1. Field of the Invention
The disclosure relates generally to interface browsing, and, more particularly to methods and systems for interface management that display interfaces of an electronic device with 3D (three-dimensional) visual effects.
2. Description of the Related Art
Recently, portable devices, such as handheld devices, have become more and more technically advanced and multifunctional. For example, a handheld device may have telecommunications capabilities, e-mail message capabilities, an advanced address book management system, a media playback system, and various other functions. Due to increased convenience and functions of the devices, these devices have become necessities of life.
Generally, a handheld device can install a being large amount of functions which are implemented as widgets, applications, virtual or physical buttons, or any other kind of executable program code. Due to the size limitation of screens or other classification requirements, several interfaces, such as menus or pages can be provided in the handheld device. Users can perform a switch operation to switch between the interfaces by using a virtual or physical key, or a touch-sensitive screen.
Conventionally, the arrangement and display of the interfaces are uninteresting. For example, the interfaces are respectively rendered as 2D images, and one of the images representing the interfaces is displayed on the screen. When the switch operation is performed, another image is displayed on the screen to replace the original image. To enhance the value of devices and increase user experience, it is an objective of the present application to provide functional and applicable interface management systems for electronic devices.
Methods and systems for interface management are provided.
In an embodiment of a method for interface management, a plurality of interfaces arranged in sequence is provided. The interfaces are placed in a circle across a 3D space to form a 3D object, and the interfaces comprise pages or menus. Then, a signal is received, and in response to the signal, the position of the 3D object viewed on a screen of the electronic device are adjusted, wherein the 3D object is located at a virtual distance behind and away from the screen, and the virtual distance are gradually varied.
An embodiment of a system for interface management includes a storage unit, a screen, and a processing unit. The storage unit includes a plurality of interfaces arranged in sequence, wherein the interfaces are placed in a circle across a 3D space to form a 3D object, and the interfaces comprise pages or menus. The processing unit receives a signal, and in response to the signal, adjusts the position of the 3D object viewed on the screen, wherein the 3D object is located at a virtual distance behind and away from the screen, and the virtual distance are gradually varied.
In some embodiments, the 3D object has a predefined axle, and the 3D object is further spun with respect to the predefined axle.
In some embodiments, the 3D object is spun with respect to the predefined axle for a specific period. After the specific period, the spinning of the virtual 3D polyhedron is stopped. In some embodiments, a first interface is displayed on the screen before the spinning of the 3D object. A second interface is located among the plurality of interfaces based on the signal, and after the spinning of the 3D object, the second interface is displayed via the screen.
In some embodiments, a spinning velocity of the spinning of the 3D object is varied, and the spinning velocity of the spinning of the 3D object is from a first velocity, determined, based on the signal to 0.
In some embodiments, the virtual distance is a first value. During the spinning of the 3D object, the virtual distance varies gradually from the first value to a second value, determined, based on the signal, before finally returning back to the virtual distance of the first value.
In some embodiments, the signal comprises a movement on the screen, and the 3D object is spun in more circles when the velocity of the movement is high, and the 3D object is spun in less circles when the velocity of the movement is slow.
In some embodiments, a browsing mode of the electronic device is detected, and the virtual distance is adjusted. In some embodiments, when the browsing mode is a portrait mode, the virtual distance is set to a first value, and when the browsing mode is a landscape mode, the virtual distance is set to a second value, in which the second value is greater than the first value.
In some embodiments, the signal includes a gesture of an object on the screen, and the gesture comprises a distance, a velocity, or a contact time corresponding to the object on the screen.
Methods for interface management may take the form of a program code embodied in a tangible media. When the program code is loaded into and executed by a machine, the machine becomes an apparatus for practicing the disclosed method.
The invention will become more fully understood by referring to the following detailed description with reference to the accompanying drawings, wherein:
Methods and systems for interface management are provided.
