The present invention relates to systems and methods for a cloud computing infrastructure. More particularly, the present invention relates to a system and method for integrating compute resources in a storage area network.
Cloud infrastructure, including storage and processing, is an increasingly important resource for businesses and individuals. Using a cloud infrastructure enables businesses to outsource all or substantially all of their information technology (IT) functions to a cloud service provider. Businesses using a cloud service provider benefit from increased expertise supporting their IT function, higher capability hardware and software at lower cost, and ease of expansion (or contraction) of IT capabilities.
Monitoring a cloud infrastructure is an important function of cloud service providers, and continuity of function is an important selling point for cloud service providers. Downtime due to malware or other failures should be avoided to ensure customer satisfaction. Cloud infrastructure monitoring conventionally includes network packet sniffing, but this is impractical as a cloud infrastructure scales up. Alternatively, host-based systems conventionally collect and aggregate information regarding processes occurring within the host.
According to exemplary embodiments, the present technology provides a data processing and storage system. The system may include a compute module for running at least one virtual machine for processing guest data. State data on the at least one virtual machine is collected. The system also includes a storage module communicating with the compute module and storing the guest data. The storage module accesses the state data for controlling storage operations.
The state data may include a process identifier, a username, a central processing unit usage, a memory identifier, an internal application identifier, and/or an internal application code path. The state data may be used to dynamically modify control software of the storage module. The state data may be used to manage input/output throttling of the guest data with respect to the storage module. The state data may be accessible by a system administrator for determining and/or modifying resource usage related to the guest data.
The system may include a clock accessible by the compute module and the storage module for managing operations. The system may include a debug module adapted to access the state data and provide a stack trace for the compute module and the storage module.
The storage module may store a read-only copy of a virtual machine operating system for instantiating new instances of virtual machines in the compute module.
A cloud storage/compute system is provided that includes a storage module for storing guest data for a virtual machine and operating based on a clock. The cloud storage/compute system also includes a compute module communicatively coupled with the storage module for performing operations on the guest data for the virtual machine and operating based on the clock. Clock data may be associated with storage module operations data and compute module operations data.
The system may include a cloud system administrator module accessing the storage module operations data and the compute module operations data for managing operations. The system may include a debug module accessing the storage module operations data and the compute module operations data for providing a stack trace.
A method is provided that includes collecting state data on a virtual machine that processes guest data. The method also includes controlling storage operations relating to the guest data based on the state data.
The method may include communicating by the virtual machine the guest data to a storage module, and storing the guest data in the storage module. The method may include storing in the storage module a read-only copy of a virtual machine operating system for instantiating new instances of virtual machines. The method may further include storing in the storage module modifications to the virtual machine in an instance image file.
These and other advantages of the present technology will be apparent when reference is made to the accompanying drawings and the following description.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
The present technology provides a unified compute and storage model for a datacenter. The present technology modifies storage area network (SAN) model and provides compute as a service to a SAN. The present technology enables a datacenter administrator to answer customer queries that are difficult to answer in a conventional SAN model. For example, using a SAN model, a system administrator is not able to quickly and easily respond to questions presented by a customer such as: “why is it slow?”; “why is it down?”; “when is it coming back?”; and “when it comes back, will it be OK?”. Conventional datacenters built on the SAN model cannot do a socket-to-socket analysis and do not provide transparency enabling an administrator to properly answer these questions.
The present technology may provide cost optimization across a complete range of different instance types, and may provide a system and method for running a virtual machine natively on a modified storage area network. A multi-datacenter object store is provided by relaxing a policy around compute, and by providing the same core object system for a multi-datacenter object store (a primary system of record). The present technology brings compute functionality to the data store, and thereby provides unique capabilities to query, index, MapReduce, transform, and/or perform any other compute function directly on the object store without having to move data.
