This application claims the benefit of United Kingdom Patent Application No. GB1112337.9, filed Jul. 18, 2011, and is incorporated by reference herein in its entirety.
1. Field
The present disclosure generally relates to systems and methods for installing cladding assemblies.
2. Description of the Related Art
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of the common general knowledge in the field.
Many cladding materials, such as timber, vinyl, and fiber cement have been used in plank or weatherboard form to construct exterior wall assemblies on buildings. Typically, each piece of such cladding material is installed so that its lower edge covers the fixing positions of the previously installed piece. The location, strength, and configuration of the nail provide the resistance of the wall assembly to applied loads, such as wind loads. The installation techniques rely on installer skill to be able to accurately and reproducibly fix cladding pieces in position in line with the manufacturer's recommendations. In extreme wind load conditions, either the nail shank releases from the substructure, or the nail head may be pulled through the cladding. In either case, the cladding material is released from its installed position because of the concentration of wind load pressure on the fixings, leading to damage to the cladding material and possible other damage to the structures and substructures around the cladding material.
Screw fixing of cladding materials to substructures has been used to improve the wind load capacity of wall assemblies, but screw fixing is more expensive and slows the installation rate. Screw fixing increases the holding power of the shank but the head may still be pulled through the cladding, once again due to the concentration of wind load pressure on the fixings.
Thus, there is a need for improved systems and methods for installing cladding assemblies that is cost-efficient, easy to use, and provides the cladding assemblies with increased wind load resistance and other favorable properties.
Disclosed herein are improved systems and methods for installing cladding assemblies. In one embodiment, the disclosure provides an easy-to-use cladding reinforcement system that is configured to affix cladding materials to an exterior wall assembly in a manner so as to increase the wind load resistance of the cladding materials without increasing number of fasteners used. In some embodiments, the cladding reinforcement system is adapted to provide a larger pressure zone in a cladding assembly across which the load is distributed in high wind load applications. In some embodiments, the configuration, material, and dimensions of the cladding reinforcement systems combine synergistically to increase the wind load resistance of the cladding boards without increasing the number of fasteners such as nails used. In some embodiments, the placement of the cladding reinforcement system is selected at strategic locations in the cladding assembly to facilitate installation and reduce the number of fasteners needed. In some implementations, the cladding reinforcement system improves the wind load of a cladding panel by about 50% to about 143% as compared to an equivalent cladding panel fastened by the same number of nails.
In another embodiment, a reinforcement anchor for mounting a cladding panel to a building structure is disclosed. The reinforcement anchor comprises a web having first and second spaced apart edges. The edges are configured to define a predetermined width for locating the anchor against an upper edge of an elongate cladding panel. In one implementation, the web further comprises a first leg extending at a first predetermined angle from the first edge of the web. The angle can be optimized for locating the first leg against a front face of an elongate cladding panel. At least one fixing indicators can be disposed on the first leg for indicating at least one predetermined fixing position. In another implementation, the web also includes a second leg extending at a second predetermined angle from the second edge of the web. The second leg can be much shorter than the first leg. In some implementations, the second leg comprises a lip extending from the second edge of the web. In a preferred implementation, the first leg has a length of 0.5 to 1.5 in and a width of 1 to 3 in. Preferably, the aspect ratio and area of the first leg are selected to improve the wind load resistance of the cladding assembly.
The configuration of the reinforcement anchor can vary without departing from the scope of the present disclosure. In some embodiments, the second leg extends from the second edge of the web in the same direction as the first leg. In other embodiments, the second leg extends from the second edge of the web in a different direction to the first leg. In yet some other embodiments, the first predetermined angle from which the first leg extends from the first edge is between 45 and 135 degrees. In yet some other embodiments, the second predetermined angle from which the second leg extends from the second edge can be acute or obtuse.
The first or the second leg can further comprise more than one fixing indicators. In some implementations, the fixing indicator can be an aperture, indentation, or surface marking for receiving a nail shank. The surface markings are particularly useful in situations where the installer wishes to place the nail shank at a different spot or that the nail is not placed dead center on the fixing indicator. Unlike apertures or indentations, the surface markings provide a wider tolerance for the nail shank because the nail shank will not cause tearing or damage to the fixing indicator even if it misses the target. Additionally, the material of the reinforcement anchor is preferably strong and yet lightweight. In some embodiments, the reinforcement anchor is formed from a resilient material selected from the group consisting of metals, polymers, and reinforced polymer composites. In some embodiments, cladding panels that incorporate reinforcement anchors according the certain preferred implementations show significant improvements in wind load resistance as compared to an equivalent cladding panel fastened by an equal number of nails. For example, the wind load resistance before failure can be increased by at least about 55%, 72%, and 140% as compared to the use of a screw without a reinforcement anchor. In some embodiments, an ultimate negative load allowed before failure is about 156, 176, or 253 psf.
