Systems and methods for machine control

Information

  • Patent Grant
  • 11720180
  • Patent Number
    11,720,180
  • Date Filed
    Monday, July 11, 2022
    a year ago
  • Date Issued
    Tuesday, August 8, 2023
    9 months ago
Abstract
A region of space may be monitored for the presence or absence of one or more control objects, and object attributes and changes thereto may be interpreted as control information provided as input to a machine or application. In some embodiments, the region is monitored using a combination of scanning and image-based sensing.
Description
TECHNICAL FIELD

Embodiments relate generally to machine user interfaces, and more specifically to the use of machine-acquired sensory inputs to formulate control input to machines.


BACKGROUND

Conventional machine interfaces generally require users to provide input mechanically, typically via one or more switches. The keys of a computer keyboard or the buttons on a computer mouse, for instance, are obviously switches. Even a tablet touch screen is at its core a collection of switches, arranged in an array that facilitates locating the point or region of touch based on the subset of switches that are being activated. Beyond just user interfaces for personal computers and consumer electronics, machine interfaces used in industrial, medical, and military contexts, such as robot teach pendants or input devices for computer-assisted surgery, likewise rely on contact-based control input via switches or similar mechanical input elements. Unfortunately, such reliance on physical contact and operation of switches severely limits not only the machine user's freedom to move about, but also the realm of types of user input that are possible. Therefore, an alternative user-interface approach that remedies the shortcomings of traditional interfaces by providing greater flexibility is needed.


SUMMARY

Aspects of the systems and methods described herein provide for improved image- and sensory-signal-based machine interactivity and/or communication by interpreting the position and/or motion of an object (including objects having one or more articulating members, e.g., hands, but more generally any moving parts of humans and/or animals and/or machines) acquired through various machine sensory mechanisms. Among other aspects, embodiments can enable automatically (e.g., programmatically) determining command information (including command information to the sensory system itself, e.g., indicating the manner of further scanning or other sensory data acquisition) using inputs detected from positional information (e.g., position, volume, and/or surface characteristics) and/or motion information (e.g., translation, rotation, deformation and/or other structural change) of a portion of a hand or other detectable object moving in free space. In some embodiments, this is based upon scanning a scene to detect variations that might indicate a presence, position and/or variation (conformations, deformations, translations, rotations, or other object state changes) of a control object portion. Scanning can be performed according to coarse as well as refined scanning patterns and/or intermixed with capturing of images and/or other sensory data capture. Inputs can be interpreted from scan(s), image(s) and/or other sensory data in conjunction with providing command information, machine input, commands, communications and/or other user-machine interfacing, gathering information about objects, events and/or actions existing or occurring within an area being explored, monitored, or controlled, and/or combinations thereof.


In various embodiments, a scene is scanned with a moving directed emission of light or other electromagnetic radiation (e.g., a light beam “sweeping” the scene), or multiple sequentially activated emissions in generally different directions, in accordance with a scan pattern, and reflections of the light off any objects within the scanned region are detected with one or more photosensors (e.g., a collection of sensors such as a camera). Once the presence of an object has been detected based on its reflection signal, a second scan may be performed, typically at a higher resolution and optionally limited to a reduced scan field surrounding the object, to obtain more detailed information about the object or a portion thereof, e.g., to determine its three-dimensional shape and configuration. Subsequent scans may be used to track motions, deformations, and other state changes of the object or object portion. Alternatively to using refined scans (or additionally), detailed object information may be determined by imaging the region with one or more cameras. For instance, images of the object acquired simultaneously by two or more cameras from different vantage points may be analyzed to reconstruct the three-dimensional shape of the object surface. Conversely, in some embodiments, an (e.g., low-resolution) image of a region of interest may be acquired initially to detect objects within the region, and upon such detection, subsequent higher-resolution images or reflections created through scans of the region or object may be acquired to obtain more detailed information about the object. The type(s) of technology (technologies) employed and/or, if applicable, the order in which multiple technologies are employed to detect objects (or object portions) and subsequently determine object attributes (such as a position, orientation, shape, configuration, or parameters of motion or deformation, etc.) depends on the performance characteristics of the technologies (e.g., spatial and/or temporal resolution of the acquired data, responsiveness to changes in the monitored region, complexity and cost of the technology, reliability and robustness of detection algorithms, etc.) and the particular application (e.g., motion tracking, identification, gesture recognition, etc.). Combining a fast scan of the scene with subsequent image-based object tracking, for instance, may advantageously facilitate monitoring a large region in real-time with limited computational resources while providing a wealth of information once an object has been detected.


Accordingly, among other aspects, a computer implemented method for conducting machine control is provided by conducting scanning of a region of space. Scanning can include directing at least two emission cycles to form at least two scan patterns from an emission region to a region of space that might include a control object. Emissions can be cyclical (e.g., repeated) and in accordance to one or more scan patterns directing a sequence, or pattern of activating emissive elements during the emission. Directing can be achieved by a first power state variance at a first light emitter at least partially concurrent with second power state variance at a second light emitter. Alternatively, directing can be achieved by extinguishing a first light emitter completely before activating a second light emitter. An emission region includes a first emission point and a second emission point rotationally pivot-able about one or more axes having an origin point within the emission region. The first emission point can be the same as, or different from, the second emission point.


A reflectance of the at least two scan patterns is detected. Detecting can be achieved by detecting the reflectance with at least one suitable photo-sensitive element, capturing an image with at least one suitable photo-sensitive array element, or combinations thereof. When determined that the detected reflectance indicates a presence of an object in the region of space, a first object attribute set of one or more object attributes of the object is determined for a first one of the at least two scan patterns and a second object attribute set of one or more object attributes of the object is determined for a second one of the at least two scan patterns.


Analyzing the first object attribute set and the second object attribute set enables a system to determine a potential control portion of the object (e.g., a finger-tip of a hand, working-tip of a tool, etc.). In one implementation, analyzing first and second object attribute sets includes finding a known feature. In one implementation, finding a known feature includes identifying characteristics of the object corresponding to characteristics common to features of control portions of determining a reflector affixed to the object. In one implementation, the determining object attribute set includes, in addition to detecting the at least two scan patterns, capturing at least one image with an imaging system including at least one camera.


Comparing the first object attribute set and the second object attribute set can determine control information (e.g., command information including command(s) to a machine or system under control, command(s) to a system conducting the scanning to change one or more parameters of the scanning, other command information such as permissions, authorization, and so forth, or combinations thereof). Accordingly, the indicated control information can be responded to according to response criteria. A response criteria can include determining whether to respond to the control information.


Object attributes can be attributes of the control portion of the object when a control portion is identified. Control portions can inherit certain ones of the object attributes thereby becoming associated with control portion attributes. Control portions can have control portion attributes in addition to the control portion attributes inherited from the object attributes (e.g., finger-tip pointing up or down, etc.). Accordingly, comparing the first object attribute set and the second object attribute set can include comparing control portion attributes selected from the first set with control portion attributes selected from the second set.


An emission cycle can be directed in a first scan pattern and first and second sets of one or more object attributes can be determined by conducting a second scanning in a second pattern. The second scan pattern can be more refined than the first scan pattern. Accordingly, the refined scan pattern captures surface detail about the control object not otherwise captured by a less refined scan pattern. In one implementation, determining first and second sets of one or more object attributes can include determining control-portion attributes based at least in part on captured surface detail about the object. Comparing the first object attribute set with the second object attribute set to determine control information can be achieved by comparing differences in captured surface detail of control portion(s) of the object from control portion attributes of the first scan and the second scan to determine a change indicating control information. For example, determining a change indicating control information can be determining whether an engagement gesture has occurred. In another example, determining a change indicating control information can be determining whether a prospective user has come into vicinity of a machine under control. In a further example, determining a change indicating control information can be determining whether an object is there or not present. In a yet further example, determining a change indicating control information can be determining a correction to control information by comparing the control information to a prior determined control information.


In one implementation, the directing is configured to cause a light emission pattern of a first light emitter to interfere or to create an interference pattern with a light emission pattern of a second light emitter.


In another aspect, a computer implemented method for conducting machine control includes monitoring a region of space for a presence of an object using a first sensing modality. Upon detection of the presence of an object, using a second sensing modality, first and second sets of object attributes are determined for the object. For example, monitoring the region using the first sensing modality can include scanning the region with an emission and detecting a reflectance, and using the second sensing modality comprises acquiring images of the region. Alternatively, monitoring the region using the first sensing modality can include acquiring images of the region, and using the second sensing modality comprises scanning the region with an emission and detecting a reflectance. Comparing the first object attribute set and the second object attribute set enables a system to determine control information. A system under control can respond to the indicated control information according to response criteria.


In a further aspect, a system for conducting machine control includes an emission module for directing an emission cycle to a region of interest in accordance with a scan pattern. A detection module provides (i) detecting a time-variable signal indicative of reflection of the emission by an object in the region of interest, and (ii) acquiring images of the region of interest. For example, the detection module can include one or more cameras for acquiring the images of the region of interest. Additionally, the detection module can include a photosensitive element for detecting a reflection. Additionally, the detection module further comprises circuitry for extracting the time-variable signal from the reflection. A controller provides coordinating operation of the emission and detection modules. A computational facility for processing the reflection signal and the images to determine therefrom a presence of the object and object attributes associated therewith, and for inferring machine-control information from the object attributes.


Advantageously, some embodiments can enable improved machine interfacing and sensory capabilities using “free-space” (i.e., not requiring physical contact) interfacing with a variety of machines. In some embodiments, scanning performed according to coarse as well as refined scanning patterns, and/or intermixed with image capture and/or other sensory data capture, can provide enhanced sensory input acquisition by machines. In fact, some embodiments can provide improvements to their own sensory capabilities by providing command information to the sensory system itself. For example, in embodiments, a sensory acquisition system can indicate to itself a manner for further scanning or other sensory data acquisition. Some embodiments can indicate to themselves improvements in the manner of interpreting scanning or sensory data. Inputs interpreted from scan(s), image(s) and/or other sensory data can provide command information, machine input, commands, communications and/or other user-machine interfacing, gathering information about objects, events and/or actions existing or occurring within an area being explored, monitored, or controlled, and/or combinations thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the subject matter can be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.



FIG. 1 illustrates an example machine sensory and control system in embodiments;



FIGS. 2A, 2B, 2C, 2D and 2E illustrate example emission components of the machine sensory and control system of FIG. 1, in accordance with various embodiments;



FIGS. 3A, 3B, 3C, 3D, and 3E illustrate example detector components of the machine sensory and control system of FIG. 1, in accordance with various embodiments;



FIG. 4A-1 illustrates a machine sensory and control system providing scanning functionality in accordance with various embodiments;



FIGS. 4A-2 and 4A-3 illustrate light emission and detection intensities, respectively, for an exemplary binary control scheme of the scanning system of FIG. 4A-1;



FIGS. 4A-4 and 4A-5 illustrate light detection intensities for an exemplary continuous control schemes of the scanning system of FIG. 4A-1;



FIG. 4B-1 illustrates a machine sensory and control system providing image-based sending functionality in accordance with various embodiments;



FIGS. 4B-2 and 4B-3 conceptually illustrate reconstruction of a cross-section of a control object using the image-based sensing system of FIG. 4B-1;



FIG. 4C illustrates a device integrating scanning and image-based sensing functionality in accordance with one embodiment;



FIG. 5A illustrates a method for detecting and monitoring a control object using at least two scanning patterns in accordance with various embodiments;



FIGS. 5B and 5C illustrate methods for detecting and monitoring a control object using both scanning and image-based sensing in accordance with various embodiments;



FIGS. 6A and 6B illustrate a variation determination system in accordance with various embodiments;



FIGS. 7A and 7B illustrate predictive information including a model in accordance with various embodiments;



FIGS. 7C and 7D illustrate deformation using the predictive information of FIGS. 7A and 7B.



FIGS. 8A and 8B illustrate virtual constructs implementing an engagement target with which a control object interacts in accordance with various embodiments; and



FIG. 9 illustrates a computational facility for sensory-based machine control according to embodiments, components thereof, and interrelations therebetween.





DETAILED DESCRIPTION

Techniques described herein can be implemented as one or a combination of methods, systems or processor-executed code to form embodiments capable of improved control of machines or other computing resources based at least in part upon determining whether positions and/or motions of a control object (e.g., hand, tool, hand and tool combinations, other detectable objects or combinations thereof) might be interpreted as an interaction with one or more virtual objects. Embodiments can enable modeling of physical objects, created objects and interactions with combinations thereof for machine control or other purposes.



FIG. 1 illustrates an exemplary machine sensory and control system in embodiments. In one embodiment, a motion-sensing and controller system provides for detecting that some variation(s) in one or more portions of interest of a user (or other object) has occurred, for determining that an interaction with one or more machines corresponds to the variation(s), for determining whether the interaction should occur, and, if so, for affecting the interaction. The machine sensory and control system (MSCS) typically includes a portion-detection system, a variation-determination system, an interaction system, and an application-control system.


The detection system may detect and capture positional and/or motion information about a control object based on light reflected or scattered by the object. In some embodiments, reflections of ambient light by the object suffice for object detection; in alternative embodiments, the system includes one or more light sources for actively illuminating a region of interest and the object(s) therein. For example, as FIG. 1 shows, one embodiment of detection system 100 includes an emission module 102, a detection module 104, a controller 106, a processing module 108, and a machine-control module interface 110. The emission module 102 illuminates one or more objects of interest 112 (e.g., the user's finger or some other control object) within an area of interest 114. In one embodiment, the emission module 102 includes one or more emitter(s) 120A, 120B (e.g., LEDs or other devices emitting light in the IR, visible, or other spectrum regions, or combinations thereof; radio and/or other electromagnetic signal emitting devices) that are controllable via emitter parameters (e.g., frequency, activation state, firing sequences and/or patterns, and so forth) by the controller 106. However, other existing/emerging emission mechanisms and/or some combination thereof can also be utilized in accordance with the requirements of a particular implementation. The emitters 120A, 120B can be individual elements coupled with materials and/or devices 122. For instance, a light-emitting element 120A, 120B may be combined with a lens 122A (see FIG. 2A), multi-lens 122B (see FIG. 2B), image-directing film (IDF) 122C (see FIG. 2C), liquid lens, multiple such elements or combinations thereof, and/or others, with varying or variable optical properties to direct the emission. Further information about image directing films can be found in U.S. Provisional Patent Application No. 61/886,586, filed Oct. 3, 2013), the entire disclosure of which is hereby incorporated by reference. Further, as shown in FIG. 2D, one or more arrays 120D of emissive elements (combined on a die or otherwise) may be used with or without the addition of devices 122 for directing the emission, and positioned within an emission region 200 (see FIG. 2A) according to one or more emitter parameters (e.g., statically mounted (e.g., fixed, parallel, orthogonal or forming other angles with a work surface, one another or a display or other presentation mechanism), dynamically mounted (e.g., pivotable, rotatable and/or translatable), embedded (e.g., within a machine or machinery under control) or otherwise coupleable using an interface (e.g., wired or wireless). Arrays of emissive elements can be implemented together as vertical cavity surface emitting laser (vcsel) elements, such that portions of the array can be illuminated selectively to enable illuminating areas of interest (e.g., containing objects) within the region of interest for power savings or other operational criteria. In some embodiments, illustrated in FIG. 2E, structured lighting techniques can provide improved surface-feature-capture capability by casting illumination according to a reference pattern onto the object. Image-capture techniques described in further detail herein can be applied to capture and analyze differences in the reference pattern and the pattern as reflected by the object. In yet further embodiments, the detection system 100 may omit the emission module 102 altogether (e.g., in favor of ambient lighting).


With renewed reference to FIG. 1 and further reference to FIGS. 3A-3E, in one embodiment, the detection module 104 includes one or more capture device(s) 130A, 130B (e.g., e.g., devices sensitive to visible light or other electromagnetic radiation) that are controllable via the controller 106. The capture device(s) 130A, 130B can comprise one or more individual image-capture elements 130A or arrays of image-capture elements 130A (e.g., pixel arrays, CMOS or CCD photo sensor arrays, or other imaging arrays) or individual photosensitive elements 130B or arrays of photosensitive elements 130B (e.g., photodiodes, photo sensors, single detector arrays, multi-detector arrays, or other configurations of photo sensitive elements), or combinations thereof. However, other existing/emerging detection mechanisms and/or some combination thereof can also be utilized in accordance with the requirements of a particular implementation.


