Systems and methods for maintaining a hot car in a coke plant

Information

  • Patent Grant
  • 11359145
  • Patent Number
    11,359,145
  • Date Filed
    Wednesday, June 10, 2020
    4 years ago
  • Date Issued
    Tuesday, June 14, 2022
    2 years ago
Abstract
The present technology describes various embodiments of systems and methods for maintaining a flat push hot car. In some embodiments, the flat push hot car includes an at least partially enclosed hot box having an interior portion, an exterior portion, a base, and a plurality of sidewalls extending upward from the base. The hot box can be coupled to or integrated with a fluid distribution system. The fluid distribution system can include a spray manifold having one or more inlets configured to release a fluid directed toward the sidewalls of the interior portion so as to provide regional cooling to the hot box.
Description
TECHNICAL FIELD

The present technology is generally directed to systems and methods for maintaining a flat push hot car in a coke plant. More specifically, some embodiments are directed to systems and methods for cooling a hot box portion of a flat push hot car.


BACKGROUND

Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. To make coke, finely crushed coal is fed into a coke oven and heated in an oxygen depleted environment under closely controlled atmospheric conditions. Such an environment drives off volatile compounds in the coal, leaving behind coke. In some coking plants, once the coal is “coked out” or fully coked, an oven door is opened and the hot coke is pushed from the oven into a hot box of a flat push hot car (“hot car”). The hot car then transports the hot coke from the coke oven to a quenching area (e.g., wet or dry quenching) to cool the coke below its ignition temperature. After being quenched, the coke is screened and loaded into rail cars or trucks for shipment or later use.


Over time, the volatile coal constituents (i.e., water, coal-gas, coal-tar, etc.) released during the coking process can accumulate on the interior surfaces of the coke oven, forming gummy, solidified by-product deposits. As used herein, “deposit(s)” refers to one or more coking by-products that can accumulate within the coke oven, such as, for example, clinkers, ash, and others. Such deposits can have a variety of adverse effects on coke production, including slowing and/or complicating the hot coke pushing operation, decreasing the effective dimensions of the oven, and lowering the thermal conductivity of the oven walls and/or floor. Because of such adverse effects, deposit removal (“decarbonization”) is a mandatory aspect of routine coke oven maintenance in order to maintain coke plant efficiency and yield.


To remove deposits from the coke ovens, oven operation (and thus coke production) must be interrupted so that the deposits can be targeted and pushed out of the ovens and into the hot car hot box for disposal. Much like the hot coke, deposits are extremely hot and exert a large amount of thermal and mechanical stress on the hot box in addition to the wear and tear of routine hot coke transportation. For these reasons, the hot box and/or the hot box's individual components can have a relatively short life. Many conventional coke plants attempt to mitigate damage to the hot box by breaking up large deposits and transporting them to a quench tower for cooling in manageable, smaller portions. However, such an iterative approach takes a long time to remove the waste, thus keeping the ovens/quench tower out of operation and coke production at a halt. In addition, removing the waste in pieces increases the number of transports required of the hot cars, exposing hot cars and/or its individual components to increased amount of thermal and mechanical stress.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a portion of a coke plant in accordance with embodiments of the present technology.



FIG. 2 is an elevational end view of a flat push hot car in accordance with embodiments of the present technology.



FIG. 3A is an elevational end view of a hot box in accordance with embodiments of the present technology.



FIG. 3B is a side view of a hot box in accordance with embodiments of the present technology.



FIG. 4A is a perspective view of a fluid distribution system in accordance with embodiments of the present technology.



FIG. 4B is a simplified plan view of the fluid distribution system of FIG. 4A in accordance with embodiments of the present technology.



FIG. 4C is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4D is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4E is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4F is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4G is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4H is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4I is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 4J is a simplified plan view of a fluid distribution system view in accordance with embodiments of the present technology.



FIG. 5A is an elevational side view of a hot box and a fluid distribution system in accordance with embodiments of the present technology.



FIG. 5B is an elevational side view of a hot box and a fluid distribution system in accordance with embodiments of the present technology.



FIG. 5C is an elevational side view of a hot box and a fluid distribution system in accordance with embodiments of the present technology.



FIG. 5D is an elevational side view of a hot box and a fluid distribution system in accordance with embodiments of the present technology.



FIG. 5E is a schematic illustration of a hot box and a fluid distribution system in accordance with embodiments of the present technology.



FIG. 5F is a schematic sectional view of the hot box of FIG. 5E taken along lines 1, 2, and 3.



FIG. 6A is an elevational side view of a hot box and a fluid distribution system having a fluid source in accordance with embodiments of the present technology.



FIG. 6B is an elevational side view of a hot box and fluid source carried by a flat push hot car in accordance with embodiments of the present technology.



FIG. 6C is an elevational side view of the hot box and fluid source of FIG. 6B in accordance with embodiments of the present technology.





DETAILED DESCRIPTION

The present technology describes various embodiments of systems and methods for maintaining a flat push hot car. In some embodiments, the flat push hot car includes an at least partially enclosed hot box having an interior portion, an exterior portion, a base, and a plurality of sidewalls extending upward from the base. The hot box can be coupled to or integrated with a fluid distribution system. The fluid distribution system can include a spray manifold having one or more inlets configured to release a fluid directed toward the sidewalls of the interior portion so as to provide regional cooling to the hot box.