A cladding reinforcement apparatus for attaching a thin elongate cladding material to a substructure is disclosed. The cladding reinforcement apparatus generally comprises a web having first and second spaced apart edges. The edges define a predetermined width configured to approximately match an upper edge of a thin elongate cladding material. A first leg extends at a predetermined angle from the first edge of the web, wherein the angle is selected to locate the first leg against a front face of the thin elongate cladding material. A second leg extends at a second predetermined angle from the first edge of said web, wherein the angle is configured to locate the second leg against a substructure. At least one fixing indicator is located on the first leg, which is configured to direct a fastener to an optimal location on said thin elongate cladding material. Preferably, the cladding reinforcement anchor is sized and configured with a large surface area to prevent movement of said thin elongate cladding material during a high wind load application.
A cladding fastening device for attaching a cladding panel to a building structure is disclosed. The cladding fastening device generally comprises a first planar member and a second planar member wherein the two planar members are positioned at an angle relative to each other. Preferably, the surface area of the first planar member is greater than the surface area of the second planar member. In one embodiment, a lip extends from an outer edge of the second planar member in a direction that is substantially parallel to the first planar member. In another embodiment, a third planar member extends from an outer edge of the second planar member in a direction that is substantially parallel to the first planar member. In yet another embodiment, a plurality of apertures are formed on the first planar member. In yet another embodiment, the second planar member is configured to approximate the thickness of the cladding panel. The cladding fastening device can be used to attach the cladding panel to the building structure by positioning the device along an upper lateral edge of the cladding panel such that the second planar member rests against the upper lateral edge and the first planar member rests against the front surface of the cladding panel. Preferably, the first planar member remains flat and does not protrude outwardly from the front surface of the cladding panel. A nail can then be driven into the cladding panel through one or more apertures on the first planar member, thereby attaching the cladding panel to the building structure.
A method of installing a cladding assembly to a building structure is disclosed comprising positioning a first cladding panel adjacent the building structure and attaching the first cladding panel to the building structure by using a nail and a cladding reinforcement anchor. Preferably, the cladding reinforcement anchor comprises a planar face having an area of at least 2 in2, wherein the nail attaches the anchor to the cladding panel and the cladding panel to the building structure. Preferably, the cladding reinforcement anchor has a flat planar face such that the reinforcement anchor does not protrude outwardly when attached to the first cladding panel. Aligning and mounting a second cladding panel in partial overlapping fashion on the first cladding panel covering the cladding reinforcement anchor. Preferably, when the second cladding panel is positioned on top of the cladding reinforcement anchor, no significant gap is created between the two cladding panels.
Embodiments of the disclosure can be used to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. Some embodiments of a cladding reinforcement anchor described below can provide a larger pressure zone in a cladding assembly. The load created by high winds can be distributed over a larger area, thus making it less likely for the cladding assembly to be removed from the structure beneath. Additionally, the cladding reinforcement anchor can prevent a fastener from being pulled through a cladding material. In some embodiments, the cladding reinforcement anchor has a flat and unobtrusive front face so that it can be covered by adjacent overlapping cladding panels without creating any visible gap between the two panels.
As described below, the cladding reinforcement anchor can be inserted onto the top or bottom of a cladding material. A fastener can be inserted through the cladding reinforcement anchor, through the cladding material, and into the substructure. Therefore, the cladding reinforcement anchor is attached to the cladding material and both the reinforcement anchor and the material are attached to the substructure. As the cladding reinforcement anchor can be much larger than the head of the fastener, the force during high winds will be spread over the entire cladding reinforcement anchor are, lowering the total pressure at each spot. The use of a cladding reinforcement anchor can allow for the installation of a cladding material in higher wind locations than a cladding material attached with only a fastener. Additionally, the cladding reinforcement anchor can be made of a harder material, preventing the fastener from pulling through the cladding material.
The term “cladding material” as used herein is a broad term and includes its ordinary dictionary definition and also refers to timber, vinyl and fiber cement materials that have been used in plank or weatherboard form to construct wall assemblies on buildings. Other shapes and materials can be used as well.
The term “fastener” as used herein is a broad term and includes its ordinary dictionary definition and also refers to nails, screws, etc.