The present technology collapses the conventional SAN model by combining storage and compute. Policies, security and software are updated to handle this architecture pursuant to the present technology. Storage volumes may be optimized for storage. An integrated compute/SAN according to the present technology enables I/O throttling for tenants (also referred to as guests or virtual machines) based on co-tenant operations, and through the proper implementation of operating software may enable awareness of co-tenant (also referred to as neighbors) operations affecting common resources.
Advantages of the present technology include increased predictability and control, as well as improved unit economics. The present technology also enables improved network, compute and storage integration with end-user needs. The present technology avoids hard allocation of compute and storage resources, and redirects the datacenter model to be about data, including both storage and manipulation. In this manner, the present technology ensures that storage resources are synchronized with compute needs of a guest by providing dynamic allocation of storage and computer resources.
The improved observability enabled by the present technology includes visualization of storage latency, I/O latency, and the effects of I/O on other tenants. With the known latencies being determined, latencies for I/O may be controlled, by for instance, instituting delays for high I/O users in order to prevent impairment of neighbor guests using the same storage unit. Improved observability may be enabled in part by compute and storage resources utilizing the same clock. The present technology also enables an administrator of the datacenter to identify code paths for I/O for each guest.
By integrating compute and storage in the same server in a datacenter, context information relating to a processor or processors (also referred to as a CPU) may be stored and used to control storage operations. This information relating to computer operations is conventionally lost if a datacenter is built from parts from different manufacturers and connected over a network. The context information (also referred to as state data, state and statistics) may be tenant specific. For example, an administrator may identify that a guest is using a large amount of I/O in the storage. Using the present technology, the administrator may also be able to access context to identify that a failover has occurred, such that the virtual machine is replaced by a new virtual machine. The state data may include a process identifier, a username, a central processing unit usage, a memory identifier, an internal application identifier and/or an internal application code path.
A common clock between storage and compute modules of a compute/storage server in a datacenter enables analysis by an administrator of the host operating system of the datacenter. The present technology enables an analysis of all I/O activity of SAN components of the present technology, and further enables tracking the data flows in and out of the SAN, in real-time. Further, the identified I/O may be correlated with processes running on a virtual machine. Time-series based correlations are possible, and the present technology may utilize DTrace and/or other debugging software to provide a clear view of operations up and down a stack by identifying processes.
The present technology may provide ease of management by creating virtual machines (also referred to as instances, tenants, and guests) from a single copy of the software. The read-only copy of the virtual operating system may be stored in the storage component of the rack in which the virtual machine operates in the compute component. Instantiation of the virtual machine may be performed very quickly by accessing the storage component directly from the compute component. Additionally, since (in some embodiments) only the difference (also referred to as the delta) in the operating system file is saved as a new file, the various copies of virtual machine operating systems for all, or at least a plurality of the guests of the host machine may occupy a much smaller amount of disk (or other appropriate) storage. A modified virtual OS may therefore be stored as pointers directed to the read-only copy of the operating system and other pointers directed to the delta file. Accessing the read-only copy of the virtual machine along with the delta file when starting another instance based on the modified virtual machine may also be performed very quickly.
Different images for databases, node.js (a platform built on Chrome's Javascript runtime for building fast, scalable network applications), and MySQL are commonly stored and offered to customers. In this manner, configuring a new virtual machine may be seamless and quick, since the copy-on-write system exists on the same machine including both compute and storage. In this manner, the process of creating a new instance is vastly accelerated. ZFS may be utilized as the file storage system of the present application.
An exemplary hardware embodiment uses the rack as the primary unit and offers four rack designs. The exemplary hardware embodiment may draw substantially constant power, for example 8 kW, and may be based on the same board, CPUs, DRAM, HBAs (Host Bus Adapter) and ToR (The Onion Routing). The exemplary hardware embodiment may require only minimal firmware.