Specific details of several embodiments of the technology are described below with reference to FIGS. 1-6C. Other details describing well-known structures and systems often associated with coal processing and/or cooling systems have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present technology. A person of ordinary skill in the art, therefore, will accordingly understand that the technology may have other embodiments with additional elements, or the technology may have other embodiments without several of the features shown and described below with reference to FIGS. 1-6C.



FIG. 1 is a plan schematic view of a coke oven battery 10 and associated equipment, including a hot car 24, according to embodiments of the technology. As used herein, “hot car” may comprise a flat push hot car, train, and/or a combined flat push hot car/quench car. The typical coke oven battery 10 contains a plurality of side-by-side coke ovens 12. Each of the coke ovens 12 has a coal inlet end 14 and a coke outlet end 16 opposite the inlet end 14. Once the coal is fully coked (typically 24-120 hours), an exit door removing device 20 is positioned adjacent the outlet end 16 of the oven 12 and removes an exit door of the oven 12. After removing the exit door, the door removing device 20 is moved away from the outlet end 16 of the oven 12 along door removal rails 22. A discharge ram 18 positioned adjacent to the inlet end 14 of the oven 12 pushes the hot coke and/or deposits out of the oven 12. The discharge ram 18 may include a device for removing an inlet end 14 oven door prior to pushing the coke out of the oven 12. A hot car 24 (described in greater detail below) is positioned adjacent to the outlet end 16 of the oven 12 for collection of hot coke and/or deposits 26 pushed from the oven by the discharge ram 18. Once the hot coke or deposits 26 is loaded onto the hot car 24, the car 24 is transported on rails 28 to a quench car area 30. In the quench car area 30, the hot coke slab or deposits 26 on the hot car 24 is pushed by a stationary pusher 32 onto a quench car 34. Once the quench car 34 receives the hot coke or deposits 26, the quench car 34 is positioned in a quench station 36 wherein the hot coke or deposits 26 is quenched with sufficient water to cool the coke or deposits 26 to below a coking temperature. The quenched coke is then dumped onto a receiving dock 38 for further cooling and transport to a coke storage area.


In some embodiments described herein, a single hot car 24 may be used for multiple coke batteries 10 since the coke is quenched in a separate quench car 34. As soon as the hot coke or deposits 26 is pushed from the hot car 24 onto the quench car 34, the hot car 24 may be repositioned adjacent to the outlet end 16 of another oven 12 for collection of coke or deposits 26 from that oven 12. In further embodiments, the hot car 24 can be a combined hot car/quench car.


With reference now to FIGS. 2-6C, various aspects of the hot car 24 will be illustrated and described. As shown in the elevated cross-sectional end view of FIG. 2, the hot car 24 can include a hot box 44 configured to receive hot coke and/or deposits 26. The hot car 24 can further include a hot box fluid distribution system 100 coupled to the hot box 44. As explained below, the fluid distribution system 100 provides efficient cooling processes to the hot box 44 to extend its useful life and/or the useful life of the individual components of the hot box 44. The hot car 24 is mounted on a frame 70 that contains wheels 72 for movement of the hot car 24 on the rails 28 to and from the ovens 12 to the quench station 36 (the ovens 12 and quench station 36 are shown in FIG. 1).



FIGS. 3A and 3B show the hot box 44 configured in accordance with embodiments of the present technology. The hot box 44 is a substantially rectangular housing having a floor 60, two sidewalls 61, 62 and a ceiling 64, together defining an interior portion 43 therein. The hot box 44 can have a width W defined between the first sidewall 61 and the second sidewall 62 and a hot box length L defined between a first end 44a and a second end 44b. Each end 44a, 44b of the hot box can open to facilitate the hot box 44 in receiving or removing hot coke and/or deposits 26. Each of the floor 60, sidewalls 61, 62 and ceiling 64 can have an exterior surface (60a, 61a, 62a, and 64a, respectively) and an interior surface (60b, 61b, 62b, and 64b, respectively) as shown in FIG. 3A. In various embodiments, the sidewalls 61, 62 and/or floor 60 can be solid or fully or partially permeable and/or have apertures and/or cooling pipes therein.


As described above, the hot box 44 can include a fluid distribution system 100 configured to contain, deliver, and/or distribute cooling fluid 108 to one or more interior and/or exterior surfaces of the hot box 44. The fluid distribution system 100 can include a fluid source 106, a supply pipe 104 and a spray manifold 102 in fluid communication with one another. The spray manifold 102 can include one or more inlet pipes 114. As used herein, the term “pipe(s)” may comprise one or more ducts, channels, conduits, tunnels, and/or any other structure and/or material capable of moving and/or guiding a fluid, gas or semi-solid. At its downstream end, the inlet pipe 114 can have an inlet 110. The inlet 110 can protrude into the interior portion 43, be flush with the ceiling 64, or be positioned above the ceiling 64 wherein the ceiling 64 has apertures to allow fluid flow therethrough. The inlet 110 can release fluid 108 into the interior portion 43 of the hot box 44, and, as will be described in further detail below, can comprise a single inlet 110 or an array of inlets. The inlet 110 can include a nozzle 116, including a flat fan nozzle, flood nozzle, raindrop nozzle, hollow-cone nozzle, full-cone nozzle, directional or bi-directional nozzle, and others. In yet other embodiments, the inlet 110 may be an opening in the inlet pipe 114 that routes fluid 108 from the spray manifold 102 to an interior portion 43 of the hot box 44 (as explained in greater detail below with reference to FIG. 5C).