The system for interface management 100 comprises a screen 110, a storage unit 120, and a processing unit 130. The screen 110 can display related data, such as texts, figures, interfaces, and/or related information. It is understood that, in some embodiments, the screen 110 may be integrated with a touch-sensitive device (not shown). The touch-sensitive device has a touch-sensitive surface comprising sensors in at least one dimension to detect contact and movement of at least one object (input tool), such as a pen/stylus or finger near or on the touch-sensitive surface. Accordingly, users would be able to input related commands or signals via the screen. The storage unit 120 comprises a plurality of interfaces 121. It is understood that, in some embodiments, the respective interface may be a page defined in Android system. In some embodiments, the respective interface may include a menu of the electronic device. It is noted that, in some embodiments, the interfaces can form an extended desktop, and the respective interface is a part of the extended desktop. It is understood that, in some embodiments, the respective interface can be implemented with multiple display layers, wherein a plurality of objects of the respective interface are deployed to be displayed in different display layers, such that a 3D visual effect can be viewed via the screen. In some embodiments, the respective interface can comprise at least one widget, at least one application icon, and/or at least one button.
It is understood that, since the plurality of interfaces 121 are arranged in sequence, in some embodiments, an indicator IN showing a relative position of an interface currently displayed on the screen 110 among the plurality of interfaces 121 can be also displayed in the interface, as shown in
The processing unit 130 can perform the method for interface management of the present invention, which will be discussed further in the following paragraphs. It is noted that, the processing unit 130 can display the 3D object, such as the interface circle or the virtual 3D polyhedron on the screen 110. Note that, a concept of a virtual distance, used to determine where the 3D object should be located behind and away from the screen will be introduced. That is, the 3D object is located at the virtual distance behind the screen 110. For example, as shown in
In step S710, a virtual distance between a predefined axle of a 3D object, such as an interface circle or a virtual 3D polyhedron and a screen of the electronic device is determined. It is understood that, in some embodiments, the 3D object may comprise a plurality of interfaces which are placed, in sequence, in a circle across a 3D space. It is understood that, in some embodiments, the respective interface may be a page defined in Android system. In some embodiments, the respective interface may include a menu of the electronic device. It is noted that, in some embodiments, the interfaces can form an extended desktop, and the respective interface is a part of the extended desktop. It is understood that, in some embodiments, the respective interface can be implemented with multiple display layers, wherein a plurality of objects of the respective interface are deployed to be displayed in different display layers, such that a 3D visual effect can be viewed via the screen. In some embodiments, the respective interface can comprise at least one widget, at least one application icon, and/or at least one button. It is understood that, the virtual distance can be predefined or determined according to various requirements or applications. In some embodiments, the virtual distance can be determined according to the browsing mode of the electronic device.
Referring to
It is understood that, in some embodiments, during the spinning of the 3D object, the virtual distance varies gradually from a first predefined value, such as the first value in the portrait mode to a specific value, determined, based on the velocity, for example, of the signal, before finally returning back to the virtual distance of the first predefined value. That is, during the spinning of the 3D object, users can view that the 3D object is first far away from the screen, and then closer to the screen.
It is understood that, in some embodiments, a 3D graphic engine can be employed to dynamically generate at least one frame/picture corresponding to the transition for the spinning of the 3D object, such as the interface circle or the virtual 3D polyhedron by inputting related parameters, such as the various virtual distances of the interface circle or the virtual 3D polyhedron, the number of frames/pictures expected to be generated, the spinning velocity, and/or the located specific interface. In some embodiments, the frames/pictures corresponding to the transition for the spinning of the interface circle or the virtual 3D polyhedron can be generated in advance for various situations, and stored in a database. Once related parameters, such as the various virtual distances of the interface circle or the virtual 3D polyhedron, the number of frames/pictures expected to be generated, the spinning velocity, and/or the located specific interface are determined, related frames/pictures can be accordingly retrieved from the database for playback.