Exemplary compute racks for the present technology include, but are not limited to, any of the following: 1) 512 CPUs, 4 TB DRAM, all 600 GB SAS (68 TB); 2) 512 CPUs, 4 TB DRAM, all 3 TB SAS (600 TB); and 3) 512 CPUs, 4 TB DRAM, all 800 GB SSDs (90 TB/200 TB). Object storage racks according to an exemplary embodiment may include, but are not limited to, 256 CPUs, 4 TB DRAM, all 3 TB/4 TB SATA (800 TB).
Virtual machine 120 and virtual machine 130 may output context data to context memory 140. Context data may be state data of virtual machine 120 and virtual machine 130, and may include process identifiers within each virtual machine, usernames for each virtual machine, central processing unit usage for each virtual machine, memory identifiers for each virtual machine, internal application identifiers for each virtual machine and/or internal application code paths for each virtual machine. Context memory 140 may couple to device drivers 160 of storage module 150. Alternatively, context memory 140 may couple to other software elements of storage module 150. Context data may be transferred by context memory 140 to device drivers 160 (or other software elements of storage module 150) and may be used to assist in the operation of storage module 150 and/or disks 170. In particular, context data may be used to dynamically modify device drivers 160. In this manner, data relating to the operation of virtual machine 120 and virtual machine 130 may be used as an input to storage module 150 and may be used to modify a storage algorithm. Likewise, data relating to the processing elements of compute module 110 used to run virtual machine 120 and virtual machine 130 may be also used as an input to storage module 150 and may be used to modify a storage algorithm. Additionally, device drivers 160 (or other software storage control elements of storage module 150) may output data relating to storage operations to context memory 140, and this data may be matched or correlated with data received from machine 120 and virtual machine 130 for use by a system administrator.
Compute/storage server 100 also includes clock 180, which may be accessed by both compute module 110 and storage module 150. Due to the fact that the operations of compute module 110 and storage module 150 may both be based on clock 180, time stamps associated with the operations of the respective modules may be correlated, either in context memory 140, another module in compute/storage server 100, in a system administrator server, and/or elsewhere.
The components shown in
Mass storage 530, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor 510. Mass storage 530 can store the system software for implementing embodiments of the present technology for purposes of loading that software into memory 520.
Portable storage 540 operate in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing system 500 of
Input devices 560 provide a portion of a user interface. Input devices 560 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 500 as shown in
Graphics display 570 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 570 receives textual and graphical information, and processes the information for output to the display device.
Peripheral device(s) 580 may include any type of computer support device to add additional functionality to the computing system. Peripheral device(s) 580 may include a modem or a router.
The components contained in the computing system 500 of
Virtual machine 120 may be instantiated based on a copy-on-write methodology. In particular, when an administrator of the datacenter and/or a customer desires a new virtual machine, compute module 110 may access read-only OS disk 600 of storage module 150. Alternatively, the administrator or customer may desire a particular type of virtual machine, for instance a database or a virtual machine based on node.js and/or MySQL. Due to the direct access of compute module 110 to storage module 150, the instantiation of a virtual machine may be performed very quickly. If the customer or administrator modifies the virtual machine, the changes to the system may be stored in a delta file stored in instance image disk 630, and a pointer file may provide a map to selectively access read-only OS disk 600 and instance image disk 630. Additionally, if a customer or the datacenter administrator wants to make a copy of a previously modified virtual machine, compute module 110 may access the read-only copy of the operating system for the virtual machine stored in read-only OS disk 600 and the modifications stored in instance image disk 630, based on the contents of the pointer file.
