The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for driving cold-cathode fluorescent lamps (CCFLs). Merely by way of example, the invention has been applied to intelligent control of one or more CCFLs. But it would be recognized that the invention has a much broader range of applicability.
Cold-cathode fluorescent lamps (CCFLs) are widely used for backlighting of thin-film-transistor (TFT) liquid-crystal displays (LCDs), such as television displays, computer displays, portable DVD displays, global positioning system (GPS) displays, handheld video-game console displays, and industrial instrument displays. The CCFLs often each include a sealed glass tube that contains one or more inert gases, such as Neon (Ne) and Argon (Ar) gases, which are also mixed with certain amount of mercury (Hg) vapor. Additionally, the sealed glass tube usually is internally covered by one or more fluorescent materials. If a high-magnitude and high-frequency AC voltage is applied to a cold-cathode fluorescent lamp (CCFL), the mercury vapor can be excited by the electric field, thus causing the CCFL to emit light.
As shown in
If, during the first predetermined period of time (e.g., T1), the current-sensing signal 122 (e.g., Vcs) becomes larger than the first threshold (e.g., Vth1), the control system 100 switches from the ignition operation to the normal operation. If, during the first predetermined period of time (e.g., T1), the current-sensing signal 122 (e.g., Vcs) remains smaller than the first threshold (e.g., Vth1), the control system 100 shuts down the output of the AC voltage 116.
For example, the current that flows through the one or more CCFLs 132 after successful ignition is determined as follows:
where ICCFL represents the current that flows through the one or more CCFLs 132 after successful ignition. Additionally, Vin represents the magnitude of the DC voltage 114, and f represents the frequency of the AC voltage 116. Moreover, C represents the parasitic capacitance of the one or more CCFLs 132. Also, N, D, R, and L are constant parameters that are determined by the control system 100.
As discussed above, the AC voltage 116 can change in magnitude and/or in frequency if the control system 100 switches from the ignition operation to the normal operation. For example, the ignition of the one or more CCFLs 132 often needs the AC voltage 116 to be about 1000 volts in magnitude, but the normal operation of the one or more CCFLs 132 usually needs a much smaller magnitude for the AC voltage 116. In another example, each of the one or more CCFLs 132 has a high resistance level of about 10 MΩ before ignition but a much lower resistance level of about 200 KΩ at normal operation after successful ignition.
Also, as discussed above, the power train component 110 uses the voltage boost transformer and the resonant LC network to generate the AC voltage 116. For the resonant LC network, the voltage gain as a function of the voltage frequency often changes if the one or more CCFLs are successfully ignited.
As shown in
Returning to
Additionally, after the control system 100 enters into the normal operation, the controller chip 130 may compare the current-sensing signal 122 (e.g., Vcs) with an open-loop threshold (e.g., Vth
But the control system 100 may not function properly under certain circumstances. Hence, it is highly desirable to improve the techniques of controlling CCFLs.
The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for driving one or more CCFLs. Merely by way of example, the invention has been applied to intelligent control of one or more CCFLs. But it would be recognized that the invention has a much broader range of applicability.
According to one embodiment, a method for driving one or more cold-cathode fluorescent lamps includes generating at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receiving a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determining whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a first period of time, changing the signal frequency from the first predetermined frequency to a second predetermined frequency, the second predetermined frequency being different from the first predetermined frequency. Further, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be smaller than the first threshold in magnitude throughout the first period of time, changing the signal frequency from the first predetermined frequency to a third predetermined frequency, the third predetermined frequency being different from the first predetermined frequency, generating at least the drive signal associated with the signal frequency, the signal frequency being equal to the third predetermined frequency, receiving the current-sensing signal, the current-sensing signal being associated with the lamp current in response to at least the third predetermined frequency, and determining whether the current-sensing signal is larger than the first threshold in magnitude, the current-sensing signal being related to the third predetermined frequency. Moreover, the method includes, if the current-sensing signal related to the third predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a second period of time, changing the signal frequency from the third predetermined frequency to the second predetermined frequency if the second predetermined frequency is different from the third predetermined frequency.