Capture device(s) 130A, 130B can each define a particular vantage point 300 from which objects 112 within the area of interest 114 are sensed, and can be positioned within a detection region 302 (see FIG. 3A) according to one or more detector parameters (either statically (e.g., fixed, parallel, orthogonal or forming other angles with a work surface, one another, or a display or other presentation mechanism) or dynamically (e.g., pivotably, rotatably, and/or translatably); and mounted, embedded (e.g., within a machine or machinery under control), or otherwise coupleable using a wired or wireless interface). Capture devices 130A, 130B can be coupled with devices and/or materials (such as, e.g., lenses 310A (see FIG. 3A), multi-lenses 310B (see FIG. 3B), image-directing film (IDF) 310C (see FIG. 3C), liquid lenses, combinations thereof, and/or others) with varying or variable optical properties for directing the reflectance to the capture device 130A, 130B for controlling or adjusting resolution, sensitivity, and/or contrast. Capture devices 130A, 130B can be designed or adapted to operate in the IR, visible, or other spectrum regions, or combinations thereof; or alternatively operable in conjunction with radio-and/or other electromagnetic-signal-emitting devices in various applications. Multiple capture devices 130A, 130B can be organized in arrays 320, in which the image capture device(s) can be interleaved by row (see, e.g., FIG. 3D), column, or according to a pattern, or can be otherwise addressable individually or in groups. In an embodiment, capture devices 130A, 130B can capture one or more images for sensing objects 112 and capturing information about the object (e.g., position, motion, and so forth). In embodiments comprising more than one capture device, particular vantage points of capture devices 130A, 130B can be directed to area of interest 114 so that fields of view 330 of the capture devices at least partially overlap. Overlap in the fields of view 330 (see, e.g., FIG. 3E) provides capability to employ stereoscopic vision techniques, including those known in the art, to obtain information from a plurality of images captured substantially contemporaneously.


While illustrated with reference to a particular embodiment in which control of emission module 102 and detection module 104 are co-located within a common controller 106, it should be understood that these control functions may, in alternative embodiments, be implemented in separate hardware components, or may each be distributed over a plurality of components. Controller 106 comprises control logic (implemented in hardware, software, or combinations thereof) to conduct selective activation/de-activation of emitter(s) 120A, 120B in on-off or other activation states or combinations thereof (and/or to control active directing devices) to produce emissions of (e.g., spatiotemporally) varying intensities, e.g., in accordance with a scan pattern which can be directed to scan the area of interest 114. For example, the controller may sequentially activate emitters pointing in different directions. Controller 106 may, similarly, include control logic (implemented in hardware, software or combinations thereof) to conduct selection, activation, and control of capture device(s) 130A, 130B (and/or to control associated active directing devices) to capture images or otherwise sense differences in reflectance or other illumination. Signal-processing module 108 determines whether captured images and/or sensed differences in reflectance and/or other sensor-perceptible phenomena indicate a possible presence of one or more objects of interest 112, such as control objects 112A; the presence of such objects, and/or variations thereof (e.g., in position, shape, etc.), can be used as input to a machine controller via the machine- and application-control module interface 110.


The determination whether an object of interest is present can be made, e.g., based on intensity-based foreground-background discrimination, exploiting the fact that objects of interest are typically to be expected in the image foreground. Further, to discriminate between static foreground objects that are not of interest and a control object, which is typically moving, a static image baseline may be accumulated over a time series of images and subtracted from a current image to identify the moving object. Of course, any kind of motion-detecting image-processing technique may be used alternatively or additionally. In some embodiments, the presence of an object of interest is determined from comparison of the image data, or portions thereof, against a library of image templates for objects of interest; suitable techniques for such template matching include image correlation, block-based matching, edge detection, feature and keypoint extractions, combinations thereof, and others.


In various embodiments, the variation of one or more portions of interest of a user or control object can correspond to a variation of one or more attributes (e.g., position, motion, appearance, surface patterns) of a user's hand or finger(s), points of interest on the hand, a facial portion, etc., or other control objects (e.g., styli, tools), and so on (or some combination thereof) that is detectable by, or directed at, but otherwise occurs independently of the operation of the machine sensory and control system. Thus, for example, the system may be configurable to “observe” ordinary user locomotion (e.g., motion, translation, expression, flexing, deformation, and so on), locomotion directed at controlling one or more machines (e.g., gesturing, intentionally system-directed facial contortion, and so forth), and/or attributes thereof (e.g., rigidity, deformation, fingerprints, veins, pulse rates, and/or other biometric parameters); see, e.g., U.S. Provisional Patent Application No. 61/952,843 (filed on Mar. 13, 2014), the entire disclosure of which is hereby incorporated by reference. In one embodiment, the system provides for detecting that some variation(s) in one or more portions of interest (e.g., fingers, fingertips, or other control surface portions) of a user has occurred, for determining that an interaction with one or more machines corresponds to the variation(s), for determining whether the interaction should occur, and, if so, for at least one of initiating, conducting, continuing, discontinuing, and/or modifying the interaction (and/or a corresponding or related interaction).


The system 100 may facilitate different object-sensing modalities, including, e.g., a scanning modality and/or an image-based sensing modality, as are now described in more detail. FIG. 4A-1 illustrates portions of the system 100 configured for scanning a region of interest 114. Herein, the emission module 402 includes a number (e.g., four in the depicted embodiment) emitters A, B, C, D that point in different directions and thereby illuminate different portions of the region of interest 114. Emissions that intercept an object 112 are reflected, and a portion of the reflection is captured by a detector element, arrangement of detector elements, camera or camera-like device (comprising a pixelated sensor), or other device of the detection module 404. The controller 106 may operate the emitters A, B, C, D sequentially, e.g., in a binary fashion where they are turned on and off one at a time as illustrated in FIGS. 4A-2 and 4A-3. Alternatively, the controller 106 may operate the emitters A, B, C, D in a continuous, gradual fashion where each emitter reaches its intensity maximum at a different point in time; in this case, the emission from one emitter may be completely extinguished before the next emitter is activated, or the emissions of two or more emitters may temporally overlap (e.g., to create a “cross-fade”). In continuous emission mode, the signal intensity received at the reflector likewise varies continuously, resulting either in a single intensity maximum per cycle as illustrated in FIG. 4A-4, or in multiple local maxima with typically one global maximum per cycle as illustrated in FIG. 4A-5. Whether the emission module is operated in binary or continuous mode, the emitter that causes the most direct illumination of the object (emitter B in the depicted embodiment) generally results in the highest-intensity reflection measured by the detector module 104. Thus, by controlling the order in which the emitters are activated (or reach their respective peak emissions) and correlating it to the time-dependent signal received at the detector, locational information about the object 112 can be inferred (e.g., the direction at which the object appears from the standpoint of the emission module may be determined). In some embodiments, the detector module 104 provides additional, independent locational information. For example, if a camera is used, the position of the object 112 within the camera image can be determined. This information, together with the temporal occurrence of the reflection peak in the reflection signal may facilitate computing depth information and determining the three-dimensional location of the object, e.g., based on triangulation.


In some implementations, operating emitters, such as emitters A, B, C, D, at more than one characteristic rates, e.g., the time period to complete single cycle, provides scanning of the region of interest 114 with illumination having different characteristic timing, thereby enabling an interference pattern to be generated by the constructive and destructive interference between the different scan patterns. Constructive interference between the two or more scan patterns can enable a “sweep” of the region of interest by a peak in the interference pattern. The peak in illumination can sweep the region of interest (similar to a light house sweeping the horizon) with a locally concentrated burst of radiant intensity. (Analogously, destructive interference can enable a trough to sweep the region of interest.) In another implementation, a static interference pattern can be cast upon the object 112 in order to enable detecting features of the surface of object 112 by observing distortions in the interference pattern when reflected by the object 112 (see e.g., FIG. 2E).


Various modifications of the emission and detection modules and associated control and signal-processing facilities may be employed. For example, the number and configuration of the individual light emitters may be changed, or a moving (e.g., rotating) emitter, or a stationary emitter in conjunction with a moving (e.g., rotating) deflecting optic or screen, may be used instead of discrete emitters to continuously shift the emission direction across the scene. Further, more complex control schemes of the emission module and, synchronized therewith, the detection module may be used, and detailed information about the relative location and orientation of the emitter and detector elements may be exploited, to increase the amount of information inferable about the object 112. As will be readily appreciated by one of skill in the art, the region of interest 114 may be scanned at various spatial and temporal resolutions, depending on the capabilities of the particular system implementation and the needs of the particular application. For example, a scan may be fine-grained enough to capture surface detail of a person or other control object and may be repeated at sufficient frequency to accurately track movements, deformations, and other state changes. Further detail about systems and methods for scanning-based object detection, reconstruction, and tracking can be found in U.S. patent application Ser. No. 14/212,485, filed on Mar. 14, 2014, which is hereby incorporated herein by reference in its entirety.



FIG. 4B-1 illustrates portions of the system 100 configured for image-based object detection in a region of interest 114. Herein, the detection module 104 includes two (or more) video cameras 400, 402 that acquire a stream of images of the region of interest 114 from two different vantage points (see also FIG. 3E). The cameras 400, 402 may be, e.g., CCD or CMOS cameras, and may operate, e.g., in the visible, infrared (IR), or ultraviolet wavelength regime, either by virtue of the intrinsic sensitivity of their sensors primarily to these wavelengths, or due to appropriate filters 410 placed in front of the cameras 400, 402. In some embodiments, the emission module 102 includes one or more light sources 412 co-located with the cameras 400, 402 for illuminating the region of interest 114 at wavelengths matching the wavelength regime of the cameras 400, 402. For example, the light sources 412 may be LEDs that emit IR light, and the cameras 400, 402 may capture IR light that is reflected off the control object and/or objects in the background. Due to the inverse-square dependence of the illumination intensity on the distance between the light sources 412 and the illuminated object, foreground objects such as the control object 112 generally appear significantly brighter in the images than background objects, aiding in intensity-based foreground/background discrimination. In some embodiments, the cameras 400, 402 and light sources 412 are disposed below the control object to be tracked and point upward. For example, they may be placed on a desk to capture hand motions taking place in a spatial region above the desk, e.g., in front of the screen. This location may be optimal both for foreground/background discrimination (because the background is in this case typically the ceiling and, thus, far away) and for discerning the control object's direction and tip position (because the usual pointing direction will lie, more or less, in the image plane).


The signal processing module 108, which may be implemented, e.g., on a computer 414, may analyze pairs of image frames acquired by the two cameras 400, 402 to identify the control object (or an object including the control object or multiple control objects, such as a user's hand) therein (e.g., as a non-stationary foreground object) and detect its edges and/or other features. The module 108 may analyze corresponding rows in each pair of images to estimate a cross-section of the object based on edge points thereof as seen from the vantage points of the two cameras. In more detail, as shown in FIGS. 4B-2 and 4B-3, tangent lines 420, 421, 422, 423 on the control object 425, extending from the vantage points 427, 428 (where the cameras are located) to the respective edge points 430, 431, 432, 433 of the control object 425 may be defined, and an ellipse 435 (or other geometric shape defined by only a few parameters) may be inscribed therein. Accordingly, the ellipse 435 can serve as a model, obviating the need to conduct processing on the control object 425. This can be advantageous in situations where the control object has complex surface details making it computationally difficult to work with. The cross-sections obtained for multiple adjacent rows of the image pairs may then be computationally connected in a manner that is consistent with certain heuristics and known properties of the control object (e.g., the requirement of a smooth surface) to resolve any ambiguities in the fitted ellipse parameters. As a result, the control object is reconstructed or modeled in three dimensions. This method, and systems for its implementation, are described in more detail in U.S. patent application Ser. No. 13/414,485, filed on Jan. 17, 2012, the entire enclosure of which is incorporated herein by reference. A larger object including multiple control objects can similarly be reconstructed with respective tangent lines and fitted ellipses, typically exploiting information of internal constraints of the object (such as a maximum physical separation between the fingertips of one hand). As described further below, the computer may also extract relevant control object attributes, such as tip positions and orientations as well as velocities, from the three-dimensional model. In some embodiments, this information can be inferred from the images at a lower level, prior to or without the need for fully reconstructing the control object. These operations are readily implemented by those skilled in the art without undue experimentation.


In embodiments that facilitate both scanning and image-based sensing modalities, these modalities may be supported by separate hardware, or include components that are shared between the two modalities. For example, separate detection and emission modules for scanning and imaging may be connected or connectable to the same control module, or certain components of the emission or detection module (e.g., a camera) may be selectively usable in either modality. In some embodiments, components of the emission and detection modules for both modalities, and optionally also the associated control functionality, are integrated into a single unit. For example, scanner hardware may be provided on a daughter board designed for ready integration into a camera-based motion controller; FIG. 4C shows an exemplary implementation 450. Herein, scanning is facilitated by an LED board 452 that has a number of individually controllable LEDs 454, 456 embedded therein. Some, but not necessarily all of the LEDs may have associated focusing optics. In the depicted embodiment, for instance, six LEDs 454 (four of which are arranged at the center and two of which flank the board 452 at the sides) have focusing lenses, and ten additional LEDs 456 (which are arranged in columns of two, three, three, and two LEDs, respectively) are without focusing lenses. The LED board 452 may also include a socket 458 for coupling (e.g., to a photodetector not shown). Two cameras 460 for image-based sensing may be provided in the main board 462 of the device. The main board 462 may also include a processor for basic image processing and/or control of the cameras 460 and/or the LED board 452. The LED board 452 and main board 462 may be secured with threaded fasteners or otherwise mounted on a base plate 464. As will be readily appreciated by one of skill in the art, various modifications of the design shown in FIG. 4C are possible; for example, the number and arrangement of LEDs, photodetectors, and cameras may vary, and/or the scanning and imaging hardware may be integrated on a single board. Advantageously, integrating scanning and image-based sensing capabilities into a single motion controller 450 provides a multi-functionality, yet compact device suitable, e.g., for installation in machines with limited space, such as, e.g., vehicles, appliances, etc.


Referring now to FIGS. 5A-5C, various methods for detecting control objects and attributes and state changes thereof using systems as described above are illustrated. In one embodiment, shown by flowchart 500A in FIG. 5A, a region of interested is repeatedly scanned by spatiotemporally variable emissions, and detected reflectance signals are analyzed to identify the object and monitor its movements and other attributes. Initially, one or more pre-scans may be performed (502) to monitor the region for the presence of any objects therein. If desirable to improve the signal-to-noise ratio, signals from two or more scans may be averaged. The pre-scan(s) may be conducted at a low or moderate spatial resolution (compared with subsequent scans) in accordance with a first scan pattern. For example, a wide-angle emission may be directed successively into the four quadrants of a room. The system may be configured such that, in the absence of any object within the region, any reflection by physical boundaries of or beyond the region (e.g., walls) is low in intensity (in some embodiments below the noise threshold), whereas the presence of an object generally results in detectable reflectance signal. A full emission cycle (corresponding, e.g., to the sequential activation of all individual emitters) preferably illuminates the entire region of interest such that an object of any size anywhere within the region causes a detectable reflectance. Alternatively, if objects of interest are known a priori to have a certain minimum size, illumination of only a fraction of the region in accordance with a pattern that provides sufficiently dense coverage to resolve objects of the size of the objects of interest may be used. For instance, if the region is scanned for a person, narrow-angle emissions that scan the region at a resolution of about 10 cm (i.e., such that the emissions intercept any plane in the region of interest about every 10 cm) may suffice.


Once a reflectance has been detected (504) in a pre-scan, upon which a presence of an object can be inferred, the region may be scanned (506) in accordance with a second, higher-resolution scan pattern. This higher-resolution scan may take longer than the pre-scan, i.e., the cycle time may be increased. Alternatively, with the requisite signal-processing power available, the emission system may be operated faster, e.g., by sampling the reflection signal at a higher rate to accommodate the higher resolution without decreasing the repetition rate (i.e., increasing the cycle time) for the scan. Again, multiple of the higher-resolution scans may be averaged to improve the signal-to-noise ratio. The reflection signal of the refined scan may be used to confirm (508) the presence of an object of interest as well as determine (510) object attributes such as location, shape, configuration, surface detail, etc. In some embodiments, the object attributes may be used to identify (512) a portion of the object as the control portion. For instance, in an application context where machine control is performed by hand gestures, the system may, upon detection of a person in the region of interest, determine and analyze the person's contours to identify the person's hand or even individual fingers. Following such identification of control portions, subsequent scans may be limited to a region containing the control portion to save unnecessary computational expense.