Although the embodiments shown in FIGS. 2-6C illustrate a hot box having two sidewalls and a ceiling, in some embodiments, the hot box may have more or less than two sidewalls. In yet other embodiments, the hot box may not have a ceiling or have a ceiling that covers only a portion of the hot box floor. In some embodiments, the hot box may have no sidewalls and simply comprise a fluid distribution system mounted over a hotbox floor.


In operation, the fluid source 106 provides fluid 108 to the supply pipe 104 which in turn transfers the fluid 108 to the spray manifold 102 for release and/or distribute through the inlet(s) 110 onto at least a portion of the interior and/or exterior surfaces of the hot box 44. For example, the inlets 110 can release and/or distribute fluid 108 onto at least a portion of the interior surface of the sidewalls 61b, 62b, floor 60b and/or ceiling 64b of the hot box 44, providing regional zones of cooling to the hot box 44. Such regional cooling almost immediately reduces the average temperature of the hot box 44 and decreases thermal stresses. In some embodiments, the sidewalls 61, 62 and/or floor 60 can be solid or fully or partially permeable and/or have apertures and/or cooling pipes therein to release the cooling fluid 108 after it has interfaced with the interior surfaces of the hot box 44 or to provide fluid flow within the hot box 44. A “fluid” 108 may refer to any gas, liquid and/or semi-solid capable of lowering the average temperature of the hot box 44 or portion of the hot box 44 when applied to any portion of the hot box 44 and/or its contents. For example, in several embodiments, the fluid 108 can be water. In other embodiments, the fluid may include one or more chemicals able to extinguish or at least partially control a fire.



FIGS. 4A and 4B illustrate a perspective view and plan view, respectively, of the spray manifold 102. The spray manifold 102 may include an inlet array having one or more inlets 110 configured about one or more rows 112 and/or crosspieces 113 (the crosspieces are shown and discussed below with reference to FIGS. 4F-4I). The rows 112 and/or crosspieces 113 can be coupled to the supply pipe 104 in order to direct the cooling fluid from the supply pipe 104 to the inlets 110 via the inlet pipes 114.


As used herein, an “inlet array” refers to the various configurations and/or placement of the inlets 110 with respect to the rest of the hot box structure. For example, FIG. 4B shows the inlets 110 may be spaced along one or more parallel rows 112. In other embodiments, as shown in the schematic plan views of FIGS. 4C-4J, the spray manifold 102 may comprise one or more of a variety of inlet arrays based on the desired fluid distribution pattern and/or targeted cooling regions. For example, in the embodiment shown in FIG. 4F, the inlets 110 and/or inlet pipes 114 may be arranged on the spray manifold 102 along a perimeter of the hot box 44 so as to direct a cooling fluid towards the interior surfaces of the sidewalls 61b, 62b and/or ends 44a, 44b of the hot box 44. During decarbonization, it is important to adequately cool the hot box sidewalls so as to preserve the integrity of the hot box 44 structure and/or materials.


The inlet pipes 114 and/or inlets 110 may have approximately the same or varied placement along one or more rows 112 and/or crosspieces 113. For example, in some embodiments the inlet pipes 114 and/or inlets 110 may be evenly spaced along the row 112 and/or crosspiece 113 (i.e., FIG. 4B), while in other embodiments the inlet pipes 114 and/or inlets 110 may be unevenly spaced. In some embodiments, the inlet pipes 114 and/or inlets 110 may have approximately the same placement along adjacent rows 112 and/or crosspieces 113 relative to a length L of the hot box 44 (FIG. 4B), and/or in other embodiments the inlet pipes 114 and/or inlets may be offset (FIG. 4E).


The rows 112 and crosspieces 113 (and inlet array) can have a variety of sizes and/or configurations. In some embodiments, the inlet array may span the length L of the hot box 44 or may be shorter (i.e., FIG. 4J) or longer than the hot box (i.e., FIG. 4C). In some embodiments, some or all of the inlet pipes and/or inlets may be positioned outside of the width and/or length of the hot box so as to direct a cooling fluid onto an exterior surface of the hot box sidewalls 61, 62, ceiling 64, and/or floor 60 (i.e., FIG. 4F). In some embodiments, adjacent rows 112 may have approximately the same (i.e., FIG. 4E) or different lengths (i.e., FIG. 4J) to provide symmetric or asymmetric cooling in the hot box 44. The crosspieces 113 may run transverse to the rows 112 (i.e., FIGS. 4G and 4H) or may extend at any angle from the rows 112 (i.e., FIG. 4I). The crosspieces 113 may span the width W of the hot box 44 or may be shorter (i.e., FIG. 4G) or longer than (for example, see FIG. 4H) the hot box 44.



FIGS. 5A-5F illustrate several embodiments of fluid distributions systems providing regions of cooling in accordance with embodiments of the technology. In FIG. 5A, more than one inlet pipe 214 can branch from approximately the same portion of a spray manifold 202 to form a nozzle cluster 115. Likewise, the inlet pipes 214 and/or nozzles 216 associated with a nozzle cluster 115 may have varying directionality. For example, in FIG. 5A, inlet pipe 214a is angled towards sidewall 61, inlet pipe 214b extends substantially straight down, and inlet pipe 214c is angled towards sidewall 62.


In some embodiments, as shown in FIG. 5A, the spray manifold 202 can be positioned along the hot box ceiling 64, or can be spaced apart from the hot box ceiling 64. In further embodiments, as shown in FIG. 5B, the spray manifold 302 can be positioned along one or more hot box sidewalls 61, 62. The spray manifold 302 may comprise rows 312 positioned proximate the sides 61, 62 of the hot box 344 with inlet pipes 314 coming through or positioned along the sidewalls 61, 62. In other embodiments, the rows can be proximate to the bottom 49 of the hot box (not shown). In still further embodiments, the inlet pipes can be positioned all or partially external to the hot box (e.g., to distribute fluid to an exterior surface of the hot box).