According to another embodiment, a method for driving one or more cold-cathode fluorescent lamps includes generating at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receiving a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determining whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude, generating at least the drive signal related to a second predetermined frequency, the second predetermined frequency being the same as or different from the first predetermined frequency, for a first period of time, maintaining or changing at least the drive signal, not in response to whether the current-sensing signal related to the second predetermined frequency is smaller than a second threshold in magnitude, and after the first period of time, determining whether the current-sensing signal related to the second predetermined frequency is smaller than the second threshold in magnitude. The method further includes, if the current-sensing signal related to the second predetermined frequency is determined to be smaller than the second threshold in magnitude throughout a second period of time, changing the drive signal in order to turn off the one or more cold-cathode fluorescent lamps, wherein the second period of time begins no earlier than an end of the first period of time.
According to yet another embodiment, a system for driving one or more cold-cathode fluorescent lamps includes a system controller. The system controller is configured to generate at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receive a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determine whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. In addition, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a first period of time, change the signal frequency from the first predetermined frequency to a second predetermined frequency, the second predetermined frequency being different from the first predetermined frequency. Further, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be smaller than the first threshold in magnitude throughout the first period of time, change the signal frequency from the first predetermined frequency to a third predetermined frequency, the third predetermined frequency being different from the first predetermined frequency, generate at least the drive signal associated with the signal frequency, the signal frequency being equal to the third predetermined frequency, receive the current-sensing signal, the current-sensing signal being associated with the lamp current in response to at least the third predetermined frequency, and determine whether the current-sensing signal is larger than the first threshold in magnitude, the current-sensing signal being related to the third predetermined frequency. Moreover, the system controller is configured to, if the current-sensing signal related to the third predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a second period of time, change the signal frequency from the third predetermined frequency to the second predetermined frequency if the second predetermined frequency is different from the third predetermined frequency.
According to yet another embodiment, a system for driving one or more cold-cathode fluorescent lamps includes a system controller. The system controller is configured to generate at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receive a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determine whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude, generate at least the drive signal related to a second predetermined frequency, the second predetermined frequency being the same as or different from the first predetermined frequency, for a first period of time, maintain or change at least the drive signal, not in response to whether the current-sensing signal related to the second predetermined frequency is smaller than a second threshold in magnitude, and after the first period of time, determine whether the current-sensing signal related to the second predetermined frequency is smaller than the second threshold in magnitude. Moreover, the system controller is configured to, if the current-sensing signal related to the second predetermined frequency is determined to be smaller than the second threshold in magnitude throughout a second period of time, change the drive signal in order to turn off the one or more cold-cathode fluorescent lamps, wherein the second period of time begins no earlier than an end of the first period of time.
Many benefits are achieved by way of the present invention over conventional techniques. Certain embodiments of the present invention provide an intelligent control of cold-cathode fluorescent lamps (CCFLs). Some embodiments of the present invention provide reliable transitions of CCFLs from ignition operation to normal operation. Certain embodiments of the present invention change an AC frequency from a first predetermined frequency after a first predetermined period of time to a second predetermined frequency for a second predetermined period of time during the ignition operation. Some embodiments of the present invention change an AC frequency from a first predetermined frequency after a first predetermined period of time to a third predetermined frequency and/or a second predetermined frequency for a second predetermined period of time during the ignition operation. Some embodiments of the present invention would blank or disable an open-loop protection of a control system for a third predetermined period of time after the control system switches from the ignition operation to the normal operation.
Depending upon embodiment, one or more benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
The present invention is directed to integrated circuits. More particularly, the invention provides systems and methods for driving one or more CCFLs. Merely by way of example, the invention has been applied to intelligent control of one or more CCFLs. But it would be recognized that the invention has a much broader range of applicability.
There are certain disadvantages for the control system 100. For different types of LCD display panels, the parasitic characteristics of the one or more CCFLs can vary significantly. For example, referring to
Additionally, after the successful ignition, there may be some transient changes in the CCFL current that can trigger the open loop protection and cause the control system 100 to shut down the output of the AC voltage 116, even though the CCFL current would have operated normally after the transient changes.
In one embodiment, during the time period TA, the current-sensing signal 122 is no larger than the first threshold (e.g., Vth1) in magnitude (e.g., as shown by the waveform 302). For example, the successful ignition of the one or more CCFLs 132 is not detected. In another example, the control system 100 does not switch from the ignition operation to the normal operation.