The above description is illustrative and not restrictive. Many variations of the technology will become apparent to those of skill in the art upon review of this disclosure. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6088694 | Burns et al. | Jul 2000 | A |
6393495 | Flory et al. | May 2002 | B1 |
6553391 | Goldring et al. | Apr 2003 | B1 |
6901594 | Cain et al. | May 2005 | B1 |
7222345 | Gray et al. | May 2007 | B2 |
7265754 | Brauss | Sep 2007 | B2 |
7379994 | Collazo | May 2008 | B2 |
7437730 | Goyal | Oct 2008 | B2 |
7529780 | Braginsky et al. | May 2009 | B1 |
7581219 | Neiger et al. | Aug 2009 | B2 |
7603671 | Liu | Oct 2009 | B2 |
7640547 | Neiman et al. | Dec 2009 | B2 |
7685148 | Engquist et al. | Mar 2010 | B2 |
7774457 | Talwar et al. | Aug 2010 | B1 |
7814465 | Liu | Oct 2010 | B2 |
7849111 | Huffman et al. | Dec 2010 | B2 |
7899901 | Njemanze et al. | Mar 2011 | B1 |
7904540 | Hadad et al. | Mar 2011 | B2 |
7917599 | Gopalan et al. | Mar 2011 | B1 |
7933870 | Webster | Apr 2011 | B1 |
7940271 | Wright et al. | May 2011 | B2 |
8006079 | Goodson et al. | Aug 2011 | B2 |
8010498 | Gounares et al. | Aug 2011 | B2 |
8141090 | Graupner et al. | Mar 2012 | B1 |
8181182 | Martin | May 2012 | B1 |
8244559 | Horvitz et al. | Aug 2012 | B2 |
8301746 | Head et al. | Oct 2012 | B2 |
8336051 | Gokulakannan | Dec 2012 | B2 |
8346935 | Mayo et al. | Jan 2013 | B2 |
8370936 | Zuk et al. | Feb 2013 | B2 |
8417673 | Stakutis et al. | Apr 2013 | B2 |
8417746 | Gillett, Jr. et al. | Apr 2013 | B1 |
8429282 | Ahuja et al. | Apr 2013 | B1 |
8434081 | Cervantes et al. | Apr 2013 | B2 |
8464251 | Sahita et al. | Jun 2013 | B2 |
8468251 | Pijewski et al. | Jun 2013 | B1 |
8547379 | Pacheco et al. | Oct 2013 | B2 |
8555276 | Hoffman et al. | Oct 2013 | B2 |
8631131 | Kenneth et al. | Jan 2014 | B2 |
8677359 | Cavage et al. | Mar 2014 | B1 |
8775485 | Cavage et al. | Jul 2014 | B1 |
8782224 | Pijewski et al. | Jul 2014 | B2 |
8789050 | Hoffman et al. | Jul 2014 | B2 |
8793688 | Mustacchi et al. | Jul 2014 | B1 |
8826279 | Pacheco et al. | Sep 2014 | B1 |
8881279 | Gregg | Nov 2014 | B2 |
8898205 | Cavage et al. | Nov 2014 | B2 |
20020069356 | Kim | Jun 2002 | A1 |
20020082856 | Gray et al. | Jun 2002 | A1 |
20020156767 | Costa et al. | Oct 2002 | A1 |
20020198995 | Liu et al. | Dec 2002 | A1 |
20030154112 | Neiman et al. | Aug 2003 | A1 |
20030163596 | Halter et al. | Aug 2003 | A1 |
20040088293 | Daggett | May 2004 | A1 |
20050097514 | Nuss | May 2005 | A1 |
20050108712 | Goyal | May 2005 | A1 |
20050188075 | Dias et al. | Aug 2005 | A1 |
20060107087 | Sieroka et al. | May 2006 | A1 |
20060153174 | Towns-von Stauber et al. | Jul 2006 | A1 |
20060218285 | Talwar et al. | Sep 2006 | A1 |
20060246879 | Miller et al. | Nov 2006 | A1 |
20060248294 | Nedved et al. | Nov 2006 | A1 |
20060294579 | Khuti et al. | Dec 2006 | A1 |
