comprises an angled deflection plate coupled to or positioned below the nozzle.
14. The coke quenching system of example 12 wherein the quench tower includes a plurality of nozzles directed toward the quench car, and wherein the deflection barrier is positioned above the nozzles.
15. The coke quenching system of example 12 wherein the deflection barrier comprises a permeable barrier.
16. The coke quenching system of example 12 wherein the deflection barrier comprises a plurality of vertical draping barriers.
17. The coke quenching system of example 12 wherein the deflection barrier comprises a movable barrier.
18. The coke quenching system of example 12, wherein deflection barrier comprises a plurality of confining plates.
19. The coke quenching system of example 18 wherein the confining plates extend laterally inward toward an interior portion of the quench tower and are angled relative to a horizontal plane.
20. The coke quenching system of example 12 wherein the quench tower includes a plurality of nozzles directed toward the quench car, and wherein the deflection barrier comprises a permeable barrier positioned at or below the nozzles.
21. The coke quenching system of example 12 wherein the deflection barrier comprises a chain mesh.
22. A coke quench car, comprising:
23. The coke quench car of example 22 wherein the upper portion comprises a solid barrier.
24. The coke quench car of example 22 wherein the upper portion is angled inward at an angle from about 10 degrees to about 90 degrees relative to a vertical plane.
25. The coke quench car of example 22 wherein the upper portions of two opposing sidewalls are angled laterally inward toward the central region.
26. The coke quench car of example 22 wherein the upper portions are movable between a first angle and a second angle.
27. The coke quench car of example 22 wherein two sidewalls meet at a corner, and wherein the quench car further comprises a laterally extending fin that is coupled to the car adjacent to the corner and is configured to contain or funnel coke or quench water.
28. The coke quench car of example 22 wherein the upper portion comprises an at least partially permeable barrier.
29. The coke quench car of example 22, further comprising a top portion configured to extend across at least a portion of the central region, wherein the top portion comprises an at least partially permeable barrier.
From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
469868 | Osbourn | Mar 1892 | A |
1140798 | Carpenter | May 1915 | A |
1424777 | Schondeling | Aug 1922 | A |
1430027 | Plantinga | Sep 1922 | A |
1486401 | Van Ackeren | Mar 1924 | A |
1572391 | Klaiber | Feb 1926 | A |
1721813 | Rudolf et al. | Jul 1929 | A |
1818370 | Wine | Aug 1931 | A |
1848818 | Becker | Mar 1932 | A |
1955962 | Jones | Apr 1934 | A |
2394173 | Harris et al. | Feb 1946 | A |
2424012 | Bangham et al. | Jul 1947 | A |
2902991 | Whitman | Sep 1959 | A |
3033764 | Hannes | May 1962 | A |
3462345 | Kernan | Aug 1969 | A |
3545470 | Paton | Dec 1970 | A |
3616408 | Hickam | Oct 1971 | A |
3630852 | Nashan et al. | Dec 1971 | A |
3652403 | Knappstein et al. | Mar 1972 | A |
3676305 | Cremer | Jul 1972 | A |
3709794 | Kinzler et al. | Jan 1973 | A |
3746626 | Morrison, Jr. | Jul 1973 | A |
3748235 | Pries | Jul 1973 | A |
3784034 | Thompson | Jan 1974 | A |