In another embodiment, at the beginning of the time period TB (e.g., at t1), the current-sensing signal 122 (e.g., Vcs) becomes larger than the first threshold (e.g., Vth1) in magnitude (e.g., as shown by the waveform 302). For example, if the time t1 is within the first predetermined period of time (e.g., T1) during which the control system 100 keeps checking the current that flows through the one or more CCFLs 132, the control system 100 switches from the ignition operation to the normal operation. In another example, during the time period TB, the current-sensing signal 122 increases to a peak value 304 in magnitude, and then decreases in magnitude (e.g., as shown by the waveform 302).
In yet another embodiment, at the beginning of the time period TC (e.g., at t2), the current-sensing signal 122 (e.g., Vcs) drops below the open-loop threshold (e.g., Vth
In yet another embodiment, at the beginning of the time period TD, the current-sensing signal 122 (e.g., Vcs) becomes larger than the open-loop threshold (e.g., Vth
For example, the open loop protection may not be needed even if the time period TC is equal to or longer than the predetermined open-loop period of time (e.g., Tolp) in length, because the current-sensing signal 122 (e.g., Vcs) would have risen above the first threshold (e.g., Vth1) at t4.
The controller chip 400 includes an ignition detection component 410, two voltage comparators 420 and 426, a counter 430, a reference current and clock signal generator 440, an open-loop detection component 450, an protection component 460, an error amplifier 470, a gate driver 480, and a dimming-control component 490. Additionally, the controller chip 400 includes six terminals 402, 404, 406, 408, 416 and 418.
For example, the reference current and clock signal generator 440 includes a reference current generation module and the clock signal generation module, where the current generation module provides a reference current to the clock signal generation module and the clock signal generation module in response outputs a clock signal that is used to determine the switching frequency of a gate drive signal.
As shown in
Referring to
At the process 510, the control system 401 is powered on according to one embodiment. At the process 520, the control system 401 generates the AC voltage 446 with a first predetermined frequency (e.g., f1) and a predetermined magnitude, and outputs the generated AC voltage 446 to ignite the one or more CCFLs 132 according to another embodiment. For example, the process 520 is performed by at least receiving the voltage-sensing signal 424 (e.g., Vvs) by the voltage comparator 420. In another example, the controller chip 400 in response generates the gate drive signal 436 and/or the gate drive signal 438 and regulates the AC voltage 446. In yet another example, after the AC voltage 446 reaches the first predetermined frequency (e.g., f1) and the predetermined magnitude, the voltage comparator 420 outputs a timer signal 414. In yet another example, the counter 430 starts the first predetermined period of time (e.g., T1).
At the process 530, it is determined whether the one or more CCFLs 132 have been ignited according to yet another embodiment. If the one or more CCFLs 132 are determined to have been ignited, the process 540 is performed, and if the one or more CCFLs 132 are not determined to have been ignited, the process 550 is performed. For example, the current-sensing signal 422 (e.g., Vcs) is received by the ignition detection component 410 and compared with a first threshold (e.g., Vth1). In another example, if the current-sensing signal 422 (e.g., Vcs) becomes larger than the first threshold (e.g., Vth1), the ignition detection system 410 determines the one or more CCFLs 132 have been ignited and outputs a signal 412 to the counter 430.
At the process 540, the control system 401, in response to the signal 412, switches from the ignition operation to the normal operation according to yet another embodiment. For example, the AC voltage 446 is changed from the first predetermined frequency (e.g., f1) to a predetermined normal frequency fnorm.
At the process 550, it is determined whether the voltage-sensing signal 424 is larger than a second threshold (e.g., Vth2) and/or whether an output signal 425 (e.g., Vcmp) generated by the error amplifier 470 is larger than a third threshold (e.g., Vth3) according to some embodiments. If the voltage-sensing signal 424 is not determined to be larger than the second threshold (e.g., Vth2) and the output signal 425 (e.g., Vcmp) is not determined to be larger than the third threshold (e.g., Vth3), the process 520 is performed. If the voltage-sensing signal 424 is determined to be larger than the second threshold (e.g., Vth2) and/or the output signal 425 (e.g., Vcmp) is determined to be larger than the third threshold (e.g., Vth3), the process 560 is performed.