20070088703 | Kasiolas et al. | Apr 2007 | A1 |
20070118653 | Bindal | May 2007 | A1 |
20070168336 | Ransil et al. | Jul 2007 | A1 |
20070179955 | Croft et al. | Aug 2007 | A1 |
20070250838 | Belady et al. | Oct 2007 | A1 |
20070271570 | Brown et al. | Nov 2007 | A1 |
20080080396 | Meijer et al. | Apr 2008 | A1 |
20080103861 | Zhong | May 2008 | A1 |
20080155110 | Morris | Jun 2008 | A1 |
20090044188 | Kanai et al. | Feb 2009 | A1 |
20090077235 | Podila | Mar 2009 | A1 |
20090164990 | Ben-Yehuda et al. | Jun 2009 | A1 |
20090172051 | Huffman et al. | Jul 2009 | A1 |
20090193410 | Arthursson et al. | Jul 2009 | A1 |
20090216910 | Duchesneau | Aug 2009 | A1 |
20090259345 | Kato et al. | Oct 2009 | A1 |
20090260007 | Beaty et al. | Oct 2009 | A1 |
20090300210 | Ferris | Dec 2009 | A1 |
20100050172 | Ferris | Feb 2010 | A1 |
20100057913 | DeHaan | Mar 2010 | A1 |
20100106820 | Gulati et al. | Apr 2010 | A1 |
20100114825 | Siddegowda | May 2010 | A1 |
20100125845 | Sugumar et al. | May 2010 | A1 |
20100131324 | Ferris | May 2010 | A1 |
20100131854 | Little | May 2010 | A1 |
20100153958 | Richards et al. | Jun 2010 | A1 |
20100162259 | Koh et al. | Jun 2010 | A1 |
20100223383 | Salevan et al. | Sep 2010 | A1 |
20100223385 | Gulley et al. | Sep 2010 | A1 |
20100228936 | Wright et al. | Sep 2010 | A1 |
20100235632 | Iyengar et al. | Sep 2010 | A1 |
20100250744 | Hadad et al. | Sep 2010 | A1 |
20100262752 | Davis et al. | Oct 2010 | A1 |
20100268764 | Wee et al. | Oct 2010 | A1 |
20100299313 | Orsini et al. | Nov 2010 | A1 |
20100306765 | DeHaan | Dec 2010 | A1 |
20100306767 | Dehaan | Dec 2010 | A1 |
20100318609 | Lahiri et al. | Dec 2010 | A1 |
20100332262 | Horvitz et al. | Dec 2010 | A1 |
20100332629 | Cotugno et al. | Dec 2010 | A1 |
20100333087 | Vaidyanathan et al. | Dec 2010 | A1 |
20110004566 | Berkowitz et al. | Jan 2011 | A1 |
20110016214 | Jackson | Jan 2011 | A1 |
20110029969 | Venkataraja et al. | Feb 2011 | A1 |
20110029970 | Arasaratnam | Feb 2011 | A1 |
20110047315 | De Dinechin et al. | Feb 2011 | A1 |
20110055377 | DeHaan | Mar 2011 | A1 |
20110055396 | DeHaan | Mar 2011 | A1 |
20110055398 | Dehaan et al. | Mar 2011 | A1 |
20110078303 | Li et al. | Mar 2011 | A1 |
20110107332 | Bash | May 2011 | A1 |
20110131306 | Ferris et al. | Jun 2011 | A1 |
20110131329 | Kaplinger et al. | Jun 2011 | A1 |
20110131589 | Beaty et al. | Jun 2011 | A1 |
20110138382 | Hauser et al. | Jun 2011 | A1 |
20110138441 | Neystadt et al. | Jun 2011 | A1 |
20110145392 | Dawson et al. | Jun 2011 | A1 |
20110153724 | Raja et al. | Jun 2011 | A1 |
20110161952 | Poddar et al. | Jun 2011 | A1 |
20110173470 | Tran | Jul 2011 | A1 |
20110179132 | Mayo et al. | Jul 2011 | A1 |
20110179134 | Mayo et al. | Jul 2011 | A1 |
20110179162 | Mayo et al. | Jul 2011 | A1 |
20110185063 | Head et al. | Jul 2011 | A1 |