An individual fine scan of the control object (or object portion) may by itself provide attributes sufficient to be interpreted (514) as control information to a machine or application under control. For instance, if a scan captures sufficient surface detail about a human operator's face, such information may be used to identify the operator and authorize the operator's access to the system. In many instances, however, control information is based on a plurality of scans and comparisons (516) therebetween. For example, scans (or sequences of scans that are averaged for noise-reduction purposes) may be repeated to determine object attribute sets at different points in time and facilitate comparisons (518) between these object attributes sets to detect any state changes (i.e., movements, deformations, changes in shape or configuration, etc.) of the control object. In some embodiments, the pre-scan(s) provide estimates of object attributes that allow comparisons with object attributes determined from a subsequent more refined scan, and in some embodiments, state changes are determined based on comparisons of two or more of the refined scans performed according to the second scan pattern. In yet further embodiments, the scan pattern may be varied (resulting in third, fourth, fifth patterns, etc.), e.g., to make adjustments for state changes of the control object. For example, as the control object moves, the scanned region may be moved along with it so as to track the object. As another example, if detected object attributes indicate a type of control input that requires more or less detail, finer or coarser scans may subsequently be performed by adjusting (520) the scan pattern and performing additional scan(s). Thus, control input discerned from the object attributes may be provided as feedback to the scan itself.


Additionally, the object attribute sets may be further processed and/or interpreted (522) as control information. In some embodiments, the control information includes the position or orientation of the control object relative to a programmatically defined “virtual” object, such as an engagement plane or other engagement target; see FIGS. 8A and 8B below. The control information, in turn, may be used as input to a device or application under control to elicit a response. The response is typically determined based on response criteria, which may be stored in memory accessible by the device or application under control. Response criteria allow control information to be filtered and a particular type of control information to cause different responses, depending on contextual information. Response criteria may include, e.g., the type of device or application that is being controlled; the status, mode, or settings of the device or application; the currently active user; the time of day; environmental parameters (e.g., lighting conditions, temperature, etc.); combinations thereof; and others. Possible responses include actions taken by the device or application under control (such as movement of a cursor or selection of an on-screen virtual object in response to a movement of the control object; granting of access to a secure system in response to the detection of an authorized user based on, e.g., biometric information; a physical action by a machine under control (e.g., movement of a robot part, dispensing of a fluid, printing of a document, etc.)), but also the absence of any action if the system discerns, for instance, that the detected control information was noise, an error, or can be ignored for other reasons.



FIG. 5B illustrates an embodiment in which scanning and image-based sensing functionalities are used in conjunction. Flowchart 500B of FIG. 5B shows a region of interest may initially be scanned (or pre-scanned) (530) to detect any objects of interest therein. A reflectance signal observed (532) can indicate a presence of an object in the region. Images of the region may be acquired (534). The images may be processed to locate (536) the object therein and determine (538) object attributes. For example, two or more cameras viewing the region from different vantage points may be used to image the region simultaneously to reconstruct the three-dimensional position, shape, configuration, and orientation of the object as described above with respect to FIGS. 4B-1 through 4B-3. In some embodiments, a control portion of the object is identified (540), and attributes specific to that control portion are determined. An individual set of attributes from the control object (or object portion) may by itself be sufficient to be interpreted (542) as control information to a machine or application under control. For example, if the control portion is a finger, the finger orientation or fingertip position may be computed. As another example, if the control portion is a person's face, key points and features of the face (e.g., the position of the nose tip, the distance between the eyes, the orientation of eyebrows, the curvature of the lips, etc.) can be extracted for purposes of identification of the person, characterization of a facial expression, or others. A temporal sequence of images (or pairs or multiplets of images taken with two or more cameras) may be acquired and compared (544) to track changes in the attributes of the control object or object portion. The attributes and changes thereof may be interpreted (546) as control information and used to cause a suitable response (550) by the machine or application under control, again, in general, in accordance with response criteria. The control information may also include control feedback to the imaging hardware itself. For instance, imaging parameters such as the frame rate, spatial resolution (which may be varied, e.g., by reading out only a subset of pixels or interlacing rows), noise threshold, etc. may be adjusted (548) based on the speed with which the control object moves, its size, the image contrast, and/or other object attributes.


Imaging of the region may continue until a termination criterion is satisfied, such as, e.g., when the control object has left the region, has ceased to move, or has provided control information (e.g., a characteristic gesture) indicative of deliberate termination, as determined, e.g., from the images themselves. Upon termination, the scanner hardware, which may have been idle during the imaging, may resume scanning the region. Alternatively, the scanner may continue scanning the region during the imaging, and the imaging may be controlled based thereon. For example, the scans may be used to track the location of a control object within a larger region and continuously adjust the field of view of the imaging camera(s) to center them at the object location, to detect a second control object entering the region, or to discern satisfaction of a termination criterion.


In yet another embodiment, shown by flowchart 500C in FIG. 5C, initial imaging of the region is combined with subsequent repeated scanning thereof to obtain more detailed information. For example, a wide-angle camera with a large, static field of view may acquire (560) images to “monitor” a region for any motions, foreground objects, or recognizable control objects (e.g., as stored in a library of template images) to identify possible control objects within the region. Upon detection (562) of the presence of a control object, one or more fine scans of the region, or a subregion around the object, may be conducted (564). Reflection can be detected to confirm (566) the presence of the object. Processing the reflection can determine (568) object attributes. A control portion of the object can be determined (570) from the reflection information, and attributes associated with the control portion can be interpreted (572) as control information. Alternatively, or additionally, attributes from multiple scans can be compared (574) to track changes of such object attributes. Changes in attributes can be interpreted (576) as control information and used to cause a suitable response (580) by the machine or application under control, again, in general, in accordance with response criteria. The scan parameters, such as the size and location of the subregion to be scanned or the particular scan pattern used, may depend at least in part on information from the initial imaging, and may be further adjusted (578) based on control information derived from the scans.


Imaging and scanning of a region may also be combined on equal footing, i.e., information obtained through both sensing modalities may be used in conjunction to monitor control object attributes and derive control information therefrom. The two modalities may provide redundant information, useful, e.g., for detecting error conditions in either modality, or complementary information that can increase the accuracy and/or completeness of the control information. For example, scanning may provide a means for accurately tracking the location of a fast-moving control object, while imaging the object (possibly at a much lower rate than the scan rate) with two cameras with overlapping fields of view may facilitate obtaining detailed information about the object's shape and surface features.


With reference to FIGS. 6A and 6B, a system for processing the reflectance signals and/or images acquired by the detection system to determine control information therefrom will now be described in detail. As shown, a variation-determination system 600 may comprise a model-management module 602 that provides functionality to build, modify, customize, and update one or more models to recognize variations in objects, positions, motions and attribute state and/or change in attribute state (of one or more attributes) from sensory information obtained from detection system 100. The model-management module 602 may model the variations in real-time as sensory information is received, or even predict variations based on a predictive model that can be updated and refined using the sensory information. A motion capture and sensory analyzer 604 finds motions (i.e., translational, rotational), conformations, and presence of objects within sensory information provided by detection system 100. The findings of motion capture and sensory analyzer 604 serve as input of sensed (e.g., observed) information from the environment with which model refiner 606 can update predictive information (e.g., models, model portions, model attributes, etc.).


The model refiner 606 may update one or more models 608 (or portions thereof) from sensory information (e.g., images, scans, other sensory-perceptible phenomena) and environmental information (i.e., context, noise, and so forth); enabling a model analyzer 610 to recognize object, position, motion, and/or attribute information that might be useful in controlling a machine. Model refiner 606 employs an object library 612 to manage objects including one or more models 608 (e.g., of user portions (e.g., hand, face), other control objects (e.g., styli, tools) or the like) (see, e.g., the models depicted in FIGS. 7A and 7B), and/or model components (e.g., shapes, 2D model portions that sum to 3D, outlines and/or outline portions (e.g., closed curves), attributes (e.g., attach points, neighbors, sizes (e.g., length, width, depth), rigidity/flexibility, torsional rotation, degrees of freedom of motion, and others), and so forth) useful to define and update models 608 and model attributes. While illustrated with reference to a particular embodiment in which models, model components, and attributes are co-located within a common object library 612, it should be understood that these objects will be maintained separately in some embodiments.


With the model-management module 602, one or more object attributes may be determined based on the detected light. Object attributes may include (but are not limited to) the presence or absence of the object; positional attributes such as the (e.g., one-, two-, or three-dimensional) location and/or orientation of the object (or locations and/or orientations of various parts thereof); dynamic attributes characterizing translational, rotational, or other forms of motion of the object (e.g., one-, two-, or three-dimensional momentum or angular momentum); physical attributes (e.g., structural or mechanical attributes such as appearance, shape, structure, conformation, articulation, deformation, flow/dispersion (for liquids), elasticity); optical properties or, more generally, properties affecting or indicative of interaction with electromagnetic radiation of any wavelength (e.g., color, translucence, opaqueness, reflectivity, absorptivity); and/or even chemical properties (as inferred, e.g., from optical properties) (such as material properties and composition).


In some embodiments, scanning the region involves multiple emission cycles. During different emission cycles, the region may (but need not) be scanned in accordance with different scan patterns. For example, an initial emission cycle may serve to detect an object, and during a subsequent cycle, a more refined scan pattern may serve to capture surface detail about the object, determining positional information for at least a portion of the object, or determining other kinds of object attributes. Multiple sequential emission cycles may also serve to detect changes in any of the object attributes, e.g., due to motion or deformation; for such differential object-attribute determinations, the same or similar scan patterns are typically used throughout the cycles. The object attributes may be analyzed to identify a potential control surface of the object.



FIG. 7A illustrates predictive information including a model 700 of a control object constructed from one or more model subcomponents 702, 703 selected and/or configured to represent at least a portion of a surface of control object 112, a virtual surface portion 706 and one or more attributes 708. Other components can be included in predictive information 710 not shown in FIG. 7A for clarity sake; such as models (user portions (hand, face), objects (styli, tools), model components (shapes, e.g., 2D model portions that sum to 3D), and model-component attributes (e.g., degrees of freedom of motion, torsional rotation, attach points, neighbors, size (length, width, depth), rigidity/flexibility), and others). In an embodiment, the model subcomponents 702, 703 can be selected from a set of radial solids, which can reflect at least a portion of a control object 112 in terms of one or more of structure, motion characteristics, conformational characteristics, other types of characteristics, and/or combinations thereof. In one embodiment, radial solids include a contour and a surface defined by a set of points having a fixed distance from the closest corresponding point on the contour. Another radial solid embodiment includes a set of points a fixed distance from corresponding points on a contour along a line normal thereto. In an embodiment, computational technique(s) for defining the radial solid include finding a closest point on the contour and the arbitrary point, then projecting outward the length of the radius of the solid. In an embodiment, such projection can be a vector normal to the contour at the closest point. An example radial solid (e.g., 702) includes a “capsuloid”, i.e., a capsule-shaped solid including a cylindrical body and semi-spherical ends. Another type of radial solid (e.g., 703) includes a sphere. Other types of radial solids can be identified based on the foregoing teachings.


In an embodiment and with reference to FIG. 7B, updating predictive information to observed information comprises selecting one or more sets of points 750 in space surrounding or bounding the control object within a field of view of one or more image-capture device(s). As shown, points 750 can be determined using one or more sets of lines 752A, 752B, 752C, and 752D originating at vantage point(s) associated with the image-capture device(s) (e.g., FIG. 1: 130A, 130B) and determining therefrom one or more intersection point(s) defining a bounding region (i.e., region formed by lines 752A, 752B, 752C, and 752D) surrounding a cross-section of the control object. The bounding region can be used to define a virtual surface (FIG. 7A: 706) to which model subcomponents 702, 703, and 754 can be compared. The virtual surface 706 can include a visible portion 760A and a non-visible “inferred” portion 760B. Virtual surfaces 706 can include straight portions and/or curved surface portions of one or more virtual solids (i.e., model portions) determined by model refiner 606.


For example and according to one embodiment illustrated by FIG. 7B, model refiner 606 determines to model subcomponent 754 of an object portion (happens to be a finger) using a virtual solid, an ellipse in this illustration, or any of a variety of 3D shapes (e.g., ellipsoid, sphere, or custom shape) and/or 2D slice(s) that are added together to form a 3D volume. Accordingly, beginning with generalized equations for an ellipse (1) with (x, y) being the coordinates of a point on the ellipse, (xc, yc) the center, a and b the axes, and θ the rotation angle, the coefficients C1, C2 and C3 are defined in terms of these parameters, as shown:












C
1



x
2


+


C
2


xy

+


C
3




y

2
-


(


2


C
1



x
c


+


C
2



y
c



)


x

-


(


2


C
3



y
c


+


C
2



x
c



)


y

+

(



C
1



x
c
2


+


C
2



x
c



y
c


+


C
3



y
c52


-
1

)


=
0




(
1
)












C
1

=




cos
2


θ


a
2


+



sin
2


θ


b
2













C
2

=


-
2


cos

θ

sin


θ

(


1

a
2


-

1

b
2



)












C
3

=




sin
2


θ


a
2


+



cos
2


θ


b
2








The ellipse equation (1) is solved for θ, subject to the constraints that: (1) (xcc, yc) must lie on the centerline determined from the four tangents 752A, 752B, 752C, and 752D (i.e., centerline 756 of FIG. 7B); and (2) a is fixed at the assumed value a0. The ellipse equation can either be solved for θ analytically or solved using an iterative numerical solver (e.g., a Newtonian solver as is known in the art). An analytic solution can be obtained by writing an equation for the distances to the four tangent lines given a yc position, then solving for the value of yc that corresponds to the desired radius parameter a=a0. Accordingly, equations (2) for four tangent lines in the x-y plane (of the slice), in which coefficients Ai, Bi and Di (for i=1 to 4) are determined from the tangent lines 752A, 752B, 752C, and 752D identified in an image slice as described above.

A1x+B1y+D1=0
A2x+B2y+D2=0
A3x+B3y+D3=0
A4x+B4y+D4=0  (2)


Four column vectors r12, r23, r14 and r24 are obtained from the coefficients Ai, Bi and Di of equations (2) according to equations (3), in which the “\” operator denotes matrix left division, which is defined for a square matrix M and a column vector v such that M\v=r, where r is the column vector that satisfies Mr=v:










r
13

=


[




A
1




B
1






A
3




B
3




]



\



[




-

D
1







-

D
3





]






(
3
)










r
23

=


[




A
2




B
2






A
3




B
3




]



\



[




-

D
21







-

D
3





]









r
14

=


[




A
1




B
1






A
4




B
4




]



\



[




-

D
1







-

D
4





]









r
24

=


[




A
2




B
2






A
4




B
4




]



\



[




-

D
2







-

D
4





]






Four component vectors G and H are defined in equations (4) from the vectors of tangent coefficients A, B and D and scalar quantities p and q, which are defined using the column vectors r12, r23, r14 and r24 from equations (3).

c1=(r13+r24)/2
c2=(r14+r23)/2
δ1=c21−c11
δ2=c22−c12
p=δ1/δ2
q=c11−c12*p
G=Ap+B
H=Aq+D  (4)


Six scalar quantities vA2, vAB, vB2, wA2, wAB, and wB2 are defined by equation (5) in terms of the components of vectors G and H of equation (4).









v
=


[




G
2
2




G
3
2




G
4
2







(


G
2



H
2


)

2





(


G
3



H
3


)

2





(


G
4



H
4


)

2






H
2
2




H
3
2




H
4
2




]



\



[



0




0




1



]






(
5
)









w
=


[




G
2
2




G
3
2




G
4
2







(


G
2



H
2


)

2





(


G
3



H
3


)

2





(


G
4



H
4


)

2






H
2
2




H
3
2




H
4
2




]



\



[



0




1




0



]









v

A

2


=



(


v
1



A
1


)

2

+


(


v
2



A
2


)

2

+


(


v
3



A
3


)

2









v
AB

=



(


v
1



A
1



B
1


)

2

+


(


v
2



A
2



B
2


)

2

+


(


v
3



A
3



B
3


)

2









v

B

2


=



(


v
1



B
1


)

2

+


(


v
2



B
2


)

2

+


(


v
3



B
3


)

2









w

A

2


=



(


w
1



A
1


)

2

+


(


w
2



A
2


)

2

+


(


w
3



A
3


)

2









w
AB

=



(


w
1



A
1



B
1


)

2

+


(


w
2



A
2



B
2


)

2

+


(


w
3



A
3



B
3


)

2









w

B

2


=



(


w
1



B
1


)

2

+


(


w
2



B
2


)

2

+


(


w
3



B
3


)

2






Using the parameters defined in equations (1)-(5), solving for θ is accomplished by solving the eighth-degree polynomial equation (6) for t, where the coefficients Qi (for i=0 to 8) are defined as shown in equations (7)-(15).