For example, the voltage comparator 420 receives the voltage-sensing signal 424 (e.g., Vvs) and compares the voltage-sensing signal 424 (e.g., Vvs) with the second threshold (e.g., Vth2). In another example, if the voltage-sensing signal 424 (e.g., Vvs) is determined to be larger than the second threshold (e.g., Vth2), the voltage comparator 420 outputs the timer signal 414. In yet another example, the voltage comparator 426 receives the output signal 425 (e.g., Vcmp) from the error amplifier 470, and compares the output signal 425 with the third threshold (e.g., Vth3). In yet another example, if the output signal 425 is determined to be larger than the third threshold (e.g., Vth3), the voltage comparator 426 outputs a signal 415.
Returning to
At the processes 570 and 572, the AC voltage 446 applied to the one or more CCFLs 132 is changed from the first predetermined frequency (e.g., f1) to a second predetermined frequency (e.g., f2), and the AC voltage 446 with the second predetermined frequency (e.g., f2) is applied to the one or more CCFLs 132 for the second predetermined period of time (e.g., T2) according to one embodiment. For example, the reference current and clock signal generator 440 receives a signal 442 and, in response, generates a clock signal 444 with the second predetermined frequency (e.g., f2). In another example, the second predetermined frequency (e.g., f2) is equal to the predetermined normal frequency fnorm. In yet another example, the second predetermined frequency (e.g., f2) is different from the predetermined normal frequency fnorm. In yet another example, the first predetermined frequency (e.g., f1) is equal to or close to a resonant frequency of the resonant LC network used by the power train component 110 in the control system 401 before successful ignition of the one or more CCFLs 132. In yet another example, the second predetermined frequency (e.g., f2) is equal to or close to a resonant frequency of the resonant LC network used by the power train component 110 in the control system 401 after successful ignition of the one or more CCFLs 132.
According to another embodiment, during the second predetermined period of time (e.g., T2), as part of the processes 570 and 572, it is also determined whether the one or more CCFLs 132 have been ignited. For example, if the one or more CCFLs 132 are determined to have been ignited, the processes 570 and 572 are terminated and the process 540 is performed. In another example, if the one or more CCFLs 132 are still not determined to have been ignited after the second predetermined period of time (e.g., T2), the process 592 is performed. As shown in
Returning to
After the processes 580 and 582 are completed, the process 590 is performed. At the process 590, it is determined whether the open-loop protection should be triggered, and if the open-loop protection should be triggered, the control system 401 enters into the protection mode according to one embodiment. According to another embodiment, the open-loop detection component 450 compares the current-sensing signal 422 (e.g., Vcs) with an open-loop threshold (e.g., Vth
According to certain embodiments, the counter 430 is used in one or more processes as shown in
Referring to
where ICCFL represents the current that flows through the one or more CCFLs 132 after successful ignition. Additionally, Vin represents the magnitude of the DC voltage 468, and f represents the frequency of the AC voltage 446. Moreover, C represents the parasitic capacitance of the one or more CCFLs 132. Also, N, D, R, and L are constant parameters that are determined by the control system 401.
According to one embodiment, if the parasitic capacitance is small, the current that flows through the one or more CCFLs 132 has a magnitude 612 at the first predetermined frequency f1, and has a magnitude 614 at the second predetermined frequency f2 (e.g., as shown by the waveform 610). For example, after the successful ignition, the current that flows through the one or more CCFLs 132 is larger than the threshold current Ith1 in magnitude at both the first predetermined frequency f1 and the second predetermined frequency f2. Hence, the successful ignition of the one or more CCFLs 132 can be detected at both the first predetermined frequency f1 and the second predetermined frequency f2 according to certain embodiments.
According to another embodiment, if the parasitic capacitance is large, the current that flows through the one or more CCFLs 132 has a magnitude 622 at the first predetermined frequency f1, and has a magnitude 624 at the second predetermined frequency f2 (e.g., as shown by the waveform 620). For example, the current that flows through the one or more CCFLs 132, even after the successful ignition, is smaller than the threshold current Ith1 in magnitude at the first predetermined frequency f1. Hence the successful ignition of the one or more CCFLs 132 cannot be detected at the first predetermined frequency f1 according to certain embodiments.
But, for example, if the frequency of the AC voltage 446 is changed from the first predetermined frequency f2 after the successful ignition to the second predetermined frequency f2 during the ignition operation, the current that flows through the one or more CCFLs 132 becomes larger than the threshold current Ith1 at the second predetermined frequency f2. Hence, the successful ignition of the one or more CCFLs 132 can be detected at the second predetermined frequency f2 according to some embodiments.