20110219372 | Agrawal et al. | Sep 2011 | A1 |
20110270968 | Salsburg et al. | Nov 2011 | A1 |
20110276951 | Jain | Nov 2011 | A1 |
20110296021 | Dorai et al. | Dec 2011 | A1 |
20110302378 | Siebert | Dec 2011 | A1 |
20110302583 | Abadi et al. | Dec 2011 | A1 |
20110320520 | Jain | Dec 2011 | A1 |
20120017210 | Huggins et al. | Jan 2012 | A1 |
20120054742 | Eremenko et al. | Mar 2012 | A1 |
20120060172 | Abouzour | Mar 2012 | A1 |
20120066682 | Al-Aziz et al. | Mar 2012 | A1 |
20120079480 | Liu | Mar 2012 | A1 |
20120089980 | Sharp et al. | Apr 2012 | A1 |
20120124211 | Kampas et al. | May 2012 | A1 |
20120131156 | Brandt et al. | May 2012 | A1 |
20120131591 | Moorthi et al. | May 2012 | A1 |
20120159507 | Kwon et al. | Jun 2012 | A1 |
20120167081 | Sedayao et al. | Jun 2012 | A1 |
20120173709 | Li et al. | Jul 2012 | A1 |
20120179874 | Chang et al. | Jul 2012 | A1 |
20120185913 | Martinez et al. | Jul 2012 | A1 |
20120198442 | Kashyap et al. | Aug 2012 | A1 |
20120204176 | Tian et al. | Aug 2012 | A1 |
20120221845 | Ferris | Aug 2012 | A1 |
20120233315 | Hoffman et al. | Sep 2012 | A1 |
20120233626 | Hoffman et al. | Sep 2012 | A1 |
20120246517 | Bender et al. | Sep 2012 | A1 |
20120266231 | Spiers et al. | Oct 2012 | A1 |
20120284714 | Venkitachalam et al. | Nov 2012 | A1 |
20120303773 | Rodrigues | Nov 2012 | A1 |
20120311012 | Mazhar et al. | Dec 2012 | A1 |
20130042115 | Sweet et al. | Feb 2013 | A1 |
20130060946 | Kenneth et al. | Mar 2013 | A1 |
20130067067 | Miri et al. | Mar 2013 | A1 |
20130081016 | Saito et al. | Mar 2013 | A1 |
20130086590 | Morris et al. | Apr 2013 | A1 |
20130129068 | Lawson et al. | May 2013 | A1 |
20130132057 | Deng et al. | May 2013 | A1 |
20130169666 | Pacheco et al. | Jul 2013 | A1 |
20130173803 | Pijewski et al. | Jul 2013 | A1 |
20130179881 | Calder et al. | Jul 2013 | A1 |
20130191835 | Araki | Jul 2013 | A1 |
20130191836 | Meyer | Jul 2013 | A1 |
20130254407 | Pijewski et al. | Sep 2013 | A1 |
20130318525 | Palanisamy et al. | Nov 2013 | A1 |
20130328909 | Pacheco et al. | Dec 2013 | A1 |
20130339966 | Meng et al. | Dec 2013 | A1 |
20130346974 | Hoffman et al. | Dec 2013 | A1 |
20140279955 | Cavage et al. | Sep 2014 | A1 |
20140280198 | Cavage et al. | Sep 2014 | A1 |
20140280796 | Pijewski | Sep 2014 | A1 |
20140280912 | Gregg | Sep 2014 | A1 |
20140280970 | Pijewski et al. | Sep 2014 | A1 |
20140282512 | Pacheco et al. | Sep 2014 | A1 |
20140282513 | Pacheco et al. | Sep 2014 | A1 |
20140282590 | Cavage et al. | Sep 2014 | A1 |
20140282615 | Cavage et al. | Sep 2014 | A1 |
20140283053 | Gregg | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2011088224 | Jul 2011 | WO |
WO2012125143 | Sep 2012 | WO |
WO2012125144 | Sep 2012 | WO |
Entry |
---|
I/O throttling, Michael Mesnier , 2006. |
Yagoubi, Belabbas et al., “Load Balancing in Grid Computing,” Asian Journal of Information Technology, vol. 5, No. 10 , pp. 1095-1103, 2006. |
