Systems and methods for increasing preambles

Information

  • Patent Grant
  • 8953594
  • Patent Number
    8,953,594
  • Date Filed
    Monday, July 15, 2013
    11 years ago
  • Date Issued
    Tuesday, February 10, 2015
    9 years ago
Abstract
Systems and methods for increasing preambles are provided. In some aspects, an electronic device configured for use as a node in a home network is provided. The electronic device includes a preamble generator configured to generate an outbound preamble for a data signal. The electronic device also includes a preamble increasing circuit configured to increase a size of the outbound preamble based on a switching signal.
Description
FIELD OF TECHNOLOGY

The present invention relates generally to information networks and specifically to transmitting information such as media information over communication lines such as coaxial cable (hereinafter “coax”), thereby to form a communications network.


BACKGROUND

Home network technologies using coax are known generally. The Multimedia over Coax Alliance (MoCA™), at its website mocalliance.org, provides an example of a suitable specification (MoCA 1.1) for networking of digital video and entertainment through existing coaxial cable in the home which has been distributed to an open membership. The MoCA 1.1 specification is incorporated by reference herein in its entirety.


Home networking over coax taps into the vast amounts of unused bandwidth available on the in-home coax. More than 70% of homes in the United States have coax already installed in the home infrastructure. Many have existing coax in one or more primary entertainment consumption locations such as family rooms, media rooms and master bedrooms—ideal for deploying networks. Home networking technology allows homeowners to utilize this infrastructure as a networking system and to deliver other entertainment and information programming with high QoS (Quality of Service).


The technology underlying home networking over coax provides high speed (270 mbps), high QoS, and the innate security of a shielded, wired connection combined with state of the art packet-level encryption. Coax is designed for carrying high bandwidth video. Today, it is regularly used to securely deliver millions of dollars of pay per view and premium video content on a daily basis. Home networking over coax can also be used as a backbone for multiple wireless access points used to extend the reach of wireless network throughout a consumer's entire home.


Home networking over coax provides a consistent, high throughput, high quality connection through the existing coaxial cables to the places where the video devices currently reside in the home. Home networking over coax provides a primary link for digital entertainment, and may also act in concert with other wired and wireless networks to extend the entertainment experience throughout the home.


Currently, home networking over coax complements access technologies such as ADSL and VDSL services or Fiber to the Home (FTTH), that typically enter the home on a twisted pair or on an optical fiber, operating in a frequency band from a few hundred kilohertz to 8.5 MHz for ADSL and 12 Mhz for VDSL. As services reach the home via xDSL or FTTH, they may be routed via home networking over coax technology and the in-home coax to the video devices. Cable functionalities, such as video, voice and Internet access, may be provided to homes, via coaxial cable, by cable operators, and use coaxial cables running within the homes to reach individual cable service consuming devices locating in various rooms within the home. Typically, home networking over coax type functionalities run in parallel with the cable functionalities, on different frequencies.


It would be desirable to increase the transmission speed of MoCA devices in MoCA networks, such as, for example, the transmission speed of MoCA 1.1 nodes. For the purpose of this application, the term “node” may be referred to alternatively herein as a “module.”


SUMMARY

A system and/or method for using a high throughput mode for MoCA devices connected by a MoCA home network, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is a schematic diagram of a high throughput MoCA transmitter according to the invention;



FIG. 2 is a schematic diagram of a high throughput mode MoCA receiver according to the invention;



FIG. 3 is a chart of a PHY Rate performance comparison from a legacy MoCA 1.1 Network to a high throughput MoCA 1.1 Network, according to the invention;



FIG. 4 is a chart showing a rate of MAC throughput per number of legacy network nodes as compared to a high throughput network, according to the invention; and



FIG. 5 is a schematic diagram of an illustrative single or multi-chip module of the invention in a data processing system.





DETAILED DESCRIPTION OF THE DISCLOSURE

In the following description of the various embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope and spirit of the present invention.


As will be appreciated by one of skill in the art upon reading the following disclosure, various aspects described herein may be embodied as a method, a data processing system, or a computer program product. Accordingly, those aspects may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, such aspects may take the form of a computer program product stored by one or more computer-readable storage media having computer-readable program code, or instructions, embodied in or on the storage media. Any suitable computer readable storage media may be utilized, including hard disks, CD-ROMs, optical storage devices, magnetic storage devices, and/or any combination thereof.


In addition, various signals representing data or events as described herein may be transferred between a source and a destination in the form of electromagnetic waves traveling through signal-conducting media such as metal wires, optical fibers, and/or wireless transmission media (e.g., air and/or space).


