The present disclosure generally relates to catheters, and more particularly ablation and visualization catheters.
Atrial fibrillation (AF) is the most common sustained arrhythmia in the world, which currently affects millions of people. In the United States, AF is projected to affect 10 million people by the year 2050. AF is associated with increased mortality, morbidity, and an impaired quality of life, and is an independent risk factor for stroke. The substantial lifetime risk of developing AF underscores the public heath burden of the disease, which in the U.S. alone amounts to an annual treatment cost exceeding $7 billion.
Most episodes in patients with AF are known to be triggered by focal electrical activity originating from within muscle sleeves that extend into the Pulmonary Veins (PV). Atrial fibrillation may also be triggered by focal activity within the superior vena cava or other atrial structures, i.e. other cardiac tissue within the heart's conduction system. These focal triggers can also cause atrial tachycardia that is driven by reentrant electrical activity (or rotors), which may then fragment into a multitude of electrical wavelets that are characteristic of atrial fibrillation. Furthermore, prolonged AF can cause functional alterations in cardiac cell membranes and these changes further perpetuate atrial fibrillation.
Radiofrequency ablation (RFA), laser ablation and cryo ablation are the most common technologies of catheter-based mapping and ablation systems used by physicians to treat atrial fibrillation. Physicians use a catheter to direct energy to either destroy focal triggers or to form electrical isolation lines isolating the triggers from the heart's remaining conduction system. The latter technique is commonly used in what is called pulmonary vein isolation (PVI). However, the success rate of the AF ablation procedure has remained relatively stagnant with estimates of recurrence to be as high as 30% to 50% one-year post procedure. The most common reason for recurrence after catheter ablation is one or more gaps in the PVI lines. The gaps are usually the result of ineffective or incomplete lesions that may temporarily block electrical signals during the procedure but heal over time and facilitate the recurrence of atrial fibrillation.
Therefore, there is a need for system and method for forming and verifying proper lesions to improve outcomes and reduce costs.
According to some aspects of the present disclosure, there is provided a catheter for visualizing ablated tissue comprising: a catheter body; a distal tip positioned at a distal end of the catheter body, the distal tip defining a illumination cavity, the distal tip having one or more openings for exchange of light energy between the illumination cavity and tissue; a light directing member disposed within the illumination cavity, the light directing member being configured to direct the light energy to and from the tissue through the one or more openings in the distal tip.
In some embodiments, the distal tip of the catheter may be configured to deliver ablation energy to the tissue, the ablation energy being selected from a group consisting of radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryoenergy, laser energy, ultrasound energy, acoustic energy, chemical energy, thermal energy and combinations thereof.
In some embodiments, the light directing member and the one or more openings are configured to enable illumination of tissue in a radial direction and an axial direction with respect to a longitudinal axis of the catheter. In some embodiments, the one or more openings are disposed along side walls of the distal tip and the light directing member is shaped to split light energy and specifically direct the light energy at an angle relative to the longitudinal axis of the catheter through the one or more openings. In some embodiments, the light directing member comprises one or more through-holes and the distal tip comprises one or more openings disposed on a front wall of the distal tip to enable passage of light in longitudinal direction through the light directing member and the one or more openings of the front wall. In some embodiments, the catheter may further comprise an ultrasound transducer.
According to some aspects of the present disclosure, there is provided a system for visualizing ablated tissue comprising a catheter comprising a catheter body; a distal tip positioned at a distal end of the catheter body, the distal tip defining a illumination cavity, the distal tip having one or more openings for exchange of light energy between the illumination cavity and tissue; a light directing member disposed within the illumination cavity, the light directing member being configured to direct the light energy to and from the tissue through the one or more openings in the distal tip; a light source; a light measuring instrument; and one or more optical fibers in communication with the light source and the light measuring instrument and extending through the catheter body into the illumination cavity of the distal tip, wherein the one or more optical fibers are configured to pass light energy from the light source to the light directing member for illuminating tissue outside the distal tip and the one or more optical fibers are configured to relay light energy reflected from the tissue to the light measuring instrument.
According to some aspects of the present disclosure, there is provided a method for visualizing ablated tissue comprising: advancing a catheter to a cardiac tissue in need of ablation, the catheter comprising a catheter body; a distal tip positioned at a distal end of the catheter body, the distal tip defining a illumination cavity, the distal tip having one or more openings for exchange of light between the illumination cavity and tissue; a light directing member disposed within the illumination cavity, the light directing member being configured to direct the light to and from the tissue through the one or more openings in the distal tip; causing the light directing member to direct light through the one or more openings in the distal tip of the catheter to excite nicotinamide adenine dinucleotide hydrogen (NADH) in an area of the cardiac tissue including ablated cardiac tissue and non-ablated cardiac tissue; collecting light reflected from the cardiac tissue through the one or more openings and directing the collected light to a light measuring instrument; imaging the area of the cardiac tissue to detect NADH fluorescence of the area of the cardiac tissue; and producing a display of the imaged, illuminated cardiac tissue, the display illustrating the ablated cardiac tissue as having less fluorescence than non-ablated cardiac tissue.
In some embodiments, the method may further include ablating tissue with the distal tip prior to imaging the tissue, and ablating additional non-ablated cardiac tissue identified by distinguishing between the ablated cardiac tissue and the non-ablated cardiac tissue based on the amount of fluorescence.
The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
The present disclosure generally relates to systems and methods for applying radiofrequency, laser or cryo ablation energy to the body to form therapeutic lesions. In some embodiments, the systems and methods of the present disclosure may be employed for imaging tissue using nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence (fNADH). By way of a non-limiting example, the present systems and methods may be used during the treatment of Atrial Fibrillation (AF).
In general, the system may include a catheter with an optical system for exchanging light between tissue and the catheter. In some embodiments, the instant systems allow for direct visualization of the tissue's NADH fluorescence, or lack thereof, induced by ultraviolet (UV) excitation. The fluorescence signature returned from the tissue can be used to determine the presence or absence of ablation lesions in illuminated tissue as well as information about a lesion as it is forming during ablation. This optical tissue interrogation can be performed on various tissue types, including, without limitation, various cardiac tissues, endocardial tissue, epicardial tissue, myocardium tissue, valves, vascular structures, and fibrous and anatomical structures. The systems and methods of the present disclosure may be used to analyze tissue composition including, but not limited to the presence of collagen and elastin. However, the presently disclosed methods and systems may also be applicable for analyzing lesions in other tissue types. The lesions to be analyzed may be created by application of ablation energy during the ablation procedure. In some embodiments, existing lesions, created by ablation or by other means, may also be analyzed using methods and systems disclosed herein.
In reference to
In some embodiments, the ablation therapy system 110 is designed to supply ablation energy to the catheter 140. The ablation therapy system 110 may include one or more energy sources that can generate radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryoenergy, laser energy, ultrasound energy, acoustic energy, chemical energy, thermal energy or any other type of energy that can be used to ablate tissue. In some embodiments, the system includes an RF generator, an irrigation pump 170, an irrigated-tip ablation catheter 140, and the visualization system 120.
In reference to
In some embodiments, the light source 122 may have an output wavelength within the target fluorophore (NADH, in some embodiments) absorption range in order to induce fluorescence in healthy myocardial cells. In some embodiments, the light source 122 is a solid-state laser that can generate UV light to excite NADH fluorescence. In some embodiments, the wavelength may be about 355 nm or 355 nm+/−30 nm. In some embodiments, the light source 122 can be a UV laser. Laser-generated UV light may provide much more power for illumination and may be more efficiently coupled into a fiber-based illumination system, as is used in some embodiments of the catheter. In some embodiments, the instant system can use a laser with adjustable power up to 150 mW.
The wavelength range on the light source 122 may be bounded by the anatomy of interest, a user specifically choosing a wavelength that causes maximum NADH fluorescence without exciting excessive fluorescence of collagen, which exhibits an absorption peak at only slightly shorter wavelengths. In some embodiments, the light source 122 has a wavelength from 300 nm to 400 nm. In some embodiments, the light source 122 has a wavelength from 330 nm to 370 nm. In some embodiments, the light source 122 has a wavelength from 330 nm to 355 nm. In some embodiments, a narrow-band 355 nm source may be used. The output power of the light source 122 may be high enough to produce a recoverable tissue fluorescence signature, yet not so high as to induce cellular damage. The light source 122 may be coupled to an optical fiber to deliver light to the catheter 140, as will be described below.
In some embodiments, the systems of the present disclosure may utilize a spectrometer as the light measuring instrument 124. In some embodiments, the light measuring instrument 124 may comprise a camera connected to the computer system 126 for analysis and viewing of tissue fluorescence. In some embodiments, the camera may have high quantum efficiency for wavelengths corresponding to NADH fluorescence. One such camera is an Andor iXon DV860. The spectrometer 124 may be coupled to an imaging bundle that can be extended into the catheter 140 for visualization of tissue. In some embodiments, the imaging bundle for spectroscopy and the optical fiber for illumination may be combined. An optical bandpass filter of between 435 nm and 485 nm, in some embodiments, of 460 nm, may be inserted between the imaging bundle and the camera to block light outside of the NADH fluorescence emission band. In some embodiments, other optical bandpass filters may be inserted between the imaging bundle and the camera to block light outside of the NADH fluorescence emission band selected according to the peak fluorescence of the tissue being imaged.
In some embodiments, the light measuring instrument 124 may be a CCD (charge-coupled device) camera. In some embodiments, the spectrometer 124 may be selected so it is capable of collecting as many photons as possible and that contributes minimal noise to the image. Usually for fluorescence imaging of live cells, CCD cameras should have a quantum efficiency at about 460 nm of at least between 50-70%, indicating that 30-50% of photons will be disregarded. In some embodiments, the camera has quantum efficiency at 460 nm of about 90%. The camera may have a sample rate of 80 KHz. In some embodiments, the spectrometer 124 may have a readout noise of 8 e− (electrons) or less. In some embodiments, the spectrometer 124 has a minimum readout noise of 3e−. Other light measuring instruments may be used in the systems and methods of the present disclosure.
The optical fiber 150 can deliver the gathered light to a long pass filter that blocks the reflected excitation wavelength of 355 nm, but passes the fluoresced light that is emitted from the tissue at wavelengths above the cutoff of the filter. The filtered light from the tissue can then be captured and analyzed by a high-sensitivity spectrometer 124. The computer system 126 acquires the information from the spectrometer 124 and displays it to the physician. The computer 126 can also provide several additional functions including control over the light source 122, control over the spectrometer 124, and execution of application specific software.
In some embodiments, the digital image that is produced by analyzing the light data may be used to do the 2D and 3D reconstruction of the lesion, showing size, shape and any other characteristics necessary for analysis. In some embodiments, the image bundle may be connected to the spectrometer 124, which may generate a digital image of the lesion being examined from NADH fluorescence (fNADH), which can be displayed on the display 180. In some embodiment, these images can be displayed to the user in real time. The images can be analyzed by using software to obtain real-time details (e.g. intensity or radiated energy in a specific site of the image) to help the user to determine whether further intervention is necessary or desirable. In some embodiments, the NADH fluorescence may be conveyed directly to the computer system 126.
In some embodiments, the optical data acquired by the light measuring instrument can be analyzed to provide information about lesions during and after ablation including, but not limited to lesion depth and lesion size. In some embodiments, data from the light measuring instrument can be analyzed to determine if the catheter 140 is in contact with the myocardial surface and how much pressure is applied to the myocardial surface by the tip of the catheter. In some embodiments, data from the spectrometer 124 is analyzed to determine the presence of collagen or elastin in the tissue. In some embodiments, data from the light measuring instrument is analyzed and presented visually to the user via a graphical user interface in a way that provides the user with real-time feedback regarding lesion progression, lesion quality, myocardial contact, tissue collagen content, and tissue elastin content.
In some embodiments, the system 100 of the present disclosure may further include an ultrasound system 190. The catheter 140 may be equipped with ultrasound transducers in communication with the ultrasound system. In some embodiments, the ultrasound may show tissue depths, which in combination with the metabolic activity or the depth of lesion may be used to determine if definitively say if a lesion is in fact transmural or not.
Referring back to
In reference to
In the embodiments where RF energy is implemented, the wiring to couple the distal tip 148 to the RF energy source (external to the catheter) can be passed through a lumen of the catheter. The distal tip 148 may include a port in communication with the one or more lumens of the catheter. The distal tip 148 can be made of any biocompatible material. In some embodiments, if the distal tip 148 is configured to act as an electrode, the distal tip 148 can be made of metal, including, but not limited to, platinum, platinum-iridium, stainless steel, titanium or similar materials.
In reference to
In some embodiments, the one or more openings 154 may be provided in the side wall 156 of the distal tip 148, the front wall 158, or both. In some embodiments, the one or more openings 154 may be disposed circumferentially along the distal tip 148 around the entire circumference of the distal tip 148. In some embodiments, the one or more openings 154 may be disposed equidistantly from one another. The number of the openings may be determined by the desired angle of viewing coverage. For example, with 3 openings equally spaced, illumination and returned light occur at 120-degree increments (360 degrees divided by 3). In some embodiments, the one or more openings 154 may be provided in multiple rows along the side walls 156 of the distal tip 148. In some embodiments, the distal tip 148 may include 3 or 4 openings in the side wall 156. In some embodiments, a single opening may be provided in the center of the front wall 158. In some embodiments, multiple openings 154 may be provided in the front wall 158. In some embodiments, the distal tip 148 is provided with 3 side openings and 1 front opening. The one or more openings 154 may also serve as an irrigation port in connection with the irrigation system. In some embodiments light is only directed through some of the side openings 154. For example, in some embodiments there may exist 6 openings in the side wall 156, but light may be directed through only 3 of the openings, while the other openings may be used for irrigation.
To enable the light energy exchange between the illumination cavity 152 and tissue over multiple paths (axially and radially with respect to the longitudinal central axis of the catheter), a light directing member 160 may be provided in the illumination cavity 152. The light directing member 160 may direct the illumination light to the tissue and direct the light returned through the one or more openings 154 within the distal tip 148 to the optical fiber 150. The light directing member 160 may also be made from any biocompatible material with a surface that reflects light or can be modified to reflect light, such as for example, stainless steel, platinum, platinum alloys, quartz, sapphire, fused silica, metallized plastic, or other similar materials. In some embodiments, the light directing member 160 may comprise a highly polished mirror. The light directing member 160 may be conical (i.e. smooth) or faceted with any number of sides. The light directing member 160 may be shaped to bend the light at any desired angle. In some embodiments, the light directing member 160 may be shaped to reflect the light only through the one or more openings. In some embodiments, the material for the light directing member 160 is chosen from materials that do not fluoresce when exposed to illumination between 310 nm to 370 nm.
In some embodiments, as shown in
In reference to
In reference to
As shown in
In reference to
As shown in
Referring back to
In reference to
In reference to
As noted above, the system 100 may also include an irrigation system 170. In some embodiments, the irrigation system 170 pumps saline into the catheter to cool the tip electrode during ablation therapy. This may help to prevent steam pops and char (i.e. clot that adheres to the tip that may eventually dislodge and cause a thrombolytic event) formation. For the proposed optical system, the fluid flow may clear the opening in the distal tip 148 of any blood that otherwise would otherwise absorb the illumination light.
The irrigation system 170 may be connected to the one or more openings in the distal tip 148 and can be used, for example, for flushing the openings with fluid to clear the tip of blood, cooling the tissue-electrode interface, prevention of thrombus formation, among many other possible uses. In some embodiments, the irrigation fluid is maintained at a positive pressure relative to pressure outside of the catheter for continuous flushing of the one or more openings 154.
In reference to
Still referring to
By measuring the UV-induced fluorescence of tissue, it is possible to learn about the biochemical state of the tissue. NADH fluorescence has been studied for its use in monitoring cell metabolic activities and cell death. Several studies in vitro and in vivo investigated the potential of using NADH fluorescence intensity as an intrinsic biomarker of cell death (either apoptosis or necrosis) monitoring. Once NADH is released from the mitochondria of damaged cells or converted to its oxidized form (NAD+), its fluorescence markedly declines, thus making it very useful in the differentiation of a healthy tissue from a damaged tissue. NADH can accumulate in the cell during ischemic states when oxygen is not available, increasing the fluorescent intensity. However, NADH presence disappears all together in the case of a dead cell. The following table summarizes the different states of relative intensity due to NADH fluorescence:
Still referring to
Under hypoxic conditions, the oxygen levels decline. The subsequent fNADH emission signal may increase in intensity indicating an excess of mitochondrial NADH. If hypoxia is left unchecked, full attenuation of the signal will ultimately occur as the affected cells along with their mitochondria die. High contrast in NADH levels may be used to identify the perimeter of terminally damaged ablated tissue.
To initiate fluorescence imaging, NADH may be excited by the UV light from the light source, such as a UV laser. NADH in the tissue specimen absorbs the excitation wavelengths of light and emits longer wavelengths of light. The emission light may be collected and passed back to the spectrometer, and a display of the imaged illuminated area may be produced on a display (step 1030), which is used to identify the ablated and unablated tissue in the imaged area based on the amount of NADH florescence (step 1035). For example, the sites of complete ablation may appear as completely dark area due to lack of fluorescence. Accordingly, the areas of ablation may appear markedly darker when compared to the surrounding unablated myocardium, which has a lighter appearance. This feature may enhance the ability to detect the ablated areas by providing marked contrast to the healthy tissue and even more contrast at the border zone between ablated and healthy tissue. This border area is the edematous and ischemic tissue in which NADH fluorescence becomes bright white upon imaging. The border zone creates a halo appearance around the ablated central tissue.
The process may then be repeated by returning to the ablation step, if necessary, to ablate additional tissue. It should be recognized that although
In some embodiments, the system of the present disclosure comprises a catheter, a light source, and a light measuring instrument. In some embodiments, the system further comprises an optical detection system having an optical detection fiber, the optical detection system being independent or immune from electrical or RF energy noise. In some embodiments, the optical detection fiber does not conduct electrically and an RF energy does not produce electromagnetic energy in a range of interest to the system.
In some embodiments, the system is adapted to optically interrogate a catheter environment in a biologic system. In some embodiments, the system is adapted to optically interrogate in real-time, via an NADH fluorescence, the catheter environment to determine or assess one or more of a complete or a partial immersion of an electrode in a blood pool. For example, the optical system can detect, by inference, that the catheter tip is completely or partially immersed in the blood pool. The reason for this is because unlike the tissue or vasculature that return a positive optical signature, the blood completely absorbs the illumination light at this wavelength and thus returns a null optical signature. This feature of complete absorption provides optical isolation and therefore noise insulation. The instrument can use this situation for optical calibration and the elimination of stray optical signatures coming from the catheter itself. In addition, the system may be used for a qualitative and or a quantitative contact assessment between a catheter tip and a tissue, a qualitative and or a quantitative assessment of a catheter contact stability, an ablation lesion formation in real time, an ablation lesion progression monitoring, a determination of when to terminate a lesion, an identification of edematous zones which usually occur on a periphery of an ablation site and which can be associated with an incomplete ablation lesion, an ablation lesion depth, a cross-sectional area of the lesion, a temperature of the lesion, a recognition of steam formation or another physiologic parameter change to predict the onset of a steam pop, a formation of a char at a tip electrode during or after the ablation lesion formation, a detection of ischemia, a detection of a level of the ischemia, an ablation lesion assessment post lesion formation, an identification of edematous zones for re-ablation since edematous zones include myocardium that is electrically stunned, and a mapping of a location of previously ablated tissue by distinguishing metabolically active tissue from metabolically inactive tissue
In some embodiments, the system is adapted to optically interrogate a tissue parameter of an NADH fluorescence (fNADH).
In some embodiments, the system is adapted to optically interrogate a tissue, wherein the system analyzes parameters including a metabolic state of the tissue as well as a tissue composition of the tissue.
In some embodiments, the system is adapted to illuminate a tissue with a wavelength wherein illuminating leads to several optical responses. In some embodiments the optical responses comprises a myocardium containing NADH fluorescing if it is in a healthy metabolic state. In some embodiments, other tissues, such as collagen or elastin, fluoresce at different wavelengths, and the system uses a measurement of this information to determine a composition (i.e. collagen or elastin) of the tissue in contact with the catheter. In some embodiments the composition comprises myocardium, muscle, and myocardial structures such as valves, vascular structures, and fibrous or anatomical components. In some embodiments the composition comprises collagen, elastin, and other fibrous or support structures.
In some embodiments, a catheter of the present disclosure comprises a catheter body, a tip electrode, and one or more sensing electrodes. In some embodiments the catheter further comprises one or more zones of different flexibility, the zones of flexibility being in combination with a deflection mechanism adapted to allow a distal portion of the catheter to be bent for ease of navigation for a physician. In some embodiments, the zones of flexibility are located at the distal portion of the catheter, while a main body of the catheter is kept relatively stiff for pushability. In some embodiments, the main body of the catheter body is flexible so that the physician can use a robotic system for catheter navigation. In some embodiments the catheter is flexible and capable of being manipulated within a catheter sheath manually or robotically.
In some embodiments, the catheter further comprises a deflection mechanism adapted to deflect the catheter tip for navigation. In some embodiments the deflection mechanism comprises one or more pull wires that are manipulated by a catheter handle and which deflect the distal portion of the catheter in one or more directions or curve lengths. In some embodiments, the catheter further comprises a temperature sensor, the temperature sensor being integral to the distal tip of the electrode. In some embodiments the catheter further comprises one or more ultrasound transducers, the ultrasound transducers being located in the distal section of the catheter, and preferably in the tip of the distal electrode. The ultrasonic transducers are adapted to assess a tissue thickness either below or adjacent to the catheter tip. In some embodiments, the catheter comprises multiple transducers adapted to provide depth information covering a situation where the catheter tip is relatively perpendicular to a myocardium or relatively parallel to a myocardium.
In some embodiments the catheter further comprises an irrigation means for the purposes of flushing catheter openings with an irrigation fluid to clear the tip of blood, cooling a tissue-electrode interface, preventing a thrombus formation, and dispersing an RF energy to a greater zone of tissue, thus forming larger lesions than non-irrigated catheters. In some embodiments, the irrigating fluid is maintained within the catheter tip at a positive pressure relative to outside of the tip, and is adapted for continuous flushing of the openings.
In some embodiments, the catheter further comprises an electromagnetic location sensor adapted for locating and navigating the catheter. In some embodiments, the electromagnetic location sensor is adapted to locate the tip of the catheter in a navigation system of any one of several catheter manufacturers. The sensor picks up electromagnetic energy from a source location and computes location through triangulation or other means. In some embodiments the catheter comprises more than one transducer adapted to render a position of the catheter body and a curvature of the catheter body on a navigation system display.
In some embodiments, a catheter adapted to ablate tissue comprises a catheter body, and a tip electrode adapted to ablate a tissue. In some embodiments the catheter further comprises at least one optical waveguide adapted to deliver light energy to the tissue, and one or more optical waveguides adapted to receive light energy from the tissue. In some embodiments, the catheter further comprises a single optical waveguide adapted to deliver light energy to the tissue and receive light energy from the tissue.
In some embodiments, the catheter is adapted for an ablation energy, the ablation energy being one or more of RF energy, cryo energy, laser, chemical, electroporation, high intensity focused ultrasound or ultrasound, and microwave.
In some embodiments, the tip of the catheter comprises a first electrode adapted for sensing electrical activity of the tissue, a second electrode adapted for transmitting or conducting ablation energy or chemical, a light directing member to direct a light in one or more directions simultaneously, one or more openings for the transmission and receiving of light energy, one or more openings for an irrigation fluid to flow from the tip, and one or more openings adapted for transmitting and receiving light as well as concomitantly flowing irrigation fluid from the tip. In some embodiments the tip of the catheter comprises an electrically conductive material, adapted to allow the first electrode to sense the electrical activity of the tissue in contact with the catheter. In some embodiments, the tip further comprises an electrode adapted for transmitting or conducting ablation energy or a chemical energy. In some embodiments, the tip is adapted to conduct RF energy to the adjacent tissue. In some embodiments, the tip comprises an optically transparent material allowing conduction of laser ablation energy to the adjacent tissue. In some embodiments, the tip comprises a plurality of holes adapted to transmit a chemical used to alter cells of the tissue or of a tissue in close proximity to the tip. In some embodiments, the openings for transmitting and receiving light are in the distal tip. In some embodiments, the tip comprises additional holes adapted to cool the tip with a fluid during an application of ablation energy.
In some embodiments, the tip further comprises at least one opening adapted to allow a directed light energy to illuminate the tissue, and to allow the light energy to return from the tissue to the catheter. In some embodiments, the tip comprises at least one opening in the distal tip for illuminating a tissue along a longitudinal axis of the catheter. In some embodiments, the light energy is directed in a manner that is dependent upon a light directing member having a central lumen allowing a portion of the light to be directed in a longitudinal direction. In some embodiments, the tip further comprises at least one opening in the distal tip for illuminating the tissue in a radial axis with respect to the catheter. In some embodiments, the tip is adapted to direct the light by splitting the primary light source into specific multiple beams using the light directing member.
In some embodiments, the primary light source is a laser, the laser adapted to send a light beam down an optical fiber to the light directing member, wherein the light beam is sent in one or more directions, including straight ahead relative to the tip, to make sure a structure adjacent to the catheter is illuminated. In some embodiments, a structure that is illuminated will transmit optical energy back to the catheter tip and to the light directing member, which in turn reflects the returned light back up the fiber to a spectrometer.
In some embodiments, the tip is configured to direct the light energy independent of any polishing of the interior of the illumination cavity. In some embodiments, the directing of light energy does not depend on the use of an interior wall of the illumination cavity.
In some embodiments, a catheter adapted to support fNADH comprising one or more ultrasound transducers. In some embodiments, the catheter is adapted to measure a wall thickness of an area of interest. In some embodiments, the catheter is adapted to assess a metabolic state of the tissue throughout the wall thickness. In some embodiments, the catheter further comprises ultrasonic transducers adapted to measure cardiac wall thickness and adapted to assess a metabolic state of the myocardium during an application of an RF energy. In some embodiments, the catheter is adapted to identify any metabolically active tissue for the purposes of identifying electrical gaps in lesions.
In some embodiments, the catheter comprises a light-directing component adapted to send light in one or more radial directions and axially simultaneously. In some embodiments, the catheter further comprises a separate or a modular component of the tip electrode, wherein an light directing member is integrated into the tip of the electrode during. In some embodiments, the light directing member has a centrally located lumen for light to pass in the axial direction. In some embodiments, the light directing member is keyed to facilitate alignment of a facet of the light directing member to openings of the catheter tip permitting a transfer of light energy. In some embodiments, the light directing member is integrated into the catheter tip via a snap-fitting, welding, soldering, or gluing into a keyed position in the catheter tip.
In some embodiments, the light directing member is keyed to facilitate a correct alignment of one or more reflecting facets and one or more light ports in the tip of the catheter. In some embodiments, the light directing member is a separate component that is oriented into the catheter tip, adapted to provide a light path through the tip, inline with a longitudinal axis of the catheter. In some embodiments, the light directing member protrudes through the tip and can be welded on the distal side of the tip so that the welding does not interfere or damage a reflective surface of the light directing member. In some embodiments, the light directing member comprises polished stainless steel. In some embodiments, the light directing member comprises platinum or platinum alloys, a material identical to the tip, any material with a reflective surface capable of reflecting or splitting light, or a material that does not fluoresce when illuminated from about 310 nm to about 370 nm. In some embodiments, the light directing member is larger than any aperture of the tip electrode to ensure the light directing member cannot escape through said aperture.
In some embodiments, the light directing member may be optimized to provide the optimum number of facets and the optimum optical path for efficiency. These attributes can be traded off against the desired radial coverage. For example, in connection with tissue contact with the distal tip parallel to the myocardial surface, the radial coverage can be designed so that at least one opening in the side wall of the distal tip is pointed at the myocardium when the tip is parallel to the heart tissue. Likewise, the opening in the front wall of the distal tip may ensure that light is both transmitted and received when the catheter tip is more or less orthogonal to the myocardial surface. In some embodiments, the light directing member is provided with 3 to 4 facets.
In some embodiments, a catheter of the present disclosure comprises of a catheter body with the following components: a catheter with a distal tip positioned at a distal end of the catheter body, the distal tip defining a light chamber, the distal tip having one or more openings for exchange of light energy between the light chamber and tissue, and a the same catheter with a light directing member disposed within the light chamber, the light directing member being configured to direct the light energy to and from the tissue through the one or more openings in the distal tip. In some embodiments, the catheter comprises of one or more optical waveguides extending into the light chamber to deliver light to and from the light chamber. In some embodiments, the catheter has a light directing member and the one or more openings are configured to enable illumination of tissue in the radial and the axial directions. In some embodiments, the catheter has a distal tip that has a dome shaped front wall and straight side walls. In some embodiments, the catheter has one or more openings that are disposed along sidewalls of the distal tip. In some embodiments, the catheter has one or more openings that are disposed circumferentially along the distal tip. In some embodiments, the catheter has one or more openings that are provided in multiple rows along side walls of the distal tip. In some embodiments, the catheter has a distal tip that is comprised of a tissue ablation electrode. In some embodiments, the catheter has a light directing member that is configured to direct light radially through the one or more openings. In some embodiments, the catheter has a light directing member that is comprised of multiple facets. In some embodiments, the catheter has a light directing member that is comprised of multiple facets, wherein the facets are equally spaced. In some embodiments, the catheter has a light directing member that is comprised of multiple facets, wherein the number of the facets corresponds to the number of the openings along side walls of the distal tip. In some embodiments, the catheter has a light directing member that is shaped to reflect the light energy at an angle relative to the longitudinal axis of the catheter.
In some embodiments, the catheter has a light directing member that is comprised of a single-faceted mirror. In some embodiments, the catheter has a light directing member that is rotatable with respect to the light chamber. In some embodiments, the catheter has a light directing member that is comprised of one or more through-holes and the distal tip is comprised of one or more openings disposed on a front wall of the distal tip to enable passage of light in longitudinal direction through the light directing member and the one or more openings of the front wall.
The foregoing disclosure has been set forth merely to illustrate various non-limiting embodiments of the present disclosure and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the disclosure may occur to persons skilled in the art, the presently disclosed embodiments should be construed to include everything within the scope of the appended claims and equivalents thereof.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/194,276, filed on Jul. 19, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4619247 | Inoue et al. | Oct 1986 | A |
5074306 | Green et al. | Dec 1991 | A |
5187572 | Nakamura et al. | Feb 1993 | A |
5350375 | Deckelbaum et al. | Sep 1994 | A |
5419323 | Kittrell et al. | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5507287 | Palcic et al. | Apr 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5713364 | DeBaryshe et al. | Feb 1998 | A |
5749830 | Kaneko et al. | May 1998 | A |
5833688 | Sieben et al. | Nov 1998 | A |
5885258 | Sachdeva et al. | Mar 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5954665 | Ben Haim | Sep 1999 | A |
6064069 | Nakano et al. | May 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6174291 | McMahon et al. | Jan 2001 | B1 |
6178346 | Amundson et al. | Jan 2001 | B1 |
6197021 | Panescu et al. | Mar 2001 | B1 |
6208886 | Alfano et al. | Mar 2001 | B1 |
6217573 | Webster et al. | Apr 2001 | B1 |
6219566 | Weersink et al. | Apr 2001 | B1 |
6251107 | Schaer | Jun 2001 | B1 |
6289236 | Koenig et al. | Sep 2001 | B1 |
6309352 | Oraevsky et al. | Oct 2001 | B1 |
6343228 | Qu | Jan 2002 | B1 |
6423055 | Farr et al. | Jul 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6450971 | Andrus et al. | Sep 2002 | B1 |
6516217 | Tsujita | Feb 2003 | B1 |
6522913 | Swanson et al. | Feb 2003 | B2 |
6542767 | McNichols et al. | Apr 2003 | B1 |
6572609 | Farr et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6626900 | Sinofsky et al. | Sep 2003 | B1 |
6648883 | Francischelli et al. | Nov 2003 | B2 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6663622 | Foley et al. | Dec 2003 | B1 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6671535 | McNichols et al. | Dec 2003 | B1 |
6697657 | Shehada et al. | Feb 2004 | B1 |
6706038 | Francischelli et al. | Mar 2004 | B2 |
6716196 | Lesh et al. | Apr 2004 | B2 |
6743225 | Sanchez et al. | Jun 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6761716 | Kadhiresan et al. | Jul 2004 | B2 |
6825928 | Liu et al. | Nov 2004 | B2 |
6936047 | Nasab et al. | Aug 2005 | B2 |
6937885 | Lewis et al. | Aug 2005 | B1 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6953457 | Farr et al. | Oct 2005 | B2 |
6974454 | Hooven | Dec 2005 | B2 |
6975898 | Seibel | Dec 2005 | B2 |
6975899 | Faupel et al. | Dec 2005 | B2 |
6979290 | Mourlas et al. | Dec 2005 | B2 |
6989010 | Francischelli et al. | Jan 2006 | B2 |
7001383 | Keidar | Feb 2006 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7047068 | Haissaguerre | May 2006 | B2 |
7130672 | Pewzner et al. | Oct 2006 | B2 |
7192427 | Chapelon et al. | Mar 2007 | B2 |
7207984 | Fan et al. | Apr 2007 | B2 |
7232437 | Berman et al. | Jun 2007 | B2 |
7235045 | Wang et al. | Jun 2007 | B2 |
7250048 | Francischelli et al. | Jul 2007 | B2 |
7252664 | Nasab et al. | Aug 2007 | B2 |
7255695 | Falwell et al. | Aug 2007 | B2 |
7289205 | Yaroslavsky et al. | Oct 2007 | B2 |
7306593 | Keidar et al. | Dec 2007 | B2 |
7338485 | Brucker et al. | Mar 2008 | B2 |
7357796 | Farr et al. | Apr 2008 | B2 |
7367944 | Rosemberg et al. | May 2008 | B2 |
7367972 | Francischelli et al. | May 2008 | B2 |
7497858 | Chapelon et al. | Mar 2009 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7534204 | Starksen et al. | May 2009 | B2 |
7539530 | Caplan et al. | May 2009 | B2 |
7587236 | Demos et al. | Sep 2009 | B2 |
7591816 | Wang et al. | Sep 2009 | B2 |
7596404 | Maier et al. | Sep 2009 | B2 |
7598088 | Balas | Oct 2009 | B2 |
7640046 | Pastore | Dec 2009 | B2 |
7662152 | Sharareh et al. | Feb 2010 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7727229 | He et al. | Jun 2010 | B2 |
7727231 | Swanson | Jun 2010 | B2 |
7729750 | Tromberg et al. | Jun 2010 | B2 |
7766907 | Dando et al. | Aug 2010 | B2 |
7776033 | Swanson | Aug 2010 | B2 |
7822460 | Halperin et al. | Oct 2010 | B2 |
7824397 | McAuley | Nov 2010 | B2 |
7824399 | Francischelli et al. | Nov 2010 | B2 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7846157 | Kozel | Dec 2010 | B2 |
7862561 | Swanson et al. | Jan 2011 | B2 |
7877128 | Schwartz | Jan 2011 | B2 |
7918850 | Govari et al. | Apr 2011 | B2 |
7930016 | Saadat | Apr 2011 | B1 |
7942871 | Thapliyal et al. | May 2011 | B2 |
7950397 | Thapliyal et al. | May 2011 | B2 |
7974683 | Balas et al. | Jul 2011 | B2 |
7976537 | Lieber et al. | Jul 2011 | B2 |
7979107 | Lin et al. | Jul 2011 | B2 |
7996078 | Paul et al. | Aug 2011 | B2 |
8007433 | Iketani | Aug 2011 | B2 |
8024027 | Freeman et al. | Sep 2011 | B2 |
8025661 | Arnold et al. | Sep 2011 | B2 |
8050746 | Saadat et al. | Nov 2011 | B2 |
8078266 | Saadat et al. | Dec 2011 | B2 |
8123742 | Berger | Feb 2012 | B2 |
8123745 | Beeckler et al. | Feb 2012 | B2 |
8129105 | Zuckerman | Mar 2012 | B2 |
8131350 | Saadat et al. | Mar 2012 | B2 |
8137333 | Saadat et al. | Mar 2012 | B2 |
8144966 | Provenzano et al. | Mar 2012 | B2 |
8146603 | Thapliyal et al. | Apr 2012 | B2 |
8147484 | Lieber et al. | Apr 2012 | B2 |
8152795 | Farr et al. | Apr 2012 | B2 |
8160680 | Boyden et al. | Apr 2012 | B2 |
8175688 | Lewis et al. | May 2012 | B2 |
8180436 | Boyden et al. | May 2012 | B2 |
8188446 | Ohno | May 2012 | B2 |
8195271 | Rahn | Jun 2012 | B2 |
8203709 | Ishii | Jun 2012 | B2 |
8219183 | Mashke et al. | Jul 2012 | B2 |
8221310 | Saadat et al. | Jul 2012 | B2 |
8235985 | Saadat et al. | Aug 2012 | B2 |
8241272 | Arnold et al. | Aug 2012 | B2 |
8267926 | Paul et al. | Sep 2012 | B2 |
8277444 | Arnold et al. | Oct 2012 | B2 |
8298227 | Leo et al. | Oct 2012 | B2 |
8309346 | Zuckerman | Nov 2012 | B2 |
8317783 | Cao et al. | Nov 2012 | B2 |
8333012 | Rothe et al. | Dec 2012 | B2 |
8353907 | Winkler et al. | Jan 2013 | B2 |
8357149 | Govan et al. | Jan 2013 | B2 |
8366705 | Arnold et al. | Feb 2013 | B2 |
8369922 | Paul et al. | Feb 2013 | B2 |
8374682 | Freeman et al. | Feb 2013 | B2 |
8382750 | Brannan | Feb 2013 | B2 |
8403925 | Miller et al. | Mar 2013 | B2 |
8414508 | Thapliyal et al. | Apr 2013 | B2 |
8417321 | Saadat et al. | Apr 2013 | B2 |
8417323 | Uzunbajakava et al. | Apr 2013 | B2 |
8419613 | Saadat et al. | Apr 2013 | B2 |
8435232 | Aeby et al. | May 2013 | B2 |
8444639 | Arnold et al. | May 2013 | B2 |
8460285 | Wang et al. | Jun 2013 | B2 |
8463366 | Freeman et al. | Jun 2013 | B2 |
8500730 | Lee et al. | Aug 2013 | B2 |
8504132 | Friedman et al. | Aug 2013 | B2 |
8511317 | Thapliyal et al. | Aug 2013 | B2 |
8540704 | Melsky et al. | Sep 2013 | B2 |
8548567 | Maschke et al. | Oct 2013 | B2 |
8556892 | Hong et al. | Oct 2013 | B2 |
8583220 | Schwartz | Nov 2013 | B2 |
8603084 | Fish et al. | Dec 2013 | B2 |
8607800 | Thapliyal et al. | Dec 2013 | B2 |
8628520 | Sharareh et al. | Jan 2014 | B2 |
8641705 | Leo et al. | Feb 2014 | B2 |
8641706 | Lieber et al. | Feb 2014 | B2 |
8690758 | Matsumoto | Apr 2014 | B2 |
8702690 | Paul et al. | Apr 2014 | B2 |
8709008 | Willis et al. | Apr 2014 | B2 |
8728077 | Paul et al. | May 2014 | B2 |
8755860 | Paul et al. | Jun 2014 | B2 |
8774906 | Harks et al. | Jul 2014 | B2 |
8808281 | Emmons et al. | Aug 2014 | B2 |
8849380 | Patwardhan | Sep 2014 | B2 |
8858495 | Tegg et al. | Oct 2014 | B2 |
8876817 | Avitall et al. | Nov 2014 | B2 |
8882697 | Celermajer et al. | Nov 2014 | B2 |
8894589 | Leo et al. | Nov 2014 | B2 |
8894641 | Brannan | Nov 2014 | B2 |
8900219 | Sinofsky et al. | Dec 2014 | B2 |
8900225 | Bar-Tal et al. | Dec 2014 | B2 |
8900228 | Grunewald et al. | Dec 2014 | B2 |
8900229 | Govari et al. | Dec 2014 | B2 |
8906011 | Gelbart et al. | Dec 2014 | B2 |
8915878 | Winkler et al. | Dec 2014 | B2 |
8923959 | Boveja et al. | Dec 2014 | B2 |
8926604 | Govari et al. | Jan 2015 | B2 |
8929973 | Webb et al. | Jan 2015 | B1 |
8948851 | Leblond et al. | Feb 2015 | B2 |
8951247 | Ding et al. | Feb 2015 | B2 |
8986292 | Sliwa et al. | Mar 2015 | B2 |
8986298 | Lee et al. | Mar 2015 | B2 |
8998890 | Paul et al. | Apr 2015 | B2 |
8998892 | Winkler et al. | Apr 2015 | B2 |
8998893 | Avitall | Apr 2015 | B2 |
9008746 | Pastore et al. | Apr 2015 | B2 |
9014789 | Mercader et al. | Apr 2015 | B2 |
9084611 | Amirana et al. | Jul 2015 | B2 |
9220411 | Hillman | Dec 2015 | B2 |
9233241 | Long | Jan 2016 | B2 |
9277865 | Yamaguchi et al. | Mar 2016 | B2 |
10076238 | Amirana et al. | Sep 2018 | B2 |
10143517 | Ransbury et al. | Dec 2018 | B2 |
10568535 | Roberts et al. | Feb 2020 | B2 |
20020042556 | Sugimoto et al. | Apr 2002 | A1 |
20020123666 | Matsumoto | Sep 2002 | A1 |
20020143326 | Foley et al. | Oct 2002 | A1 |
20030028188 | Paddock et al. | Feb 2003 | A1 |
20030120142 | Dubuc et al. | Jun 2003 | A1 |
20030120144 | Grabek et al. | Jun 2003 | A1 |
20030208252 | O'Boyle et al. | Nov 2003 | A1 |
20040073206 | Foley et al. | Apr 2004 | A1 |
20040092806 | Sagon et al. | May 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040138656 | Francischelli et al. | Jul 2004 | A1 |
20040187875 | He et al. | Sep 2004 | A1 |
20040215310 | Amirana | Oct 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014995 | Amundson et al. | Jan 2005 | A1 |
20050043637 | Caplan et al. | Feb 2005 | A1 |
20050075629 | Chapelon et al. | Apr 2005 | A1 |
20050119523 | Starksen et al. | Jun 2005 | A1 |
20050197530 | Wallace et al. | Sep 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050215899 | Trahey et al. | Sep 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050251125 | Pless et al. | Nov 2005 | A1 |
20050283195 | Pastore et al. | Dec 2005 | A1 |
20060009756 | Francischelli et al. | Jan 2006 | A1 |
20060013454 | Flewelling et al. | Jan 2006 | A1 |
20060025760 | Podhajsky | Feb 2006 | A1 |
20060089636 | Christopherson et al. | Apr 2006 | A1 |
20060122587 | Sharareh | Jun 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060229515 | Sharareh et al. | Oct 2006 | A1 |
20060229594 | Francischelli et al. | Oct 2006 | A1 |
20070015964 | Eversull et al. | Jan 2007 | A1 |
20070016079 | Freeman et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070038126 | Pyle et al. | Feb 2007 | A1 |
20070049827 | Donaldson et al. | Mar 2007 | A1 |
20070083217 | Eversull et al. | Apr 2007 | A1 |
20070167828 | Saadat | Jul 2007 | A1 |
20070185479 | Lau | Aug 2007 | A1 |
20070225697 | Shroff et al. | Sep 2007 | A1 |
20070270717 | Tang et al. | Nov 2007 | A1 |
20070270789 | Berger | Nov 2007 | A1 |
20070270792 | Hennemann et al. | Nov 2007 | A1 |
20070270795 | Francischelli et al. | Nov 2007 | A1 |
20070276259 | Okawa et al. | Nov 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20070293724 | Saadat et al. | Dec 2007 | A1 |
20080009747 | Saadat et al. | Jan 2008 | A1 |
20080015569 | Saadat et al. | Jan 2008 | A1 |
20080033241 | Peh et al. | Feb 2008 | A1 |
20080058650 | Saadat et al. | Mar 2008 | A1 |
20080058785 | Boyden et al. | Mar 2008 | A1 |
20080058786 | Boyden et al. | Mar 2008 | A1 |
20080097476 | Peh et al. | Apr 2008 | A1 |
20080101677 | Mashke et al. | May 2008 | A1 |
20080103355 | Boyden et al. | May 2008 | A1 |
20080119694 | Lee | May 2008 | A1 |
20080154257 | Sharareh et al. | Jun 2008 | A1 |
20080172049 | Bredno et al. | Jul 2008 | A1 |
20080183036 | Saadat et al. | Jul 2008 | A1 |
20080212867 | Provenzano et al. | Sep 2008 | A1 |
20080214889 | Saadat et al. | Sep 2008 | A1 |
20080221448 | Khuri-Yakub et al. | Sep 2008 | A1 |
20080228032 | Starksen et al. | Sep 2008 | A1 |
20080228079 | Donaldson et al. | Sep 2008 | A1 |
20080243214 | Koblish | Oct 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080281293 | Peh et al. | Nov 2008 | A1 |
20080300589 | Paul et al. | Dec 2008 | A1 |
20090012367 | Chin et al. | Jan 2009 | A1 |
20090030276 | Saadat et al. | Jan 2009 | A1 |
20090030412 | Willis et al. | Jan 2009 | A1 |
20090054803 | Saadat et al. | Feb 2009 | A1 |
20090062790 | Malchano et al. | Mar 2009 | A1 |
20090076373 | Maschke | Mar 2009 | A1 |
20090076375 | Maschke | Mar 2009 | A1 |
20090082623 | Rothe et al. | Mar 2009 | A1 |
20090082660 | Rahn et al. | Mar 2009 | A1 |
20090125022 | Saadat et al. | May 2009 | A1 |
20090131931 | Lee et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090203962 | Miller et al. | Aug 2009 | A1 |
20090204069 | Hirszowicz et al. | Aug 2009 | A1 |
20090221871 | Peh et al. | Sep 2009 | A1 |
20090227999 | Willis et al. | Sep 2009 | A1 |
20090253991 | Balas et al. | Oct 2009 | A1 |
20090275799 | Saadat et al. | Nov 2009 | A1 |
20090281541 | Ibrahim et al. | Nov 2009 | A1 |
20090292211 | Lin et al. | Nov 2009 | A1 |
20090299354 | Melsky et al. | Dec 2009 | A1 |
20090299363 | Saadat et al. | Dec 2009 | A1 |
20090306643 | Pappone et al. | Dec 2009 | A1 |
20100022832 | Makiyama | Jan 2010 | A1 |
20100041986 | Nguyen et al. | Feb 2010 | A1 |
20100081127 | Maier et al. | Apr 2010 | A1 |
20100081948 | Pastore et al. | Apr 2010 | A1 |
20100084563 | Ohno | Apr 2010 | A1 |
20100114094 | Thapliyal et al. | May 2010 | A1 |
20100130836 | Malchano et al. | May 2010 | A1 |
20100152728 | Park et al. | Jun 2010 | A1 |
20100198065 | Thapliyal et al. | Aug 2010 | A1 |
20100204544 | Takei | Aug 2010 | A1 |
20100204561 | Saadat | Aug 2010 | A1 |
20100228247 | Paul et al. | Sep 2010 | A1 |
20100241117 | Paul et al. | Sep 2010 | A1 |
20100312094 | Guttman et al. | Dec 2010 | A1 |
20100312096 | Guttman et al. | Dec 2010 | A1 |
20100331838 | Ibrahim et al. | Dec 2010 | A1 |
20110019893 | Rahn et al. | Jan 2011 | A1 |
20110029058 | Swanson | Feb 2011 | A1 |
20110042580 | Wilson et al. | Feb 2011 | A1 |
20110066147 | He et al. | Mar 2011 | A1 |
20110082450 | Melsky et al. | Apr 2011 | A1 |
20110082451 | Melsky et al. | Apr 2011 | A1 |
20110082452 | Melsky et al. | Apr 2011 | A1 |
20110117025 | Dacosta et al. | May 2011 | A1 |
20110144524 | Fish et al. | Jun 2011 | A1 |
20110224494 | Piskun et al. | Sep 2011 | A1 |
20110230903 | Bertolero | Sep 2011 | A1 |
20110275932 | Leblond et al. | Nov 2011 | A1 |
20110276046 | Heimbecher et al. | Nov 2011 | A1 |
20110282250 | Fung et al. | Nov 2011 | A1 |
20110313417 | De La Rama et al. | Dec 2011 | A1 |
20120029504 | Afonso et al. | Feb 2012 | A1 |
20120123276 | Govan et al. | May 2012 | A1 |
20120143177 | Avitall | Jun 2012 | A1 |
20120150046 | Watson et al. | Jun 2012 | A1 |
20120184812 | Terakawa | Jul 2012 | A1 |
20120184813 | Terakawa | Jul 2012 | A1 |
20120197243 | Sherman et al. | Aug 2012 | A1 |
20120215112 | Lewis et al. | Aug 2012 | A1 |
20120220999 | Long | Aug 2012 | A1 |
20120259263 | Celermajer et al. | Oct 2012 | A1 |
20120323237 | Paul et al. | Dec 2012 | A1 |
20120326055 | Wilson et al. | Dec 2012 | A1 |
20130006116 | Kim et al. | Jan 2013 | A1 |
20130030425 | Stewart et al. | Jan 2013 | A1 |
20130079645 | Amirana et al. | Mar 2013 | A1 |
20130085416 | Mest | Apr 2013 | A1 |
20130096593 | Thapliyal et al. | Apr 2013 | A1 |
20130096594 | Thapliyal et al. | Apr 2013 | A1 |
20130102862 | Amirana et al. | Apr 2013 | A1 |
20130107002 | Kikuchi | May 2013 | A1 |
20130137949 | Freeman et al. | May 2013 | A1 |
20130150693 | D'Angelo et al. | Jun 2013 | A1 |
20130150732 | Manzke et al. | Jun 2013 | A1 |
20130158545 | Govan et al. | Jun 2013 | A1 |
20130172742 | Rankin et al. | Jul 2013 | A1 |
20130172875 | Govan et al. | Jul 2013 | A1 |
20130226163 | Peled et al. | Aug 2013 | A1 |
20130237841 | Freeman et al. | Sep 2013 | A1 |
20130253330 | Demos | Sep 2013 | A1 |
20130261455 | Thapliyal et al. | Oct 2013 | A1 |
20130267875 | Thapliyal et al. | Oct 2013 | A1 |
20130281920 | Hawkins et al. | Oct 2013 | A1 |
20130282005 | Koch et al. | Oct 2013 | A1 |
20130289358 | Melsky et al. | Oct 2013 | A1 |
20130296840 | Condie et al. | Nov 2013 | A1 |
20130310680 | Werahera et al. | Nov 2013 | A1 |
20130331831 | Werneth et al. | Dec 2013 | A1 |
20140031802 | Melsky | Jan 2014 | A1 |
20140058244 | Krocak | Feb 2014 | A1 |
20140058246 | Boveja et al. | Feb 2014 | A1 |
20140081253 | Kumar et al. | Mar 2014 | A1 |
20140088418 | Radulescu et al. | Mar 2014 | A1 |
20140107430 | Deno et al. | Apr 2014 | A1 |
20140121537 | Aeby et al. | May 2014 | A1 |
20140121660 | Hauck | May 2014 | A1 |
20140148703 | Deladi et al. | May 2014 | A1 |
20140163360 | Stevens-Wright et al. | Jun 2014 | A1 |
20140163543 | Allison et al. | Jun 2014 | A1 |
20140171806 | Govari et al. | Jun 2014 | A1 |
20140171936 | Govari et al. | Jun 2014 | A1 |
20140180273 | Nair | Jun 2014 | A1 |
20140194867 | Fish et al. | Jul 2014 | A1 |
20140194869 | Leo et al. | Jul 2014 | A1 |
20140275972 | George et al. | Sep 2014 | A1 |
20140276687 | Goodman et al. | Sep 2014 | A1 |
20140276771 | Miller et al. | Sep 2014 | A1 |
20140316280 | Mueller et al. | Oct 2014 | A1 |
20140324085 | Thapliyal et al. | Oct 2014 | A1 |
20140350547 | Sharareh et al. | Nov 2014 | A1 |
20140357956 | Salahieh et al. | Dec 2014 | A1 |
20150038824 | Lupotti | Feb 2015 | A1 |
20150073245 | Klimovitch et al. | Mar 2015 | A1 |
20150099979 | Caves et al. | Apr 2015 | A1 |
20150141847 | Sarvazyan | May 2015 | A1 |
20150164332 | Mercader et al. | Jun 2015 | A1 |
20150196202 | Mercader et al. | Jul 2015 | A1 |
20150327753 | Amirana et al. | Nov 2015 | A1 |
20150346100 | Racowsky et al. | Dec 2015 | A1 |
20160051321 | Salahieh et al. | Feb 2016 | A1 |
20160120599 | Amirana et al. | May 2016 | A1 |
20160120602 | Ransbury et al. | May 2016 | A1 |
20160143522 | Ransbury et al. | May 2016 | A1 |
20170135559 | Horrisberger et al. | May 2017 | A1 |
20180263476 | Amirana et al. | Sep 2018 | A1 |
20190053849 | Ransbury et al. | Feb 2019 | A1 |
20200008681 | Sarvazyan | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
1289239 | Mar 2001 | CN |
1764419 | Apr 2006 | CN |
101199410 | Jun 2008 | CN |
102099671 | Jun 2011 | CN |
102397104 | Apr 2012 | CN |
106028914 | Oct 2016 | CN |
102005021205 | Nov 2006 | DE |
102011083522 | Mar 2013 | DE |
2691041 | Feb 2014 | EP |
2889013 | Jul 2015 | EP |
60182928 | Sep 1985 | JP |
63-262613 | Oct 1988 | JP |
10150177 | Jun 1998 | JP |
2006158546 | Jun 2006 | JP |
2011212423 | Oct 2011 | JP |
2002010 | Oct 2009 | NL |
WO 1997037622 | Oct 1997 | WO |
1999013934 | Mar 1999 | WO |
2001001854 | Jan 2001 | WO |
2001072214 | Oct 2001 | WO |
2003092520 | Nov 2003 | WO |
2004028353 | Apr 2004 | WO |
2006028824 | Mar 2006 | WO |
2007109554 | Sep 2007 | WO |
2007127228 | Nov 2007 | WO |
2008028149 | Mar 2008 | WO |
2008114748 | Sep 2008 | WO |
2008154578 | Dec 2008 | WO |
2010075450 | Jul 2010 | WO |
2011025640 | Mar 2011 | WO |
2011113162 | Sep 2011 | WO |
2012049621 | Apr 2012 | WO |
2012067682 | May 2012 | WO |
2013044182 | Mar 2013 | WO |
2013068885 | May 2013 | WO |
2013116316 | Aug 2013 | WO |
2013116316 | Aug 2013 | WO |
2013169340 | Nov 2013 | WO |
2014028770 | Feb 2014 | WO |
2015077474 | May 2015 | WO |
2015073871 | May 2015 | WO |
2016073476 | May 2016 | WO |
2016073492 | May 2016 | WO |
WO 2016086160 | Jun 2016 | WO |
2017015257 | Jan 2017 | WO |
Entry |
---|
PCT International Search Report dated Dec. 8, 2016 for PCT/US2016/042891. |
Bogaards et al., In Vivo Quantification of Fluorescent Molecular Markers in Real-Time: A Review to Evaluate the Performance of Five Existing Methods, Photodiagnosis and Photodynamic Therapy, vol. 4: 170-178 (2007). |
Bogaards et al., n Vivo Quantification of Fluorescent Molecular Markers in Real-Time by Ratio Imaging for Diagnostic Screening and Image-Guided Surgery, Lasers in Surgery and Medicing vol. 39: 605-613 (2007). |
Office Action in U.S. Appl. No. 14/952,048 dated Aug. 27, 2018. |
Office Action in U.S. Appl. No. 14/931,262 dated Aug. 28, 2018. |
Office Action in U.S. Appl. No. 14/541,991 dated Sep. 13, 2018. |
Office Action in U.S. Appl. No. 15/986,970 dated Sep. 17, 2018. |
Office Action in U.S. Appl. No. 14/541,991 dated Feb. 28, 2017. |
Office Action in U.S. Appl. No. 14/689,475 dated Apr. 13, 2017. |
Office Action in U.S. Appl. No. 14/541,991 dated Jul. 13, 2017. |
Office Action in U.S. Appl. No. 14/931,262 dated Apr. 20, 2018. |
Office Action in U.S. Appl. No. 14/622,477 dated Jun. 5, 2018. |
Office Action in U.S. Appl. No. 14/549,057 dated Jun. 15, 2018. |
European Search Report completed Jun. 8, 2018 for EP 15 86 3645. |
Anderson, J.K., “Time Course of Nicotinamide Adenine Dinucleotide Diaphorase Staining after Renal Radiofrequency Ablation Influences Viability Assessment”, Journal of Endourology, vol. 21, Issue 2, Mar. 5, 2007. |
Berthier, J.P., et al., “XeCl Laser Action at Medium Fluences on Biological Tissues: Fluorescence Study and Simulation with a Chemical Solution”, Journal of Photochemistry and Photobiology B: Biology, vol. 5, Issues 3-4, pp. 495-503, May 1990. |
Kistler, P.M., et al., “The Impact of CT Image Integration into an Electroanatomic Mapping System on Clinical Outcomes of Catheter Ablation of Atrial Fibrillation”, Journal of Cardiovascular Electyrophysiology, vol. 17, Issue 10, pp. 1093-1101, Oct. 2006. |
Malchano, Z.J., “Integration of Cardiac CT/MR Imaging with Three-Dimensional Electroanatomical Mapping to Guide Catheter Manipulation in the Left Atrium: Implications for Catheter Ablation of Atrial Fibrillation”, Journal of Cardiovascular Electrophysiology, vol. 17, Issue 11, pp. 1221-1229, Nov. 2006. |
Naito, H., et al., “Use of Nadh Fluorescence Imaging for Early Detection of Energy Failure and a Prediction of Infarction”, Critical Care Medicine, vol. 39, Issue 12, pp. 40, Dec. 2011. |
Smith, S., et al., “Imaging Appearances Following Thermal Ablation”, Clinical Radiology, vol. 63, Issue 1, pp. 1-11, Jan. 2008. |
Sra, J., et al., “Computed Tomography-Fluoroscopy Image Integration-Guided Catheter Ablation of Atrial Fibrillation”, Journal of Cardiovascular Electrophysiology, vol. 18, Issue 4, pp. 409-414, Apr. 2007. |
Swift, L.M., et al., “Properties of Blebbistatin for Cardiac Optical Mapping and Other Imaging Applications”, European Journal of Physiology, vol. 464, Issue 5, pp. 503-512, Nov. 2012. |
Weight, C.J., et al., “Correlation of Radiographic Imaging and Histopathology Following Cryoablation and Radio Frequency Ablation for Renal Tumors”, The Journal of Urology, vol. 179, Issue 4, pp. 1277-1283, Apr. 2008. |
European Search Report completed May 26, 2015 for EP 12 83 4435. |
International Search Report dated Jan. 19, 2016 for PCT/US2015/058824. |
Office Action in U.S. Appl. No. 14/689,475 dated Aug. 23, 2017. |
Office Action in U.S. Appl. No. 14/622,477 dated Oct. 5, 2017. |
Swift, Luther Mitchell, “Real-Time Visualization of Cardiac Ablation Lesions Using Endogenous NADH Fluorescence and Reflected Light”, A dissertation submitted to the Faculty of the Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Jul. 23, 2013. |
Office Action in U.S. Appl. No. 14/931,325 dated Mar. 22, 2018. |
Anderson et al. “Real-time spectroscopic assessment of thermal damage: implications for radiofrequency ablation”. J Gastrointest Surg. 2004; 8: 660-669. |
Asfour et al, “Signal decomposition of transmembrane voltage-sensitive dye fluorescence using a multiresolution wavelet analysis” IEEE Trans Biomed Eng. 2011; 58: 2083-2093. |
Boersma et al,.“Pulmonary vein isolation by duty-cycled bipolar and unipolar radiofrequency energy with a multielectrode ablation catheter”. Heart Rhythm5:1635-1642, 2008. |
Buch et al. “Epicardial catheter ablation of atrial fibrillation.” Minerva Med. 2009; 100: 151-157. |
Cancio et al., “Hyperspectral Imaging: A New Approach to the Diagnosis of Hemorrhagic Shock”, The Journal of Trauma, 2006, vol. 60, No. 5: 1087-1095. |
Chance et al, “Fluorescence measurements of mitochondrial pyridine nucleotide in aerobiosis and anaerobiosis” Nature. 1959; 184: 931-4. |
Coremans et al, “Pretransplantation assessment of renal viability with NADH fluorimetry”, Kidney International, vol. 57, (2000), pp. 671-683. |
D'Avila A. “Epicardial catheter ablation of ventricular tachycardia.” Heart Rhythm. 2008; 5: S73-5. |
Demos et al, “Real time assessment of RF cardiac tissue ablation with optical spectroscopy”, Opt Express. 2008; 16: 15286-15296. |
Dickfeld et al, “Characterization of Radiofrequency Ablation Lesions With Gadolinium-Enhanced Cardiovascular Magnetic Resonance Imaging” J Am Coll Cardiol. 2006; 47: 370-378. |
Dukkipati et al, “Visual balloon-guided point-by-point ablation: reliable, reproducible, and persistent pulmonary vein isolation”, Circ Arrhythm Electrophysiol. 2010; 3: 266-273. |
Dumas et al, “Myocardial electrical impedance as a predictor of the quality of RF-induced linear lesions.” Physiol Meas. 2008; 29: 1195-1207. |
Fleming et al, “Real-time monitoring of cardiac redio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter”, Journal of Biomedical Optics, May/Jun. 2010, vol. 15(3). |
Fleming et al, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence bmography” J Biomed Opt. 2010; 15: 041510. |
Girard et al, “Contrast-enhanced C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle”, JACC Cardiovasc Imaging. 2011; 4: 259-268. |
Grimard et al, “Percutaneous epicardial radiofrequency ablation of ventricular arrhythmias after failure of endocardial approach: a 9-year experience” J Cardiovasc Electrophysiol. 2010; 21: 56-61. |
Henz et al, “Simultaneous epicardial and endocardial substrate mapping and radiofrequency catheter ablation as first-line treatment for ventricular tachycardia and frequent ICD shocks in chronic chagasic cardiomyopathy” J Interv Card Electrophysiol. 2009; 26: 195-205. |
Himel et al, “Translesion stimulus-excitation delay indicates quality of linear lesions produced by radiofrequency ablation in rabbit hearts”, Physiol Meas. 2007; 28: 611-623. |
Kay et al, “Locations of ectopic beats coincide with spatial gradients of NADH in a regional model of low-flow reperfusion”, Am J Physiol Heart Circ Physiol. 2008; 294: H2400-5. |
Khoury et al., “Localizing and Quantifying Ablation Lesions in the Left Ventricle by Myocardial Contrast Echocardiography”, J Cardiovasc Electrophysiol. 2004; 15: 1078-1087. |
Kim et al, “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy”, Nat Mater. 2011; 10: 316-323. |
Lardo, et al “Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging”, Circulation. 2000; 102: 698-705. |
Li, “Multiphoton Microscopy of Live Tissues with Ultraviolet Autofluorescence”, IEEE Journal of Selected Topic in Quantam Electronics , May/Jun. 2010, vol. 16, Issue 3, pp. 516-513. |
Lo et al, “Three-dimensional electroanatomic mapping systems in catheter ablation of atrial fibrillation”, Circ J. 2010; 74: 18-23. |
Mayevsky et al. “Oxidation-reduction states of NADH in vivo: from animals to clinical use”, Mitochondrion. 2007; 7: 330-339. |
Melby et al, “Atrial fibrillation propagates through gaps in ablation lines: implications for ablative treatment of atrial brillation”, Heart Rhythm. 2008; 5: 1296-1301. |
Menes et al, “Laparoscopy: searching for the proper insufflation gas” Surg Endosc. 2000; 14: 1050-1056. |
Meng et al “A comparative study of fibroid ablation rates using radio frequency or high-intensity focused ultrasound”, Cardiovasc Intervent Radiol. 2010; 33: 794-799. |
Mercader et al, “NADH as an Endogenous Marker of Cardiac Tissue Injury at the Site of Radiofrequency Ablation”, The George Washington University, Washington DC, Mar. 18, 2011. |
Mercader et al, “Use of endogenous NADH fluorescence for real-time in situ visualization of epicardial radiofrequency ablation lesions and gaps”, Am J Physiol Heart Circ Physiol, May 2012; 302(10): H2131-H2138. |
Nath et al, “Basic aspects of radiofrequency catheter ablation”, J Cardiovasc Electrophysiol. 1994; 5: 863-876. |
Niu et al, “An acute experimental model demonstrating 2 different forms of sustained atrial tachyarrhythmias”. Circ Arrhythm Electrophysiol. 2009; 2: 384-392. |
Perez et al. “Effects of gap geometry on conduction through discontinuous radiofrequency lesions” Circulation. 2006; 113: 1723-1729. |
Ranji et al, “Fluorescence spectroscopy and imaging of myocardial apoptosis”, Journal of Biomedical Optics 11(6), 064036 (Nov./Dec. 2006). |
Ranji et al, “Quantifying Acute Myocardial Injury Using Ratiometric Fluorometry”, IEEE Trans Biomed Eng. May 2009; 56(5): 1556-1563. |
Riess et al, “Altered NADH and improved function by anesthetic and ischemic preconditioning in guinea pig intact hearts”, Am J Physiol Heart Circ Physiol 283; H53-H60, Mar. 14, 2002. |
Roger et al, “American Heart Association Stastics Committee and Stroke Subcommittee. Heart disease and stroke statistics—2011 update; a report from American Heart Association”, Circulation 2011; 123: e18-e209. |
Sethuraman et al., “Spectroscopic Intravascular Photoacoustic Imaging to Differentiate Atherosclerotic Plaques”, Optics Express, vol. 16, No. 5, pp. 3362-3367, Mar. 3, 2008. |
Sosa et al, “Epicardial mapping and ablation techniques to control ventricular tachycardia”. J Cardiovasc Electrophysiol. 2005; 16: 449-452. |
Swartling et al, “Changes in tissue optical properties due to radio-frequency ablation of myocardium”, Med Biol Eng Comput. 2003; 41: 403-409. |
Swift et al, “Controlled regional hypoperfusion in Langendorff heart preparations”. Physiol Meas. 2008; 29: 269-79. |
Van Haesendonck C, Sinnaeve A, Willems R, Vandenbulcke F, Stroobandt R, .“Biophysical and electrical aspects of radiofrequency catheter ablation”. Acta Cardiol 50: 105-115, 1995. |
Vetterlein et al, “Extent of damage in aschemic, nonreperfused myocardium of anesthetized rats”, Am J Physiol Heart Circ Physiol 285: H755-H765, 2003. |
Vo-Dinh et al., “A Hyperspectral Imaging System for In Vivo Optical Diagnostics”, IEEE Engineering in Medicine and Biology Magazine, pp. 40-49, Sep./Oct. 2004. |
Yokoyama et al, “Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus”, Circ Arrhythm Electrophysiol. 2008; 1: 354-362. |
Zuzak et al., “Characterization of a Near-Infrared Laparoscopic Hyperspectral Imaging System for Minimally Invasive Surgery”, Analytical Chemistry, vol. 79, No. 12, pp. 4709-4715, Jun. 15, 2007. |
Office Action in U.S. Appl. No. 13/624,899 dated Oct. 2, 2014. |
Office Action in U.S. Appl. No. 13/624,902 dated Oct. 2, 2014. |
Office Action in U.S. Appl. No. 14/549,057 dated Dec. 13, 2018. |
Office Action in U.S. Appl. No. 14/622,477 dated Dec. 19, 2018. |
Office Action in U.S. Appl. No. 15/986,970 dated Jan. 10, 2019. |
Office Action in U.S. Appl. No. 14/931,262 dated Jan. 11, 2019. |
Office Action in U.S. Appl. No. 16/167,933 dated Jan. 11, 2019. |
Office Action in U.S. Appl. No. 14/541,991 dated Jan. 24, 2019. |
Office Action in U.S. Appl. No. 14/952,048 dated Mar. 1, 2019. |
Office Action in U.S. Appl. No. 14/931,262 dated Aug. 22, 2019. |
Office Action in U.S. Appl. No. 14/622,477 dated Sep. 5, 2019. |
Office Action in U.S. Appl. No. 15/986,970 dated Sep. 16, 2019. |
Office Action in U.S. Appl. No. 16/167,933 dated Sep. 25, 2019. |
Extended European Search Report dated Feb. 20, 2019 for EP 16 828 397.6. |
Office Action in U.S. Appl. No. 14/952,048 dated Oct. 30, 2019. |
Office Action in U.S. Appl. No. 14/541,991 dated Mar. 19, 2020. |
Number | Date | Country | |
---|---|---|---|
20170014202 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62194276 | Jul 2015 | US |