Referring to the drawings,
The edges 102/103 can be configured to define a predetermined width 104 of the web 101 and configured to locate the reinforcement anchor 100 against the upper edge 105 of a thin elongate cladding material 106. The web 101 spans approximately the same length as the two edges 102/103. The web 101 can be shaped or profiled to form a complementary mating profile to that of an upper edge 105 of the cladding material 106. The web 101 can be in the form of a thin rectangular plate, or can be a thin plate that is profiled to match an upper edge 105 of a cladding material 106. For example, the web 101 can be flat, pointed, rounded, etc. to match the upper edge 105 of the cladding material 106. The shape of the web 101 is not limiting. In some embodiments, the length of the web 101 is preferably 1.5 to 2.5 in.
A first leg 107 is shown extending at a first predetermined angle 108 from the first edge 102 of web 101. Angle 108 can be optimized for locating said first leg 107 against a front face 109 of the thin elongate cladding material 106. The angle 108 can be approximately 90° to match the cladding material 106. Other angles can be chosen as well, depending on the shape of the cladding material 106. The angles chosen for angle 108 can be acute or obtuse, and can range from approximately 45° to approximately 135°. In a preferred embodiment, the first leg 107 is substantially flat with no protrusions.
A second leg 112 is shown extending at a second predetermined angle 113 from the second edge 103 of web 101. The second leg 112 can rest against the opposite side of the cladding material 106 as the first leg 107. Angle 113 can be approximately 90°. Other angles can be chosen as well, depending on the shape of the cladding material 106. The angles chosen for angle 113 can be acute or obtuse and can range from approximately 45° to approximately 135°.
In some embodiments, the second leg 112 can be shorter than the first leg 107. For example, the second leg 112 can be one half the length of the first leg 107 or the second leg 112 can extend less than 2.54 in from the web 101, or extend very slightly, preferably less than 1 in, just sufficient to engage with the edge of the cladding material. In yet another embodiment, the second leg 112 is a lip that extends from the second edge 103. In other embodiments, the second leg 112 can be similar in length to the first leg 107. In other embodiments, the second leg 112 can be longer than the first leg 107. The second leg 112 can be long enough to hold the cladding reinforcement anchor 100 onto a cladding material 106. The second leg 112 can be used to hold the cladding reinforcement anchor 100 in place while attaching the reinforcement anchor 100, and the cladding material 106, to the substructure. The second leg 112 can be sized to fit around the cladding material 106 to prevent movement of the cladding reinforcement anchor during installation.
Generally, the cladding reinforcement anchor 100 can be placed directly over the cladding material 106, as shown in
The first leg 107 can have at least one fixing indicator 110 for indicating at least one predetermined fixing position. The fixing indicators 110 can be circular, triangular, rectangular, etc. and the size and shape of the indicator 110 is not limiting. The fixing indicators 110 can be located anywhere on the front leg 107, for example in a straight line or randomly placed, and the position of the indicators 110 is not limiting. The fixing indicators 107 can comprise indentations into the cladding reinforcement anchor 100 so a fastener, such as a nail or screw, can be directed to the center of the fixing indicator 107. The fixing indicators 107 can help direct the fastener to the proper position for installation of the cladding material 106. By directing the fastener to the appropriate position, the cladding reinforcement anchor 100 can keep the cladding material 106 attached to a substructure, even in high wind applications. If the fixing indicator 107 was not used, the optimal position for the cladding reinforcement anchor 100 may not be used, thus potentially decreasing the usefulness of the cladding reinforcement anchor 100. In some embodiments with multiple fixing indicators 107, the fixing indicators 107 can cover multiple cladding materials, as discussed with respect to
The web 101 and first and second legs 107/112 can cover a larger portion of the cladding material 106 than an individual fastener, such as a nail or screw. This provides for a larger surface area that the cladding material 106 will be able to exert force on under high load applications, such as high wind load. As the load is distributed over a larger area, the cladding reinforcement anchor 100 can prevent the cladding material 106 from coming off any substructure the cladding material 106 is attached to. Therefore, the cladding reinforcement anchor 100 can better prevent the cladding material 106 from coming off a substructure than conventional attachment means, such as a nail or screw. Additionally, the cladding reinforcement anchor 100 can prevent the fastener from being pulled through the cladding material 106, as the cladding reinforcement anchor 100 can be made of a stronger material than the cladding material 106.