For ease of reference, the following glossary provides definitions for the various abbreviations and notations used in this patent application:

  • MAC Media Access Controller—includes logic for MoCA integrated circuit that schedules opening and closing of the digital PHY as needed for transmission and/or receiving signals from the receiver and/or transceiver integrated circuit
  • NC MoCA Network Controller
  • PHY Physical Layer of MoCA Network


A MoCA modem according to the invention may be used in an electronic device configured as a node in a home network. Such a MoCA modem according to the invention preferably complies with the standard MoCA specifications, such as MoCA 1.1, and includes additional features that enable higher throughput and better robustness in a MoCA network. In one embodiment of the invention, the MoCA modem supports a high throughput mode.


An exemplary high throughput mode of a modem according to the invention preferably uses twice the bandwidth—i.e., 100 MHz instead of 50 MHz—of the MoCA standard mode. It should be noted that a high throughput mode according to the invention may use any higher than standard throughput while still remaining within the scope of the invention.


The implementation of a high throughput mode according to the invention may require some changes in the RF circuitry, such as increasing the band of the anti-aliasing low-pass filters, and some changes in the Digital (Base-Band) modem. Such known changes to the RF circuitry setup may be controlled by the CPU coincident with the operation of the high throughput mode. Such CPU control may include changing several analog and digital parameters such as the bandwidth of the low pass filters (by, for example, switching its capacitors and/or resistors).


In certain embodiments of the invention, a digital modem in high throughput mode may preferably use a doubled frequency operation that creates a wider bandwidth for information throughput.


In such a case—i.e., where the digital modem uses a doubled frequency operation—the effective guard interval provided by the cyclic prefix length and preamble length is reduced in time duration by a factor of two. The guard interval should ideally be bigger than the delay spread of the channel (hereinafter, “the channel delay spread”)—i.e., the time between the first and last reflections that substantially impact performance—along the signal transmission line. A decrease in the guard interval, increases ISI (intersymbol interference) and ICI (interserver interference) which may reduce signal acquisition performance.


It should be noted that the time spread is not dependent on MoCA mode operation, whether conventional or high throughput, and this may contribute to the reduction in signal acquisition performance. Hereinafter, this patent application refers to this reduction of signal acquisition performance as the acquisition problem in the high throughput mode.


In order to compensate for the acquisition problem in the high throughput mode, systems and methods according to the invention may, in high throughput mode, preferably increase the preamble length of a packet. ISI and/or ICI distortion may then be reduced back to the level present in the standard MoCA mode.


Such an increase in the preamble length may preferably be implemented using one or more of a number of suitable methods. In one method according to the invention, the preamble may be doubled by adding on a zero sample in an additional portion of the preamble and then transmitting the doubled preamble, with the zeroed second portion of the sample, to the receiver. At the receiver, the doubled preamble may be received. The receiver may then process the first portion of the doubled preamble while disregarding the second, zeroed, portion of the preamble.


Another method that be implemented according to the invention is to duplicate the preamble sample itself, to form a double size preamble sample with two identical parts, at twice the frequency. In such a double size preamble, the receiver may process both portions of the double size preamble or process only the first portion of the double size preamble while disregarding the second, double, portion of the sample.


In either method, the receiver may be adapted to process only the first half of the increased preamble. Such processing preferably retains all the critical information in the preamble while adapting to the increased speed of high throughput mode.


In certain embodiments of the invention, nodes that are adapted to increase the maximum preamble length in high throughput mode may selectively do so. For example, such nodes may increase the maximum preamble length to nodes that are adapted to receive such a high throughput mode and not increase the maximum preamble length in high throughput mode to nodes that are not adapted to receive high throughput mode—e.g., legacy MoCA 1.1 nodes.



FIG. 1 is a schematic diagram of a high throughput MoCA transmitter according to the invention. One or both of the following two changes may be implemented in the transmitter to support high throughput mode implementation.


In one embodiment of the invention, the windowing block—i.e., the duration of the maximum cyclic prefix—is doubled in order to obtain the same length of time as the legacy maximum periodic prefix. Increasing the maximum cyclic prefix by a factor of two may be performed in any suitable fashion and still be within the scope of the invention. It should be noted that the maximum cyclic prefix may be increased by any suitable proportion and remain within the scope of the invention.



FIG. 1 shows a time domain preamble generator 102 in a transmitter in a generator block 100. The output of the time domain preamble generator 102 is preferably muxed, using multiplexor 103, with the data stream generated by MoCA OFDM transmitter 101. The output of multiplexor 103 is then transmitted to digital front end 105 and from digital frontend 105 to an analog front end.