3806032 | Pries | Apr 1974 | A |
3836161 | Buhl | Sep 1974 | A |
3839156 | Jakobi et al. | Oct 1974 | A |
3844900 | Schulte | Oct 1974 | A |
3857758 | Mole | Dec 1974 | A |
3875016 | Schmidt-Balve et al. | Apr 1975 | A |
3876506 | Dix et al. | Apr 1975 | A |
3878053 | Hyde | Apr 1975 | A |
3897312 | Armour et al. | Jul 1975 | A |
3906992 | Leach | Sep 1975 | A |
3912091 | Thompson | Oct 1975 | A |
3917458 | Polak | Nov 1975 | A |
3930961 | Sustarsic et al. | Jan 1976 | A |
3957591 | Riecker | May 1976 | A |
3959084 | Price | May 1976 | A |
3963582 | Helm et al. | Jun 1976 | A |
3969191 | Bollenbach et al. | Jul 1976 | A |
3984289 | Sustarsic et al. | Oct 1976 | A |
4004702 | Szendroi | Jan 1977 | A |
4004983 | Pries | Jan 1977 | A |
4040910 | Knappstein et al. | Aug 1977 | A |
4059885 | Oldengott | Nov 1977 | A |
4067462 | Thompson | Jan 1978 | A |
4083753 | Rogers et al. | Apr 1978 | A |
4086231 | Ikio | Apr 1978 | A |
4100033 | Holter | Jul 1978 | A |
4111757 | Ciarimboli | Sep 1978 | A |
4124450 | MacDonald | Nov 1978 | A |
4141796 | Clark et al. | Feb 1979 | A |
4145195 | Knappstein et al. | Mar 1979 | A |
4147230 | Ormond et al. | Apr 1979 | A |
4189272 | Gregor et al. | Feb 1980 | A |
4194951 | Pries | Mar 1980 | A |
4196053 | Grohmann | Apr 1980 | A |
4211608 | Kwasnoski et al. | Jul 1980 | A |
4213489 | Cain | Jul 1980 | A |
4213828 | Calderon | Jul 1980 | A |
4222748 | Argo et al. | Sep 1980 | A |
4222824 | Flockenhaus et al. | Sep 1980 | A |
4224109 | Flockenhaus | Sep 1980 | A |
4225393 | Gregor et al. | Sep 1980 | A |
4235830 | Bennett et al. | Nov 1980 | A |
4248671 | Belding | Feb 1981 | A |
4249997 | Schmitz | Feb 1981 | A |
4263099 | Porter | Apr 1981 | A |
4285772 | Kress | Aug 1981 | A |
4287024 | Thompson | Sep 1981 | A |
4289584 | Chuss et al. | Sep 1981 | A |
4289585 | Wagener et al. | Sep 1981 | A |
4303615 | Jarmell et al. | Dec 1981 | A |
4307673 | Caughey | Dec 1981 | A |
4314787 | Kwasnik et al. | Feb 1982 | A |
4330372 | Cairns et al. | May 1982 | A |
4334963 | Stog | Jun 1982 | A |
4336843 | Petty | Jun 1982 | A |
4340445 | Kucher et al. | Jul 1982 | A |
4342195 | Lo | Aug 1982 | A |
4344820 | Thompson | Aug 1982 | A |
4366029 | Bixby et al. | Dec 1982 | A |
4373244 | Mertens et al. | Feb 1983 | A |
4375388 | Hara et al. | Mar 1983 | A |
4391674 | Velmin et al. | Jul 1983 | A |
4392824 | Struck et al. | Jul 1983 | A |
4395269 | Schuler | Jul 1983 | A |
4396394 | Li et al. | Aug 1983 | A |
4396461 | Neubaum et al. | Aug 1983 | A |
4431484 | Weber et al. | Feb 1984 | A |
4439277 | Dix | Mar 1984 | A |
4445977 | Husher | May 1984 | A |
4446018 | Cerwick | May 1984 | A |
4448541 | Wirtschafter | May 1984 | A |
4452749 | Kolvek et al. | Jun 1984 | A |
4459103 | Gieskieng | Jul 1984 | A |
4469446 | Goodboy | Sep 1984 | A |
4498786 | Ruscheweyh | Feb 1985 | A |
4508539 | Nakai | Apr 1985 | A |
4527488 | Lindgren | Jul 1985 | A |
4568426 | Orlando et al. | Feb 1986 | A |
4570670 | Johnson | Feb 1986 | A |
4614567 | Stahlherm et al. | Sep 1986 | A |
4645513 | Kubota et al. | Feb 1987 | A |
4655193 | Blacket | Apr 1987 | A |
4655804 | Kercheval et al. | Apr 1987 | A |
4680167 | Orlando et al. | Jul 1987 | A |
4704195 | Janicka et al. | Nov 1987 | A |
4720262 | Durr et al. | Jan 1988 | A |
4726465 | Kwasnik et al. | Feb 1988 | A |
4929179 | Breidenbach et al. | May 1990 | A |
4941824 | Holter et al. | Jul 1990 | A |