As shown in FIG. 5C, the inlets 410 can comprise an opening in the inlet pipe 414 and/or spray manifold 402 such that gravity pulls the fluid onto the hot box 444. In these embodiments, at least a portion of the fluid source (not shown) can be positioned vertically above the inlets 410 so as to create sufficient head pressure (as discussed below with reference to FIGS. 6A-6B). In some embodiments, as shown in FIG. 5D, the inlet pipes 514 may be angled as they extend downward from the intersection 515. In yet other embodiments, the inlet pipes 514 may extend substantially perpendicular to the hot box floor 60 (for example, see FIG. 3A, described above).



FIGS. 5E and 5F show an embodiment in accordance with the present technology where a hot box 744 has a fluid distribution system 700 comprising pipes 702 within its sidewalls 761, 762, ceiling 764, and/or floor 760 (collectively represented in FIG. 5F by element 763). The pipes 702 carry a cooling fluid 704 and may comprise a serpentine configuration (as shown in the cross-sectional view of FIG. 5F) or may comprise any appropriate configuration to achieve one or more desired regions of cooling.


The fluid distribution system may have one or more valves located at any point within the system. For example, a valve may be located at the juncture between the fluid supply and the supply pipes. In other embodiments, valves may be located at each inlet. Control of the valves and/or release of the fluid may be triggered manually, on a pre-set schedule, automatically by a controller, or manually with an automatic override. Likewise, the fluid may be released from all inlets simultaneously and/or programmed preferentially to form a localized group of targeted cooling regions.


The controller can be a discrete controller associated with a single inlet or multiple automatic inlets, a centralized controller (e.g., a distributed control system or a programmable logic control system), or a combination of the two. Accordingly, individual inlets and/or valves can be operated individually or in conjunction with other inlets or valves.


In some embodiments, the coke plant, hot car, hot box, and/or fluid distribution system may include a fluid collection system to redirect and/or retain fluid overflow from the hot box. In some embodiments, the fluid collection system may filter then recycle the overflow. In other embodiments, the fluid collection system may include a pump to facilitate reuse of the overflow. In yet other embodiments, at least a portion of the fluid collection system may be positioned below the base of the hot box such that fluid overthrow is forced through the fluid collection system, which filters the overflow before it hits the ground. In further embodiments, fluid overflow may be allowed to flow substantially unfiltered to the ground.


As shown in FIG. 6A, the fluid source 106 may comprise a local fluid reservoir 106 having a hose 120 in fluid connection with the supply pipe 104 which transfers the fluid 108 from the fluid source 106 to the spray manifold 102. The length of the hose 120 can be sufficient to remain coupled to the fluid distribution system 100 of the hot car 44 as the hot car 24 moves along the rails 28, or can be separable from the hot car 44.



FIGS. 6B-6C illustrate embodiments wherein the fluid source comprises a pump or pressurized tank and/or reservoir 606 coupled to the hot car 24. In some embodiments, at least a portion of the fluid source can be positioned vertically above the inlets 610 so as to create sufficient head pressure. The hot box 644 includes a hot box connection 124 in fluid connection with the spray manifold 602. The connection 124 is configured to mate with a hot car connection 126. In operation, when an elevation and translation system 46 moves the hot box 44 back onto the flat push hot car 24 after being positioned adjacent to the oven 12, the hot box connection 124 mates with the flat push hot car connection 126 to effectively seal the system. Furthermore, in some embodiments, the reservoir 606 could be carried by the hot box 44. For example, the reservoir 606 may be located on top of a hot box ceiling or be coupled to a sidewall.


In some embodiments, the hot car may include several other features for interfacing with the coke oven, quench car, and/or other coke plant equipment. For example, the hot car may include an elevation and translation mechanism 46 (shown in FIG. 6B) configured to elevate and translate the hot box 44 so as to position the hot box 44 adjacent the outlet end 16 of the oven 12. The elevation and translation mechanism provides for a relatively smooth transition for the hot coke and/or deposits 26 to move from the oven floor to the hot box 44. The flat push hot car 24 may also include a dust collection system in flow communication with the hot box 44 via a collection duct to collect any dust or fumes that may be evolved from the coke during the coke pushing operations. In some embodiments, the flat push hot car 24 may further include a lintel sealing device that provides sealing between the hot box 44 and the oven 12 in order to reduce an amount of dust that may escape from the open end 16 of the oven 12. In yet other embodiments, an oven skirt sweeping mechanism may be provided on the transition section in order to prevent accumulation of coke dust on an oven sill attached to each oven 12 after removing the oven exit door 40 or after pushing the hot coke and/or deposits 26 onto the hot car 24.


In operation, the fluid distribution system 100 may be utilized during an emergency situation where the hot car 24 breaks down and is unable to complete transport of the hot coke and/or deposits to a quenching area. Not only does this stall coke production, but it also significantly delays cooling of the hot car, likely resulting in irreparable damage to the hot car 24 and/or hot box 44. If such a failure occurs, the fluid distribution system may be manually or automatically triggered and immediately begin cooling the hot box and/or its contents.