Generator 102 described in FIG. 1 may be a legacy portion of MoCA 1.1 preamble generator block 100. In legacy (alternatively referred to herein as “normal”) transmission mode, generator 102 output can be passed directly to the block output as follows. When the enable line for multiplexor 104 is held to “0”, then the signal from generator 102 is preferably passed directly to form the time domain preamble. As such, preferably nothing is changed from normal 50 MHz operation, as is known, and applied to MoCA 1.1.


In systems and methods according to the invention, the preamble can remain unchanged as in normal mode—i.e., the samples are generated at 50 MHz operation as described above or can be time-extended for the high throughput mode—e.g., operation at 100 MHz—in two or more suitable ways. In a first embodiment, the time domain preamble can repeat each sample twice. In a second embodiment, zeros may be inserted after each sample, thereby doubling the length of each sample.


It should be noted that each of the three foregoing options (the conventional option included) may have a different spectral content and different time domain properties.


In some embodiments according to the invention, generator 102 preferably produces a signal that is sent to multiplexor 104 and multiplexor 106. Multiplexor 106 may preferably provide either the preamble from generator 102 as an output, in accordance with an embodiment described above, or a zero as an output, depending on the selection by the enable line of multiplexor 106. The enable line is determined by a value derived from the CPU but may be determined in other suitable ways and still remain within the scope of the invention.


In one embodiment of the high throughput mode according to the invention, the enable line in multiplexor 104 may preferably be switched, in order to produce a switched output between the preamble from generator 102 and the output of multiplexor 106, at a 100 MHz clock. Such switching produces the desired output at 100 MHz.


If multiplexor 106 is configured to output the signal from preamble generator 102 to multiplexor 104, then multiplexor 104's output will produce each sample from the preamble generator twice. If multiplexor 106 is configured to output a zero to multiplexor 104, then multiplexor 104's output will produce each sample from the preamble generator once, followed by a zero.


In normal mode, a constant ‘0’ may be selected by the enable line of multiplexor 104.



FIG. 2 is a schematic diagram of a high throughput MoCA mode preamble processor 200 for use in a receiver according to the invention. MoCA preamble processor 200 preferably includes digital front end 202, for implementing a frequency shift, as needed, in the signal coming into the receiver, legacy preamble processor 206, and MoCA Data Processor 208 for implementing Fast Fourier Transform (“FFT”), equalization, decisioning, and any other suitable operations on the received signal.


Receiver 200 may preferably be adapted as follows, or in any other suitable fashion, in order to allow high throughput implementation according to the invention.


As with preamble generator block 100 shown in FIG. 1, the windowing block of preamble processor 200 should be implemented such that the maximum preamble length is doubled, or set to any other suitable proportion, in order to match the doubling of the preamble length at preamble generator block 100.


Further, preamble processor 200 may be modified in accordance with the invention as described below.


The legacy preamble processing block 206 may be associated with the normal MoCA mode. To implement high throughput mode one of the following two options (or any other suitable option) may be implemented: 1) operation as in the legacy mode—i.e., block 206 works at the 50 MHz sample rate (in this mode, block 206 operates to process all received samples from the transmitter via closed switch 210) 2) operation in the high throughput mode wherein each second sample is discarded (in this mode, block 206 operates to process every second received sample from the transmitter via switch 210 and the rest of the circuitry works as in the normal mode.)


It should be noted that a number of parameters that are transferred from the CPU to block 204 are frequency and/or operational mode dependent. Therefore, the instructions sent from the CPU should be calculated accordingly.



FIG. 3 is a chart of a PHY Rate performance comparison 316 from a legacy MoCA 1.1 Network to a high throughput MoCA 1.1 Network, according to the invention. It should be noted that in the operational range from −10 dbm to −50 dbm, a high throughput MoCA 1.1 Network according to the invention may preferably operate at close to 40% higher throughput.


In certain embodiments of the invention, the high throughput mode is an enhanced feature using twice the channel bandwidth to increase PHY and MAC rates, and to provide immunity to impairments. Preferably such a high throughput mode can be implemented on hardware that exists in the current generation of 65 nm chips such as BCM7340/42 and BCM7420 manufactured by Broadcom Corporation of Irvine, Calif.


Such implementations, according to the invention, may exhibit advantages over MoCA 2.0 implementations. Such advantages may include relatively lower complexity as compared to MoCA 2.0 implementations and reduced cost. Preferably, such implementations use the same PHY as MoCA 1.1 but run at double the symbol rate.