5052922 | Stokman et al. | Oct 1991 | A |
5062925 | Durselen et al. | Nov 1991 | A |
5078822 | Hodges et al. | Jan 1992 | A |
5114542 | Childress et al. | May 1992 | A |
5227106 | Kolvek | Jul 1993 | A |
5228955 | Westbrook, III | Jul 1993 | A |
5318671 | Pruitt | Jun 1994 | A |
5480594 | Wilkerson et al. | Jan 1996 | A |
5670025 | Baird | Sep 1997 | A |
5928476 | Daniels | Jul 1999 | A |
5968320 | Sprague | Oct 1999 | A |
6017214 | Sturgulewski | Jan 2000 | A |
6059932 | Sturgulewski | May 2000 | A |
6139692 | Tamura et al. | Oct 2000 | A |
6152668 | Knoch | Nov 2000 | A |
6187148 | Sturgulewski | Feb 2001 | B1 |
6189819 | Racine | Feb 2001 | B1 |
6290494 | Barkdoll | Sep 2001 | B1 |
6596128 | Westbrook | Jul 2003 | B2 |
6626984 | Taylor | Sep 2003 | B1 |
6699035 | Brooker | Mar 2004 | B2 |
6758875 | Reid et al. | Jul 2004 | B2 |
6907895 | Johnson et al. | Jun 2005 | B2 |
6946011 | Snyder | Sep 2005 | B2 |
7056390 | Fratello et al. | Jun 2006 | B2 |
7077892 | Lee | Jul 2006 | B2 |
7314060 | Chen et al. | Jan 2008 | B2 |
7331298 | Taylor et al. | Feb 2008 | B2 |
7497930 | Barkdoll et al. | Mar 2009 | B2 |
7611609 | Valia et al. | Nov 2009 | B1 |
7644711 | Creel | Jan 2010 | B2 |
7727307 | Winkler | Jun 2010 | B2 |
7803627 | Hodges | Sep 2010 | B2 |
7827689 | Crane et al. | Nov 2010 | B2 |
7998316 | Barkdoll et al. | Aug 2011 | B2 |
8071060 | Ukai et al. | Dec 2011 | B2 |
8079751 | Kapila et al. | Dec 2011 | B2 |
8152970 | Barkdoll et al. | Apr 2012 | B2 |
8236142 | Westbrook | Aug 2012 | B2 |
8266853 | Bloom et al. | Sep 2012 | B2 |
8398935 | Howell, Jr. et al. | Mar 2013 | B2 |
20060102420 | Huber et al. | May 2006 | A1 |
20080169578 | Crane et al. | Jul 2008 | A1 |
20080179165 | Chen et al. | Jul 2008 | A1 |
20080271985 | Yamasaki | Nov 2008 | A1 |
20090152092 | Kim et al. | Jun 2009 | A1 |
20090217576 | Kim et al. | Sep 2009 | A1 |
20090283395 | Hippe | Nov 2009 | A1 |
20100095521 | Bertini et al. | Apr 2010 | A1 |
20100115912 | Worley et al. | May 2010 | A1 |
20100287871 | Bloom et al. | Nov 2010 | A1 |
20100300867 | Kim et al. | Dec 2010 | A1 |
20110048917 | Kim et al. | Mar 2011 | A1 |
20110120852 | Kim | May 2011 | A1 |
20110192395 | Kim | Aug 2011 | A1 |
20110223088 | Chang et al. | Sep 2011 | A1 |
20110253521 | Kim | Oct 2011 | A1 |
20110284360 | Westbrook | Nov 2011 | A1 |
20110315538 | Kim et al. | Dec 2011 | A1 |
20120024688 | Barkdoll | Feb 2012 | A1 |
20120030998 | Barkdoll et al. | Feb 2012 | A1 |
20120152720 | Reichelt et al. | Jun 2012 | A1 |
20120228115 | Westbrook | Sep 2012 | A1 |
20120305380 | Wang et al. | Dec 2012 | A1 |
20130216717 | Rago et al. | Aug 2013 | A1 |
20130306462 | Kim et al. | Nov 2013 | A1 |
20140033917 | Rodgers et al. | Feb 2014 | A1 |
20140048402 | Quanci et al. | Feb 2014 | A1 |
20140048404 | Quanci et al. | Feb 2014 | A1 |
20140048405 | Quanci et al. | Feb 2014 | A1 |
20140061018 | Sarpen et al. | Mar 2014 | A1 |
20140083836 | Quanci et al. | Mar 2014 | A1 |
20140182195 | Quanci et al. | Jul 2014 | A1 |
20140182683 | Quanci et al. | Jul 2014 | A1 |
20140183023 | Quanci et al. | Jul 2014 | A1 |
20140183024 | Chun et al. | Jul 2014 | A1 |
20140262139 | Choi et al. | Sep 2014 | A1 |
20140262726 | West et al. | Sep 2014 | A1 |
20150122629 | Freimuth et al. | May 2015 | A1 |
20150247092 | Quanci et al. | Sep 2015 | A1 |
20150287026 | Yang et al. | Oct 2015 | A1 |