The angle between the web 302 and the second leg 301 and the angle between the web 302 and the first leg 303 can be adjusted. In some embodiments, the angle between the web 302 and the first leg 303 is approximately 90°. This angle can be adjusted so that the first leg 303 rests against the front fact of the cladding material 304. The angle between the web 302 and the second leg 301 can be greater than or less than the angle between the web 302 and the first leg 303. For example, in some embodiments the angle between the web 302 and the second leg 301 can be obtuse. Therefore, the cladding material 304 can fit against the web 302 and the first leg 303 while a gap can be left between the cladding material 304 and the second leg 301. The second leg 301 can be located on the substructure 309, thereby increasing the load necessary to pull off the cladding material 304. The angle may be varied to suit the configuration of the cladding material with which it is intended to be used, and may be any number between 45° and 135°. Additionally, when a fastener is inserted and tightened into cladding material 304, the cladding reinforcement anchor 300 can be made of a material that can flex. Therefore, the angle between the web 302 and the first leg 303 can be reduced from an obtuse angle towards 90° as the fastener is tightened, allowing a user to choose the desired angle. Some slight deformation during installation may serve to increase release pressure required in the assembly, thereby providing additional resistance in the pressure zone by forming a resilient spring.
In an embodiment of a cladding reinforcement anchor, as shown in
In this embodiment, cladding reinforcement anchor 400 can have a protrusion 414 on first leg 407 which can be sized and configured to be a complementary profile to protrusion 409 on the surface of cladding material 406. The protrusion 414 can keep the cladding reinforcement anchor 400 from extending away from the cladding material 406 as compared to if the first leg 407 were completely flat and straight. By having the fitted protrusion 414, the cladding reinforcement anchor 400 will have a larger surface area against the cladding material 406. The larger surface area can allow for more force to be placed on the cladding reinforcement anchor 400 and cladding material 406 before the cladding material 406 comes off a substructure. The embodiment shown in
A first leg 407 is shown extending at a first predetermined angle 408 from the first edge 402 of web 401. The angle 408 can be optimized for locating said first leg 407 against a front face 409 of the thin elongate cladding material 406. As mentioned above, the first leg 407 can have at least one fixing indicator 410 for indicating at least one predetermined fixing position 411.
A second leg 412 is shown extending at a second predetermined angle 413 from the second edge 403 of web 401, in this embodiment the first leg 407 and the second leg 412 extend in substantially opposite directions from web 401. The angle 413 can be acute, 90°, or obtuse. For example, the angle 413 can range from about 45° to about 135°. The angle 413 can be adjusted so that the web 401 and the first leg 407 rest relatively flat against the cladding material 406 while the second leg 412 rests relatively flat against the substructure. As discussed with the first leg 407, the second leg 412 can similarly have at least one fixing indicator 415 for indicating at least one predetermined fixing position.
In an embodiment of a cladding reinforcement anchor, as shown in
Because cladding material 580 can be in the form of a tapered plank where the upper edge is narrower than the lower edge, the angle at which first leg 520 extends from web 560 can be an acute angle, that is, less than 90°. The angle at which first leg 520 extends from web 560 can also be obtuse. In other configurations, the angle at which first leg 520 extends from web 560 can be about 90°. The angle between the web 560 and the first leg 520 can range from approximately 45° to approximately 135°. In some embodiments, the angle between the web 560 and the second leg 540 can be acute. Where the angle is acute, the cladding material 580 can stay relatively flush against the first leg 520 and the web 560. In other embodiments, the angle between the web 560 and the second leg 540 can be obtuse. The angle between the web 560 and the second leg 540 can range from approximately 45° to approximately 135°. Some slight deformation during installation may serve to increase release pressure required in the assembly, thereby providing additional resistance in the pressure zone by forming a resilient spring.
In an embodiment of a cladding reinforcement anchor, as shown in
In an embodiment of a cladding reinforcement anchor, as shown in
A first leg 708 is shown extending at a first predetermined angle from the first edge 702 of web 701. The angle can be optimized for locating said first leg 708 against a front face of the thin elongate cladding material 705. The first leg 708 can have at least one fixing indicator 707 for indicating at least one predetermined fixing position. A second leg 710 is shown extending at a second predetermined angle from the second edge 703 of web 701. The second leg 710 can have at least one fixing indicator 711 for locating at least one predetermined fixing position directly into the substructure 709. In this embodiment, the first leg 708 and the second leg 710 can extend in substantially opposite directions from web 701. In other embodiments, the first and second legs 708/710 can extend in substantially the same direction. The angles between the web 701 and the legs 708/710 can range from about 45° to 135°.
In the embodiment shown in
The cladding reinforcement anchor may be formed from any resilient material that may be formed into a thin section. Materials suitable for use include, but are not limited to, metals such as plain, stainless, galvanized, powder coated, painted or otherwise surface treated steels; polymers such as UHMWPE; and reinforced polymer composites, such as glass reinforced nylon, carbon fiber reinforced polyester, and the like. The cladding reinforcement anchor may be coated with materials. The coating can be used, for example, to prevent rusting of the cladding reinforcement anchors and thus increasing their use life and maintaining the aesthetics of the reinforcement anchors.