Waveforms 714, 742, 712, 732 and 744 represent the signals 414, 442, 412, 432 and 444 as functions of time respectively, and a waveform 750 represents the current that flows through the one or more CCFLs 132 as a function of time. Five time periods, TI, TII, TIII, TIV, and TV are shown in
In the time period T1, the process 520 is performed according to one embodiment. For example, during the time period TI, the current that flows through the one or more CCFLs 132 keeps lower than the threshold current (e.g., IthI) in magnitude (e.g., as shown by the waveform 750). In another example, at the end of the time period TI (e.g., at t6), the signal 414 changes from a logic low level to a logic high level (e.g., as shown by the waveform 714), if the AC voltage 446 reaches the first predetermined frequency (e.g., f1) and the predetermined magnitude. In yet another example, the first predetermined period of time (e.g., TI) starts.
In the time period TII, the processes 530, 550, 560 and 562 are performed according to another embodiment. For example, during the time period TII, the current that flows through the one or more CCFLs 132 remains lower than the threshold current (e.g., Ith1) in magnitude (e.g., as shown by the waveform 750). In another example, during the time period TII, the one or more CCFLs 132 are still not determined to have been ignited. In yet another example, if the time period TII is equal to or longer than the first predetermined period of time (e.g., TI), the signal 442 changes from the logic low level to the logic high level at the end of the time period TII (e.g., at t7) as shown by the waveform 742. In yet another example, the logic low level of the signal 442 corresponds to the first predetermined frequency (e.g., f1), and the logic high level of the signal 442 corresponds to the second predetermined frequency (e.g., f2). In yet another example, the second predetermined frequency (e.g., f2) is equal to the predetermined normal frequency fnorm. In yet another example, the second predetermined frequency (e.g., f2) is lower than the first predetermined frequency (e.g., f1). In yet another example, the clock signal 444 changes from the first predetermined frequency to the second predetermined frequency (e.g., as shown by the waveform 744).
In the time period TIII, the processes 570, 572 and 540 are performed according to yet another embodiment. For example, during the time period TIII, the current that flows through the one or more CCFLs 132 keeps no larger than the threshold current (e.g., Ith1) in magnitude (e.g., as shown by the waveform 750). In another example, at the end of the time period TIII (e.g., at t8), the current that flows through the one or more CCFLs 132 becomes equal to or larger than the threshold current (e.g., Ith1) in magnitude (e.g., as shown by the waveform 750). The one or more CCFLs 132 are determined to have been ignited, and thus the control system 401 switches from the ignition operation to the normal operation according to certain embodiments. For example, at the end of the time period TIII (e.g., at t8), the signal 412 changes from the logic low level to the logic high level (e.g., as shown by the waveform 712). In another example, the logic low level of the signal 412 corresponds to the ignition operation, and the logic high level of the signal 412 corresponds to the normal operation. In yet another example, at the end of the time period TIII (e.g., at t8), the signal 432 changes from the logic low level to the logic high level (e.g., as shown by the waveform 732). In another example, the logic high level of the signal 432 corresponds to blanking or disablement of the open-loop protection of the control system 401.
In the time period TIV, the processes 580 and 582 are performed according to yet another embodiment. For example, the signal 432 remains at the logic high level during the time period TIV (e.g., as shown by the waveform 732). In another example, the open-loop protection is disabled or blanked. In yet another example, the time period TIV is equal to or longer than the third predetermined period of time (e.g., T3).
In the time period TV, the process 590 is performed according to yet another embodiment. For example, at the beginning of the time period TV (e.g., at t9), if it is determined that the open-loop protection should be triggered, the signal 432 changes from the logic high level to the logic low level. In another example, the control system 401 enters into the protection mode.