Furthermore, the maximal periodic preamble size and time domain preamble series are preferably adjusted while the MAC preferably does not change except to improve efficiency, where needed.


In addition, the systems and methods according to the invention may provide an additional 10 dB margin at maximum MoCA 1.1 PHY Rate (285 Mbps). Furthermore, such systems and methods may be expected to achieve 160 Mbps at a received level less than −50 dBm with the additional margin attributable to selected vendors.



FIG. 4 is a chart showing a rate of MAC throughput per number of legacy network nodes as compared to a high throughput network. It should be noted that for a relatively large number of legacy network nodes, the throughput would decrease. Estimated throughput (MAC rate) as a function of the PHY rate and number of nodes is depicted in FIG. 4. The bolded entry (300 Mbps MAC rate at 380 Mbps PHY Rate) was verified by laboratory measurements.


It should be noted that the high throughput mode may be configured to provide eight 20 Mbps consecutive streams with a received level of less than −60 dBm.


Using high throughput mode according to the invention, MoCA 1.1 may provide an additional 7 dB margin. This is when the MoCA1.1 PHY Rate is 285 Mbps. In one simulation of high throughput mode according to the invention, 120 Mbps throughput was achieved with a received level of −54 dBm. Furthermore, the high throughput mode may reduce limitations on reservation request duration from 52 microseconds (as in MoCA1.1) to about half that amount—i.e., 25-30 microseconds. Moreover, the high throughput preferably increases allows inactive nodes to request opportunities to request transmissions at a lower rate (this reduces overhead associated with reservation requests).



FIG. 5 is a schematic diagram of an illustrative single or multi-chip module of the invention in a data processing system. FIG. 5 shows a single or multi-chip module 502 according to the invention, which can be one or more integrated circuits, in an illustrative data processing system 500 according to the invention. Data processing system 500 may include one or more of the following components: I/O circuitry 504, peripheral devices 506, a processor 508 and memory 510. These components are coupled together by a system bus or other interconnections 512 and are populated on a circuit board 520 which is contained in an end-user system 530. System 500 may be configured for use in a cable television tuner according to the invention. It should be noted that system 500 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.


Thus, systems and methods for providing a high throughput mode in MoCA have been described.


Aspects of the invention have been described in terms of illustrative embodiments thereof. A person having ordinary skill in the art will appreciate that numerous additional embodiments, modifications, and variations may exist that remain within the scope and spirit of the appended claims. For example, one of ordinary skill in the art will appreciate that the steps illustrated in the figures may be performed in other than the recited order and that one or more steps illustrated may be optional. The methods and systems of the above-referenced embodiments may also include other additional elements, steps, computer-executable instructions, or computer-readable data structures. In this regard, other embodiments are disclosed herein as well that can be partially or wholly implemented on a computer-readable medium, for example, by storing computer-executable instructions or modules or by utilizing computer-readable data structures.