0=Q8t8+Q7t7+Q6t6+Q5t5+Q4t4+Q3t3+Q2t2+Q1t+Q0  (6)


The parameters A1, B1, G1, H1, vA2, vAB, vB2, wA2, wAB, and wB2 used in equations (7)-(15) are defined as shown in equations (1)-(4). The parameter n is the assumed semi-major axis (in other words, a0). Once the real roots t are known, the possible values of θ are defined as θ=a tan(t).

Q8=4A12n2v2B2+4vB2B12(1−n2vA2)−(G1(1−n2vA2)wB2+n2vB2wA2+2H1vB2)2  (7)
Q7=−(2(2n2vABwA2+4H1vAB+2G1n2vABwB2+2G1(1−n2vA2)wAB))(G1(1−n2vA2)wB2+n2vB2wA2+2H1vB2)−8A1B1n2vB2+16A12n2vABvB2+(4(2A1B1(1−n2vA2)+2B12n2vAB))vB2+8B12(1−n2vA2)vAB  (8)
Q6=−(2(2H1vB2+2H1vA2+n2vA2wA2+n2vB2(−2wAB+wB2)+G1(n2vB2+1)wB2+4G1n2vABwAB+G1(1−n2vA2)vA2))×(G1(1−n2vA2)wB2+n2vB2wA2+2H1vB2)−(2n2vABwA2+4H1vAB+2G1n2vABwB2+2G1(1−n2vA2)wAB)2+4B12n2vB22−32A1B1n2vABvB2+4A12n2(2vA2vB2+4v2AB)+4A12n2vB22+(4(A12(1−n2vA2)+4A1B1n2vAB+B12(−n2vB2+1)+B12(1−n2vA2)))vB2+(8(2A1B1(1−n2vA2)+2B12n2vAB))vAB+4B12(1−n2vA2)vA2  (9)
Q5=−(2(4H1vAB+2G1(−n2vB2+1)wAB+2G1n2vABvA2+2n2vA(−2wAB+wB2)))(G1(1−n2vA2)wB2+n2vB2wA2+2H1vB2)−(2(2H1vB2+2H1vA2+n2vA2wA2+n2vB2(−2wAB+wB2)+G1(−n2vB2+1)wB2+4G1n2vABwAB+G1(1−n2vA2)vA2))×(2n2vABwA2+4H1vAB+2G1n2vABwB2+2G1(1−n2vA2)wAB)+16B12n2vABvB2−8A1B1n2(2vA2vB2+4vAB2)+16A12n2vA2vAB−8A1B1n2vB22+16A12n2vABvB2+(4(2A12n2vAB+2A1B1(−n2vB2+1)+2A1B1(1−n2vA2)+2B12n2vAB))vB2+(8(A12(1−n2vA2)+4A1B1n2vAB+B1(−n2vB2+1)+B12(1−n2vA2)))vAB+(4(2A1B1(1−n2vA2)+2B12n2vAB))vA2  (10)
Q4=(4(A12(−n2vB2)+A12(1−n2vA2)+4A1B1n2vAB+B12(−n2vB2+1)))vB2+(8(2A12n2vAB+2A1B1(−n2vB2+1)+2A1B1(1−n2vA2)+2B12n2vAB))vAB+(4(A12(1−n2vA2)+4A1B1n2vAB+B12(−n2vB2+1)+B12(1−n2vA2)))vA2+4B12n2(2vA2vB2+4vAB2)−32A1B1n2vA2vAB+4A12n2vA22+4B12n2vB22−32A1B1n2vABvB2+4A12n2(2vA2vB2+4vAB2)−(2(G1(−n2vB2+1)vA2+n2vA2(−2wAB+wB2)+2H1vA2))(G1(1−n2vA2)wB2+n2vB2wA2+2H1vB2)−(2(4H1vAB+2G1(−n2vB2+1)wAB+2G1n2vABvA2+2n2vAB(−2wAB+wB2)))×(2n2vABwA2+4H1vAB+2G1n2vABwB2+2G1(1−n2vA2)wAB)−(2H1vB2+2H1vA2+n2vA2wA2+n2vB2(−2wAB+wB2)+G1(−n2vB2+1)wB2+4G1n2vABwAB+G1(1−n2vA2)vA2)2  (11)
Q3=−(2(G1(−n2vB2+1)vA2+n2vA2(−2wAB+wB2)+2H1vA2))(2n2vABwA2+4H1vAB+2G1n2vABwB2+2G1(1−n2vA2)wAB)−(2(4H1vAB+2G1(−n2vB2+1)wAB+2G1n2vABvA2+2n2vAB(−2wAB+wB2)))×(2H1vB2+2H1vA2+n2vA2wA2+n2vB2(−2wAB+wB2)+G1(−n2vB2+1)wB2+4G1n2vABwAB+G1(1−n2vA2)vA2)+16B12n2vA2vAB−8A1B1n2vA22+16B12n2vABvB2−8A1B1n2(2vA2vB2+4vAB2)+16A12n2vA2vAB+(4(2A12n2vAB+2A1B1(−n2vB2+1)))vB2+(8(A12(−n2vB2+1)+A12(−n2vA2)+4A1B1n2vAB+B12(−n2vB2+1)))vAB+(4(2A12n2vAB+2A1B1(−n2vB2+1)+2A1B1(1−n2vA2)+2B1n2vAB))vA2   (12)
Q2=4A12(−n2vB2+1)vB2+(8(2A12n2vAB+2A1B1(−n2vB2+1)))vAB+(4(A12(−n2vB2+1)+A22(1−n2vA2)+4A1B1n2vAB+B12(−n2vB2+1)))vA2+4B12n2vA22+4B12n2(2vA2vB2+4vAB2)−32A1B1n2vA2vAB+4A12n2vA22−(2(G1(−n2vB2+1)vA2+n2vA2(−2wAB+wB2)+2H1vA2))×(2H1vB2+2H1vA2+n2vA2wA2+n2vB2(−2wAB+wB2)+G1(−n2vB2+1)wB2+4G1n2vABwAB+G1(1−n2vA2)vA2)−(4H1vAB+2G1(−n2vB2+1)wAB+2G1n2vABvA2+2n2vAB(−2wAB+wB2))2  (13)
Q1=8A12(−n2vB2+1)vAB+(4(2A12n2vAB+2A1B1(−n2vBR+1)))vA2+16B12n2vA2vAB−8A1B1n2v2A2−(2(G1(−n2vB2+1)vA2+n2vA2(−2wAB+wB2)+2H1vA2))(4H1vAB+2G1(−n2vB2+1)wAB+2G1n2vABvA2+2n2vAB(−2wAB+wB2))  (14)
Q0=4A12(−n2vB2+1)vA2−(G1(−n2vB2+1)vA2+n2vA2(−2wAB+wB2)+2H1vA2)2+4B12v2A2  (15)


In this exemplary embodiment, equations (6)-(15) have at most three real roots; thus, for any four tangent lines, there are at most three possible ellipses that are tangent to all four lines and that satisfy the a=a0 constraint. (In some instances, there may be fewer than three real roots.) For each real root θ, the corresponding values of (xc, yc) and b can be readily determined. Depending on the particular inputs, zero or more solutions will be obtained; for example, in some instances, three solutions can be obtained for a typical configuration of tangents. Each solution is completely characterized by the parameters {θ, a=a0, b, (xc, yc)}. Alternatively, or additionally, referring to FIGS. 6A and 6B, a model builder 614 and model updater 616 provide functionality to define, build, and/or customize model(s) 608 using one or more components in object library 612. Once built, model refiner 606 updates and refines the model, bringing the predictive information of the model in line with observed information from the detection system 102.


The model subcomponents 702, 703, 754 can be scaled, sized, selected, rotated, translated, moved, or otherwise re-ordered to enable portions of the model corresponding to the virtual surface(s) to conform within the points 750 in space. Model refiner 606 employs a variation detector 618 to substantially continuously determine differences between sensed information and predictive information and provide to model refiner 606 a variance useful to adjust the model 608 accordingly. Variation detector 618 and model refiner 606 are further enabled to correlate among model portions to preserve continuity with characteristic information of a corresponding object being modeled, continuity in motion, and/or continuity in deformation, conformation and/or torsional rotations.


In an embodiment, when the control object morphs, conforms, and/or translates, motion information reflecting such motion(s) is included in the observed information. Points in space can be recomputed based on the new observation information. The model subcomponents can be scaled, sized, selected, rotated, translated, moved, or otherwise re-ordered to enable portions of the model corresponding to the virtual surface(s) to conform to the set of points in space.


In an embodiment, motion(s) of the control object can be rigid transformations, in which case points on the virtual surface(s) remain at the same distance(s) from one another through the motion. Motion(s) can be non-rigid transformations, in which points on the virtual surface(s) can vary in distance(s) from one another during the motion. In an embodiment, observation information can be used to adjust (and/or re-compute) predictive information, thereby enabling “tracking” the control object. In embodiments, the control object can be tracked by determining whether a rigid transformation or a non-rigid transformation occurs. In an embodiment, when a rigid transformation occurs, a transformation matrix is applied to each point of the model uniformly. Otherwise, when a non-rigid transformation occurs, an error indication can be determined, and an error-minimization technique such as described herein above can be applied. In an embodiment, rigid transformations and/or non-rigid transformations can be composed. One example composition embodiment includes applying a rigid transformation to predictive information. Then an error indication can be determined, and an error minimization technique such as described herein above can be applied. In an embodiment, determining a transformation can include calculating a rotation matrix that provides a reduced RMSD (root mean squared deviation) between two paired sets of points. One embodiment can include using Kabsch Algorithm to produce a rotation matrix. In an embodiment and by way of example, one or more force lines can be determined from one or more portions of a virtual surface.


Collisions: In an embodiment, predictive information can include collision information concerning two or more capsuloids. By means of illustration, several possible fits of predicted information to observed information can be removed from consideration based upon a determination that these potential solutions would result in collisions of capsuloids. In an embodiment, a relationship between neighboring capsuloids, each having one or more attributes (e.g., determined minima and/or maxima of intersection angles between capsuloids) can be determined. In an embodiment, determining a relationship between a first capsuloid having a first set of attributes and a second capsuloid having a second set of attributes includes detecting and resolving conflicts between first attributes and second attributes. For example, a conflict can include a capsuloid having one type of angle value with a neighbor having a second type of angle value incompatible with the first type of angle value. Attempts to attach a capsuloid with a neighboring capsuloid having attributes such that the combination will exceed what is allowed in the observed—or to pair incompatible angles, lengths, shapes, or other such attributes—can be removed from the predicted information without further consideration.


Lean Model: In an embodiment, predictive information can be artificially constrained to capsuloids positioned in a subset of the observed information—thereby enabling creation of a “lean model.” For example, as illustrated in FIG. 7A, capsuloid 702 could be used to denote the portion of the observed without addition of capsuloids 703. In a yet further embodiment, connections can be made using artificial constructs to link together capsuloids of a lean model. In another embodiment, the predictive information can be constrained to a subset of topological information about the observed information representing the control object to form a lean model. In an embodiment, a lean model can be associated with a full predictive model. The lean model (or topological information, or properties described above) can be extracted from the predictive model to form a constraint. Then, the constraint can be imposed on the predictive information, thereby enabling the predictive information to be constrained in one or more of behavior, shape, total (system) energy, structure, orientation, compression, shear, torsion, other properties, and/or combinations thereof.


Occlusions: In an embodiment, the observed can include components reflecting portions of the control object which are occluded from view of the device (“occlusions” or “occluded components”). In one embodiment, the predictive information can be “fit” to the observed as described herein above with the additional constraint(s) that some total property of the predictive information (e.g., potential energy) be minimized or maximized (or driven to lower or higher value(s) through iteration or solution). Properties can be derived from nature, properties of the control object being viewed, others, and/or combinations thereof. In another embodiment, as shown by FIGS. 7C and 7D, a deformation of the predictive information subcomponent 760 can be allowed subject to an overall permitted value of compression, deformation, flexibility, others, and/or combinations thereof.


Friction: In an embodiment, a “friction constraint” is applied on the model 700. For example, if fingers of a hand being modeled are close together (in position or orientation), corresponding portions of the model will have more “friction”. The more friction a model subcomponent has in the model, the less the subcomponent moves in response to new observed information. Accordingly, the model is enabled to mimic the way portions of the hand that are physically close together move together, and move less overall. Further detail about capsuloids, occlusion, collisions and lean models, friction and robustness can be found in U.S. Provisional Patent Application Nos. 61/871,790, filed Aug. 29, 2013, 61/873,758, filed Sep. 4, 2013, and 61/898,462, filed Oct. 31, 2013, which are hereby incorporated herein by reference in their entirety.


With renewed reference to FIGS. 6A and 6B, an environmental filter 620 reduces extraneous noise in sensed information received from the detection system 100 using environmental information to eliminate extraneous elements from the sensory information. Environmental filter 620 employs contrast enhancement, subtraction of a difference image from an image, software filtering, and background subtraction (using background information provided by objects-of-interest determiner 622 (see below) to enable model refiner 606 to build, refine, manage, and maintain model(s) 608 of objects of interest from which control inputs can be determined.


A model analyzer 610 determines that a reconstructed shape of a sensed object portion matches an object model in an object library, and interprets the reconstructed shape (and/or variations thereon) as user input. Model analyzer 610 provides output in the form of object, position, motion, and attribute information to an interaction system 630.


The interaction system 630 includes an interaction-interpretation module 632 that provides functionality to recognize command and other information from object, position, motion and attribute information obtained from variation system 600. An interaction-interpretation module 632 embodiment comprises a recognition engine 634 to recognize command information such as command inputs (i.e., gestures and/or other command inputs (e.g., speech, and so forth)), related information (i.e., biometrics), environmental information (i.e., context, noise, and so forth) and other information discernable from the object, position, motion, and attribute information that might be useful in controlling a machine. Recognition engine 634 employs gesture properties 636 (e.g., path, velocity, acceleration, and so forth), control objects determined from the object, position, motion, and attribute information by an objects-of-interest determiner 622 and optionally one or more virtual constructs 638 (see e.g., FIGS. 8A and 8B: 800 and 820) to recognize variations in control-object presence or motion indicating command information, related information, environmental information, and other information discernable from the object, position, motion, and attribute information that might be useful in controlling a machine. With reference to FIGS. 8A and 8B, virtual construct 800, 820 implement an engagement target with which a control object 112 interacts—enabling the machine sensory and control system to discern variations in control object (i.e., motions into, out of or relative to virtual construct 800, 820) as indicating control or other useful information. Returning to FIGS. 6A and 6B, a gesture trainer 640 and gesture-properties extractor 642 provide functionality to define, build, and/or customize gesture properties 636.


A context determiner 644 and object-of-interest determiner 622 provide functionality to determine from the object, position, motion, and attribute information objects of interest (e.g., control objects, or other objects to be modeled and analyzed) and/or objects not of interest (e.g., background), based upon a detected context. For example, when the context is determined to be an identification context, a human face will be determined to be an object of interest to the system and will be determined to be a control object. On the other hand, when the context is determined to be a fingertip control context, the finger tips will be determined to be object(s) of interest and will be determined to be control objects whereas the user's face will be determined not to be an object of interest (i.e., background). Further, when the context is determined to be a stylus (or other tool) held in the fingers of the user, the tool tip will be determined to be object of interest and a control object whereas the user's fingertips might be determined not to be objects of interest (i.e., background). Background objects can be included in the environmental information provided to environmental filter 620 of model-management module 602.