As shown in
According to another embodiment, a method for driving one or more cold-cathode fluorescent lamps includes generating at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receiving a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determining whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a first period of time, changing the signal frequency from the first predetermined frequency to a second predetermined frequency, the second predetermined frequency being different from the first predetermined frequency. Further, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be smaller than the first threshold in magnitude throughout the first period of time, changing the signal frequency from the first predetermined frequency to a third predetermined frequency, the third predetermined frequency being different from the first predetermined frequency, generating at least the drive signal associated with the signal frequency, the signal frequency being equal to the third predetermined frequency, receiving the current-sensing signal, the current-sensing signal being associated with the lamp current in response to at least the third predetermined frequency, and determining whether the current-sensing signal is larger than the first threshold in magnitude, the current-sensing signal being related to the third predetermined frequency. Moreover, the method includes, if the current-sensing signal related to the third predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a second period of time, changing the signal frequency from the third predetermined frequency to the second predetermined frequency if the second predetermined frequency is different from the third predetermined frequency. For example, the method is implemented according to at least
According to another embodiment, a method for driving one or more cold-cathode fluorescent lamps includes generating at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receiving a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determining whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the method includes, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude, generating at least the drive signal related to a second predetermined frequency, the second predetermined frequency being the same as or different from the first predetermined frequency, for a first period of time, maintaining or changing at least the drive signal, not in response to whether the current-sensing signal related to the second predetermined frequency is smaller than a second threshold in magnitude, and after the first period of time, determining whether the current-sensing signal related to the second predetermined frequency is smaller than the second threshold in magnitude. The method further includes, if the current-sensing signal related to the second predetermined frequency is determined to be smaller than the second threshold in magnitude throughout a second period of time, changing the drive signal in order to turn off the one or more cold-cathode fluorescent lamps, wherein the second period of time begins no earlier than an end of the first period of time. For example, the method is implemented according to at least
According to yet another embodiment, a system for driving one or more cold-cathode fluorescent lamps includes a system controller. The system controller is configured to generate at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receive a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determine whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. In addition, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a first period of time, change the signal frequency from the first predetermined frequency to a second predetermined frequency, the second predetermined frequency being different from the first predetermined frequency. Further, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be smaller than the first threshold in magnitude throughout the first period of time, change the signal frequency from the first predetermined frequency to a third predetermined frequency, the third predetermined frequency being different from the first predetermined frequency, generate at least the drive signal associated with the signal frequency, the signal frequency being equal to the third predetermined frequency, receive the current-sensing signal, the current-sensing signal being associated with the lamp current in response to at least the third predetermined frequency, and determine whether the current-sensing signal is larger than the first threshold in magnitude, the current-sensing signal being related to the third predetermined frequency. Moreover, the system controller is configured to, if the current-sensing signal related to the third predetermined frequency is determined to be larger than the first threshold in magnitude at anytime during a second period of time, change the signal frequency from the third predetermined frequency to the second predetermined frequency if the second predetermined frequency is different from the third predetermined frequency. For example, the system is implemented according to at least
According to yet another embodiment, a system for driving one or more cold-cathode fluorescent lamps includes a system controller. The system controller is configured to generate at least one drive signal associated with a signal frequency, the signal frequency being equal to a first predetermined frequency, receive a current-sensing signal, the current-sensing signal being associated with a lamp current for the one or more cold-cathode fluorescent lamps in response to at least the first predetermined frequency, and determine whether the current-sensing signal is larger than a first threshold in magnitude, the current-sensing signal being related to the first predetermined frequency. Additionally, the system controller is configured to, if the current-sensing signal related to the first predetermined frequency is determined to be larger than the first threshold in magnitude, generate at least the drive signal related to a second predetermined frequency, the second predetermined frequency being the same as or different from the first predetermined frequency, for a first period of time, maintain or change at least the drive signal, not in response to whether the current-sensing signal related to the second predetermined frequency is smaller than a second threshold in magnitude, and after the first period of time, determine whether the current-sensing signal related to the second predetermined frequency is smaller than the second threshold in magnitude. Moreover, the system controller is configured to, if the current-sensing signal related to the second predetermined frequency is determined to be smaller than the second threshold in magnitude throughout a second period of time, change the drive signal in order to turn off the one or more cold-cathode fluorescent lamps, wherein the second period of time begins no earlier than an end of the first period of time. For example, the method is implemented according to at least
For example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented using one or more software components, one or more hardware components, and/or one or more combinations of software and hardware components. In another example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented in one or more circuits, such as one or more analog circuits and/or one or more digital circuits. In yet another example, various embodiments and/or examples of the present invention can be combined.
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
This application claims priority to U.S. Provisional Application No. 61/430,499, filed Jan. 6, 2011, commonly assigned and incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
7414371 | Choi et al. | Aug 2008 | B1 |
7515445 | Lin | Apr 2009 | B2 |
7515446 | Lin | Apr 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20120326629 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61430499 | Jan 2011 | US |