Kramer,“Advanced Message Queuing Protocol (AMQP),” Linux Journal, Nov. 2009, p. 1-3. |
Subramoni et al., “Design and Evaluation of Benchmarks for Financial Applications Using Advanced Message Queuing Protocol (AMQP) over InfiniBand,” Nov. 2008. |
Richardson et al., “Introduction to RabbitMQ,” Sep. 2008, p. 1-33. |
Bernstein et al., “Using XMPP as a Transport in Intercloud Protocols,” Jun. 22, 2010, p. 1-8. |
Bernstein et al., “Blueprint for the Intercloud—Protocols and Formats for Cloud Computing Interoperabiilty,” May 28, 2009, p. 328-336. |
Gregg, Brendan, “Visualizing System Latency,” May 1, 2010, ACM Queue, p. 1-13, http://queue.acm.org/detail.cfm?id=1809426. |
Gregg, Brendan, “Heat Map Analytics,” Mar. 17, 2009, Oracle, p. 1-7, https://blogs.oracle.com/brendan/entry/heat— map—analytics. |
Mundigl, Robert, “There is More Than One Way to Heat a Map,” Feb. 10, 2009, Clearly and Simply, p. 1-12, http://www.clearlyandsimply.com/clearly—and—simply/2009/02/there-is-more-than-one-way-to-heat-a-map.html. |
Bi et al. “Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center”. 2010 IEEE 3rd International Conference on Cloud Computing. pp. 370-377. |
Chappell, David. “Introducing Windows Azure”. Microsoft Corporation. Oct. 2010. pp. 1-25. |
Chef Documents. Retrieved Mar. 11, 2014 from http://docs.opscode.com/. |
Ansible Documentation. Retrieved Mar. 11, 2014 from http://docs.ansible.com/. |
Bill Pijewski's Blog. Retrieved Mar. 12, 2014 from http://dtrace.org/blogs/wdp/2011/03/our-zfs-io-throttle/. |
Brendan's Blog. Retrieved Mar. 12, 2014 from http://dtrace.org/blogs/brendan/2011/03/08/busy-week-zfs-throttling-dtrace-node-js-and-cloud-analytics/. |
Joyent ZFS Performance Analysis and Tools. Retrieved Mar. 12, 2014 from http://www.slideshare.net/ brendangregg/zfsperftools2012. |
Block 10 Controller. Retrieved Mar. 12, 2014 from https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt. |
Block Device Bio Throttling Support. Retrieved Mar. 12, 2014 from https://lwn.net/Articles/403889/. |
Gregg, Brendan. Systems Performance: Enterprise and the Cloud, Prentice Hall, 2014, pp. 557-558. |
International Search Report and Written Opinion of the International Searching Authority mailed Sep. 1, 2011 in Patent Cooperation Treaty Application No. PCT/US2011/021157 filed Jan. 13, 2011. |
International Search Report and Written Opinion of the International Searching Authority mailed May 19, 2011 in Patent Cooperation Treaty Application No. PCT/US2011/028234 filed Mar. 11, 2011. |
International Search Report and Written Opinion of the International Searching Authority mailed May 5, 2011 in Patent Cooperation Treaty Application No. PCT/US2011/028230, filed Mar. 11, 2011. |
Number | Date | Country | |
---|---|---|---|
20140281304 A1 | Sep 2014 | US |