A virtual environment manager 646 provides creation, selection, modification, and de-selection of one or more virtual constructs 800, 820 (see FIGS. 8A and 8B). In some embodiments, virtual constructs (e.g., a virtual object defined in space such that variations in real objects relative to the virtual construct, when detected, can be interpreted for control or other purposes) are used to determine variations (i.e., virtual “contact” with the virtual construct, breaking of virtual contact, motion relative to a construct portion, and so forth) to be interpreted as engagements, dis-engagements, motions relative to the construct(s), and so forth, enabling the system to interpret pinches, pokes and grabs, and so forth. Interaction-interpretation module 632 provides as output the command information, related information, and other information discernable from the object, position, motion, and attribute information that might be useful in controlling a machine from recognition engine 634 to an application control system 650.


Further with reference to FIGS. 6A and 6B, an application control system 650 includes a control module 652 that provides functionality to determine and authorize commands based upon the command and other information obtained from interaction system 630.


A control module 652 embodiment comprises a command engine 654 to determine whether to issue command(s) and what command(s) to issue based upon the command information, related information, and other information discernable from the object, position, motion, and attribute information, as received from the interaction-interpretation module 632. Command engine 654 employs command/control repository 656 (e.g., application commands, OS commands, commands to the machine sensory and control system, miscellaneous commands) and related information indicating context received from the interaction-interpretation module 632 to determine one or more commands corresponding to the gestures, context, and so forth indicated by the command information. For example, engagement gestures can be mapped to one or more controls, or a control-less screen location, of a presentation device associated with a machine under control. Controls can include imbedded controls (e.g., sliders, buttons, and other control objects in an application), or environmental level controls (e.g., windowing controls, scrolls within a window, and other controls affecting the control environment). In embodiments, controls may be displayed using 2D presentations (e.g., a cursor, cross-hairs, icon, graphical representation of the control object, or other displayable object) on display screens and/or presented in 3D forms using holography, projectors, or other mechanisms for creating 3D presentations, or may be audible (e.g., mapped to sounds, or other mechanisms for conveying audible information) and/or touchable via haptic techniques.


Further, an authorization engine 658 employs biometric profiles 660 (e.g., users, identification information, privileges, and so forth) and biometric information received from the interaction-interpretation module 632 to determine whether commands and/or controls determined by the command engine 654 are authorized. A command builder 662 and biometric profile builder 660 provide functionality to define, build, and/or customize command/control repository 652 and biometric profiles 660.


Selected authorized commands are provided to machine(s) under control (i.e., “client”) via interface layer 664. Commands/controls to the virtual environment (i.e., interaction control) are provided to virtual environment manager 646. Commands/controls to the emission/detection systems (i.e., sensory control) are provided to emission module 102 and/or detection module 104 as appropriate.


For example, if the control object is a hand, analysis of the hand's shape and configuration (which may be the object attributes of interest) may determine the positions of the finger tips, which may constitute the relevant control surfaces. Furthermore, changes in control attributes of the identified control surface(s), such as positional changes of the fingertips, may be analyzed to determine whether they are indicative of control information. In hand-gesture-based machine control, for instance, this may serve to discriminate between deliberate motions intended to provide control input and hand jitter or other inevitable motions. Such discrimination may be based, e.g., on the scale and speed of motion, similarity of the motions to pre-defined motion patterns stored in a library, and/or consistency with deliberate motions as characterized using machine learning algorithms or other approaches.


Further, in some embodiments, as illustrated with reference to FIGS. 8A and 8B, a hand gesture or other motion is analyzed relative to a programmatically defined engagement target (e.g., a plane, curved surface (whether open or closed), point, line, or volume whose position and location in space is well-defined and which need generally not coincide with a physical surface) to determine whether the change in the control surface is indicative of an engagement gesture. For example, if the fingertip pierces an engagement surface, this may be interpreted as a click event, or if one or more fingertips or the entire hand moves substantially parallel to an engagement surface defined relative to a display screen, this may be interpreted as a scrolling gesture. If a particular detected motion (or, more generally, change in object attributes) corresponds to control information, an appropriate response action is taken, generally in accordance with and/or based on response criteria, such as the context in which the control information was received (e.g., the particular software application active at the time, the user accessing the system, an active security level, etc.). The response may involve issuing a command (e.g., open a new document upon a “click,” or shift the displayed content in response to a scrolling motion) to a user interface based on the detected gesture or motion. As illustrated in, FIGS. 8A and 8B, a machine sensory and controller system 810 can be embodied as a standalone unit(s) 810 coupleable via an interface (e.g., wired or wireless), embedded (e.g., within a machine 812, 814 or machinery under control), or combinations thereof. Further information about virtual constructs and engagement can be found in U.S. patent application Ser. No. 14/154,730, filed Jan. 14, 2014), the entire disclosure of which is hereby incorporated by reference.



FIG. 9 illustrates an exemplary computing system 900, such as a PC (or other suitable “processing” system), that can comprise one or more of the elements of the machine sensory and control system shown in FIGS. 1 and 4 according to an embodiment. While other application-specific device/process alternatives might be utilized, such as those already noted in discussions of specific embodiments, it will be presumed for clarity sake that various systems 100, 600, 630, 650 are implemented by, or using, one or more processing systems consistent therewith, unless otherwise indicated. As shown, computer system 900 comprises elements coupled via communication channels (e.g., one or more buses 901), including one or more general-purpose or special-purpose processors 902, such as a Pentium® or Power PC®, digital signal processor (“DSP”), or other processing component. System 900 elements also include one or more input devices 903 (such as a mouse, keyboard, joystick, microphone, remote control unit, tactile, biometric or other sensors, and so on), and one or more output devices 904 (such as a suitable display, joystick feedback components, speakers, biometric or other actuators, and so on, in accordance with a particular application).


System 900 elements also include a computer-readable storage-media reader 905 coupled to a computer-readable storage medium 906, such as a storage/memory device or hard or removable storage/memory media; examples are further indicated separately as storage device 908 and non-transitory memory 909, which can include hard disk variants, floppy/compact disk variants, digital versatile disk (“DVD”) variants, smart cards, read only memory, random access memory, cache memory or others, in accordance with a particular application (e.g., see data store(s) 612, 636, 656 and 660 of FIGS. 6A and 6B). One or more suitable communication devices 910 can also be included, such as a modem, DSL, infrared, etc. for providing inter-device communication directly or via suitable private or public networks, such as the Internet. Working memory 909 may load therein and/or store processor-executable instructions, programmed in any one or combination of suitable programming languages, such as, e.g., C, C++, Python, Basic, Pascal, Fortran, and/or others. The instructions may be grouped into program modules. For example, as shown, the working memory 909 may store an operating system (“OS”) 911 for providing basic system-level functionality (such as file management, memory allocation, and communication with the various input/output and other hardware devices); an emission/detection control module 912 constituting or communicating with the controller 106; a signal-processing module 108; model-management, interaction-interpretation, and application/device-control modules 602, 632, 652; and other programs 915, such as application programs, mobile code, data, or other information for implementing systems 100, 600, 630, 650 elements. However, as will be readily apparent to one of skill in the art, the functionality of systems 100, 600, 630, 650 can also be grouped and organized in many alternative ways.


In general, system 900 element implementations can include hardware, software, firmware, or a suitable combination. When implemented in software (e.g., as an application program, object, downloadable, servlet, and so on, in whole or part), a system 900 element can be communicated transitionally or more persistently from local or remote storage to memory for execution, or another suitable mechanism can be utilized, and elements can be implemented in compiled, simulated, interpretive, or other suitable forms. Input, intermediate or resulting data or functional elements can further reside more transitionally or more persistently in storage media or memory (e.g., storage device 908 or memory 909) in accordance with a particular application.


Certain aspects enabled by input/output processors and other element embodiments disclosed herein (such as the determination of a potential interaction, virtual object selection, or authorization issuance) can also be provided in a manner that enables a high degree of broad or even global applicability; these can also be suitably implemented at a lower hardware/software layer. Note, however, that aspects of such elements can also be more closely linked to a particular application type or machine, or might benefit from the use of mobile code, among other considerations; a more distributed or loosely coupled correspondence of such elements with OS processes might thus be more desirable in such cases.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


While the invention has been described by way of example and in terms of the specific embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims
  • 1. A computer implemented method for conducting machine control, the method comprising: responsive to a detection of a presence of an object in a region of space scanned using a first sensing modality at a first rate of time, performing operations including: receiving an imaging of the region of space including the object for at least two cycles using a second sensing modality, the region of space being imaged at a second rate of time, for each cycle, that is longer than the first rate of time, such that each cycle imaged at the second rate of time takes longer than the scanning performed at the first rate of time;determining a first set of object attributes of the object for a first imaging cycle of the at least two cycles; anddetermining a second set of object attributes of the object for a second imaging cycle of the at least two cycles;determining control information based on the first set of object attributes and the second set of object attributes; and responding to the determined control information according to response criteria.
  • 2. The computer implemented method according to claim 1, further comprising scanning the region of space, using the first sensing modality, at the first rate of time, wherein the scanning of the region of space comprises: directing at least two emission cycles to form at least two scan patterns from an emission region of the first sensing modality to the region of space, one scan pattern of the at least two scan patterns being different from at least one other scan pattern of the at least two scan patterns;detecting a reflectance of the at least two scan patterns; anddetermining that the detected reflectance indicates the presence of the object in the region of space.
  • 3. The computer implemented method according to claim 2, wherein: one scan pattern of the at least two scan patterns is configured to provide sequential emissions from emitters of the emission region in a binary manner such that each of the emitters is turned on and off one at a time; andat least one other scan pattern of the at least two scan patterns is configured to provide simultaneously overlapping emissions from the emitters.
  • 4. The computer implemented method according to claim 1, wherein the response criteria includes determining whether to respond to the control information.
  • 5. The computer implemented method according to claim 1, wherein the determining of the first set of object attributes and the determining of the second set of object attributes include determining control-portion attributes based at least in part on captured surface detail about the object.
  • 6. The computer implemented method according to claim 1, wherein the determining of the first set of object attributes includes identifying a presence of a hand in the region of space.
  • 7. The computer implemented method according to claim 1, further comprising scanning the region of space, using the first sensing modality, at the first rate of time, wherein the scanning of the region of space includes imaging the region of space at the first rate, which provides low resolution imaging of the region of space, andwherein the imaging of the region of space includes using the second sensing modality at the second rate to provide high resolution imaging of the region of space.
  • 8. The method of claim 1, wherein the scanning of the region of space pre-scans the region of space to detect the presence of the object before the imaging of the region of space.
  • 9. The computer implemented method according to claim 1, wherein the first sensing modality and the second sensing modality have overlapping fields of view.
  • 10. The computer implemented method according to claim 9, wherein the second sensing modality includes at least two imaging sensors having overlapping fields of view.
  • 11. The computer implemented method according to claim 1, wherein the second sensing modality includes at least two imaging sensors having overlapping fields of view.
  • 12. A non-transitory computer readable storage medium impressed with computer program instructions for conducting machine control, the instructions, when executed on a processor, implement a method comprising: responsive to a detection of a presence of an object in a region of space scanned using a first sensing modality at a first rate of time, performing operations including: receiving an imaging of the region of space including the object for at least two cycles using a second sensing modality, the region of space being imaged at a second rate of time, for each cycle, that is longer than the first rate of time, such that each cycle imaged at the second rate of time takes longer than the scanning performed at the first rate of time;determining a first set of object attributes of the object for a first imaging cycle of the at least two cycles; anddetermining a second set of object attributes of the object for a second imaging cycle of the at least two cycles;determining control information based on the first set of object attributes and the second set of object attributes; andresponding to the determined control information according to response criteria.
  • 13. The non-transitory computer readable storage medium according to claim 12, further comprising scanning the region of space, using the first sensing modality, at the first rate of time, wherein the scanning of the region of space further comprises: directing at least two emission cycles to form at least two scan patterns from an emission region of the first sensing modality to the region of space, one scan pattern of the at least two scan patterns being different from at least one other scan pattern of the at least two scan patterns;detecting a reflectance of the at least two scan patterns; anddetermining that the detected reflectance indicates the presence of the object in the region of space.
  • 14. The non-transitory computer readable storage medium according to claim 13, wherein: one scan pattern of the at least two scan patterns is configured to provide sequential emissions from emitters of the emission region in a binary manner such that each of the emitters is turned on and off one at a time; andat least one other scan pattern of the at least two scan patterns is configured to provide simultaneously overlapping emissions from the emitters.
  • 15. The non-transitory computer readable storage medium according to claim 12, wherein the response criteria includes determining whether to respond to the control information.
  • 16. The non-transitory computer readable storage medium according to claim 12, wherein the determining of the first set of object attributes and the determining of the second set of object attributes include determining control-portion attributes based at least in part on captured surface detail about the object.
  • 17. A system including one or more processors coupled to memory, the memory loaded with computer instructions for conducting machine control, the instructions, when executed on the processors, implement actions comprising: responsive to a detection of a presence of an object in a region of space scanned using a first sensing modality at a first rate of time, performing operations including: receiving an imaging of the region of space including the object for at least two cycles using a second sensing modality, the region of space being imaged at a second rate of time, for each cycle, that is longer than the first rate of time, such that each cycle imaged at the second rate of time takes longer than the scanning performed at the first rate of time;determining a first set of object attributes of the object for a first imaging cycle of the at least two cycles; anddetermining a second set of object attributes of the object for a second imaging cycle of the at least two cycles;determining control information based on the first set of object attributes and the second set of object attributes; andresponding to the determined control information according to response criteria.
  • 18. The system according to claim 17, further comprising scanning the region of space, using the first sensing modality, at the first rate of time, wherein the scanning of the region of space comprises: directing at least two emission cycles to form at least two scan patterns from an emission region of the first sensing modality to the region of space, one scan pattern of the at least two scan patterns being different from at least one other scan pattern of the at least two scan patterns;detecting a reflectance of the at least two scan patterns; anddetermining that the detected reflectance indicates the presence of the object in the region of space.
  • 19. The system according to claim 18, wherein: one scan pattern of the at least two scan patterns is configured to provide sequential emissions from emitters of the emission region in a binary manner such that each of the emitters is turned on and off one at a time; andat least one other scan pattern of the at least two scan patterns is configured to provide simultaneously overlapping emissions from the emitters.
  • 20. The system according to claim 17, wherein the determining of the first set of object attributes and the determining of the second set of object attributes include determining control-portion attributes based at least in part on captured surface detail about the object.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/908,643, filed 22 Jun. 2020, which is a continuation of U.S. application Ser. No. 15/696,086, filed 5 Sep. 2017, which is a continuation of Ser. No. 15/392,920, filed 28 Dec. 2016 now U.S. Pat. No. 9,778,752 issued 3 Oct. 2017, which is a continuation of U.S. patent application Ser. No. 14/280,018, filed May 16, 2014 now U.S. Pat. No. 9,679,215 issued 13 Jun. 2017, which is a continuation-in-part of: (i) U.S. patent application Ser. No. 14/106,140, filed on Dec. 13, 2013 now U.S. Pat. No. 9,153,028 issued on Oct. 6, 2015 (which is a continuation of U.S. patent application Ser. No. 13/742,953, filed on Jan. 16, 2013, now U.S. Pat. No. 8,638,989, issued on Jan. 8, 2014, which is a continuation-in-part of (a) U.S. patent application Ser. No. 13/414,485 (filed on Mar. 7, 2012), which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/587,554 (filed on Jan. 17, 2012) and (b) U.S. patent application Ser. No. 13/724,357 (filed on Dec. 21, 2012 and now U.S. Pat. No. 9,070,019 issued Jun. 30, 2015), which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/724,091 (filed on Nov. 8, 2012)); (ii) U.S. patent application Ser. No. 14/212,485, filed on Mar. 14, 2014 (which claims priority to U.S. Provisional Application Nos. 61/792,025, 61/800,327, and 61/801,479, each filed on Mar. 15, 2013); (iii) U.S. patent application Ser. No. 14/154,730, filed on Jan. 14, 2014 and issued as U.S. Pat. No. 9,501,152 on Nov. 22, 2016 (which claims priority to (a) U.S. Provisional Patent Application Nos. 61/825,515 and 61/825,480, both filed on May 20, 2013, (b) U.S. Provisional Patent Application No. 61/873,351, filed on Sep. 3, 2013 and 61/877,641, filed on Sep. 13, 2013, (c) U.S. Provisional Patent Application No. 61/816,487, filed on Apr. 26, 2013, (d) U.S. Provisional Patent Application No. 61/824,691, filed on May 17, 2013, (e) U.S. Provisional Patent Application Nos. 61/752,725, 61/752,731, and 61/752,733, all filed on Jan. 15, 2013, (f) U.S. Provisional Patent Application No. 61/791,204, filed on Mar. 15, 2013, (g) U.S. Provisional Patent Application Nos. 61/808,959 and 61/808,984, both filed on Apr. 5, 2013 and (h) U.S. Provisional Patent Application No. 61/872,538, filed on Aug. 30, 2013; and (iv) U.S. patent application Ser. No. 14/250,758, filed on Apr. 11, 2014 (which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/811,415, filed on Apr. 12, 2013). U.S. patent application Ser. No. 14/280,018 also claims priority to and the benefit of U.S. Provisional Patent Application No. 61/886,586, filed on Oct. 3, 2013, U.S. Provisional Patent Application No. 61/871,790, filed Aug. 29, 2013, U.S. Provisional Patent Application No. 61/873,758, filed on Sep. 4, 2013, U.S. Provisional Patent Application No. 61/898,462, filed on Oct. 31, 2013 and U.S. Provisional Patent Application No. 61/952,843 filed on Mar. 13, 2014. U.S. patent application Ser. No. 13/724,357 now U.S. Pat. No. 9,070,019 issued 30 Jun. 2015 is also a continuation-in-part of U.S. patent application Ser. No. 13/414,485. All foregoing applications are hereby incorporated herein by reference in their entireties.

US Referenced Citations (620)
Number Name Date Kind
2665041 Maffucci Jan 1954 A
4175862 DiMatteo et al. Nov 1979 A
4631676 Pugh Dec 1986 A
4876455 Sanderson et al. Oct 1989 A
4879659 Bowlin et al. Nov 1989 A
4893223 Arnold Jan 1990 A
4894551 Kishimoto et al. Jan 1990 A
5038258 Koch et al. Aug 1991 A
5109435 Lo et al. Apr 1992 A
5134661 Reinsch Jul 1992 A
5282067 Liu Jan 1994 A
5434617 Bianchi Jul 1995 A
5454043 Freeman Sep 1995 A
5538013 Brannon Jul 1996 A
5574511 Yang et al. Nov 1996 A
5581276 Cipolla et al. Dec 1996 A
5594469 Freeman et al. Jan 1997 A
5610674 Martin Mar 1997 A
5659475 Brown Aug 1997 A
5691737 Ito et al. Nov 1997 A
5734590 Tebbe Mar 1998 A
5739797 Karasawa et al. Apr 1998 A
5742263 Wang et al. Apr 1998 A
5883969 Le Gouzouguec et al. Mar 1999 A
5900863 Numazaki May 1999 A
5901170 Peysakhovich et al. May 1999 A
5940538 Spiegel et al. Aug 1999 A
5983909 Yeol et al. Nov 1999 A
5995770 Rochford et al. Nov 1999 A
6002808 Freeman Dec 1999 A
6031161 Baltenberger Feb 2000 A
6031568 Wakitani Feb 2000 A
6031661 Tanaami Feb 2000 A
6072494 Nguyen Jun 2000 A
6075610 Ueda et al. Jun 2000 A
6075892 Fan et al. Jun 2000 A
6075895 Qiao et al. Jun 2000 A
6147678 Kumar et al. Nov 2000 A
6154558 Hsieh Nov 2000 A
6181343 Lyons Jan 2001 B1
6184326 Razavi et al. Feb 2001 B1
6184926 Khosravi et al. Feb 2001 B1
6195104 Lyons Feb 2001 B1
6204852 Kumar et al. Mar 2001 B1
6252598 Segen Jun 2001 B1
6263091 Jain et al. Jul 2001 B1
6296358 Cornsweet et al. Oct 2001 B1
6298143 Kikuchi et al. Oct 2001 B1
6346933 Lin Feb 2002 B1
6417970 Travers et al. Jul 2002 B1
6463402 Bennett et al. Oct 2002 B1
6492986 Metaxas et al. Dec 2002 B1
6493041 Hanko et al. Dec 2002 B1
6498628 Iwamura Dec 2002 B2
6578203 Anderson, Jr. et al. Jun 2003 B1
6602475 Chiao Aug 2003 B1
6603867 Sugino et al. Aug 2003 B1
6629065 Gadh et al. Sep 2003 B1
6661918 Gordon et al. Dec 2003 B1
6674877 Jojic et al. Jan 2004 B1
6702494 Dumler et al. Mar 2004 B2
6734911 Lyons May 2004 B1
6738424 Allmen et al. May 2004 B1
6758215 Begum Jul 2004 B2
6771294 Pulli et al. Aug 2004 B1
6798628 Macbeth Sep 2004 B1
6804654 Kobylevsky et al. Oct 2004 B2
6804656 Rosenfeld et al. Oct 2004 B1
6814656 Rodriguez Nov 2004 B2
6819796 Hong et al. Nov 2004 B2
6901170 Terada et al. May 2005 B1
6919880 Morrison et al. Jul 2005 B2
6931146 Aoki et al. Aug 2005 B2
6950534 Cohen et al. Sep 2005 B2
6993157 Oue et al. Jan 2006 B1
7149356 Clark et al. Dec 2006 B2
7152024 Marschner et al. Dec 2006 B2
7213707 Hubbs et al. May 2007 B2
7215828 Luo May 2007 B2
7244233 Krantz et al. Jul 2007 B2
7257237 Luck et al. Aug 2007 B1
7259873 Sikora et al. Aug 2007 B2
7308112 Fujimura et al. Dec 2007 B2
7333648 Edie et al. Feb 2008 B2
7340077 Gokturk et al. Mar 2008 B2
7372977 Fujimura et al. May 2008 B2
7483049 Aman et al. Jan 2009 B2
7519223 Dehlin et al. Apr 2009 B2
7532206 Morrison et al. May 2009 B2
7536032 Bell May 2009 B2
7542586 Johnson Jun 2009 B2
7598942 Underkoffler et al. Oct 2009 B2
7606417 Steinberg et al. Oct 2009 B2
7646372 Marks et al. Jan 2010 B2
7656372 Sato et al. Feb 2010 B2
7665041 Wilson et al. Feb 2010 B2
7692625 Morrison et al. Apr 2010 B2
7831932 Josephsoon et al. Nov 2010 B2
7840031 Albertson et al. Nov 2010 B2
7861188 Josephsoon et al. Dec 2010 B2
7886229 Pachet Feb 2011 B2
7886236 Kolmykov-Zotov et al. Feb 2011 B2
7940885 Stanton et al. May 2011 B2
7948493 Klefenz et al. May 2011 B2
7961174 Markovic et al. Jun 2011 B1
7961934 Thrun et al. Jun 2011 B2
7971156 Albertson et al. Jun 2011 B2
7980885 Gattwinkel et al. Jul 2011 B2
8005263 Fujimura et al. Aug 2011 B2
8023698 Niwa et al. Sep 2011 B2
8035624 Bell et al. Oct 2011 B2
8045825 Shimoyama et al. Oct 2011 B2
8059153 Barreto et al. Nov 2011 B1
8059894 Flagg et al. Nov 2011 B1
8064704 Kim et al. Nov 2011 B2
8085339 Marks Dec 2011 B2
8086971 Radivojevic et al. Dec 2011 B2
8107687 Gold, Jr. Jan 2012 B2
8111239 Pryor et al. Feb 2012 B2
8112719 Hsu et al. Feb 2012 B2
8116527 Sabol et al. Feb 2012 B2
8144233 Fukuyama Mar 2012 B2
8149210 Klier et al. Apr 2012 B2
8159536 Wang et al. Apr 2012 B2
8180114 Nishihara et al. May 2012 B2
8185176 Mangat et al. May 2012 B2
8213707 Li et al. Jul 2012 B2
8218858 Gu Jul 2012 B2
8229134 Duraiswami et al. Jul 2012 B2
8230852 Zhang et al. Jul 2012 B2
8235529 Raffle et al. Aug 2012 B1
8244233 Chang et al. Aug 2012 B2
8249345 Wu et al. Aug 2012 B2
8270669 Aichi et al. Sep 2012 B2
8289162 Mooring et al. Oct 2012 B2
8290208 Kurtz et al. Oct 2012 B2
8304727 Lee et al. Nov 2012 B2
8319832 Nagata et al. Nov 2012 B2
8325993 Dinerstein et al. Dec 2012 B2
8363010 Nagata Jan 2013 B2
8395600 Kawashima et al. Mar 2013 B2
8432377 Newton Apr 2013 B2
8471848 Tschesnok Jun 2013 B2
8514221 King et al. Aug 2013 B2
8553037 Smith et al. Oct 2013 B2
8567395 Savona et al. Oct 2013 B2
8582809 Halimeh et al. Nov 2013 B2
8593417 Kawashima et al. Nov 2013 B2
8605202 Muijs et al. Dec 2013 B2
8631355 Murillo et al. Jan 2014 B2
8638989 Holz Jan 2014 B2
8659594 Kim et al. Feb 2014 B2
8659658 Vassigh et al. Feb 2014 B2
8686943 Rafii Apr 2014 B1
8693731 Holz et al. Apr 2014 B2
8723789 Rafii May 2014 B1
8724906 Shotton et al. May 2014 B2
8738523 Sanchez et al. May 2014 B1
8744122 Salgian et al. Jun 2014 B2
8768022 Miga et al. Jul 2014 B2
8773512 Rafii Jul 2014 B1
8817087 Weng et al. Aug 2014 B2
8836768 Rafii Sep 2014 B1
8842084 Andersson et al. Sep 2014 B2
8843857 Berkes et al. Sep 2014 B2
8854433 Rafii Oct 2014 B1
8872914 Gobush Oct 2014 B2
8878749 Wu et al. Nov 2014 B1
8879835 Krishnaswamy et al. Nov 2014 B2
8891868 Ivanchenko Nov 2014 B1
8907982 Zontrop et al. Dec 2014 B2
8922590 Luckett, Jr. et al. Dec 2014 B1
8929609 Padovani et al. Jan 2015 B2
8930852 Chen et al. Jan 2015 B2
8942881 Hobbs et al. Jan 2015 B2
8954340 Sanchez et al. Feb 2015 B2
8957857 Lee et al. Feb 2015 B2
9014414 Katano et al. Apr 2015 B2
9056396 Linnell Jun 2015 B1
9063574 Ivanchenko Jun 2015 B1
9070019 Holz Jun 2015 B2
9076257 Sharma et al. Jul 2015 B2
9119670 Yang et al. Sep 2015 B2
9122354 Sharma Sep 2015 B2
9123176 Lu et al. Sep 2015 B2
9124778 Crabtree Sep 2015 B1
9135503 Sundaresan et al. Sep 2015 B2
9153028 Holz Oct 2015 B2
9182812 Ybanez Zepeda Nov 2015 B2
9182838 Kikkeri Nov 2015 B2
9285893 Holz Mar 2016 B2
9317924 Aratani et al. Apr 2016 B2
9330313 Jung et al. May 2016 B2
9342160 Bailey et al. May 2016 B2
9389779 Anderson et al. Jul 2016 B2
9392196 Holz Jul 2016 B2
9436288 Holz Sep 2016 B2
9436998 Holz Sep 2016 B2
9459697 Bedikian et al. Oct 2016 B2
9495613 Holz et al. Nov 2016 B2
9501152 Bedikian et al. Nov 2016 B2
9626591 Holz et al. Apr 2017 B2
9646201 Horowitz May 2017 B1
9652668 Holz et al. May 2017 B2
9672441 Holz et al. Jun 2017 B2
9702977 Holz Jul 2017 B2
9767370 Lo et al. Sep 2017 B1
9927522 Holz Mar 2018 B2
9934580 Holz et al. Apr 2018 B2
9945660 Holz Apr 2018 B2
10007350 Holz et al. Jun 2018 B1
10042430 Bedikian et al. Aug 2018 B2
10210382 Shotton et al. Feb 2019 B2
10228242 Abovitz et al. Mar 2019 B2
10281987 Yang et al. May 2019 B1
10346685 Ding et al. Jul 2019 B2
10366308 Holz et al. Jul 2019 B2
10395385 Zhou et al. Aug 2019 B2
10445593 Mathiesen et al. Oct 2019 B1
10445881 Spizhevoy et al. Oct 2019 B2
10585193 Holz Mar 2020 B2
10607413 Marcolina et al. Mar 2020 B1
10656720 Holz May 2020 B1
10699155 Holz et al. Jun 2020 B2
10739862 Bedikian et al. Aug 2020 B2
11178384 Nakamura et al. Nov 2021 B2
11353962 Bedikian et al. Jun 2022 B2
11493998 Holz Nov 2022 B2
20010044858 Rekimoto Nov 2001 A1
20010052985 Ono Dec 2001 A1
20020008139 Albertelli Jan 2002 A1
20020008211 Kask Jan 2002 A1
20020021287 Tomasi et al. Feb 2002 A1
20020041327 Hildreth et al. Apr 2002 A1
20020080094 Biocca et al. Jun 2002 A1
20020105484 Navab et al. Aug 2002 A1
20030053658 Pavlidis Mar 2003 A1
20030053659 Pavlidis et al. Mar 2003 A1
20030081141 Mazzapica May 2003 A1
20030123703 Pavlidis et al. Jul 2003 A1
20030152289 Luo Aug 2003 A1
20030202697 Simard et al. Oct 2003 A1
20030210262 Gahm et al. Nov 2003 A1
20040103111 Miller et al. May 2004 A1
20040125228 Dougherty Jul 2004 A1
20040125984 Ito et al. Jul 2004 A1
20040145809 Brenner Jul 2004 A1
20040155877 Hong et al. Aug 2004 A1
20040212725 Raskar Oct 2004 A1
20050007673 Chaoulov et al. Jan 2005 A1
20050068518 Baney et al. Mar 2005 A1
20050094019 Grosvenor et al. May 2005 A1
20050131607 Breed Jun 2005 A1
20050156888 Xie et al. Jul 2005 A1
20050168461 Acosta et al. Aug 2005 A1
20050168578 Gobush Aug 2005 A1
20050236558 Nabeshima et al. Oct 2005 A1
20050238201 Shamaie Oct 2005 A1
20060017807 Lee et al. Jan 2006 A1
20060028656 Venkatesh et al. Feb 2006 A1
20060029296 King et al. Feb 2006 A1
20060033713 Pryor Feb 2006 A1
20060034545 Mattes et al. Feb 2006 A1
20060050979 Kawahara Mar 2006 A1
20060072105 Wagner Apr 2006 A1
20060098899 King et al. May 2006 A1
20060204040 Freeman et al. Sep 2006 A1
20060210112 Cohen et al. Sep 2006 A1
20060262421 Matsumoto et al. Nov 2006 A1
20060290950 Platt et al. Dec 2006 A1
20070014466 Baldwin Jan 2007 A1
20070018966 Blythe et al. Jan 2007 A1
20070042346 Weller Feb 2007 A1
20070066394 Ikeda et al. Mar 2007 A1
20070076224 Alexander Apr 2007 A1
20070086621 Aggarwal et al. Apr 2007 A1
20070130547 Boillot Jun 2007 A1
20070206719 Suryanarayanan et al. Sep 2007 A1
20070211023 Boillot Sep 2007 A1
20070230929 Niwa et al. Oct 2007 A1
20070238956 Haras et al. Oct 2007 A1
20070268316 Kajita et al. Nov 2007 A1
20080013826 Hillis et al. Jan 2008 A1
20080019576 Senftner et al. Jan 2008 A1
20080030429 Hailpern et al. Feb 2008 A1
20080031492 Lanz Feb 2008 A1
20080056752 Denton et al. Mar 2008 A1
20080059131 Tokita et al. Mar 2008 A1
20080064954 Adams et al. Mar 2008 A1
20080106637 Nakao et al. May 2008 A1
20080106746 Shpunt et al. May 2008 A1
20080110994 Knowles et al. May 2008 A1
20080111710 Boillot May 2008 A1
20080118091 Serfaty et al. May 2008 A1
20080126937 Pachet May 2008 A1
20080141181 Ishigaki et al. Jun 2008 A1
20080186475 Kawata et al. Aug 2008 A1
20080187175 Kim et al. Aug 2008 A1
20080244468 Nishihara et al. Oct 2008 A1
20080246759 Summers Oct 2008 A1
20080273764 Scholl Nov 2008 A1
20080278589 Thorn Nov 2008 A1
20080291160 Rabin Nov 2008 A1
20080300055 Lutnick et al. Dec 2008 A1
20080304740 Sun et al. Dec 2008 A1
20080319356 Cain et al. Dec 2008 A1
20090002489 Yang et al. Jan 2009 A1
20090093307 Miyaki Apr 2009 A1
20090102840 Li Apr 2009 A1
20090103780 Nishihara Apr 2009 A1
20090116742 Nishihara May 2009 A1
20090122146 Zalewski et al. May 2009 A1
20090128564 Okuno May 2009 A1
20090153655 Ike et al. Jun 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090203994 Mangat et al. Aug 2009 A1
20090217211 Hildreth et al. Aug 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090257623 Tang et al. Oct 2009 A1
20090274339 Cohen et al. Nov 2009 A9
20090309710 Kakinami Dec 2009 A1
20100001998 Mandella et al. Jan 2010 A1
20100013662 Stude Jan 2010 A1
20100013832 Xiao et al. Jan 2010 A1
20100014781 Liu et al. Jan 2010 A1
20100020078 Shpunt Jan 2010 A1
20100023015 Park Jan 2010 A1
20100026963 Faulstich Feb 2010 A1
20100027845 Kim et al. Feb 2010 A1
20100046842 Conwell Feb 2010 A1
20100053164 Imai et al. Mar 2010 A1
20100053209 Rauch et al. Mar 2010 A1
20100053612 Ou-Yang et al. Mar 2010 A1
20100058252 Ko Mar 2010 A1
20100066676 Kramer et al. Mar 2010 A1
20100066737 Liu Mar 2010 A1
20100066975 Rehnstrom Mar 2010 A1
20100091110 Hildreth Apr 2010 A1
20100095206 Kim Apr 2010 A1
20100118123 Freedman et al. May 2010 A1
20100121189 Ma et al. May 2010 A1
20100125815 Wang et al. May 2010 A1
20100127995 Rigazio et al. May 2010 A1
20100141762 Siann et al. Jun 2010 A1
20100156676 Mooring et al. Jun 2010 A1
20100158372 Kim et al. Jun 2010 A1
20100162165 Addala et al. Jun 2010 A1
20100177049 Levy et al. Jul 2010 A1
20100177929 Kurtz et al. Jul 2010 A1
20100194863 Lopes et al. Aug 2010 A1
20100199221 Yeung et al. Aug 2010 A1
20100199230 Latta et al. Aug 2010 A1
20100199232 Mistry et al. Aug 2010 A1
20100201880 Iwamura Aug 2010 A1