The fluid distribution system 100 may also be used during the decarbonization process. As explained above, decarbonization is a mandatory aspect of routine coke oven maintenance in order to maintain coke plant efficiency and yield. Because the fluid distribution system provides regional cooling of the hot box (thus lowering the average temperature of the hot box), the hot box is able to handle and thus transport larger deposits piles than it could without a cooling system. By transporting larger deposits piles, the flat push hot car can dispose of deposits in fewer transports than conventional coke oven systems. Fewer transports free the flat push hot cars and ovens sooner so that coke production may continue, giving a coke plant a higher coke yield. Moreover, fewer transports also means less thermal and mechanical stress on the flat push hot cars, thus increasing their useful life.


EXAMPLES

1. A hot car for use in a coke plant, the hot car comprising:

    • an at least partially enclosed hot box having an interior portion, an exterior portion, a base, and a sidewall extending upward from the base; and
    • a fluid distribution system coupled to the hot box, the fluid distribution system comprising a plurality of fluid inlets configured to release a fluid directed toward the sidewall of the interior portion.


2. The hot car of example 1, further comprising a reservoir in fluid communication with the fluid distribution system and configured to contain fluid.


3. The hot car of example 1 wherein at least a portion of the fluid distribution system is positioned within at least one of the sidewalls.


4. The hot car of example 1 wherein at least a portion of the fluid distribution system is positioned within the base.


5. The hot car of example 1 wherein the interior portion comprises a peripheral portion proximate to the sidewalls and a central portion spaced apart from the sidewalls, and wherein the fluid inlets are positioned in the peripheral portion.


6. The hot car of example 1 wherein individual fluid inlets comprise a nozzle configured to direct fluid toward the sidewalls.


7. The hot car of example 1 wherein the hot box comprises a top portion at least partially covering the interior portion of the hot box, wherein the plurality of fluid inlets are spaced apart from the top portion.


8. The hot car of example 1 wherein at least one fluid inlet is coupled to a sidewall.


9. The hot car of example 1, further comprising an elevation and translation mechanism.


10. The hot car of example 1 wherein the fluid comprises water.


11. The hot car of example 1 wherein the fluid inlets are evenly spaced along two substantially parallel rows along a longitudinal axis of the hot box.


12. The hot car of example 1 wherein the fluid inlets are positioned along a crosspiece extending along a width of the hot box.


13. The hot car of example 1, further comprising a fluid source operably connected to the fluid distribution system.


14. A method of cooling a hot car in a coke production system, the method comprising:

    • introducing fluid to a fluid distribution system coupled to the hot car, wherein the hot car comprises a car base and a plurality of car sidewalls extending upward from the car base;
    • directing fluid from the fluid distribution system toward the sidewalls; and
    • cooling the sidewalls.


15. The method of example 14, further comprising releasing the fluid through one or more apertures in the hot car after the fluid has interfaced with the sidewalls.


16. The method of example 14 wherein directing fluid from the fluid distribution system toward the sidewalls comprises directing fluid through an array of nozzles.


17. The method of example 14 wherein directing fluid from the fluid distribution system toward the sidewalls comprises directing fluid through a plurality of inlet pipes proximate to the sidewalls.


18. The method of example 14 wherein introducing fluid to the fluid distribution system comprises introducing fluid from a fluid reservoir carried by the hot car.


19. The method of example 14 wherein directing fluid from the fluid distribution system toward the sidewalls comprises directing the fluid using a gravity-feed system.


20. The method of example 14 wherein directing fluid from the fluid distribution system toward the sidewalls comprises directing pressurized fluid toward the sidewalls.


21. A system for cooling a hot box, wherein the hot box has an interior surface comprising a floor and at least two sidewalls, the system comprising:

    • a fluid source;
    • a supply conduit coupled to the fluid source;
    • a spray manifold carried by the hot box and in fluid communication with the supply conduit; and
    • a dispenser coupled to the spray manifold, wherein the dispenser is configured to direct a fluid onto an interior surface of a hot box.


22. The system of example 21 wherein the dispenser comprises one or more of a flat fan nozzle, flood nozzle, raindrop nozzle, hollow-cone nozzle, full-cone nozzle, or directional or bi-directional nozzle.


23. The system of example 21, further comprising a fluid collection system configured to collect the fluid for at least one of reuse and disposal.


24. The system of example 21 wherein the hot box is coupled to at least one of a hot car and a hot train.


25. The system of example 21 wherein the hot box has an exterior surface, and wherein the dispenser is configured to direct a fluid onto at least one of an exterior surface and the interior surface.


The present technology offers several additional advantages over traditional systems. For example, the steel plates within the hot car may begin the cooling process sooner, thus extending the useful life of the steel plates and reducing the frequency of steel plate changes. Further, use of a fluid distribution system requires fewer people to start the cooling process. In several embodiments, the present system is able to cool the hot box while simultaneously decarbing the ovens.


Examples of suitable flat push hot cars are described in U.S. Pat. No. 8,152,970, filed Mar. 3, 2006, incorporated herein by reference in its entirety. Other suitable technologies are described in U.S. Pat. No. 7,998,316, filed Mar. 17, 2009 and U.S. patent application Ser. No. 13/205,960, filed Aug. 9, 2011, each of which are incorporated herein by reference in their entireties.


From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.

Claims
  • 1. A system configured to cool a hot car for use in a coke plant, the system comprising: a hot box including a base configured to directly support a load of hot coke, a pair of opposing sidewalls extending vertically upward from and orthogonal to a surface of the base, the base and sidewalls defining an interior portion of the hot box, the hot box having a width dimension defining a width axis and a length dimension defining a length axis; anda fluid distribution system positioned over the hot box and configured to receive a cooling fluid from a fluid source, the fluid distribution system comprising— supply piping having (i) a first portion extending vertically adjacent each of the opposing sidewalls of the hot box and along the width axis over the hot box, and (ii) a second portion fluidically coupled to the first portion and including at least two rows of piping spaced apart from one another, each of the rows extending along the length axis over the hot box, anda plurality of fluid inlets spaced apart from one another and each extending toward the hot box from one of the rows, individual ones of the fluid inlets being configured to disperse the cooling fluid over at least a region of the interior portion and one of the sidewalls of the hot box.
  • 2. The system of claim 1, the ceiling being curved such that peripheral portions of the ceiling are closer to the base than an intermediate portion of the ceiling.
  • 3. The system of claim 1, wherein at least one of the fluid inlets includes a plurality of inlet nozzles fluidly coupled thereto.
  • 4. The system of claim 1, wherein the hot box further comprises fluid distribution piping configured to receive the cooling fluid.
  • 5. The system of claim 4, wherein the distribution piping is at least partially within at least one of the sidewalls or the base.
  • 6. The system of claim 1, wherein the rows are laterally inward of the sidewalls.
  • 7. The system of claim 1, wherein the second portion further comprises a crosspieces extending between the two rows to define a perimeter of the second portion.
  • 8. The system of claim 7, wherein the perimeter of the second portion is within a perimeter defined by the hot box.
  • 9. A cooling system for use in an industrial facility, the system comprising: a hot box including a base configured to directly support a load of hot coke, a first sidewall extending upward from the base along a first vertical plane, and a second sidewall extending upward from the base along a second vertical plane parallel to the first vertical plane, the first and second sidewalls each being substantially orthogonal to the base, wherein the base, first sidewall, and second sidewall define an interior portion of the hot box, the hot box having a width dimension defining a width axis and a length dimension defining a length axis; anda fluid distribution system positioned over the hot box and configured to receive a cooling fluid from a fluid source, the fluid distribution system comprising— supply piping having (i) a first portion extending vertically adjacent each of the opposing sidewalls of the hot box and along the width axis over the hot box, and (ii) a second portion fluidically coupled to the first portion and including at least two rows of piping spaced apart from one another, each of the rows extending along the length axis over the hot box, anda plurality of fluid inlets spaced apart from one another and each extending toward the hot box from one of the rows, individuals ones of the fluid inlets being configured to disperse the cooling fluid over at least a region of the interior portion and one of the sidewalls of the hot box.
  • 10. The system of claim 9, further comprising curved ceiling such that peripheral portions of the ceiling are closer to the base than an intermediate portion of the ceiling.
  • 11. The system of claim 9, wherein at least one of the fluid inlets includes a plurality of inlet nozzles fluidly coupled thereto.
  • 12. The system of claim 9, wherein the hot box further comprises fluid distribution piping configured to receive the cooling fluid.
  • 13. The system of claim 12, wherein the distribution piping is at least partially within at least one of the sidewalls or the base.
  • 14. The system of claim 9, wherein the rows are laterally inward of the sidewalls.
  • 15. The system of claim 9, wherein the second portion further comprises a crosspieces extending between the two rows to define a perimeter of the second portion.
  • 16. The system of claim 15, wherein the perimeter of the second portion is within a perimeter defined by the hot box.
  • 17. A cooling system for use in an industrial facility, the system comprising: a hot box including a base configured to directly support a load of hot coke, a first sidewall extending upward from the base along a first vertical plane, and a second sidewall extending upward from the base along a second vertical plane parallel to the first vertical plane, the first and second sidewalls each being substantially orthogonal to the base, wherein the base, first sidewall, and second sidewall define an interior portion of the hot box, the hot box having a width dimension defining a width axis and a length dimension defining a length axis; anda fluid distribution system positioned over the hot box and configured to receive a cooling fluid from a fluid source, the fluid distribution system comprising— supply piping having (i) a first portion extending vertically adjacent each of the opposing sidewalls of the hot box and along the width axis over the hot box, and (ii) a second portion fluidically coupled to the first portion and including a row of piping extending along the length axis over the hot box and a crosspiece of piping extending along the width axis over the hot box, anda plurality of fluid inlets spaced apart from one another and each extending toward the hot box from one of the row or the crosspiece, individuals ones of the fluid inlets being configured to disperse the cooling fluid over at least a region of the interior portion of the hot box.
US Referenced Citations (471)
Number Name Date Kind
425797 Hunt Apr 1890 A
469867 Osbourn Mar 1892 A
469868 Osbourn Mar 1892 A
760372 Beam May 1904 A
845719 Schniewind Feb 1907 A
875989 Gamer Jan 1908 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1424777 Schondeling Aug 1922 A
1430027 Nga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1895202 Montgomery Jan 1933 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
1979507 Underwood Nov 1934 A
2075337 Burnaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340283 Vladu Jan 1944 A
2340981 Otto Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2486199 Nier Oct 1949 A
2609948 Laveley Sep 1952 A
2641575 Otto Jun 1953 A
2649978 Such Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
2968083 Lentz et al. Jan 1961 A
3015893 McCreary Jan 1962 A
3026715 Briggs Mar 1962 A
3033764 Hannes May 1962 A
3175961 Samson Mar 1965 A
3199135 Trucker Aug 1965 A
3224805 Clyatt Dec 1965 A
3259551 Thompson Jul 1966 A
3327521 Briggs Jun 1967 A
3342990 Barrington et al. Sep 1967 A
3444046 Harlow May 1969 A
3444047 Wilde May 1969 A
3448012 Allred Jun 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3587198 Hensel Jun 1971 A
3591827 Hall Jul 1971 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobi et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3979870 Moore Sep 1976 A
3984289 Sustarsic et al. Oct 1976 A
3990948 Lindgren Nov 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 McDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4065059 Jablin Dec 1977 A
4067462 Thompson Jan 1978 A
4077848 Grainer et al. Mar 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. et al. Jul 1978 A
4111757 Carimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4133720 Franzer et al. Jan 1979 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4143104 van Konijnenburg et al. Mar 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shorten et al. Jul 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4226113 Pelletier et al. Oct 1980 A
4230498 Ruecki Oct 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4324568 Wilcox et al. Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336107 Irwin Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4385962 Stewen et al. May 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4518461 Gelfand May 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4749446 van Laar et al. Jun 1988 A
4793981 Doyle et al. Dec 1988 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4898021 Weaver et al. Feb 1990 A
4918975 Voss Apr 1990 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5398543 Fukushima et al. Mar 1995 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5597452 Hippe et al. Jan 1997 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5705037 Reinke et al. Jan 1998 A
5715962 McDonnell Feb 1998 A
5720855 Baird Feb 1998 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6002993 Naito et al. Dec 1999 A
6017214 Sturgulewski Jan 2000 A
6059932 Sturgulewski May 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6156688 Ando et al. Dec 2000 A
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6539602 Ozawa et al. Apr 2003 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6712576 Skarzenski et al. Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7547377 Inamasu et al. Jun 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams et al. Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8172930 Barkdoll May 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura et al. Aug 2013 B2
8568568 Schuecker et al. Oct 2013 B2
8640635 Bloom et al. Feb 2014 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9193915 West et al. Nov 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10526541 West et al. Jan 2020 B2
10578521 Dinakaran et al. Mar 2020 B1
10611965 Quanci et al. Apr 2020 B2
10619101 Quanci et al. Apr 2020 B2
10732621 Celia et al. Aug 2020 B2
10877007 Steele et al. Dec 2020 B2
1378782 Floyd May 2021 A1
11008517 Chun et al. May 2021 B2
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20040220840 Bonissone et al. Nov 2004 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20060029532 Breen et al. Feb 2006 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070102278 Inamasu et al. May 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080250863 Moore Oct 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari et al. Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysail Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110083314 Baird Apr 2011 A1
20110088600 McRae Apr 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120024688 Barkdoll Feb 2012 A1
20120030998 Barkdoll et al. Feb 2012 A1
20120031076 Frank et al. Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda et al. Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130213114 Wetzig et al. Aug 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140033917 Rodgers et al. Feb 2014 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140061018 Sarpen et al. Mar 2014 A1
20140083836 Quanci et al. Mar 2014 A1
20140156584 Motukuri et al. Jun 2014 A1
20140182195 Quanci et al. Jul 2014 A1
20140182683 Quanci et al. Jul 2014 A1
20140183023 Quanci et al. Jul 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20140262139 Choi et al. Sep 2014 A1
20140262726 West et al. Sep 2014 A1
20150122629 Freimuth et al. May 2015 A1
20150143908 Cetinkaya May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150361346 West et al. Dec 2015 A1
20150361347 Ball et al. Dec 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeirer et al. May 2016 A1
20160154171 Kato et al. Jun 2016 A1
20160186063 Quanci et al. Jun 2016 A1
20160186064 Quanci et al. Jun 2016 A1
20160186065 Quanci et al. Jun 2016 A1
20160222297 Choi et al. Aug 2016 A1
20160319197 Quanci et al. Nov 2016 A1
20160319198 Quanci et al. Nov 2016 A1
20170015908 Quanci et al. Jan 2017 A1
20170182447 Sappok Jun 2017 A1
20170183569 Quanci et al. Jun 2017 A1
20170253803 West et al. Sep 2017 A1
20170261417 Zhang Sep 2017 A1
20170313943 Valdevies Nov 2017 A1
20170352243 Quanci et al. Dec 2017 A1
20180340122 Crum et al. Nov 2018 A1
20190099708 Quanci Apr 2019 A1
20190169503 Chun et al. Jun 2019 A1
20190317167 LaBorde et al. Oct 2019 A1
20190352568 Quanci et al. Nov 2019 A1
20200071190 Wiederin et al. Mar 2020 A1
20200139273 Badiei May 2020 A1
20200157430 Quanci et al. May 2020 A1
20200173679 O'Reilly et al. Jun 2020 A1
20200206669 Quanci Jul 2020 A1
20200206683 Quanci Jul 2020 A1
20200208058 Quanci Jul 2020 A1
20200208059 Quanci Jul 2020 A1
20200208060 Quanci Jul 2020 A1
20200208061 Quanci Jul 2020 A1
20200208062 Quanci Jul 2020 A1
20200208063 Quanci Jul 2020 A1
20200208064 Quanci Jul 2020 A1
20200208833 Quanci Jul 2020 A1
20200208845 Quanci Jul 2020 A1
20200231876 Quanci et al. Jul 2020 A1
20210130697 Quanci et al. May 2021 A1
20210163821 Quanci et al. Jun 2021 A1
20210163822 Quanci et al. Jun 2021 A1
20210163823 Quanci et al. Jun 2021 A1
20210198579 Quanci et al. Jul 2021 A1
Foreign Referenced Citations (214)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
2905110 Sep 2014 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
201121178 Sep 2008 CN
101395248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
101910530 Dec 2010 CN
102072829 May 2011 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
202470353 Oct 2012 CN
103399536 Nov 2013 CN
103468289 Dec 2013 CN
103913193 Jul 2014 CN
203981700 Dec 2014 CN
105137947 Dec 2015 CN
105189704 Dec 2015 CN
105264448 Jan 2016 CN
105467949 Apr 2016 CN
106661456 May 2017 CN
106687564 May 2017 CN
107445633 Dec 2017 CN
100500619 Jun 2020 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
2720688 Nov 1978 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
2517802 Jun 1983 FR
2764978 Dec 1998 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
871094 Jun 1961 GB
923205 May 1963 GB
S50148405 Dec 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H10273672 Oct 1998 JP
H11131074 May 1999 JP
H11256166 Sep 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2004169016 Jun 2004 JP
2005503448 Feb 2005 JP
2005135422 May 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009135276 Jun 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012102302 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
100296700 Oct 2001 KR
20030012458 Feb 2003 KR
1020040020883 Mar 2004 KR
20040107204 Dec 2004 KR