20150328576 | Quanci et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2775992 | May 2011 | CA |
2822857 | Jul 2012 | CA |
2064363 | Oct 1990 | CN |
1092457 | Sep 1994 | CN |
1255528 | Jun 2000 | CN |
1358822 | Jul 2002 | CN |
2509188 | Sep 2002 | CN |
2528771 | Jan 2003 | CN |
1468364 | Jan 2004 | CN |
2668641 | Jan 2005 | CN |
202226816 | May 2012 | CN |
212176 | Jul 1909 | DE |
3315738 | Nov 1983 | DE |
3231697 | Jan 1984 | DE |
3329367 | Nov 1984 | DE |
19545736 | Jun 1997 | DE |
19803455 | Aug 1999 | DE |
10154785 | May 2003 | DE |
102009031436 | Jan 2011 | DE |
102011052785 | Dec 2012 | DE |
2339664 | Aug 1977 | FR |
441784 | Jan 1936 | GB |
606340 | Aug 1948 | GB |
611524 | Nov 1948 | GB |
725865 | Mar 1955 | GB |
871094 | Jun 1961 | GB |
50148405 | Nov 1975 | JP |
54054101 | Apr 1979 | JP |
57051786 | Mar 1982 | JP |
57051787 | Mar 1982 | JP |
57083585 | May 1982 | JP |
57090092 | Jun 1982 | JP |
58091788 | May 1983 | JP |
59051978 | Mar 1984 | JP |
59053589 | Mar 1984 | JP |
59071388 | Apr 1984 | JP |
59108083 | Jun 1984 | JP |
59145281 | Aug 1984 | JP |
60004588 | Jan 1985 | JP |
61106690 | May 1986 | JP |
62011794 | Jan 1987 | JP |
62285980 | Dec 1987 | JP |
01103694 | Apr 1989 | JP |
01249886 | Oct 1989 | JP |
H0319127 | Jan 1991 | JP |
07188668 | Jul 1995 | JP |
07216357 | Aug 1995 | JP |
08127778 | May 1996 | JP |
2001200258 | Jul 2001 | JP |
03197588 | Aug 2001 | JP |
2002106941 | Apr 2002 | JP |
200341258 | Feb 2003 | JP |
2003071313 | Mar 2003 | JP |
04159392 | Oct 2008 | JP |
2009144121 | Jul 2009 | JP |
2012102302 | May 2012 | JP |
960008754 | Oct 1996 | KR |
1019990054426 | Dec 1999 | KR |
10-0797852 | Jan 2008 | KR |
10-2011-0010452 | Feb 2011 | KR |
10-0296700 | Oct 2011 | KR |
101318388 | Oct 2013 | KR |
WO-9012074 | Oct 1990 | WO |
WO-9945083 | Sep 1999 | WO |
WO-2007103649 | Sep 2007 | WO |
WO-2008034424 | Mar 2008 | WO |
WO-2010107513 | Sep 2010 | WO |
2011000447 | Jan 2011 | WO |
WO-2012029979 | Mar 2012 | WO |
2013023872 | Feb 2013 | WO |
Entry |
---|
Espacenet Machine Translation of Manfred et al. (DE 3231697 C1). |
JP 03-197588, Inoqu Keizo et al., Method and Equipment for Boring Degassing Hole in Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991. |
JP 04-159392, Inoue Keizo et al., Method and Equipment for Opening Hole For Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992. |
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546. |
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552. |
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412. |
International Search Report and Written Opinion of International Application No. PCT/US2012/072166; Date of Mailing: Sep. 25, 2013; 11 pages. |
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010. |
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages. |
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages. |
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, Quanci, John F., et al. |
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, Quanci, John F., et al. |
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, Quanci, John F., et al. |
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, Quanci, John F., et al. |
U.S. Appl. No. 14/865,581, filed Aug. 28, 2015, Sarpen, Jacob P., et al. |
Number | Date | Country | |
---|---|---|---|
20140183026 A1 | Jul 2014 | US |