20100208942 Porter et al. Aug 2010 A1
20100219934 Matsumoto Sep 2010 A1
20100222102 Rodriguez Sep 2010 A1
20100245289 Svajda Sep 2010 A1
20100248836 Suzuki et al. Sep 2010 A1
20100264833 Van Endert et al. Oct 2010 A1
20100275159 Matsubara et al. Oct 2010 A1
20100277411 Yee et al. Nov 2010 A1
20100278393 Snook et al. Nov 2010 A1
20100295772 Alameh Nov 2010 A1
20100296698 Lien et al. Nov 2010 A1
20100302015 Kipman et al. Dec 2010 A1
20100302357 Hsu et al. Dec 2010 A1
20100303298 Marks et al. Dec 2010 A1
20100306712 Snook et al. Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100309097 Raviv et al. Dec 2010 A1
20100321289 Kim et al. Dec 2010 A1
20100321377 Gay et al. Dec 2010 A1
20110007072 Khan et al. Jan 2011 A1
20110018795 Jang Jan 2011 A1
20110025818 Gallmeier et al. Feb 2011 A1
20110026765 Ivanich et al. Feb 2011 A1
20110043806 Guetta et al. Feb 2011 A1
20110057875 Shigeta et al. Mar 2011 A1
20110066984 Li Mar 2011 A1
20110080337 Matsubara et al. Apr 2011 A1
20110080470 Kuno et al. Apr 2011 A1
20110080490 Clarkson et al. Apr 2011 A1
20110093820 Zhang et al. Apr 2011 A1
20110096033 Ko Apr 2011 A1
20110107216 Bi May 2011 A1
20110115486 Frohlich et al. May 2011 A1
20110116684 Coffman et al. May 2011 A1
20110119640 Berkes et al. May 2011 A1
20110134112 Koh et al. Jun 2011 A1
20110134251 Kim et al. Jun 2011 A1
20110148875 Kim et al. Jun 2011 A1
20110163976 Barnhoefer et al. Jul 2011 A1
20110169726 Holmdahl et al. Jul 2011 A1
20110173204 Murillo et al. Jul 2011 A1
20110173574 Clavin et al. Jul 2011 A1
20110176146 Alvarez Diez et al. Jul 2011 A1
20110181509 Rautiainen et al. Jul 2011 A1
20110193778 Lee et al. Aug 2011 A1
20110193939 Vassigh et al. Aug 2011 A1
20110205151 Newton et al. Aug 2011 A1
20110213664 Osterhout et al. Sep 2011 A1
20110228978 Chen et al. Sep 2011 A1
20110231797 Huhtala et al. Sep 2011 A1
20110234840 Klefenz et al. Sep 2011 A1
20110243451 Oyaizu Oct 2011 A1
20110251896 Impollonia et al. Oct 2011 A1
20110261178 Lo et al. Oct 2011 A1
20110267259 Tidemand et al. Nov 2011 A1
20110267344 Germann et al. Nov 2011 A1
20110279397 Rimon et al. Nov 2011 A1
20110286676 El Dokor Nov 2011 A1
20110289455 Reville et al. Nov 2011 A1
20110289456 Reville et al. Nov 2011 A1
20110291925 Israel et al. Dec 2011 A1
20110291988 Bamji et al. Dec 2011 A1
20110296353 Ahmed et al. Dec 2011 A1
20110299737 Wang et al. Dec 2011 A1
20110304600 Yoshida Dec 2011 A1
20110304650 Campillo et al. Dec 2011 A1
20110310007 Margolis et al. Dec 2011 A1
20110310220 McEldowney Dec 2011 A1
20110314427 Sundararajan Dec 2011 A1
20110317871 Tossell et al. Dec 2011 A1
20120038637 Marks Feb 2012 A1
20120042246 Schwesinger et al. Feb 2012 A1
20120050157 Latta et al. Mar 2012 A1
20120062489 Andersson et al. Mar 2012 A1
20120062558 Lee et al. Mar 2012 A1
20120065499 Chono Mar 2012 A1
20120068914 Jacobsen et al. Mar 2012 A1
20120079421 Arriola Mar 2012 A1
20120092254 Wong et al. Apr 2012 A1
20120098744 Stinson, III Apr 2012 A1
20120105613 Weng et al. May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120113255 Kasuya et al. May 2012 A1
20120113316 Ueta et al. May 2012 A1
20120127484 Kiyose May 2012 A1
20120133580 Kirby et al. May 2012 A1
20120150650 Zahand Jun 2012 A1
20120151421 Clarkson Jun 2012 A1
20120157203 Latta et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163675 Joo et al. Jun 2012 A1
20120167134 Hendricks et al. Jun 2012 A1
20120176343 Holmgren et al. Jul 2012 A1
20120194517 Izadi et al. Aug 2012 A1
20120204133 Guendelman et al. Aug 2012 A1
20120214594 Kirovski et al. Aug 2012 A1
20120218263 Meier et al. Aug 2012 A1
20120223959 Lengeling Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120250936 Holmgren Oct 2012 A1
20120268410 King et al. Oct 2012 A1
20120270654 Padovani et al. Oct 2012 A1
20120274781 Shet et al. Nov 2012 A1
20120281873 Brown et al. Nov 2012 A1
20120293667 Baba et al. Nov 2012 A1
20120309532 Ambrus et al. Dec 2012 A1
20120314030 Datta et al. Dec 2012 A1
20120320080 Giese et al. Dec 2012 A1
20130019204 Kotler et al. Jan 2013 A1
20130033483 Im et al. Feb 2013 A1
20130038694 Nichani et al. Feb 2013 A1
20130044951 Cherng et al. Feb 2013 A1
20130050425 Im Feb 2013 A1
20130063340 Mondragon et al. Mar 2013 A1
20130086531 Sugita et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130108109 Leuck et al. May 2013 A1
20130120319 Givon May 2013 A1
20130148852 Partis et al. Jun 2013 A1
20130167092 Yu et al. Jun 2013 A1
20130181897 Izumi Jul 2013 A1
20130182077 Holz Jul 2013 A1
20130182079 Holz Jul 2013 A1
20130182897 Holz Jul 2013 A1
20130187952 Berkovich et al. Jul 2013 A1
20130191911 Dellinger et al. Jul 2013 A1
20130194173 Zhu et al. Aug 2013 A1
20130207970 Shpunt et al. Aug 2013 A1
20130208948 Berkovich et al. Aug 2013 A1
20130222233 Park et al. Aug 2013 A1
20130222640 Baek et al. Aug 2013 A1
20130225999 Banjanin et al. Aug 2013 A1
20130229508 Li et al. Sep 2013 A1
20130239059 Chen et al. Sep 2013 A1
20130241832 Rimon et al. Sep 2013 A1
20130252691 Alexopoulos Sep 2013 A1
20130257736 Hou et al. Oct 2013 A1
20130258140 Lipson et al. Oct 2013 A1
20130271397 Macdougall et al. Oct 2013 A1
20130283213 Guendelman et al. Oct 2013 A1
20130290911 Praphul et al. Oct 2013 A1
20130296057 Gagner et al. Nov 2013 A1
20130300831 Mavromatis et al. Nov 2013 A1
20130307935 Rappel et al. Nov 2013 A1
20130321265 Bychkov et al. Dec 2013 A1
20140002365 Ackley et al. Jan 2014 A1
20140002495 Lamb et al. Jan 2014 A1
20140010441 Shamaie Jan 2014 A1
20140015831 Kim et al. Jan 2014 A1
20140028861 Holz Jan 2014 A1
20140055352 Davis et al. Feb 2014 A1
20140055385 Duheille Feb 2014 A1
20140055396 Aubauer et al. Feb 2014 A1
20140063055 Osterhout et al. Mar 2014 A1
20140063060 Maciocci et al. Mar 2014 A1
20140064566 Shreve et al. Mar 2014 A1
20140081521 Frojdh et al. Mar 2014 A1
20140085203 Kobayashi Mar 2014 A1
20140095119 Lee et al. Apr 2014 A1
20140098018 Kim et al. Apr 2014 A1
20140113507 Vanzetto Apr 2014 A1
20140118255 Billerbeck May 2014 A1
20140125775 Holz May 2014 A1
20140125813 Holz May 2014 A1
20140132738 Ogura et al. May 2014 A1
20140134733 Wu et al. May 2014 A1
20140139425 Sakai May 2014 A1
20140139641 Holz May 2014 A1
20140149754 Silva May 2014 A1
20140157135 Lee et al. Jun 2014 A1
20140157209 Dalal et al. Jun 2014 A1
20140161311 Kim Jun 2014 A1
20140168062 Katz et al. Jun 2014 A1
20140168084 Burr Jun 2014 A1
20140176420 Zhou et al. Jun 2014 A1
20140177913 Holz Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140189579 Rimon et al. Jul 2014 A1
20140192024 Holz Jul 2014 A1
20140201666 Bedikian et al. Jul 2014 A1
20140201674 Holz Jul 2014 A1
20140201683 Holz Jul 2014 A1
20140201684 Holz Jul 2014 A1
20140201689 Bedikian et al. Jul 2014 A1
20140201690 Holz Jul 2014 A1
20140222385 Muenster et al. Aug 2014 A1
20140223385 Ton et al. Aug 2014 A1
20140225826 Juni Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140240215 Tremblay et al. Aug 2014 A1
20140240225 Eilat Aug 2014 A1
20140248950 Tosas Bautista Sep 2014 A1
20140249961 Zagel et al. Sep 2014 A1
20140253512 Narikawa et al. Sep 2014 A1
20140253785 Chan et al. Sep 2014 A1
20140258880 Holm et al. Sep 2014 A1
20140258886 Strong Sep 2014 A1
20140267098 Na et al. Sep 2014 A1
20140267666 Holz Sep 2014 A1
20140282224 Pedley Sep 2014 A1
20140282274 Everitt et al. Sep 2014 A1
20140282282 Holz Sep 2014 A1
20140304665 Holz Oct 2014 A1
20140307920 Holz Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140340311 Holz Nov 2014 A1
20140344731 Holz Nov 2014 A1
20140344762 Grasset et al. Nov 2014 A1
20140364209 Perry Dec 2014 A1
20140364212 Osman et al. Dec 2014 A1
20140369558 Holz Dec 2014 A1
20140375547 Katz et al. Dec 2014 A1
20140376773 Holz Dec 2014 A1
20150003673 Fletcher Jan 2015 A1
20150009149 Gharib et al. Jan 2015 A1
20150016777 Abovitz et al. Jan 2015 A1
20150022447 Hare et al. Jan 2015 A1
20150029091 Nakashima et al. Jan 2015 A1
20150040040 Balan et al. Feb 2015 A1
20150054729 Minnen et al. Feb 2015 A1
20150084864 Geiss et al. Mar 2015 A1
20150097772 Starner Apr 2015 A1
20150103004 Cohen et al. Apr 2015 A1
20150115802 Kuti et al. Apr 2015 A1
20150116214 Grunnet-Jepsen et al. Apr 2015 A1
20150131859 Kim et al. May 2015 A1
20150153832 Krepec Jun 2015 A1
20150172539 Neglur Jun 2015 A1
20150193669 Gu et al. Jul 2015 A1
20150198716 Romano et al. Jul 2015 A1
20150205358 Lyren Jul 2015 A1
20150205400 Hwang et al. Jul 2015 A1
20150206320 Itani et al. Jul 2015 A1
20150206321 Scavezze et al. Jul 2015 A1
20150220150 Plagemann et al. Aug 2015 A1
20150220776 Cronholm Aug 2015 A1
20150227795 Starner et al. Aug 2015 A1
20150234569 Hess Aug 2015 A1
20150253428 Holz Sep 2015 A1
20150258432 Stafford et al. Sep 2015 A1
20150261291 Mikhailov et al. Sep 2015 A1
20150293597 Mishra et al. Oct 2015 A1
20150304593 Sakai Oct 2015 A1
20150309629 Amariutei et al. Oct 2015 A1
20150323785 Fukata et al. Nov 2015 A1
20150363001 Malzbender Dec 2015 A1
20150363070 Katz Dec 2015 A1
20160012643 Kezele et al. Jan 2016 A1
20160026255 Katz Jan 2016 A1
20160062573 Dascola et al. Mar 2016 A1
20160086046 Holz et al. Mar 2016 A1
20160086055 Holz et al. Mar 2016 A1
20160093105 Rimon et al. Mar 2016 A1
20160147376 Kim et al. May 2016 A1
20160323564 Pacheco et al. Nov 2016 A1
20160328022 Holz Nov 2016 A1
20160378294 Wright et al. Dec 2016 A1
20170102791 Hosenpud et al. Apr 2017 A1
20170124928 Edwin et al. May 2017 A1
20180276846 Mostafavi Sep 2018 A1
20180285923 Fateh Oct 2018 A1
20190012794 Radwin et al. Jan 2019 A1
20190019303 Siver et al. Jan 2019 A1
20190116322 Holzerr et al. Apr 2019 A1
20200019766 Choi et al. Jan 2020 A1
20200053277 Shin et al. Feb 2020 A1
Foreign Referenced Citations (71)
Number Date Country
1984236 Jun 2007 CN
201332447 Oct 2009 CN
101729808 Jun 2010 CN
101930610 Dec 2010 CN
101951474 Jan 2011 CN
102053702 May 2011 CN
201859393 Jun 2011 CN
102201121 Sep 2011 CN
102236412 Nov 2011 CN
105308536 Feb 2016 CN
4201934 Jul 1993 DE
10326035 Jan 2005 DE
102007015495 Oct 2007 DE
102007015497 Jan 2014 DE
11 2014 000 441 Oct 2015 DE
0999542 May 2000 EP
1477924 Nov 2004 EP
1837665 Sep 2007 EP
2369443 Sep 2011 EP
2378488 Oct 2011 EP
2419433 Apr 2006 GB
2480140 Nov 2011 GB
2519418 Apr 2015 GB
H02236407 Sep 1990 JP
H08261721 Oct 1996 JP
H09259278 Oct 1997 JP
2000023038 Jan 2000 JP
2002512069 Apr 2002 JP
2002133400 May 2002 JP
2003256814 Sep 2003 JP
2004246252 Sep 2004 JP
2006019526 Jan 2006 JP
2006259829 Sep 2006 JP
2007272596 Oct 2007 JP
2008227569 Sep 2008 JP
2009031939 Feb 2009 JP
2009037594 Feb 2009 JP
2010060548 Mar 2010 JP
2010523948 Jul 2010 JP
2011010258 Jan 2011 JP
2011065652 Mar 2011 JP
2011107681 Jun 2011 JP
2011248376 Dec 2011 JP
4906960 Mar 2012 JP
2012527145 Nov 2012 JP
20090006825 Jan 2009 KR
101092909 Jun 2011 KR
2422878 Jun 2011 RU
200844871 Nov 2008 TW
9426057 Nov 1994 WO
2004114220 Dec 2004 WO
2006020846 Feb 2006 WO
2007137093 Nov 2007 WO
2010007662 Jan 2010 WO
2010032268 Mar 2010 WO
2010076622 Jul 2010 WO
2010088035 Aug 2010 WO
2010138741 Dec 2010 WO
2010148155 Dec 2010 WO
2011024193 Mar 2011 WO
2011036618 Mar 2011 WO
2011044680 Apr 2011 WO
2011045789 Apr 2011 WO
2011119154 Sep 2011 WO
2012027422 Mar 2012 WO
2013109608 Jul 2013 WO
2013109609 Jul 2013 WO
2014113507 Jul 2014 WO
2014200589 Dec 2014 WO
2014208087 Dec 2014 WO
2015026707 Feb 2015 WO
Non-Patent Literature Citations (53)
Entry
Barat et al., “Feature Correspondences From Multiple Views of Coplanar Ellipses”, 2nd International Symposium on Visual Computing, Author Manuscript, 2006, 10 pages.
Cheikh et al., “Multipeople Tracking Across Multiple Cameras”, International Journal on New Computer Architectures and Their Applications (IJNCAA), vol. 2, No. 1, 2012, pp. 23-33.
Chung, et al., “Recovering LSHGCs and SHGCs from Stereo,” International Journal of Computer Vision, vol. 20, No. 1/2, 1996, pp. 43-58.
Cumani, A., et al., “Recovering the 3D Structure of Tubular Objects from Stereo Silhouettes,” Pattern Recognition, Elsevier, GB, vol. 30, No. 7, Jul. 1, 1997, 9 pages.