20050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
20150011084 Jan 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
20170103857 Sep 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2002 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO2005023649 Mar 2005 WO
WO2005031297 Apr 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2008105269 Sep 2008 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
WO2016086322 Jun 2016 WO
Non-Patent Literature Citations (169)
Entry
English Translation of DE 3,231,697 obtained from Espacenet.
U.S. Appl. No. 07/587,745, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparaus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Method for Handling Coal Processing Emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Proviidng Extended Process Cycle.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Over Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295.
U.S. Appl. No. 16/206,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Improving. Quenched Coke Recovery.
U.S. Appl. No. 14/655,013, file Jun. 23, 2015, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Momolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/389,384, filed Aug. 28, 2015, titled Coke Oven Charging System.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, ttitled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 16/428,014, filed May 31, 2019, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, title Heat Recovery and Oven Foundation.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, West et al.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, Quanci et al.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, Quanci et al.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, Crum et al.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Meeh Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV6/instrumentation-reference-2/ditigal-video.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1217.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
Industrial Furnace Design Handbook, Editor-in-Chief: First Design Institute of First Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Joseph, B., “A tutorial on inferential control and its applications,” Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
JP 03-197588, Inoue Keizo et al., Method And Equipment For Boring Degassing Hole In Coal Charge In Coke Oven, Japanese Patent (Abstract Only) Aug. 28, 1991.
JP 04-159392, Inoue Keizo et al., Method And Equipment For Opening Hole For Degassing of Coal Charge in Coke Oven, Japanese Patent (Abstract Only) Jun. 2, 1992.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at https:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al. “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelormittal-Canada/material-safety/metallurgical-coke.pdf.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case#1—24.5 VM”, (20090901), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 * p. 7 ** pp. 8-11 *.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker, et al., “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue de Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 24, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
Brazilian Examination Report for Brazilian Application No. BR102013000284-4, dated Mar. 12, 2019; 6 pages.
U.S. Appl. No. 07/587,742, filed Sp. 25, 1990, now U.S. Pat. o. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery.
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein.
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions.
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,4494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch.
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 11/367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Apparatus for Producing Coke.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in situ Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing Emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 16/000,516, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury from Emissions.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,047,295.
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,872,888, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now, U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods for Maintaining a Hot Car in a Cock Plant.
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10,968,383, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 16/704,689, filed Dec. 5, 2019, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 17,190,720, filed Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 17/176,391, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing, now U.S. Pat. No. 10,041,002.
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, tited Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the same, and Methods Therefor.
U.S. Appl. No. 17/191,119, filed Mar. 3, 3021, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
313/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System.
U.S. Appl. No. 15/443,246, now U.S. Pat. No. 9,976,089, filed Feb. 27, 2017, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, titled Methods and Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, now U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/228,469, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/228,501, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, titled Integrated Coke Plant Automation and Optimization Using Advanced Conctol and Optimization Techniques.
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 17/155,219, filed Jan. 22, 2021, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant Treatment Systems.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 17/320,343, filed May 14, 2021, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,170, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 17/321,857, filed May 17, 2021, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 16/729,219, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/306,895, filed May 3, 2021, titled High-Quality Coke Products.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, Choi et al.
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, West et al.
U.S. Appl. No. 17/191,119, filed Mar. 3, 2021, Quanci et al.
U.S. Appl. No. 17/222,886, filed Apr. 5, 2021, Quanci et al.
U.S. Appl. No. 17/228,469, filed Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/228,501, filed Apr. 12, 2021, Quanci et al.
U.S. Appl. No. 17/306,895, filed May 3, 2021, Quanci et al.
U.S. Appl. No. 17/321,857, filed May 17, 2021, Quanci et al.
U.S. Appl. No. 17/320,343, filed May 24, 2021, Quanci et al.
U.S. Appl. No. 17/363,701, filed Jun. 30, 2021, Quanci et al.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, Quanci et al.
U.S. Appl. No. 17/459,380, filed Aug. 27, 2021, Quanci et al.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, West et al.
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, Crum et al.
U.S. Appl. No. 17/526,477, filed Nov. 15, 2021, Quanci et al.
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, Quanci et al.
Related Publications (1)
Number Date Country
20210024828 A1 Jan 2021 US
Continuations (1)
Number Date Country
Parent 14655003 US
Child 16897957 US