The configuration of the cladding reinforcement anchor can be thin enough so that it does not substantially disrupt the installation of the cladding material in line with the cladding material manufacturer's recommendations. The cladding reinforcement anchor can have an increased thickness to increase strength with respect to high wind loads. In one implementation, the cladding reinforcement anchor has a thickness of about a 24 gauge.
Use of a cladding reinforcement anchor as herein described also can enable an increase in building sub-frame spacing in timber frame construction by improving the wind load capacity of an installation. For example, where a traditional installation may require fixing onto a timber subframe constructed using 400 mm centers, the cladding reinforcement anchor disclosed above can allow for installation of a cladding material on a timber subframe having 600 mm centers.
The following examples are provided to demonstrate the benefits of embodiments of a cladding reinforcement anchor. The examples are discussed for illustrative purposed and should not be construed to limit the scope of the disclosed embodiments.
A cladding material, HardiPlank® Lap Siding complying with ASTM C1186 Grade II Type A, was attached with embodiments of the above described cladding reinforcement anchor. The cladding material was 5/16 inch thick by 8.25 inch wide. The cladding clip was 2 inch wide. The first leg was 1⅛ inch long and the second leg was 7/16 inch long. The thickness of the first leg was 24 gauge. The depth between the first leg and the second leg was 5/16 inch. The example show a comparison between a cladding material attached with a cladding reinforcement anchor and a cladding material attached with a nail. The results of the examples are shown in Table I.
Testing was done in accordance with ICC-ES Acceptance Criteria 90, hereby incorporated by reference in its entirety. Transverse load testing was conducted in accordance with ASTM E330-02(2010), hereby incorporated by reference in its entirety. Test frames, measuring 4 ft.×8 ft., were constructed with SPF #2+BTR, nominal 2 in.×4 in. lumber spaced 16 in. on center and 24 in. on center. Frames were fastened together using 3½ in. 16 d common nails.
For each configuration, between one and three assemblies were constructed for testing in the negative wind load direction. The negative direction was the weakest orientation, therefore positive directing load tests were not conducted.
The fiber-cement lap siding was installed to the test frames per the blind nailing method in the James Hardie HardiePlank product installation instructions, hereby incorporated by reference in its entirety. The cladding reinforcement anchor assemblies utilized the cladding reinforcement anchor with the fastener installed through the reinforcement anchor's face.
Testing was conducted using the chamber method for uniformly distributed loading. Each test frame was secured in a horizontal uniformly distributed load testing apparatus. A sheet of polyethylene film was used in the construction of the test samples. For negative wind load testing, polyethylene film was placed loosely between the framing and the siding. The air within the test chamber was evacuated using a vacuum pump, inducing a uniformly distributed load to the sample.
A pre-load of one half of the test load was applied to each test assembly and held for 10 seconds. The load was released and after a recovery period of not less than 1 min nor more than 5 min. The load was then increased to prescribed load increments. The load was then released after 1 minute. This sequence was repeated a minimum of six times until a final ultimate load was attained. A visual examination of the specimens was made after the tests to determine the failure mode.
When compared to the control the 16 inch on center cladding reinforcement anchors improved the ultimate transverse load by 78%.
Two scenarios were tested over 24 inch on center framing, (1. Control 2 used a nail with 0.260 inch head diameter; the cladding reinforcement anchors improved the ultimate transverse load by 143%. The ultimate pressure was −176 psf and (2. Control 3 used a screw with 0.375 inch head diameter; the cladding reinforcement anchors improved the ultimate transverse load by 55%. The ultimate pressure was −156 psf.
It was unexpected to realize that HardiePlank siding, when blind nailed, with the cladding reinforcement anchor installed achieved ultimate transverse load pressures that are similar to face nailed assemblies. It is a common perception that blind nailing is not adequate for high wind regions and that face nailing must be utilized, however the test results indicate that when using cladding reinforcement anchors of certain preferred embodiments, it is possible to achieve face nailed performance from a blind nailed assembly.
It will be appreciated that the illustrated cladding reinforcement anchor provides a larger pressure zone, across which the load is distributed, in high wind load applications, thereby providing more secure attachment. Although the invention has been described with reference to specific examples, it will be appreciated by those skilled in the art that the invention may be embodied in many other forms.
Provided herein are various non-limiting examples of systems and methods for installing cladding assemblies. While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separated from others.
Number | Date | Country | Kind |
---|---|---|---|
1112337.9 | Jul 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/47237 | 7/18/2012 | WO | 00 | 3/28/2014 |