Claims
  • 1. An electronic device configured for use as a node in a home network, the electronic device comprising: a preamble generator configured to generate an outbound preamble for a data signal; anda preamble increasing circuit comprising: a first multiplexor configured to receive the outbound preamble from the preamble generator and a preamble increasing signal, the first multiplexor being configured to mux the received outbound preamble with the preamble increasing signal to generate a first output, the first output comprising the received outbound preamble or the preamble increasing signal; anda second multiplexor configured to receive the outbound preamble from the preamble generator and the first output from the first multiplexor, the second multiplexor being configured to mux the received outbound preamble with the first output based on a switching signal to generate a second output, the second output comprising the received outbound preamble or the first output,wherein the preamble increasing circuit is configured to increase a size of the outbound preamble based on the switching signal.
  • 2. The device of claim 1, wherein the preamble increasing circuit further comprises a switching circuit configured to generate the switching signal.
  • 3. The electronic device of claim 2, wherein the switching circuit is configured to generate the switching signal such that the second output from the second multiplexor comprises the outbound preamble received by the second multiplexor from the preamble generator.
  • 4. The electronic device of claim 2, wherein the switching circuit is configured to generate the switching signal such that the second output from the second multiplexor alternates between the outbound preamble received by the second multiplexor from the preamble generator and the first output from the first multiplexor.
  • 5. The electronic device of claim 4, wherein the switching circuit is configured to generate the switching signal such that the second output from the second multiplexor alternates between the outbound preamble received by the second multiplexor from the preamble generator and the first output from the first multiplexor according to a switching frequency.
  • 6. The electronic device of claim 5, wherein the first output from the first multiplexor comprises the outbound preamble received from the preamble generator.
  • 7. The electronic device of claim 1, wherein the outbound preamble is a periodic preamble.
  • 8. The electronic device of claim 1, wherein the preamble increasing signal comprises a zero signal.
  • 9. The electronic device of claim 1, wherein muxing the received outbound preamble with the preamble increasing signal to generate the first output comprises: selecting one of the received outbound preamble or the preamble increasing signal; andoutputting the selected one of the received outbound preamble or the preamble increasing signal as the first output.
  • 10. The electronic device of claim 1, wherein muxing the received outbound preamble with the first output based on the switching signal to generate the second output comprises: selecting one of the received outbound preamble or the first output based on the switching signal; andoutputting the selected one of the received outbound preamble or the first output as the second output.
  • 11. The electronic device of claim 1, wherein the preamble increasing circuit is configured to double the size of the outbound preamble based on the switching signal.
  • 12. The electronic device of claim 1, wherein the data signal comprises a Multimedia Over Coax Alliance (MoCA) signal.
  • 13. The electronic device of claim 1, further comprising a preamble receiver comprising: a switching circuit configured to receive an inbound preamble according to a first rate or a second rate, the second rate being greater than the first rate, the inbound preamble comprising one or more inbound samples, the switching circuit being configured to switch between a closed configuration and an open configuration; anda preamble processor coupled to the switching circuit,wherein the switching circuit is configured to provide a received inbound sample to the preamble processor in the closed configuration and to discard a received inbound sample in the open configuration,wherein the switching circuit is configured to remain in the closed configuration if the inbound preamble is received according to the first rate, andwherein the switching circuit is configured to switch between the closed configuration and the open configuration according to a switching frequency if the inbound preamble is received according to the second rate.
  • 14. A method comprising: generating an outbound preamble for a data signal;receiving, by a first multiplexor, the outbound preamble and a preamble increasing signal;muxing, by the first multiplexor, the received outbound preamble with the preamble increasing signal to generate a first output, the first output comprising the received outbound preamble or the preamble increasing signal;receiving, by a second multiplexor, the outbound preamble and the first output; andmuxing, by the second multiplexor, the received outbound preamble with the first output based on a switching signal to generate a second output, the second output comprising the received outbound preamble or the first output,wherein a size of the outbound preamble is increased based on the switching signal.
  • 15. The method of claim 14, further comprising generating the switching signal.
  • 16. The method of claim 15, wherein the switching signal is generated such that the second output alternates between the outbound preamble received by the second multiplexor and the first output.
  • 17. The method of claim 16, wherein the switching signal is generated such that the second output alternates between the outbound preamble received by the second multiplexor and the first output according to a switching frequency.
  • 18. The method of claim 14, wherein the preamble increasing signal comprises a zero signal, and wherein the data signal comprises a Multimedia Over Coax Alliance (MoCA) signal.
  • 19. The method of claim 14, wherein muxing, by the first multiplexor, the received outbound preamble with the preamble increasing signal to generate the first output comprises: selecting one of the received outbound preamble or the preamble increasing signal; andoutputting the selected one of the received outbound preamble or the preamble increasing signal as the first output.
  • 20. An electronic device comprising: a preamble generator configured to generate an outbound preamble for a data signal;a preamble increasing circuit comprising: a first multiplexor configured to receive the outbound preamble from the preamble generator and a preamble increasing signal, the first multiplexor being configured to mux the received outbound preamble with the preamble increasing signal to generate a first output, the first output comprising the received outbound preamble or the preamble increasing signal; anda second multiplexor configured to receive the outbound preamble from the preamble generator and the first output from the first multiplexor, the second multiplexor being configured to mux the received outbound preamble with the first output based on a switching signal to generate a second output, the second output comprising the received outbound preamble or the first output,wherein the preamble increasing circuit is configured to increase a size of the outbound preamble based on the switching signal; anda preamble receiver comprising: a switching circuit configured to receive an inbound preamble according to a first rate or a second rate, the second rate being greater than the first rate, the inbound preamble comprising one or more inbound samples, the switching circuit being configured to switch between a closed configuration and an open configuration; anda preamble processor coupled to the switching circuit,wherein the switching circuit is configured to provide a received inbound sample to the preamble processor in the closed configuration and to discard a received inbound sample in the open configuration,wherein the switching circuit is configured to remain in the closed configuration if the inbound preamble is received according to the first rate, andwherein the switching circuit is configured to switch between the closed configuration and the open configuration according to a switching frequency if the inbound preamble is received according to the second rate.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/031,704, filed Feb. 22, 2011, now issued as U.S. Pat. No. 8,514,860, entitled “Systems and Methods for Implementing a High Throughput Mode for a MoCA Device,” which is a non-provisional of U.S. Provisional Patent Application No. 61/307,044, filed Feb. 23, 2010, entitled “Turbo Mode for MoCA Modem,” both of which are incorporated by reference herein in their entirety.

US Referenced Citations (224)
Number Name Date Kind
3836888 Boenke et al. Sep 1974 A
4413229 Grant Nov 1983 A
4536875 Kume et al. Aug 1985 A
4608685 Jain et al. Aug 1986 A
4893326 Duran et al. Jan 1990 A
5170415 Yoshida et al. Dec 1992 A
5343240 Yu Aug 1994 A
5421030 Baran May 1995 A
5440335 Beveridge Aug 1995 A
5570355 Dail et al. Oct 1996 A
5638374 Heath Jun 1997 A
5671220 Tonomura Sep 1997 A
5796739 Kim et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5805591 Naboulsi et al. Sep 1998 A
5805806 McArthur Sep 1998 A
5815662 Ong Sep 1998 A
5822677 Peyrovian Oct 1998 A
5822678 Evanyk Oct 1998 A
5845190 Bushue et al. Dec 1998 A
5850400 Eames et al. Dec 1998 A
5854887 Kindell et al. Dec 1998 A
5856975 Rostoker et al. Jan 1999 A
5877821 Newlin et al. Mar 1999 A
5886732 Humpleman Mar 1999 A
5896556 Moreland et al. Apr 1999 A
5917624 Wagner Jun 1999 A
5930493 Ottesen et al. Jul 1999 A
5963844 Dail Oct 1999 A
5982755 Forrester et al. Nov 1999 A
5982784 Bell Nov 1999 A
6009465 Decker et al. Dec 1999 A
6028860 Laubach et al. Feb 2000 A
6055242 Doshi et al. Apr 2000 A
6069588 O'Neill, Jr. May 2000 A
6081519 Petler Jun 2000 A
6081533 Laubach et al. Jun 2000 A
6111911 Sanderford, Jr. et al. Aug 2000 A
6118762 Nomura et al. Sep 2000 A
6157645 Shobatake Dec 2000 A
6167120 Kikinis Dec 2000 A
6192070 Poon et al. Feb 2001 B1
6219409 Smith et al. Apr 2001 B1
6229818 Bell May 2001 B1
6243413 Beukema Jun 2001 B1
6304552 Chapman et al. Oct 2001 B1
6307862 Silverman Oct 2001 B1
6434151 Caves et al. Aug 2002 B1
6466651 Dailey Oct 2002 B1
6481013 Dinwiddie et al. Nov 2002 B1
6526070 Bernath et al. Feb 2003 B1
6553568 Fijolek et al. Apr 2003 B1
6563829 Lyles et al. May 2003 B1
6567654 Coronel Arredondo et al. May 2003 B1
6611537 Edens et al. Aug 2003 B1
6622304 Carhart Sep 2003 B1
6637030 Klein Oct 2003 B1
6650624 Quigley et al. Nov 2003 B1
6745392 Basawapatna et al. Jun 2004 B1
6763032 Rabenko et al. Jul 2004 B1
6785296 Bell Aug 2004 B1
6816500 Mannette et al. Nov 2004 B1
6831899 Roy Dec 2004 B1
6836515 Kay et al. Dec 2004 B1
6859899 Shalvi et al. Feb 2005 B2
6862270 Ho Mar 2005 B1
6873630 Muller et al. Mar 2005 B1
6877043 Mallory et al. Apr 2005 B2
6877166 Roeck et al. Apr 2005 B1
6898210 Cheng et al. May 2005 B1
6930989 Jones IV et al. Aug 2005 B1
6940833 Jonas et al. Sep 2005 B2
6950399 Bushmitch et al. Sep 2005 B1
6961314 Quigley et al. Nov 2005 B1
6985437 Vogel Jan 2006 B1
6996198 Cvetkovic Feb 2006 B2
7035270 Moore, Jr. et al. Apr 2006 B2
7065779 Crocker et al. Jun 2006 B1
7089580 Vogel et al. Aug 2006 B1
7116685 Brown et al. Oct 2006 B2
7127734 Amit Oct 2006 B1
7133697 Judd et al. Nov 2006 B2
7142553 Ojard et al. Nov 2006 B1
7146632 Miller Dec 2006 B2
7149220 Beukema et al. Dec 2006 B2
7194041 Kadous Mar 2007 B2
7292527 Zhou et al. Nov 2007 B2
7296083 Barham et al. Nov 2007 B2
7327754 Mills et al. Feb 2008 B2
7372853 Sharma et al. May 2008 B2
7460543 Malik et al. Dec 2008 B2
7487532 Robertson et al. Feb 2009 B2
7532642 Peacock May 2009 B1
7532693 Narasimhan May 2009 B1
7555064 Beadle Jun 2009 B2
7574615 Weng et al. Aug 2009 B2
7606256 Vitebsky et al. Oct 2009 B2
7652527 Ido et al. Jan 2010 B2
7653164 Lin et al. Jan 2010 B2
7664065 Lu Feb 2010 B2
7675970 Nemiroff et al. Mar 2010 B2
7697522 Kliger et al. Apr 2010 B2
7742495 Kliger et al. Jun 2010 B2
7782850 Kliger et al. Aug 2010 B2
7783259 Dessert et al. Aug 2010 B2
7817642 Ma et al. Oct 2010 B2
7860092 Yoon et al. Dec 2010 B2
7916756 Atsumi et al. Mar 2011 B2
8018832 Webster et al. Sep 2011 B2
8090043 Levi et al. Jan 2012 B2
8098770 Shusterman Jan 2012 B2
8184550 Beck et al. May 2012 B2
20010039660 Vasilevsky et al. Nov 2001 A1
20020010562 Schleiss et al. Jan 2002 A1
20020059623 Rodriguez et al. May 2002 A1
20020059634 Terry et al. May 2002 A1
20020069417 Kliger et al. Jun 2002 A1
20020078247 Lu et al. Jun 2002 A1
20020078249 Lu et al. Jun 2002 A1
20020097821 Hebron et al. Jul 2002 A1
20020105970 Shvodian Aug 2002 A1
20020136231 Leatherbury et al. Sep 2002 A1
20020141347 Harp et al. Oct 2002 A1
20020150155 Florentin et al. Oct 2002 A1
20020166124 Gurantz et al. Nov 2002 A1
20020174423 Fifield et al. Nov 2002 A1
20020194605 Cohen et al. Dec 2002 A1
20030013453 Lavaud et al. Jan 2003 A1
20030016751 Vetro et al. Jan 2003 A1
20030022683 Beckmann et al. Jan 2003 A1
20030060207 Sugaya et al. Mar 2003 A1
20030063563 Kowalski Apr 2003 A1
20030066082 Kliger et al. Apr 2003 A1
20030099253 Kim May 2003 A1
20030152059 Odman Aug 2003 A1
20030169769 Ho et al. Sep 2003 A1
20030193619 Farrand Oct 2003 A1
20030198244 Ho et al. Oct 2003 A1
20040004934 Zhu et al. Jan 2004 A1
20040037366 Crawford Feb 2004 A1
20040047284 Eidson Mar 2004 A1
20040107445 Amit Jun 2004 A1
20040163120 Rabenko et al. Aug 2004 A1
20040172658 Rakib et al. Sep 2004 A1
20040177381 Kliger et al. Sep 2004 A1
20040224715 Rosenlof et al. Nov 2004 A1
20040258062 Narvaez Dec 2004 A1
20050015703 Terry et al. Jan 2005 A1
20050097196 Wronski et al. May 2005 A1
20050152350 Sung et al. Jul 2005 A1
20050152359 Giesberts et al. Jul 2005 A1
20050175027 Miller et al. Aug 2005 A1
20050204066 Cohen et al. Sep 2005 A9
20050213405 Stopler Sep 2005 A1
20050281349 Kim Dec 2005 A1
20060059400 Clark et al. Mar 2006 A1
20060062250 Payne Mar 2006 A1
20060078001 Chandra et al. Apr 2006 A1
20060104201 Sundberg et al. May 2006 A1
20060256799 Eng Nov 2006 A1
20060256818 Shvodian et al. Nov 2006 A1
20060268934 Shimizu et al. Nov 2006 A1
20060280194 Jang et al. Dec 2006 A1
20070025317 Bolinth et al. Feb 2007 A1
20070040947 Koga Feb 2007 A1
20070127373 Ho et al. Jun 2007 A1
20070160213 Un et al. Jul 2007 A1
20070171919 Godman et al. Jul 2007 A1
20070183786 Hinosugi et al. Aug 2007 A1
20070206551 Moorti et al. Sep 2007 A1
20070217436 Markley et al. Sep 2007 A1
20070253379 Kumar et al. Nov 2007 A1
20070286121 Kolakowski et al. Dec 2007 A1
20080037487 Li et al. Feb 2008 A1