In step S1010, a 3D object, such as an interface circle or a virtual 3D polyhedron is displayed on the screen according to a virtual distance. Similarly, in some embodiments, the 3D object may comprise a plurality of interfaces which are placed, in sequence, in a circle across a 3D space. It is understood that, in some embodiments, the respective interface may be a page defined in Android system. In some embodiments, the respective interface may include a menu of the electronic device. It is noted that, in some embodiments, the interfaces can form an extended desktop, and the respective interface is a part of the extended desktop. It is understood that, in some embodiments, the respective interface can be implemented with multiple display layers, wherein a plurality of objects of the respective interface are deployed to be displayed in different display layers, such that a 3D visual effect can be viewed via the screen. In some embodiments, the respective interface can comprise at least one widget, at least one application icon, and/or at least one button. Similarly, in some embodiments, a default interface will be displayed on the screen when the electronic device is activated, or a specific interface will be displayed on the screen when the electronic device is resumed from a specific state, in which the specific interface is the final interface of the specific state. It is understood that, in some embodiments, the virtual distance can be used to determine where the 3D object should be located behind away from the screen. That is, the 3D object is located behind the screen, and a predefined axle of the 3D object is away from the screen with the virtual distance. The virtual distance can be predefined or determined according to various requirements or applications. In some embodiments, the virtual distance can be determined according to the browsing mode of the electronic device. Similarly, in some embodiments, the browsing mode of the electronic device will be continuously detected, and the virtual distance will be dynamically adjusted when the browsing mode of the electronic device is changed. In step S1020, it is determined whether a signal has been received. Similarly, in some embodiments, the signal may be a gesture of an object on the screen. The gesture is used to trigger the electronic device to perform an interface switch operation. The gesture may comprise a distance, a contact time corresponding to the object on the screen, and a velocity determined, based on the distance and the contact time. If no signal is received (No in step S1020), the procedure remains at step S1020. If a signal is received (Yes in step S1020), in step S1030, the 3D object, such as the interface circle or the virtual 3D polyhedron is spun with respect to the predefined axle for a specific period, wherein the virtual distance varies gradually according to the signal during the spinning of the 3D object.
It is understood that, in some embodiments, the specific period can be fixed. It is understood that, in some embodiments, the specific period can be determined, based on the signal. For example, when the velocity corresponding to the input signal is fast, the specific period is long, and when the velocity corresponding to the input signal is slow, the specific period is short. In some embodiments, during the spinning of the 3D object, the virtual distance varies gradually from a first predefined value, such as the first value in the portrait mode to a specific value, determined, based on the velocity, for example, of the signal, before finally returning back to the virtual distance of the first predefined value. That is, during the spinning of the 3D object, users can view that the 3D object is first far away from the screen, and then closer to the screen. Further, in some embodiments, a spinning velocity of the spinning of the 3D object can vary, and the spinning velocity of the spinning of the 3D object can be from a first velocity, determined, based on the signal to 0. That is, during the spinning of the 3D object, users can view that the spinning velocity of the 3D object is gradually decreasing. It is understood that, in some embodiments, more circles will be spun when the velocity of the signal is high, and less circles will be spun when the velocity of the signal is slow. It is understood that, a specific interface can be located among the plurality of interfaces based on the signal. After the specific period is ended (the spinning of the 3D object), in step S1040, the specific interface is displayed on the screen. Similarly, in some embodiments, during the spinning of the 3D object, the 3D object can be stopped when a long contact on the screen is detected.
Similarly, in some embodiments, a 3D graphic engine can be employed to dynamically generate at least one frame/picture corresponding to the transition for the spinning of the 3D object, such as the interface circle or the virtual 3D polyhedron by inputting related parameters, such as the various virtual distances of the 3D object, the number of frames/pictures expected to be generated, the spinning velocity, the specific period, and/or the located specific interface. In some embodiments, the frames/pictures corresponding to the transition for the spinning of the 3D object can be generated in advance for various situations, and stored in a database. Once related parameters, such as the various virtual distances of the 3D object, the number of frames/pictures expected to be generated, the spinning velocity, the specific period, and/or the located specific interface are determined, related frames/pictures can be accordingly retrieved from the database for playback.
Therefore, the methods and systems for interface management can display interfaces of an electronic device with 3D visual effects, thus, enhancing the value of devices and increasing user experience.
Methods for interface management, or certain aspects or portions thereof, may take the form of a program code (i.e., executable instructions) embodied in tangible media, such as floppy diskettes, CD-ROMS, hard drives, or any other machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine thereby becomes an apparatus for practicing the methods. The methods may also be embodied in the form of a program code transmitted over some transmission medium, such as electrical wiring or cabling, through fiber optics, or via any other form of transmission, wherein, when the program code is received and loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the disclosed methods. When implemented on a general-purpose processor, the program code combines with the processor to provide a unique apparatus that operates analogously to application specific logic circuits.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalent.