The present invention relates to methods and apparatus for measuring temperatures at an ablation site within a body space of a patient body, such as within a joint. More particularly, the present invention relates to methods and apparatus for measuring temperatures of an electrically conductive fluid within a body space during ablation, such as within a joint space, without being significantly influenced by the surgical effect initiated at the active electrode.
The field of electrosurgery includes a number of loosely related surgical techniques which have in common the application of electrical energy to modify the structure or integrity of patient tissue. Electrosurgical procedures usually operate through the application of very high frequency currents to cut or ablate tissue structures, where the operation can be monopolar or bipolar. Monopolar techniques rely on external grounding of the patient, where the surgical device defines only a single electrode pole. Bipolar devices comprise both electrodes for the application of current between their surfaces.
Electrosurgical procedures and techniques are particularly advantageous since they generally reduce patient bleeding and trauma associated with cutting operations. Additionally, electrosurgical ablation procedures, where tissue surfaces and volume may be reshaped, cannot be duplicated through other treatment modalities.
Present electrosurgical techniques used for tissue ablation suffer from an inability to control the depth of necrosis in the tissue being treated. Most electrosurgical devices rely on creation of an electric arc between the treating electrode and the tissue being cut or ablated to cause the desired localized heating. Such arcs, however, often create very high temperatures causing a depth of necrosis greater than 500 μm, frequently greater than 800 μm, and sometimes as great as 1700 μm. The inability to control such depth of necrosis is a significant disadvantage in using electrosurgical techniques for tissue ablation, particularly in arthroscopic procedures for ablating and/or reshaping fibrocartilage, articular cartilage, meniscal tissue, and the like.
Generally, radiofrequency (RF) energy is extensively used during arthroscopic procedures because it provides efficient tissue resection and coagulation and relatively easy access to the target tissues through a portal or cannula. However, a typical phenomenon associated with the use of RF during these procedures is that the currents used to induce the surgical effect can result in heating of electrically conductive fluid used during the procedure to provide for the ablation and/or to irrigate the treatment site. If the temperature of this fluid were allowed to increase above a threshold temperature value, the heated fluid could result in undesired necrosis or damage to surrounding neuromuscular and/or soft tissue structures.
Previous attempts to mitigate these damaging effects have included either limiting the power output of the RF generator or to include a suction lumen on the distal tip of the electrosurgical device to continuously remove the affected fluid from the surgical site and thereby reduce the overall temperature. These solutions may be effective but are limited and they do not allow for direct feedback based upon the actual temperature of the fluid within the joint space.
There have been numerous RF based systems introduced into the market that make use of a temperature sensor in order to monitor the temperature of tissue at or near the electrode. However, these systems do not include any mechanisms to monitor the temperature of the fluid within a body space, such as a joint space.
In monitoring the temperature of an electrically conductive fluid irrigating a body or joint space wherein an ablative process is occurring, one or more temperature sensors may be positioned along the probe to measure the temperature of the electrically conductive fluid itself. Such a device may generally comprise an electrosurgical probe having a shaft with a distal end and a proximal end, the probe further comprising an active electrode terminal disposed near the distal end, a high frequency power supply where the high frequency power supply is coupled to the active electrode terminal and a return electrode terminal, a fluid suction element for aspirating electrically conductive fluid between the active electrode terminal and the tissue, and a temperature sensor for measuring the temperature of the electrically conductive fluid where the temperature sensor may be spaced a distance away, e.g., 5 mm, from the distal tip or electrode structure.
The temperature sensor may comprise any number of sensors, e.g., thermocouple, thermistor, resistance temperature detector (RTD), etc. In particular, temperature sensor may comprise a T-type thermocouple as these sensors are well-established for use in such probes.
In use, once the electrode assembly has been desirably positioned within the body space or joint and the electrically conductive fluid has been delivered to the targeted tissue site within the body or joint space, a high frequency voltage may be applied at the electrode assembly for conduction through the electrically conductive fluid. The one or more temperature sensors positioned proximally of the electrode assembly may be used to sense a temperature of the conductive fluid itself while remaining unaffected or uninfluenced by the electrical activity from the electrodes. Optionally, the sensed temperature may be utilized to subsequently control or affect the high frequency voltage applied between the active electrode terminal and the return electrode.
To reduce or eliminate the temperature influence from an active electrode during tissue treatment, the sensor is desirably distanced from the electrode structure and may accordingly be positioned proximally along the shaft of the probe. In one example shown, the distance of the sensor removed from the electrode is at least 5 mm but may also be less than or greater than this, as practicable. With the sensor positioned accordingly, the sensor may measure the temperature of the infused electrically conductive fluid surrounding the probe and sensor as the temperature of the fluid is indicative of the temperature of the surrounding tissue or joint space within which the probe may be positioned for treatment. The fluid temperature may thus be measured without regard to the heat energy generated by the electrode structure of the probe.
The temperature sensor may be mounted directly upon the shaft although in probes having a suction lumen, the inflow and/or outflow of fluid and gas through the underlying suction lumen may affect the temperature sensed by the sensor. Thus, a thermally insulative layer such as heat shrink tubing or other insulation (e.g., comprised of thermoplastics, such as polyolefin, polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), etc.) may be placed between the temperature sensor and outer surface of the probe. The sensor may be secured directly to the probe and/or underlying layer via another insulative layer overlying the sensor and conducting wire coupled to the sensor. The addition of the overlying layer, which may be comprised of any of the materials mentioned above, may also electrically isolate the temperature sensor from its surrounding fluid environment to prevent or inhibit electrical noise from being introduced into the temperature measurement circuit. The overlying layer may be an adhesive lined to further isolate the sensor. Additionally and/or alternatively, temperature sensor may be isolated and secured to the underlying layer by an adhesive, e.g., epoxy or cyanoacrylate glue, which may be adhered directly upon sensor.
In another embodiment, more than one sensor may be positioned around the shaft to obtain multiple readings of the fluid temperature. In yet another variation, the temperature sensor may be integrated along the probe shaft such that the sensor may be recessed along the shaft surface and the conducting wire may be passed through a lumen defined through the probe. In yet another variation, for probes having a suction lumen for withdrawing the electrically conductive fluid from the body or joint space, a temperature sensor may be alternatively positioned within the suction lumen itself.
Independently from or in addition to the temperature sensing mechanisms in or along the probe, the power source and controller may also be configured for determining, monitoring, and/or controlling a fluid temperature within the body or joint space under treatment. The one or more conducting wires from their respective temperature sensors may be routed through the cable and into electrical communication with an analog-to-digital (ADC) converter which may convert the output of the temperature sensor to a digital value for communication with the microcontroller. The measured and converted temperature value may be compared by the microcontroller to a predetermined temperature limit pre-programmed or stored within the microcontroller such that if the measured temperature value of the body or joint space exceeds this predetermined limit, an alarm or indicator may be generated and/or the RF output may be disabled or reduced. Additionally and/or alternatively, the microcontroller may be programmed to set a particular temperature limit depending upon the type of device that is coupled to the controller.
Furthermore, the microcontroller may also be programmed to allow the user to select from specific tissue or procedure types, e.g., ablation of cartilage or coagulation of soft tissues, etc. Each particular tissue type and/or procedure may have a programmed temperature limit pre-set in advance depending upon the sensitivity of the particular anatomy to injury due to an elevation in fluid temperature.
In additional embodiments, the microcontroller may be programmed to monitor the exposure of a body or joint space to a specific elevated fluid temperature level rather than limiting the treatment temperature upon the instantaneous measured temperature value. For example, as the fluid temperature increases during treatment, tissue necrosis typically occurs more rapidly; thus, the microcontroller may be programmed to generate an alarm or indication based upon a combination of time-temperature exposure.
In yet another embodiment, the microcontroller may be programmed to incorporate a set of multiple progressive temperature limits. A first temperature limit may be programmed whereby if the measured temperature rise of fluid irrigating the body or joint space exceeds the first limit, an alarm or indication may be automatically generated by the microcontroller to alert the user. A second temperature limit may also be programmed whereby if the measured temperature of fluid irrigating the body or joint space exceeded the second limit, the microcontroller may be programmed to reduce or deactivate the RF output of the electrode to mitigate the risk of injury to the patient.
Additionally and/or alternatively, the controller may be further configured to interface directly with a fluid pump which may be configured to provide control of both electrically conductive fluid in-flow to the body or joint space as well as out-flow from the body or joint space. The measured temperature within the body or joint space may be monitored and utilized as a control parameter for the fluid pump whereby the fluid in-flow and/or out-flow may be regulated to maintain a temperature of the fluid irrigating the body or joint space within a specified range or below a temperature limit where potential injury could occur.
Before the present invention is described in detail, it is to be understood that this invention is not limited to particular variations set forth herein as various changes or modifications may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention. As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events. Furthermore, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range is encompassed within the invention. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein.
All existing subject matter mentioned herein (e.g., publications, patents, patent applications and hardware) is incorporated by reference herein in its entirety except insofar as the subject matter may conflict with that of the present invention (in which case what is present herein shall prevail). The referenced items are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such material by virtue of prior invention.
Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Last, it is to be appreciated that unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
The treatment device of the present invention may have a variety of configurations. However, one variation of the device employs a treatment device using Coblation® technology.
The assignee of the present invention developed Coblation® technology. Coblation® technology involves the application of a high frequency voltage difference between one or more active electrode(s) and one or more return electrode(s) to develop high electric field intensities in the vicinity of the target tissue. The high electric field intensities may be generated by applying a high frequency voltage that is sufficient to vaporize an electrically conductive fluid over at least a portion of the active electrode(s) in the region between the tip of the active electrode(s) and the target tissue. The electrically conductive fluid may be a liquid or gas, such as isotonic saline, blood, extracelluar or intracellular fluid, delivered to, or already present at, the target site, or a viscous fluid, such as a gel, applied to the target site.
When the conductive fluid is heated enough such that atoms vaporize off the surface faster than they recondense, a gas is formed. When the gas is sufficiently heated such that the atoms collide with each other causing a release of electrons in the process, an ionized gas or plasma is formed (the so-called “fourth state of matter”). Generally speaking, plasmas may be formed by heating a gas and ionizing the gas by driving an electric current through it, or by shining radio waves into the gas. These methods of plasma formation give energy to free electrons in the plasma directly, and then electron-atom collisions liberate more electrons, and the process cascades until the desired degree of ionization is achieved. A more complete description of plasma can be found in Plasma Physics, by R. J. Goldston and P. H. Rutherford of the Plasma Physics Laboratory of Princeton University (1995), the complete disclosure of which is incorporated herein by reference.
As the density of the plasma or vapor layer becomes sufficiently low (i.e., less than approximately 1020 atoms/cm3 for aqueous solutions), the electron mean free path increases to enable subsequently injected electrons to cause impact ionization within the vapor layer. Once the ionic particles in the plasma layer have sufficient energy, they accelerate towards the target tissue. Energy evolved by the energetic electrons (e.g., 3.5 eV to 5 eV) can subsequently bombard a molecule and break its bonds, dissociating a molecule into free radicals, which then combine into final gaseous or liquid species. Often, the electrons carry the electrical current or absorb the radio waves and, therefore, are hotter than the ions. Thus, the electrons, which are carried away from the tissue towards the return electrode, carry most of the plasma's heat with them, allowing the ions to break apart the tissue molecules in a substantially non-thermal manner.
By means of this molecular dissociation (rather than thermal evaporation or carbonization), the target tissue structure is volumetrically removed through molecular disintegration of larger organic molecules into smaller molecules and/or atoms, such as hydrogen, oxygen, oxides of carbon, hydrocarbons and nitrogen compounds. This molecular disintegration completely removes the tissue structure, as opposed to dehydrating the tissue material by the removal of liquid within the cells of the tissue and extracellular fluids, as is typically the case with electrosurgical desiccation and vaporization. A more detailed description of this phenomena can be found in commonly assigned U.S. Pat. No. 5,697,882 the complete disclosure of which is incorporated herein by reference.
In some applications of the Coblation® technology, high frequency (RF) electrical energy is applied in an electrically conducting media environment to shrink or remove (i.e., resect, cut, or ablate) a tissue structure and to seal transected vessels within the region of the target tissue. Coblation® technology is also useful for sealing larger arterial vessels, e.g., on the order of about 1 mm in diameter. In such applications, a high frequency power supply is provided having an ablation mode, wherein a first voltage is applied to an active electrode sufficient to effect molecular dissociation or disintegration of the tissue, and a coagulation mode, wherein a second, lower voltage is applied to an active electrode (either the same or a different electrode) sufficient to heat, shrink, and/or achieve hemostasis of severed vessels within the tissue.
The amount of energy produced by the Coblation® device may be varied by adjusting a variety of factors, such as: the number of active electrodes; electrode size and spacing; electrode surface area; asperities and sharp edges on the electrode surfaces; electrode materials; applied voltage and power; current limiting means, such as inductors; electrical conductivity of the fluid in contact with the electrodes; density of the fluid; and other factors. Accordingly, these factors can be manipulated to control the energy level of the excited electrons. Since different tissue structures have different molecular bonds, the Coblation® device may be configured to produce energy sufficient to break the molecular bonds of certain tissue but insufficient to break the molecular bonds of other tissue. For example, fatty tissue (e.g., adipose) has double bonds that require an energy level substantially higher than 4 eV to 5 eV (typically on the order of about 8 eV) to break. Accordingly, the Coblation® technology generally does not ablate or remove such fatty tissue; however, it may be used to effectively ablate cells to release the inner fat content in a liquid form. Of course, factors may be changed such that these double bonds can also be broken in a similar fashion as the single bonds (e.g., increasing voltage or changing the electrode configuration to increase the current density at the electrode tips). A more complete description of this phenomena can be found in commonly assigned U.S. Pat. Nos. 6,355,032, 6,149,120 and 6,296,136, the complete disclosures of which are incorporated herein by reference.
The active electrode(s) of a Coblation® device may be supported within or by an inorganic insulating support positioned near the distal end of the instrument shaft. The return electrode may be located on the instrument shaft, on another instrument or on the external surface of the patient (i.e., a dispersive pad). The proximal end of the instrument(s) will include the appropriate electrical connections for coupling the return electrode(s) and the active electrode(s) to a high frequency power supply, such as an electrosurgical generator.
In one example of a Coblation® device for use with the embodiments disclosed herein, the return electrode of the device is typically spaced proximally from the active electrode(s) a suitable distance to avoid electrical shorting between the active and return electrodes in the presence of electrically conductive fluid. In many cases, the distal edge of the exposed surface of the return electrode is spaced about 0.5 mm to 25 mm from the proximal edge of the exposed surface of the active electrode(s), preferably about 1.0 mm to 5.0 mm. Of course, this distance may vary with different voltage ranges, conductive fluids, and depending on the proximity of tissue structures to active and return electrodes. The return electrode will typically have an exposed length in the range of about 1 mm to 20 mm.
A Coblation® treatment device for use according to the present embodiments may use a single active electrode or an array of active electrodes spaced around the distal surface of a catheter or probe. In the latter embodiment, the electrode array usually includes a plurality of independently current-limited and/or power-controlled active electrodes to apply electrical energy selectively to the target tissue while limiting the unwanted application of electrical energy to the surrounding tissue and environment resulting from power dissipation into surrounding electrically conductive fluids, such as blood, normal saline, and the like. The active electrodes may be independently current-limited by isolating the terminals from each other and connecting each terminal to a separate power source that is isolated from the other active electrodes. Alternatively, the active electrodes may be connected to each other at either the proximal or distal ends of the catheter to form a single wire that couples to a power source.
In one configuration, each individual active electrode in the electrode array is electrically insulated from all other active electrodes in the array within the instrument and is connected to a power source which is isolated from each of the other active electrodes in the array or to circuitry which limits or interrupts current flow to the active electrode when low resistivity material (e.g., blood, electrically conductive saline irrigant or electrically conductive gel) causes a lower impedance path between the return electrode and the individual active electrode. The isolated power sources for each individual active electrode may be separate power supply circuits having internal impedance characteristics which limit power to the associated active electrode when a low impedance return path is encountered. By way of example, the isolated power source may be a user selectable constant current source. In this embodiment, lower impedance paths will automatically result in lower resistive heating levels since the heating is proportional to the square of the operating current times the impedance. Alternatively, a single power source may be connected to each of the active electrodes through independently actuatable switches, or by independent current limiting elements, such as inductors, capacitors, resistors and/or combinations thereof. The current limiting elements may be provided in the instrument, connectors, cable, controller, or along the conductive path from the controller to the distal tip of the instrument. Alternatively, the resistance and/or capacitance may occur on the surface of the active electrode(s) due to oxide layers which form selected active electrodes (e.g., titanium or a resistive coating on the surface of metal, such as platinum).
The Coblation® device is not limited to electrically isolated active electrodes, or even to a plurality of active electrodes. For example, the array of active electrodes may be connected to a single lead that extends through the catheter shaft to a power source of high frequency current.
The voltage difference applied between the return electrode(s) and the active electrode(s) will be at high or radio frequency, typically between about 5 kHz and 20 MHz, usually being between about 30 kHz and 2.5 MHz, preferably being between about 50 kHz and 500 kHz, often less than 350 kHz, and often between about 100 kHz and 200 kHz. In some applications, applicant has found that a frequency of about 100 kHz is useful because the tissue impedance is much greater at this frequency. In other applications, such as procedures in or around the heart or head and neck, higher frequencies may be desirable (e.g., 400-600 kHz) to minimize low frequency current flow into the heart or the nerves of the head and neck.
The RMS (root mean square) voltage applied will usually be in the range from about 5 volts to 1000 volts, preferably being in the range from about 10 volts to 500 volts, often between about 150 volts to 400 volts depending on the active electrode size, the operating frequency and the operation mode of the particular procedure or desired effect on the tissue (i.e., contraction, coagulation, cutting or ablation.)
Typically, the peak-to-peak voltage for ablation or cutting with a square wave form will be in the range of 10 volts to 2000 volts and preferably in the range of 100 volts to 1800 volts and more preferably in the range of about 300 volts to 1500 volts, often in the range of about 300 volts to 800 volts peak to peak (again, depending on the electrode size, number of electrons, the operating frequency and the operation mode). Lower peak-to-peak voltages will be used for tissue coagulation, thermal heating of tissue, or collagen contraction and will typically be in the range from 50 to 1500, preferably 100 to 1000 and more preferably 120 to 400 volts peak-to-peak (again, these values are computed using a square wave form). Higher peak-to-peak voltages, e.g., greater than about 800 volts peak-to-peak, may be desirable for ablation of harder material, such as bone, depending on other factors, such as the electrode geometries and the composition of the conductive fluid.
As discussed above, the voltage is usually delivered in a series of voltage pulses or alternating current of time varying voltage amplitude with a sufficiently high frequency (e.g., on the order of 5 kHz to 20 MHz) such that the voltage is effectively applied continuously (as compared with, e.g., lasers claiming small depths of necrosis, which are generally pulsed about 10 Hz to 20 Hz). In addition, the duty cycle (i.e., cumulative time in any one-second interval that energy is applied) is on the order of about 50% for the present invention, as compared with pulsed lasers which typically have a duty cycle of about 0.0001%.
The preferred power source may deliver a high frequency current selectable to generate average power levels ranging from several milliwatts to tens of watts per electrode, depending on the volume of target tissue being treated, and/or the maximum allowed temperature selected for the instrument tip. The power source allows the user to select the voltage level according to the specific requirements of a particular neurosurgery procedure, cardiac surgery, arthroscopic surgery, dermatological procedure, ophthalmic procedures, open surgery or other endoscopic surgery procedure. For cardiac procedures and potentially for neurosurgery, the power source may have an additional filter, for filtering leakage voltages at frequencies below 100 kHz, particularly frequencies around 60 kHz. Alternatively, a power source having a higher operating frequency, e.g., 300 kHz to 600 kHz may be used in certain procedures in which stray low frequency currents may be problematic. A description of one suitable power source can be found in commonly assigned U.S. Pat. Nos. 6,142,992 and 6,235,020, the complete disclosure of both patents are incorporated herein by reference for all purposes.
The power source may be current limited or otherwise controlled so that undesired heating of the target tissue or surrounding (non-target) tissue does not occur. In a presently preferred embodiment of the present invention, current limiting inductors are placed in series with each independent active electrode, where the inductance of the inductor is in the range of 10 μH to 50,000 μH, depending on the electrical properties of the target tissue, the desired tissue heating rate and the operating frequency. Alternatively, capacitor-inductor (LC) circuit structures may be employed, as described previously in U.S. Pat. No. 5,697,909, the complete disclosure of which is incorporated herein by reference. Additionally, current-limiting resistors may be selected. Preferably, these resistors will have a large positive temperature coefficient of resistance so that, as the current level begins to rise for any individual active electrode in contact with a low resistance medium (e.g., saline irrigant or blood), the resistance of the current limiting resistor increases significantly, thereby minimizing the power delivery from said active electrode into the low resistance medium (e.g., saline irrigant or blood).
Moreover, other treatment modalities (e.g., laser, chemical, other RF devices, etc.) may be used in the inventive method either in place of the Coblation® technology or in addition thereto.
Referring now to
Referring now to
Referring now to
In certain embodiments, active electrode 12 may comprise an active screen electrode 40. Screen electrode 40 may have a variety of different shapes, such as the shapes shown in
In the representative embodiment shown in
Further details and examples of instruments which may be utilized herein are described in detail in U.S. Pat. Nos. 6,254600, 6,557,559, and 7,241,293 which are incorporated herein by reference in their entirety.
During the process, the gases 514 will be aspirated through a suction opening and suction lumen to a vacuum source (not shown). In addition, excess electrically conductive fluid, and other fluids (e.g., blood) will be aspirated from the target site 500 to facilitate the surgeon's view. During ablation of the tissue, the residual heat generated by the current flux lines 510 (typically less than 150° C.) between electrode terminals 504 and return electrode 511 will usually be sufficient to coagulate any severed blood vessels at the site. If not, the surgeon may switch the power supply (not shown) into the coagulation mode by lowering the voltage to a level below the threshold for fluid vaporization, as discussed above. This simultaneous hemostasis results in less bleeding and facilitates the surgeon's ability to perform the procedure.
Because of the energy generated and applied during treatment within the patient body with the above-described probe 10 or other variations thereof, difficulties arise in determining, monitoring, and/or limiting the actual temperature of electrically conductive fluid irrigating the treated body space, joint, or tissue region. Accordingly, probe 10 may include mechanisms for measuring a temperature of the electrically conductive fluid itself without being overly influenced by the surgical effect occurring at the active electrode 12. Turning to
To reduce or eliminate the temperature-monitoring influence from an active electrode 12 during tissue treatment, sensor 70 is desirably distanced from both the active electrode 12 and return electrode 17 and may accordingly be positioned proximally along the shaft 13 of probe 10. In the example shown, the distance L1 of sensor 70 removed from return electrode 17 is at least 5 mm but may also be less than or greater than this distance, as practicable. With sensor 70 positioned accordingly, the sensor 70 may measure the temperature of the infused electrically conductive fluid/irrigant surrounding the probe 10 and sensor 70 as the temperature of the fluid is indicative of the temperature of the surrounding tissue or joint space within which probe 10 may be positioned for treatment. The fluid temperature may thus be measured without regard to any energy generated by the current traveling between active electrode 12 and return electrode 17 of probe 10.
Temperature sensor 70 may be mounted directly upon the shaft. However, certain embodiments of probe 10 may have a suction lumen (see
Additionally and/or alternatively, temperature sensor 70 may be isolated and secured to the underlying layer 74 by an adhesive 78, e.g., epoxy or cyanoacrylate glue, which may be adhered directly upon sensor 70, as illustrated in the detail side view of
In another embodiment, a side view of
In yet another variation, a side view of
Referring now to
Independently from or in addition to the temperature sensing mechanisms in or along the probe 10, the power supply/controller 110 may also be configured for determining and/or controlling a fluid temperature within the body or joint space under treatment.
Furthermore, microcontroller 92 may also be programmed to allow the user to select from specific tissue or procedure types, e.g., ablation of cartilage or coagulation of soft tissues, etc. Each particular tissue type and/or procedure may have a programmed temperature limit pre-set in advance depending upon the sensitivity of the particular anatomy to injury due to an elevation in temperature.
In additional variations, the microcontroller 92 may be programmed to monitor the exposure of a body or joint space to a specific elevated fluid temperature level rather than limiting the treatment temperature upon the instantaneous measured temperature value. For example, as the fluid treatment temperature increases, tissue necrosis typically occurs more rapidly; thus, microcontroller 92 may be programmed to generate an alarm or indication based upon a combination of time-temperature exposure. An exemplary chart 200 is illustrated in
In yet another variation, microcontroller 92 may be programmed to incorporate a set of multiple progressive temperature limits, as shown in the exemplary chart of
Additionally and/or alternatively, controller 110 may be further configured to interface directly with a fluid pump, e.g., an arthroscopy saline pump 220 which provides a controlled in-flow of electrically conductive fluid (e.g., saline) to the body or joint space. Such a fluid pump 220 may be configured to provide control of both electrically conductive fluid in-flow to the body or joint space as well as out-flow from the body or joint space, as shown in the schematic illustration of
The measured temperature 230 of fluid within the body or joint space may be monitored and utilized as a control parameter for the fluid pump 220 whereby the fluid in-flow and/or out-flow may be regulated to maintain a temperature of the body or joint space within a specified range or below a temperature limit where potential injury could occur. An example of this is illustrated in the chart of
Other modifications and variations can be made to the disclosed embodiments without departing from the subject invention. For example, other uses or applications are possible. Similarly, numerous other methods of controlling or characterizing instruments or otherwise treating tissue using electrosurgical probes will be apparent to the skilled artisan. Moreover, the instruments and methods described herein may be utilized in instruments for various regions of the body (e.g., shoulder, knee, etc.) and for other tissue treatment procedures (e.g., chondroplasty, menectomy, etc.). Thus, while the exemplary embodiments have been described in detail, by way of example and for clarity of understanding, a variety of changes, adaptations, and modifications will be obvious to those of skill in the art. Therefore, the scope of the present invention is limited solely by the appended claims.
While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present teachings, including equivalent structures or materials hereafter thought of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
2050904 | Trice | Aug 1936 | A |
2056377 | Wappler | Oct 1939 | A |
2275167 | Bierman | Mar 1942 | A |
3633425 | Sanford | Jan 1972 | A |
3699967 | Anderson | Oct 1972 | A |
3812858 | Oringer | May 1974 | A |
3815604 | O'Malley et al. | Jun 1974 | A |
3828780 | Morrison, Jr. et al. | Aug 1974 | A |
3901242 | Storz | Aug 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3939839 | Curtiss | Feb 1976 | A |
3945375 | Banko | Mar 1976 | A |
3970088 | Morrison | Jul 1976 | A |
4033351 | Hetzel | Jul 1977 | A |
4040426 | Morrison, Jr. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
4116198 | Roos | Sep 1978 | A |
4181131 | Ogiu | Jan 1980 | A |
4184492 | Meinke et al. | Jan 1980 | A |
4202337 | Hren et al. | May 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4228800 | Degler, Jr. et al. | Oct 1980 | A |
4232676 | Herczog | Nov 1980 | A |
4240441 | Khalil | Dec 1980 | A |
4248231 | Herczog et al. | Feb 1981 | A |
4269174 | Adair | May 1981 | A |
4326529 | Doss et al. | Apr 1982 | A |
4381007 | Doss | Apr 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4429694 | McGreevy | Feb 1984 | A |
4474179 | Koch | Oct 1984 | A |
4476862 | Pao | Oct 1984 | A |
4483338 | Bloom et al. | Nov 1984 | A |
4532924 | Auth et al. | Aug 1985 | A |
4548207 | Reimels | Oct 1985 | A |
4567890 | Ohta et al. | Feb 1986 | A |
4582057 | Auth et al. | Apr 1986 | A |
4590934 | Malis et al. | May 1986 | A |
4593691 | Lindstrom et al. | Jun 1986 | A |
4641649 | Walinsky | Feb 1987 | A |
4658817 | Hardy | Apr 1987 | A |
4660571 | Hess et al. | Apr 1987 | A |
4674499 | Pao | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4706667 | Roos | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4719914 | Johnson | Jan 1988 | A |
4727874 | Bowers et al. | Mar 1988 | A |
4736743 | Daikuzono | Apr 1988 | A |
4737678 | Hasegawa | Apr 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4765331 | Petruzzi et al. | Aug 1988 | A |
4785806 | Deckelbaum | Nov 1988 | A |
4785823 | Eggers et al. | Nov 1988 | A |
4805616 | Pao | Feb 1989 | A |
4813429 | Eshel et al. | Mar 1989 | A |
4823791 | D'Amelio et al. | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4832048 | Cohen | May 1989 | A |
4860752 | Turner et al. | Aug 1989 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936301 | Rexroth et al. | Jun 1990 | A |
4940064 | Desai | Jul 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4968314 | Michaels | Nov 1990 | A |
4976709 | Sand | Dec 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5007437 | Sterzer | Apr 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5009656 | Reimels | Apr 1991 | A |
5035696 | Rydell | Jul 1991 | A |
5037421 | Boutacoff et al. | Aug 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5047027 | Rydell | Sep 1991 | A |
5057105 | Malone et al. | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5061266 | Hakky | Oct 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5080660 | Buelna | Jan 1992 | A |
5083565 | Parins | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5084045 | Helenowski | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5092339 | Geddes et al. | Mar 1992 | A |
5093877 | Aita et al. | Mar 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5099840 | Goble | Mar 1992 | A |
5102410 | Dressel | Apr 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
RE33925 | Bales et al. | May 1992 | E |
5112330 | Nishigaki et al. | May 1992 | A |
5122138 | Manwaring | Jun 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5137530 | Sand | Aug 1992 | A |
5147354 | Boutacoff et al. | Sep 1992 | A |
5151098 | Loertscher | Sep 1992 | A |
5156151 | Imran | Oct 1992 | A |
5167659 | Ohtomo et al. | Dec 1992 | A |
5171311 | Rydell et al. | Dec 1992 | A |
5176528 | Fry et al. | Jan 1993 | A |
5178620 | Eggers et al. | Jan 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5192280 | Parins | Mar 1993 | A |
5195959 | Smith | Mar 1993 | A |
5197466 | Marchosky et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5207675 | Canady | May 1993 | A |
5217455 | Tan | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217459 | Kamerling | Jun 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5246438 | Langberg | Sep 1993 | A |
5249585 | Turner et al. | Oct 1993 | A |
5261410 | Alfano et al. | Nov 1993 | A |
5267994 | Gentelia et al. | Dec 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5269794 | Rexroth | Dec 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5277201 | Stern | Jan 1994 | A |
5277696 | Hagen | Jan 1994 | A |
5279299 | Imran | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281218 | Imran | Jan 1994 | A |
5282797 | Chess | Feb 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290273 | Tan | Mar 1994 | A |
5290282 | Casscells | Mar 1994 | A |
5293868 | Nardella | Mar 1994 | A |
5295956 | Bales et al. | Mar 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5300099 | Rudie | Apr 1994 | A |
5301687 | Wong et al. | Apr 1994 | A |
5304169 | Sand | Apr 1994 | A |
5304170 | Green | Apr 1994 | A |
5306238 | Fleenor | Apr 1994 | A |
5312395 | Tan et al. | May 1994 | A |
5312400 | Bales et al. | May 1994 | A |
5314406 | Arias et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5322507 | Costello et al. | Jun 1994 | A |
5324254 | Phillips | Jun 1994 | A |
5330470 | Hagen | Jul 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5334140 | Philips | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5335668 | Nardella | Aug 1994 | A |
5336217 | Buys et al. | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336443 | Odashima | Aug 1994 | A |
5342357 | Nardella | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5370642 | Keller | Dec 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5374261 | Yoon | Dec 1994 | A |
5374265 | Sand | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5380277 | Phillips | Jan 1995 | A |
5380316 | Aita | Jan 1995 | A |
5383876 | Nardella | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5389096 | Aita | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5401272 | Perkins | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5423803 | Tankovich | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5423844 | Miller | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5436566 | Thompson et al. | Jul 1995 | A |
5437662 | Nardella | Aug 1995 | A |
5437664 | Cohen et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5445634 | Keller | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5484435 | Fleenor et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5490850 | Ellman et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496314 | Eggers | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5505710 | Dorsey, III | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5520685 | Wojciechowicz | May 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5542928 | Evans et al. | Aug 1996 | A |
5545161 | Imran | Aug 1996 | A |
5554152 | Aita | Sep 1996 | A |
5556397 | Long et al. | Sep 1996 | A |
5562703 | Desai | Oct 1996 | A |
5567890 | Lindberg et al. | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5579764 | Goldreyer | Dec 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5626576 | Janssen | May 1997 | A |
5633578 | Eggers et al. | May 1997 | A |
5643255 | Organ | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662680 | Desai | Sep 1997 | A |
5676693 | LaFontaine et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700262 | Acosta et al. | Dec 1997 | A |
5713896 | Nardella | Feb 1998 | A |
5725524 | Mulier et al. | Mar 1998 | A |
5743870 | Edwards | Apr 1998 | A |
5743903 | Stern et al. | Apr 1998 | A |
5746746 | Garito et al. | May 1998 | A |
5749869 | Lindenmeier et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5769843 | Abela et al. | Jun 1998 | A |
5769847 | Panescu et al. | Jun 1998 | A |
5782795 | Bays | Jul 1998 | A |
5785705 | Baker | Jul 1998 | A |
5800429 | Edwards | Sep 1998 | A |
5800431 | Brown | Sep 1998 | A |
5807384 | Mueller | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5810809 | Rydell | Sep 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5843019 | Eggers et al. | Dec 1998 | A |
5843078 | Sharkey | Dec 1998 | A |
5855277 | Apps et al. | Jan 1999 | A |
5860951 | Eggers | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5871469 | Eggers et al. | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5873855 | Eggers et al. | Feb 1999 | A |
5876398 | Mulier et al. | Mar 1999 | A |
5885277 | Korth | Mar 1999 | A |
5888198 | Eggers et al. | Mar 1999 | A |
5891095 | Eggers et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895386 | Odell et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5904681 | West, Jr. | May 1999 | A |
5906613 | Mulier et al. | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5954716 | Sharkey et al. | Sep 1999 | A |
5964754 | Osypka | Oct 1999 | A |
5976127 | Lax | Nov 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5980545 | Pacala et al. | Nov 1999 | A |
5984919 | Hilal et al. | Nov 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6007533 | Casscells et al. | Dec 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6016809 | Mulier et al. | Jan 2000 | A |
6024733 | Eggers et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6030383 | Benderev | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6039734 | Goble et al. | Mar 2000 | A |
6042580 | Simpson | Mar 2000 | A |
6045532 | Eggers et al. | Apr 2000 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6063079 | Hovda et al. | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6093186 | Goble et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6102046 | Weinstein et al. | Aug 2000 | A |
6105581 | Eggers et al. | Aug 2000 | A |
6109268 | Thapliyal et al. | Aug 2000 | A |
6110169 | Mueller et al. | Aug 2000 | A |
6117109 | Eggers et al. | Sep 2000 | A |
6126682 | Sharkey et al. | Oct 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6156031 | Aita et al. | Dec 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6159208 | Hovda et al. | Dec 2000 | A |
6168593 | Sharkey et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6179836 | Eggers et al. | Jan 2001 | B1 |
6183469 | Thapliyal et al. | Feb 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6203542 | Ellsberry et al. | Mar 2001 | B1 |
6210402 | Olsen et al. | Apr 2001 | B1 |
6210405 | Gobel et al. | Apr 2001 | B1 |
6214001 | Casscells et al. | Apr 2001 | B1 |
6217575 | DeVore et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228078 | Eggers | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6235020 | Cheng et al. | May 2001 | B1 |
6235023 | Lee et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6264650 | Hovda | Jul 2001 | B1 |
6264652 | Eggers et al. | Jul 2001 | B1 |
6267757 | Aita et al. | Jul 2001 | B1 |
6270460 | McCartan et al. | Aug 2001 | B1 |
6277112 | Underwood et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6296638 | Davison et al. | Oct 2001 | B1 |
6302903 | Mulier et al. | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6308089 | von der Rur et al. | Oct 2001 | B1 |
6309387 | Eggers et al. | Oct 2001 | B1 |
6312408 | Eggers et al. | Nov 2001 | B1 |
6312429 | Burbank et al. | Nov 2001 | B1 |
6315774 | Daniel et al. | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6322549 | Eggers et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6327505 | Medhkour et al. | Dec 2001 | B1 |
6328736 | Mulier et al. | Dec 2001 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6346107 | Cucin | Feb 2002 | B1 |
6355006 | Ryaby et al. | Mar 2002 | B1 |
6355032 | Hovda et al. | Mar 2002 | B1 |
6358248 | Mulier et al. | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6379350 | Sharkey et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
6391025 | Weinstein et al. | May 2002 | B1 |
6391028 | Fanton et al. | May 2002 | B1 |
6398781 | Gobel et al. | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
6416507 | Eggers et al. | Jul 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6432103 | Ellsberry et al. | Aug 2002 | B1 |
6432105 | Ellman et al. | Aug 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6482201 | Olsen et al. | Nov 2002 | B1 |
6482202 | Goble et al. | Nov 2002 | B1 |
6491690 | Gobel et al. | Dec 2002 | B1 |
6497705 | Comben | Dec 2002 | B2 |
6497706 | Burbank et al. | Dec 2002 | B1 |
6510854 | Gobel | Jan 2003 | B2 |
6514250 | Jahns et al. | Feb 2003 | B1 |
6517498 | Burbank et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6530922 | Cosman | Mar 2003 | B2 |
6540741 | Underwood et al. | Apr 2003 | B1 |
6557559 | Eggers et al. | May 2003 | B1 |
6575968 | Eggers et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6578579 | Burnside | Jun 2003 | B2 |
6582423 | Thapliyal et al. | Jun 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6595990 | Weinstein et al. | Jul 2003 | B1 |
6597950 | Linder et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6605085 | Edwards | Aug 2003 | B1 |
6610059 | West, Jr. | Aug 2003 | B1 |
6620156 | Garito et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6632220 | Eggers et al. | Oct 2003 | B1 |
6632230 | Barry | Oct 2003 | B2 |
6645203 | Sharkey et al. | Nov 2003 | B2 |
6663628 | Peters | Dec 2003 | B2 |
6695839 | Sharkey et al. | Feb 2004 | B2 |
6699206 | Burbank et al. | Mar 2004 | B2 |
6699244 | Carranza et al. | Mar 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749608 | Garito et al. | Jun 2004 | B2 |
6763836 | Tasto et al. | Jul 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6796982 | Carmel et al. | Sep 2004 | B2 |
6802842 | Ellman et al. | Oct 2004 | B2 |
6805130 | Tasto et al. | Oct 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6896674 | Woloszko et al. | May 2005 | B1 |
6904303 | Phan et al. | Jun 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6929640 | Underwood et al. | Aug 2005 | B1 |
6949096 | Davison et al. | Sep 2005 | B2 |
6960204 | Eggers et al. | Nov 2005 | B2 |
6974453 | Woloszko et al. | Dec 2005 | B2 |
6979332 | Adams | Dec 2005 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
7004941 | Tvinnereim et al. | Feb 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070596 | Woloszko et al. | Jul 2006 | B1 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7094215 | Davison et al. | Aug 2006 | B2 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7131969 | Hovda et al. | Nov 2006 | B1 |
7150747 | McDonald et al. | Dec 2006 | B1 |
7169143 | Eggers et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7184811 | Phan et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192428 | Eggers et al. | Mar 2007 | B2 |
7201750 | Eggers et al. | Apr 2007 | B1 |
7217268 | Eggers et al. | May 2007 | B2 |
7241293 | Davison | Jul 2007 | B2 |
7258690 | Sutton et al. | Aug 2007 | B2 |
7261712 | Burbank et al. | Aug 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270659 | Hovda et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7297145 | Ormsby et al. | Nov 2007 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7331956 | Hovda et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7357798 | Sharps et al. | Apr 2008 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7419488 | Ciarrocca et al. | Sep 2008 | B2 |
7429260 | Underwood et al. | Sep 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7435247 | Woloszko et al. | Oct 2008 | B2 |
7442191 | Hovda et al. | Oct 2008 | B2 |
7445618 | Eggers et al. | Nov 2008 | B2 |
7449021 | Underwood et al. | Nov 2008 | B2 |
7462178 | Woloszko et al. | Dec 2008 | B2 |
7488295 | Burbank et al. | Feb 2009 | B2 |
7776034 | Kampa | Aug 2010 | B2 |
7819863 | Eggers et al. | Oct 2010 | B2 |
8038670 | McClurken | Oct 2011 | B2 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020049438 | Sharkey et al. | Apr 2002 | A1 |
20020072739 | Lee et al. | Jun 2002 | A1 |
20030013986 | Saadat | Jan 2003 | A1 |
20030088245 | Woloszko et al. | May 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030158545 | Hovda et al. | Aug 2003 | A1 |
20030171743 | Tasto et al. | Sep 2003 | A1 |
20030208196 | Stone | Nov 2003 | A1 |
20030212396 | Eggers et al. | Nov 2003 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040127893 | Hovda | Jul 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050004634 | Hovda et al. | Jan 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050234439 | Underwood et al. | Oct 2005 | A1 |
20050251134 | Woloszko et al. | Nov 2005 | A1 |
20050261754 | Woloszko et al. | Nov 2005 | A1 |
20050288665 | Woloszko et al. | Dec 2005 | A1 |
20060036237 | Davison et al. | Feb 2006 | A1 |
20060095031 | Ormsby | May 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060189971 | Eggers et al. | Aug 2006 | A1 |
20060253117 | Hovda et al. | Nov 2006 | A1 |
20060259025 | Dahla | Nov 2006 | A1 |
20070010808 | Dahla | Jan 2007 | A1 |
20070106288 | Woloszko et al. | May 2007 | A1 |
20070129715 | Eggers et al. | Jun 2007 | A1 |
20070149966 | Dahla et al. | Jun 2007 | A1 |
20070161981 | Sanders et al. | Jul 2007 | A1 |
20070179497 | Eggers et al. | Aug 2007 | A1 |
20070208334 | Woloszko et al. | Sep 2007 | A1 |
20070208335 | Woloszko et al. | Sep 2007 | A1 |
20070213700 | Davison et al. | Sep 2007 | A1 |
20070282323 | Woloszko et al. | Dec 2007 | A1 |
20080021447 | Davison et al. | Jan 2008 | A1 |
20080167645 | Woloszko | Jul 2008 | A1 |
20080167646 | Godara et al. | Jul 2008 | A1 |
20080234673 | Marion et al. | Sep 2008 | A1 |
20080300590 | Horne et al. | Dec 2008 | A1 |
20090138011 | Epstein | May 2009 | A1 |
20090209958 | Davison et al. | Aug 2009 | A1 |
20100042095 | Bigley et al. | Feb 2010 | A1 |
20100204690 | Bigley et al. | Aug 2010 | A1 |
20110077643 | Dahla et al. | Mar 2011 | A1 |
20110077646 | Dahla et al. | Mar 2011 | A1 |
20110270242 | Marion | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2521719 | Nov 1976 | DE |
3930451 | Mar 1991 | DE |
4425015 | Jan 1996 | DE |
296 09 350 | Aug 1996 | DE |
195 37 084 | Apr 1997 | DE |
296 19 029 | Apr 1997 | DE |
19850671 | May 1999 | DE |
10254668 | Jun 2004 | DE |
69822877 | Jan 2005 | DE |
202008000276 | Jun 2008 | DE |
102009057921 | Jun 2010 | DE |
0 502 268 | Sep 1992 | EP |
0 515 867 | Dec 1992 | EP |
543123 | May 1993 | EP |
0 597 463 | May 1994 | EP |
774926 | Mar 1995 | EP |
0 650 701 | May 1995 | EP |
0703461 | Mar 1996 | EP |
0740926 | Nov 1996 | EP |
0 754 437 | Jan 1997 | EP |
923907 | Jun 1999 | EP |
0 694 290 | Nov 2000 | EP |
1149564 | Oct 2001 | EP |
1041933 | Mar 2004 | EP |
2313949 | Jan 1977 | FR |
2037167 | Jul 1980 | GB |
2 308 979 | Jul 1997 | GB |
2 308 980 | Jul 1997 | GB |
2 308 981 | Jul 1997 | GB |
2 327 350 | Jan 1999 | GB |
2 327 351 | Jan 1999 | GB |
2 327 352 | Jan 1999 | GB |
2331247 | May 1999 | GB |
2379878 | Mar 2003 | GB |
2408936 | Jun 2005 | GB |
57-57802 | Apr 1982 | JP |
57-117843 | Jul 1982 | JP |
57-183850 | Nov 1982 | JP |
63-40099 | Aug 1988 | JP |
9-501328 | Feb 1997 | JP |
9003152 | Apr 1990 | WO |
9007303 | Jul 1990 | WO |
9113650 | Sep 1991 | WO |
9221278 | Dec 1992 | WO |
9313816 | Jul 1993 | WO |
9320747 | Oct 1993 | WO |
9403134 | Feb 1994 | WO |
9404220 | Mar 1994 | WO |
9408654 | Apr 1994 | WO |
9410924 | May 1994 | WO |
9414383 | Jul 1994 | WO |
9426228 | Nov 1994 | WO |
9505780 | Mar 1995 | WO |
9505781 | Mar 1995 | WO |
9505867 | Mar 1995 | WO |
9510326 | Apr 1995 | WO |
9530373 | Nov 1995 | WO |
9534259 | Dec 1995 | WO |
9600042 | Jan 1996 | WO |
9607360 | Mar 1996 | WO |
9634568 | Nov 1996 | WO |
9635469 | Nov 1996 | WO |
9639914 | Dec 1996 | WO |
9639962 | Dec 1996 | WO |
9639964 | Dec 1996 | WO |
9639965 | Dec 1996 | WO |
9639967 | Dec 1996 | WO |
9700646 | Jan 1997 | WO |
9700647 | Jan 1997 | WO |
9715238 | May 1997 | WO |
9718765 | May 1997 | WO |
9724073 | Jul 1997 | WO |
9724074 | Jul 1997 | WO |
9724992 | Jul 1997 | WO |
9724993 | Jul 1997 | WO |
9724994 | Jul 1997 | WO |
9725101 | Jul 1997 | WO |
9732551 | Sep 1997 | WO |
9733523 | Sep 1997 | WO |
9734540 | Sep 1997 | WO |
9741786 | Nov 1997 | WO |
9744071 | Nov 1997 | WO |
9748345 | Dec 1997 | WO |
9748346 | Dec 1997 | WO |
9807468 | Feb 1998 | WO |
9814131 | Apr 1998 | WO |
9817185 | Apr 1998 | WO |
9817186 | Apr 1998 | WO |
9827877 | Jul 1998 | WO |
9827879 | Jul 1998 | WO |
9827880 | Jul 1998 | WO |
9830144 | Jul 1998 | WO |
9834550 | Aug 1998 | WO |
9834558 | Aug 1998 | WO |
9838925 | Sep 1998 | WO |
9839038 | Sep 1998 | WO |
9900060 | Jan 1999 | WO |
9920185 | Apr 1999 | WO |
9942037 | Aug 1999 | WO |
9944506 | Sep 1999 | WO |
9951155 | Oct 1999 | WO |
9951158 | Oct 1999 | WO |
0009053 | Feb 2000 | WO |
0126570 | Apr 2001 | WO |
0187154 | May 2001 | WO |
0195819 | Dec 2001 | WO |
0236028 | May 2002 | WO |
02078557 | Oct 2002 | WO |
03024339 | Mar 2003 | WO |
2005125287 | Dec 2005 | WO |
2008073727 | Jun 2008 | WO |
2009094392 | Jul 2009 | WO |
2011071482 | Jun 2011 | WO |
Entry |
---|
EP Search Report for EP 03736488 3 pgs Mailed, Jun. 25, 2009. |
EP Search Report for EP 07118068 3pgs Mailed, Dec. 27, 2010. |
EP Search Report for EP 04778347 4pgs, Feb. 22, 2011. |
PCT International Search Report for PCT/US96/18505, 3 pgs, Mailed Jan. 17, 1997. |
PCT Notif of the Int'l Search Report and Written Opinion for PCT/US09/67001 6 pgs; Mailed Jan. 29, 2010. |
UK Search Report for GB0921635.9 3pgs, Apr. 12, 2010. |
Barry et al., “The Effect of Radiofrequency-generated Thermal Energy on the Mechanical and Histologic Characteristics of the Arterial Wall in Vivo: Implications of Radiofrequency Angioplasty” American Heart Journal vol. 117, pp. 332-341, 1982. |
Codman & Shurtleff, Inc. “The Malis Bipolar Coagulating and Bipolar Cutting System CMC-II” brochure, early, 2 pgs, 1991. |
Codman & Shurtleff, Inc. “The Malis Bipolar Electrosurgical System CMC-III Instruction Manual” , 15 pgs, Jul. 1991. |
Cook et al., “Therapeutic Medical Devices: Application and Design” , Prentice Hall, Inc., 3pgs, 1982. |
Dennis et al. “Evolution of Electrofulguration in Control of Bleeding of Experimental Gastric Ulcers,” Digestive Diseases and Sciences, vol. 24, No. 11, 845-848, Nov. 1979. |
Dobbie, A.K., “The Electrical Aspects of Surgical Diathermy, Bio Medical Engineering” Bio-Medical Engineering vol. 4, pp. 206-216, May 1969. |
Elsasser, V.E. et al., “An Instrument for Transurethral Resection without Leakage of Current” Acta Medicotechnica vol. 24, No. 4, pp. 129-134, 1976. |
Geddes, “Medical Device Accidents: With Illustrative Cases” CRC Press, 3 pgs, 1998. |
Honig, W., “The Mechanism of Cutting in Electrosurgery” IEEE pp. 58-65, 1975. |
Kramolowsky et al. “The Urological App of Electorsurgery” J. of Urology vol. 146, pp. 669-674, 1991. |
Kramolowsky et al. “Use of 5F Bipolar Electrosurgical Probe in Endoscopic Urological Procedures” J. of Urology vol. 143, pp. 275-277, 1990. |
Lee, B et al. “Thermal Compression and Molding of Artherosclerotic Vascular Tissue with Use” JACC vol. 13(5), pp. 1167-1171, 1989. |
Letter from Department of Health to Jerry Malis dated Jan. 24, 1991, 3 pgs. |
Letter from Department of Health to Jerry Malis dated Jul. 25, 1985, 1 pg. |
Letter from Jerry Malis to FDA dated Jul. 25, 1985, 2 pgs. |
Lu, et al., “Electrical Thermal Angioplasty: Catheter Design Features, In Vitro Tissue Ablation Studies and In Vitro Experimental Findings,” Am J. Cardiol vol. 60, pp. 1117-1122, Nov. 1, 1987. |
Malis, L., “Electrosurgery, Technical Note,” J. Neursurg., vol. 85, pp. 970-975, Nov. 1996. |
Malis, L., “Excerpted from a seminar by Leonard I. Malis, M.D. at the 1995 American Association of Neurological Surgeons Meeting,” 1pg. |
Malis, L., “Instrumentation for Microvascular Neurosurgery” Cerebrovascular Surgery, vol. 1, pp. 245-260, 1985. |
Malis, L., “New Trends in Microsurgery and Applied Technology,” Advanced Technology in Neurosurgery, pp. 1-16, 1988. |
Malis, L., “The Value of Irrigation During Bipolar Coagulation” See ARTC 21602, 1 pg, Apr. 9, 1993. |
Nardella, P.C., SPIE 1068: pp. 42-49, Radio Frequency Energy and Impedance Feedback, 1989. |
O'Malley, Schaum's Outline of Theory and Problems of Basic Circuit Analysis, McGraw-Hill, 2nd Ed., pp. 3-5, 1992. |
Olsen MD, Bipolar Laparoscopic Cholecstectomy Lecture (marked confidential), 12 pgs, Oct. 7, 1991. |
Pearce, John A. “Electrosurgery”, pp. 17, 69-75, 87, John Wiley & Sons, New York, 1986. |
Pearce, John A., “Electrosurgery”, Handbook of Biomedical Engineering, chapter 3, Academic Press Inc., N.Y., pp. 98-113, 1988. |
Piercey et al., “Electrosurgical Treatment of Experimental Bleeding Canine Gastric Ulcers” Gastroenterology vol. 74(3), pp. 527-534, 1978. |
Protell et al., “Computer-Assisted Electrocoagulation: Bipolar v. Monopolar in the Treatment of Experimental Canine Gastric Ulcer Bleeding,” Gastroenterology vol. 80, No. 3, pp. 451-455, 1981. |
Ramsey et al., “A Comparison of Bipolar and Monopolar Diathermy Probes in Experimental Animals”, Urological Research vol. 13, pp. 99-102, 1985. |
Selikowitz et al., “Electric Current and Voltage Recordings on the Myocardium During Electrosurgical Procedures in Canines,” Surgery, Gynecology & Obstetrics, vol. 164, pp. 219-224, Mar. 1987. |
Shuman, “Bipolar Versus Monopolar Electrosurgery: Clinical Applications,” Dentistry Today, vol. 20, No. 12, 7 pgs, Dec. 2001. |
Slager et al. “Spark Erosion of Arteriosclerotic Plaques” Z. Kardiol. 76:Suppl. 6, pp. 67-71, 1987. |
Slager et al. “Vaporization of Atherosclerotice Plaques by Spark Erosion” JACC 5(6): pp. 1382-1386, Jun. 1985. |
Stoffels, E. et al., “Investigation on the Interaction Plasma-Bone Tissue”, E-MRS Spring Meeting, 1 pg, Jun. 18-21, 2002. |
Stoffels, E. et al., “Biomedical Applications of Plasmas”, Tutorial presented prior to the 55th Gaseous Electronics Conference in Minneapolis, MN, 41 pgs, Oct. 14, 2002. |
Stoffels, E. et al., “Plasma Interactions with Living Cells”, Eindhoven University of Technology, 1 pg, 2002. |
Stoffels, E. et al., “Superficial Treatment of Mammalian Cells using Plasma Needle”, J. Phys. D: Appl. Phys. 26, pp. 2908-2913, Nov. 19, 2003. |
Stoffels, E. et al., “Plasma Needle”, Eindhoven University of Technology, 1 pg, Nov. 28, 2003. |
Stoffels, E. et al., “Plasma Physicists Move into Medicine”, Physicsweb, 1 pg, Nov. 2003. |
Stoffels, E. et al., “Plasma Treated Tissue Engineered Skin to Study Skin Damage”, Biomechanics and Tissue Engineering, Materials Technology, 1 pg, 2003. |
Stoffels, E. et al., “Plasma Treatment of Dental Cavities: A Feasibility Study”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1540-1542, Aug. 2004. |
Stoffels, E. et al., “The Effects of UV Irradiation and Gas Plasma Treatment on Living Mammalian Cells and Bacteria: A Comparative Approach”, IEEE Transaction on Plasma Science, vol. 32, No. 4, pp. 1544-1550, Aug. 2004. |
Stoffels, E. et al., “Electrical and Optical Characterization of the Plasma Needle”, New Journal of Physics 6, pp. 1-14, Oct. 28, 2004. |
Stoffels, E. et al., “Where Plasma Meets Plasma”, Eindhoven University of Technology, 23 pgs, 2004. |
Stoffels, E. et al., “Gas Plasma effects on Living Cells”, Physica Scripta, T107, pp. 79-82, 2004. |
Stoffels, E. et al., “Plasma Treatment of Mammalian Vascular Cells: A Quantitative Description”, IEEE Transaction on Plasma Science, vol. 33, No. 2, pp. 771-775, Apr. 2005. |
Stoffels, E. et al., “Deactivation of Escherichia coli by the Plasma Needle”, J. Phys. D: Appl. Phys. 38, pp. 1716-1721, May 20, 2005. |
Stoffels, E. et al., “Development of a Gas Plasma Catheter for Gas Plasma Surgery”, XXVIIth ICPIG, Endoven University of Technology, pp. 18-22, Jul. 2005. |
Stoffels, E. et al., “Development of a Smart Positioning Sensor for the Plasma Needle”, Plasma Sources Sci. Technol. 15, pp. 582-589, Jun. 27, 2006. |
Stoffels, E. et al., Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1317-1324, Aug. 2006. |
Stoffels, E. et al., “Plasma-Needle Treatment of Substrates with Respect to Wettability and Growth of Excherichia coli and Streptococcus mutans”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1325-1330, Aug. 2006. |
Stoffels, E. et al., “Reattachment and Apoptosis after Plasma-Needle Treatment of Cultured Cells”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1331-1336, Aug. 2006. |
Stoffels, E. et al., “UV Excimer Lamp Irradiation of Fibroblasts: The Influence on Antioxidant Homostasis”, IEEE Transaction on Plasma Science, vol. 34, No. 4, pp. 1359-1364, Aug. 2006. |
Stoffels, E. et al., “Plasma Needle for In Vivo Medical Treatment: Recent Developments and Perspectives”, Plasma Sources Sci. Technol. 15, pp. S169-S180, Oct. 6, 2006. |
Swain, C.P., et al., “Which Electrode, A Comparison of four endoscopic methods of electrocoagulation in experimental bleeding ulcers” Gut vol. 25, pp. 1424-1431, 1987. |
Tucker, R. et al. “A Comparison of Urologic Application of Bipolar Versus Monopolar Five French Electrosurgical Probes” J. of Urology vol. 141, pp. 662-665, 1989. |
Tucker, R. et al. “In vivo effect of 5 French Bipolar and Monopolar Electrosurgical Probes on the Porcine Bladder” Urological Research vol. 18, pp. 291-294, 1990. |
Tucker, R. et al., “Demodulated Low Frequency Currents from Electrosurgical Procedures,” Surgery, Gynecology and Obstetrics, 159:39-43, 1984. |
Tucker, R. et al., Abstract P14-11, p. 248, “A Bipolar Electrosurgical Turp Loop”, Nov. 1989. |
Valley Forge Scientific Corp., “Summary of Safety and Effective Information from 510K”, 2pgs, 1991. |
Valley Forge's New Products, Clinica, 475, 5, Nov. 6, 1991. |
Valleylab SSE2L Instruction Manual, 11 pgs, Jan. 6, 1983. |
Valleylab, Inc. “Valleylab Part No. 945 100 102 A” Surgistat Service Manual, pp. 1-46, Jul. 1988. |
Wattiez, Arnaud et al., “Electrosurgery in Operative Endoscopy,” Electrosurgical Effects, Blackwell Science, pp. 85-93, 1995. |
Wyeth, “Electrosurgical Unit” pp. 1181-1202, 2000. |
BiLAP IFU 910033-002 Rev A for BiLAP Model 3527, L-Hook; BiLAP Model 3525, J-Hook; BiLAP Model 3529, High Angle, 2 pgs, Nov. 30, 1993. |
BiLAP IFU 910026-001 Rev A for BiLAP Model 3525, J-Hook, 4 pgs, May 20, 1991. |
BiLAP Generator Settings, Jun. 1991. |
Tucker et al. “The interaction between electrosurgical generators, endroscopic electrodes, and tissue,” Gastrointestinal Endoscopy, vol. 38, No. 2, pp. 118-122, 1992. |
Buchelt, et al. “Excimer Laser Ablation of Fibrocartilage: An In Vitro and In Vivo Study”, Lasers in Surgery and Medicine, vol. 11, pp. 271-279, 1991. |
Costello et al., “Nd: YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy”, Lasers in Surgery and Medicine, vol. 12, pp. 121-124, 1992. |
Hardy et al., “Regional Myocardial Blood Flow and Cardiac mechanics in dog Hearts with CO2 laser-induced Intramyocardial Revascularization”, Basic Research in cardiology 85:179-196, 1990. |
Mirhoseini et al., “New Concepts in Revascularization of the Myocardium”, Ann Thorac Surg 45:415-420, 1988. |
Mirhoseini et al., “Revascularization of the heart by Laser”, J. of Microsurgery 2:253-260, 1981. |
Mirhoseini et al., “Transmyocardial Laser Revascularization: A Review”, J. of Clinical Laser medicine & Surgery 11 (1) :15-19 (1993). |
Mirhoseini et al., “Transventricular Revascularization by Laser”, Lasers in Surgery and Medicine 2:187-198 (1982). |
Rand et al., “Effect of Elecctrocautery on Fresh Human Articular Cartilage”, J. Arthro. Surg., vol. 1, pp. 242-246, 1985. |
Walter et al., “Treatment of Acute Mycardial Infarction by Transmural Blood Supply from the Ventricular Cavity”, Erop. Surgery Res. 3:130-138 (1971). |
Whittaker et al., “Transmural Channels Can Protect Ischemic Tissue”, Circulation 93(1):143-152 Jan. 1, 1996. |
EP Search Report for EP01124768 2 pgs, Nov. 30, 2001. |
EP Search Report for EP01935650 10 pgs, Mailed Jul. 26, 2006. |
EP Search Report for EP01935650 8 pgs, Mailed May 3, 2005. |
EP Search Report for EP02768969 3 pgs, Mailed Feb. 12, 2007. |
EP Search Report for EP03762238 3 pgs, Mailed Jun. 2, 2006. |
EP Search Report for EP94916716 2 pgs, Oct. 29, 1996. |
EP Search Report for EP96941386 2 pgs, Nov. 27, 1998. |
EP Search Report for EP98952032 2 pgs, Nov. 24, 2000. |
PCT International Search Report for PCT/US00/07718 1 pg, Mailed Sep. 5, 2000. |
PCT International Search Report for PCT/US01/16006 1 pg, Mailed Aug. 14, 2001. |
PCT International Search Report for PCT/US02/31640 1 pg, Mailed May 23, 2003. |
PCT International Search Report for PCT/US03/04689 1 pg, Mailed Sep. 26, 2003. |
PCT International Search Report for PCT/US03/12790 1 pg, Mailed Aug. 12, 2003. |
PCT International Search Report for PCT/US03/20574 1 pg, Mailed May 25, 2005. |
PCT International Search Report for PCT/US04/22803 1 pg, Mailed Apr. 29, 2005. |
PCT International Search Report for PCT/US05/07038 1 pg, Mailed Sep. 2, 2005. |
PCT International Search Report for PCT/US94/05168, 1 pg, Mailed Oct. 18, 1994. |
PCT International Search Report for PCT/US98/20768 1 pg, Mailed Jan. 20, 1999. |
PCT International Search Report for PCT/US98/22327 1 pg, Mailed Feb. 9, 1999. |
PCT IPER for PCT/US01/16006 3pgs, Apr. 16, 2002. |
PCT IPER for PCT/US98/22327 4pgs, Aug. 27, 2000. |
PCT Written Opinion for PCT/US04/22803 3pgs, Mailed Apr. 29, 2005. |
PCT Written Opinion for PCT/US05/07038 3pgs, Mailed Sep. 2, 2005. |
UK Search Report for GB0805061.9 1 pg, Jul. 15, 2008. |
UK Search Report for GB1106425.0 6 pages, Mailed Aug. 16, 2011. |
UK combined Search and Examination Report for GB1121048.1 3pgs, Apr. 18, 2012. |
Number | Date | Country | |
---|---|---|---|
20100152724 A1 | Jun 2010 | US |