20080037589 Kliger et al. Feb 2008 A1
20080080369 Sumioka et al. Apr 2008 A1
20080089268 Kinder et al. Apr 2008 A1
20080178229 Kliger et al. Jul 2008 A1
20080189431 Hyslop et al. Aug 2008 A1
20080212591 Wu et al. Sep 2008 A1
20080225832 Kaplan et al. Sep 2008 A1
20080238016 Chen et al. Oct 2008 A1
20080271094 Kliger et al. Oct 2008 A1
20080273591 Brooks et al. Nov 2008 A1
20080279219 Wu et al. Nov 2008 A1
20080298241 Ohana et al. Dec 2008 A1
20090036878 Vijfvinkel et al. Feb 2009 A1
20090063878 Schmidt et al. Mar 2009 A1
20090092154 Malik et al. Apr 2009 A1
20090106801 Horii Apr 2009 A1
20090122901 Choi et al. May 2009 A1
20090128239 Kuijk et al. May 2009 A1
20090165070 McMullin et al. Jun 2009 A1
20090217325 Kliger et al. Aug 2009 A1
20090252172 Hare Oct 2009 A1
20090254794 Malik et al. Oct 2009 A1
20090257483 French et al. Oct 2009 A1
20090285212 Chu et al. Nov 2009 A1
20090296578 Bernard et al. Dec 2009 A1
20090316589 Shafeeu Dec 2009 A1
20100031297 Klein et al. Feb 2010 A1
20100080312 Moffatt et al. Apr 2010 A1
20100150016 Barr Jun 2010 A1
20100158013 Kliger et al. Jun 2010 A1
20100158015 Wu Jun 2010 A1
20100158021 Kliger et al. Jun 2010 A1
20100158022 Kliger et al. Jun 2010 A1
20100162329 Ford et al. Jun 2010 A1
20100174824 Aloni et al. Jul 2010 A1
20100185731 Wu Jul 2010 A1
20100185759 Wu Jul 2010 A1
20100238932 Kliger et al. Sep 2010 A1
20100246586 Ohana et al. Sep 2010 A1
20100254278 Kliger et al. Oct 2010 A1
20100254402 Kliger et al. Oct 2010 A1
20100281195 Daniel et al. Nov 2010 A1
20100284474 Kliger et al. Nov 2010 A1
20100290461 Kliger et al. Nov 2010 A1
20100322134 Wu Dec 2010 A1
20110001833 Grinkemeyer et al. Jan 2011 A1
20110013633 Klein et al. Jan 2011 A1
20110080850 Klein et al. Apr 2011 A1
20110205891 Kliger et al. Aug 2011 A1
20110310907 Klein et al. Dec 2011 A1
Foreign Referenced Citations (14)
Number Date Country
1422043 Jun 2003 CN
1588827 Mar 2005 CN
0385695 Sep 1990 EP
0622926 Nov 1994 EP
1501326 Jan 2005 EP
60160231 Aug 1985 JP
WO-9827748 Jun 1998 WO
WO-9831133 Jul 1998 WO
WO-9935753 Jul 1999 WO
WO-9946734 Sep 1999 WO
WO-0031725 Jun 2000 WO
WO-0055843 Sep 2000 WO
WO-0180030 Oct 2001 WO
WO-0219623 Mar 2002 WO
Non-Patent Literature Citations (4)
Entry
Ovadia, “MoCA: Ubiquitous Multimedia Networking in the Home,” Proc. of SPIE vol. 6776, 67706C-1, May 28, 2010.
“MoCA Brewing Up Bigger Bandwidth, CTO Anton Monk Outlines Plans for MoCA 2.0 Home-Networking Specification,” http://www.multichannel.com/article/160878-MoCa—Brewing—Up—Bigger—Bandwidth.php, Dec. 15, 2008.
Ovadia, “Home Networking on Coax for Video and Multimedia, Overview for IEEE 802.1AVB”, May 30, 2007.
“Microtune Introduces Industry's First 1-GHz Cable Tuners Compatible with MoCA—Home Networking Standard,” Business Wire, Mar. 19, 2007.
Related Publications (1)
Number Date Country
20130301655 A1 Nov 2013 US
Continuations (1)
Number Date Country
Parent 13031704 Feb 2011 US
Child 13942559 US