Davis et al., “Toward 3-D Gesture Recognition”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 13, No. 03, 1999, pp. 381-393.
Heikkila, J., “Accurate Camera Calibration and Feature Based 3-D Reconstruction from Monocular Image Sequences”, Infotech Oulu and Department of Electrical Engineering, University of Oulu, 1997, 126 pages.
Rasmussen, Matihew K., “An Analytical Framework for the Preparation and Animation of a Virtual Mannequin forthe Purpose of Mannequin-Clothing Interaction Modeling”, A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree in Civil and Environmental Engineering in the Graduate College of the University of Iowa, Dec. 2008, 98 pages.
Schaar, R., VCNL4020 Vishay Semiconductors. Application Note [online]. Extended Detection Range with VCNL Family of Proximity Sensor Vishay Intertechnology, Inc, Doc No. 84225, Revised Oct. 25, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 4 pages.
VCNL4020 Vishay Semiconductors. Datasheet [online]. Vishay Intertechnology, Inc, Doc No. 83476, Rev. 1.3, Oct. 29, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 16 pages.
Zenzo et al., “Advantages In Image Segmentation,” Image and Vision Computing, Elsevier Guildford, GB, Nov. 1, 1983, pp. 196-210.
Arthington, et al., “Cross-section Reconstruction During Uniaxial Loading,” Measurement Science and Technology, vol. 20, No. 7, Jun. 10, 2009, Retrieved from the Internet: http:iopscience.iop.org/0957-0233/20/7/075701, pp. 1-9.
Ballan et al., “Lecture Notes Computer Science: 12th European Conference on Computer Vision: Motion Capture of Hands in Action Using Discriminative Salient Points”, Oct. 7-13, 2012 [retrieved Jul. 14, 2016], Springer Berlin Heidelberg, vol. 7577, pp. 640-653. Retrieved from the Internet: <http://link.springer.com/chapter/1 0.1007/978-3-642-33783-3 46>.
Bardinet, et al., “Fitting of iso-Surfaces Using Superquadrics and Free-Form Deformations” [on-line], Jun. 24-25, 1994 [retrieved Jan. 9, 2014], 1994 Proceedings of IEEE Workshop on Biomedical Image Analysis, Retrieved from the Internet: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=315882&tag=1, pp. 184-193.
Castle et al., Video-rate Localization in Multiple Maps for Wearable Augmented Reality, IEEE dated Jan. 2008, pp. 1-8.
Chung, et al., “International Journal of Computer Vision: RecoveringLSHGCs and SHGCs from Stereo” [on-line], Oct. 1996 [retrieved on Apr. 10, 2014], Kluwer Academic Publishers, vol. 20, issue 1-2, Retrieved from the Internet: http://link.springer.com/article/10.1007/BF00144116#, pp. 43-58.
Cui et al., “Applications of Evolutionary Computing: Vision-Based Hand Motion Capture Using Genetic Algorithm”, 2004 [retrieved Jul. 15, 2016], Springer Berlin Heidelberg, vol. 3005 of LNCS, pp. 289-300. Retrieved from the Internet: <http://link.springer.com/chapter/10.1007/978-3-540-24653-4_30>.
Delamarre et al., “Finding Pose of Hand in Video Images: A Stereo-based Approach”, Apr. 14-16, 1998 [retrieved Jul. 15, 2016], Third IEEE Intern Conf on Auto Face and Gesture Recog, pp. 585-590. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=671011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D671011>.
Di Zenzo, S., et al., “Advances in Image Segmentation,” Image and Vision Computing, Elsevier, Guildford, GBN, vol. 1, No. 1, Copyright Butterworth & Co Ltd., Nov. 1, 1983, pp. 196-210.
Dombeck, D., et al., “Optical Recording of Action Potentials with Second-Harmonic Generation Microscopy,” The Journal of Neuroscience, Jan. 28, 2004, vol. 24(4): pp. 999-1003.
Forbes, K., et al., “Using Silhouette Consistency Constraints to Build 3D Models,” University of Cape Town, Copyright De Beers 2003, Retrieved from the internet: <http://www.dip.ee.uct.ac.za/˜kforbes/Publications/Forbes2003Prasa.pdf> on Jun. 17, 2013, 6 pages.
Fukui et al. “Multiple Object Tracking System with Three Level Continuous Processes” IEEE, 1992, pp. 19-27.
Getting-a-read-on-3d-bar-code, Modern Machine Shop, Feb. 15, 2001, Retrieved on [Sep. 15, 2015] Retrieved from <http://www.mmsonline.comlarticles/getting-a-read-on-3d-bar-codes>.
Gorce et al., “Model-Based 3D Hand Pose Estimation from Monocular Video”, Feb. 24, 2011 [retrieved Jul. 15, 2016], IEEE Transac Pattern Analysis and Machine Intell, vol. 33, Issue: 9, pp. 1793-1805, Retri Internet: <http://ieeexplore.ieee.org/xpl/logi n .jsp ?tp=&arnu mber=571 9617 &u rl=http%3A %2 F%2 Fieeexplore. ieee.org%2Fxpls%2 Fabs all.jsp%3Farnumber%3D5719617>.
Guo et al., Featured Wand for 3D Interaction, Jul. 2-5, 2007 [retrieved Jul. 15, 2016], 2007 IEEE International Conference on Multimedia and Expo, pp. 2230-2233. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4285129&tag=1&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4285129%26tag%3D1>.
Kalkofen et al., “Comprehensible Visualization for Augmented Reality”, IEEE Transactiosn on Visuallization and Computer Graphics, 12 page, vol. 15, No. 2. Mar./Apr. 2009.
Kanhangad, V., et al., “A Unified Framework for Contactless Hand Verification,” IEEE Transactions on Information Forensics and Security, IEEE, Piscataway, NJ, US , vol. 6, No. 3, Sep. 1, 2011, pp. 1014-1027.
Kim, et al., “Development of an Orthogonal Double-Image Processing Algorithm to Measure Bubble,” Department of Nuclear Engineering and Technology, Seoul National University Korea, vol. 39 No. 4, Published Jul. 6, 2007, pp. 313-326.
Krainin et al. Manipulator and Object Tracking for In Hand Model Acquisition, University of Washington, dated Jul. 2011, pp. 1-8.
Kulesza, et al., “Arrangement of a Multi Stereo Visual Sensor System for a Human Activities Space,” Source: Stereo Vision, Book edited by: Dr. Asim Bhatti, ISBN 978-953-7619-22-0, Copyright Nov. 2008, I-Tech, Vienna, Austria, www.intechopen.com, pp. 153-173.
Mateos, A Camera Calibration Technique Using Targets of Circular Features, Jan. 2000, uploaded Dec. 12, 2013, [retrieved Sep. 10, 2022], 13 pages, Retrieved: https://www.researchgate.net/publication/250669007 (Year: 2000).
Matsuyama et al. “Real-Time Dynamic 3-D Object Shape Reconstruction and High-Fidelity Texture Mapping for 3-D Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 3, Mar. 2004, pp. 357-369.
May, S., et al., “Robust 3D-Mapping with Time-of-Flight Cameras,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, Oct. 10, 2009, pp. 1673-1678.
Melax et al., “Dynamics Based 3D Skeletal Hand Tracking”, May 29, 2013 [retrieved Jul. 14, 2016], Proceedings of Graphics Interface, 2013, pp. 63-70. Retrived from the Internet: <http://dl.acm.org/citation.cfm?id=2532141>.
Mendez, et al., “Importance Masks for Revealing Occluded Objects in Augmented Reality,” Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, 2 pages, ACM, 2009.
Oka et al., “Real-Time Fingertip Tracking and Gesture Recognition”, Nov./Dec. 2002 [retrieved Jul. 15, 2016], IEEE Computer Graphics and Applications, vol. 22, Issue: 6, pp. 64-71. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1046630&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabsall.jsp%3Farnumber%3D1046630>.
Olsson, K., et al., “Shape from Silhouette Scanner—Creating a Digital 3D Model of a Real Object by Analyzing Photos From Multiple Views,” University of Linkoping, Sweden, Copyright VCG 2001, Retrieved from the Internet: <http://liu.diva-portal.org/smash/get/diva2:18671/FULLTEXT01> on Jun. 17, 2013, 52 pages.
Palmer, Diffraction Grating Handbook, Newport Corporation, 6th Edition, dated 2005, 54 pages.
Pavlovic, V.I., et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, pp. 677-695.
Pedersini, et al., Accurate Surface Reconstruction from Apparent Contours, Sep. 5-8, 2000 European Signal Processing Conference EUSIPCO 2000, vol. 4, Retrieved from the Internet: http://home.deib.polimi.it/sarti/CV_and_publications.html, pp. 1-4.
Schlattmann et al., “Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization”, 2007 [retrieved Jul. 15, 2016], Eurographics 2007, vol. 26, No. 3, 10 pages, Retrieved from the Internet: <http://cg.cs.uni-bonn.de/aigaion2root/attachments/schlattmann-2007-markerless.pdf>.
Search Machine translation: Method For Measuring Roundness Of Round Wire of JP-2010523948-A to Studer, retrieved Sep. 10, 2022, 13 pages. (Year: 2022).
Sundaresan, Aravind, et. al., “Markerless Motion Capture using Multiple Cameras,” 2005, 12 pages.
Syeda-Mahmood et al., Recognizing action events from multiple viewpoints, Proceedings IEEE Workshop on Detection and Recognition of Events in Video, pp. 64-72, Jul. 8, 2001 [retrieved Sep. 10, 2022], https://ieeexplore.ieee.org/abstract/document/938868 (Year: 2001).
Texas Instruments, “4-Channel, 12-Bit, 80-MSPS ADC,” VSP5324, Revised Nov. 2012, Texas Instruments Incorporated, 55 pages.
Texas Instruments, “QVGA 3D Time-of-Flight Sensor,” Product Overview: OPT 8140, Dec. 2013, Texas Instruments Incorporated, 10 pages.
Texas Instruments, “Time-of-Flight Controller (TFC),” Product Overview; OPT9220, Jan. 2014, Texas Instruments Incorporated, 43 pages.
Veldhuis, Henri, et. al., “The 3D Reconstruction of Straight and Curved Pipes using Digital Line Photogrammetry”, Mar. 20, 1997, 11 pages.
Villa-Uriol et al., Automatic Creation of Three-Dimensional Avatars, Jan. 2003 [retrieved Jan. 6, 2017], Proceedings of SPIE—IS&T Electronic Imaging, vol. 5013, pp. 14-25. Retrieved from the Internet: http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=756080.
Wang et al., “Tracking of Deformable Hand in Real Time as Continuous Input for Gesture-based Interaction”, Jan. 28, 2007 [retrieved Jul. 15, 2016], Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 235-242. Retrieved fromthe Internet: <http://dl.acm.org/citation.cfm?id=1216338>.
Wijewickrema et al., Reconstruction of Spheres using Occluding Contours from Stereo Images, Aug. 20-24, 2006 [retrieved Jul. 10, 2017], 18th International Conference on Pattern Recognition 2006, pp. 1-4. Retrieved from the Internet:[ http://ieeexplore.ieee.org/abstract/document/1698855/].
Wu, Y., et al., “Vision-Based Gesture Recognition: A Review,” Beckman Institute, Copyright 1999, pp. 103-115.
Zhang et al., A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions:Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model, PLOS One, dated Jul. 1, 2016, 16 pages.
Zhao et al., “Combining Marker-Based Mocap and RGB-D Camera for Acquiring High-Fidelity Hand Motion Data”, Jul. 29, 2012 [retrieved Jul. 15, 2016], Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33-42, Retrieved from the Internet: <http://dl.acm.org/citation.cfm?id=2422363>.
Related Publications (1)
Number Date Country
20220350417 A1 Nov 2022 US
Provisional Applications (24)
Number Date Country
61724091 Nov 2012 US
61587554 Jan 2012 US
61792025 Mar 2013 US
61800327 Mar 2013 US
61801479 Mar 2013 US
61825515 May 2013 US
61825480 May 2013 US
61877641 Sep 2013 US
61816487 Apr 2013 US
61824691 May 2013 US
61752725 Jan 2013 US
61752731 Jan 2013 US
61752733 Jan 2013 US
61791204 Mar 2013 US
61808959 Apr 2013 US
61808984 Apr 2013 US
61872538 Aug 2013 US
61871790 Aug 2013 US
61873758 Sep 2013 US
61898462 Oct 2013 US
61811415 Apr 2013 US
61886586 Oct 2013 US
61952843 Mar 2014 US
61873351 Sep 2013 US
Continuations (5)
Number Date Country
Parent 16908643 Jun 2020 US
Child 17862212 US
Parent 15696086 Sep 2017 US
Child 16908643 US
Parent 15392920 Dec 2016 US
Child 15696086 US
Parent 14280018 May 2014 US
Child 15392920 US
Parent 13742953 Jan 2013 US
Child 14106140 US
Continuation in Parts (7)
Number Date Country
Parent 14106140 Dec 2013 US
Child 14280018 US
Parent 13414485 Mar 2012 US
Child 13742953 US
Parent 13724357 Dec 2012 US
Child 13414485 US
Parent 14212485 Mar 2014 US
Child 14280018 May 2014 US
Parent 14154730 Jan 2014 US
Child 14280018 May 2014 US
Parent 14250758 Apr 2014 US
Child 14280018 May 2014 US
Parent 13414485 Mar 2012 US
Child 13724357 Dec 2012 US