The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for providing a connector that extends into a housing of a control module of an electrical stimulation system and becomes part of a sealed cavity therewith, as well as methods of making and using the connector, control modules, and electrical stimulation systems.
Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients.
Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator) and one or more stimulator electrodes. The one or more stimulator electrodes can be disposed along one or more leads, or along the control module, or both. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
One embodiment is an implantable control module for an electrical stimulation system. The control module includes a housing and a connector shell extending into the housing. The housing and the connector shell collectively form a sealed cavity. The connector shell has a longitudinal length, a sidewall with a cavity-facing surface, a first end open to an environment external to the housing, and an opposing closed second end. The connector shell defines a connector lumen extending within the connector shell and open at the first end to receive a portion of a lead or lead extension. Connector contacts are arranged along the connector lumen within the connector shell. An electronic subassembly is disposed in the sealed cavity. Interconnect conductors electrically couple the electronic subassembly to the connector contacts and extend from the connector shell within the sealed cavity.
In at least some embodiments, the cavity is hermetically sealed. In at least some embodiments, the interconnect conductors extend entirely within the sealed cavity. In at least some embodiments, the connector shell is formed from at least one of ceramic or glass.
In at least some embodiments, the connector shell is formed from electrically conductive sections alternating along the longitudinal length of the connector shell with electrically nonconductive sections, where the electrically conductive sections and the electrically nonconductive sections are fixedly attached together. In at least some embodiments, the connector contacts include a first connector contact; the electrically conductive sections include a first electrically conductive section; and the first connector contact is electrically coupled to the first electrically conductive section. In at least some embodiments, the interconnect conductors include a first interconnect conductor electrically coupled to the first connector contact, the first interconnect conductor attached to the first electrically conductive section along the cavity-facing surface of the connector shell.
In at least some embodiments, electrically conductive vias are formed through the sidewall of the connector shell and electrically coupled to the connector contacts. In at least some embodiments, each of the electrically conductive vias is aligned along the longitudinal length of the connector shell, and electrically coupled, with a different one of the connector contacts. In at least some embodiments, the electrically conductive vias are brazed to the sidewall of the connector shell. In at least some embodiments, the electrically conductive vias are welded to the sidewall of the connector shell. In at least some embodiments, at least one of the interconnect conductors extends through at least one of the electrically conductive vias and attaches directly to one of the connector contacts. In at least some embodiments, at least one of the interconnect conductors electrically couples to at least one of the electrically conductive vias.
In another embodiment, an electrical stimulation system includes the control module described above; an electrical stimulation lead coupleable to the control module; and, optionally, a lead extension coupleable between the electrical stimulation lead and the control module.
In yet another embodiment, a method for making a control module includes inserting a connector contact into a connector lumen extending into an open first end of a connector shell, the connector lumen configured to receive a lead or lead extension; electrically coupling a first end of an interconnect conductor to the connector contact; electrically coupling an opposing second end of the interconnect conductor to an electronic subassembly; extending the connector shell into the housing with the first end of the connector shell open to an environment external to the housing; and creating a sealed cavity formed collectively by the connector shell and the housing, where the electronic subassembly is disposed in the sealed cavity, and where the interconnect conductor extends from the connector shell to the electronic subassembly within the sealed cavity.
In at least some embodiments, electrically coupling a first end of an interconnect conductor to the connector contact includes forming an electrically conductive via along an interconnect aperture defined along a sidewall of the connector shell. In at least some embodiments, forming an electrically conductive via along an interconnect aperture defined along a sidewall of the connector shell includes forming the electrically conductive via around the interconnect conductor electrically coupled to the connector contact. In at least some embodiments, electrically coupling a first end of an interconnect conductor to the connector contact includes electrically coupling the electrically conductive via to the connector contact and electrically coupling the first end of the interconnect conductor to the electrically conductive via.
In at least some embodiments, inserting a connector contact into a connector lumen extending into an open first end of a connector shell includes inserting a connector contact into a connector shell having an electrically conductive section electrically coupled to the connector contact and attached on both sides along a longitudinal length of the connector shell to a different electrically nonconductive section. In at least some embodiments, electrically coupling a first end of an interconnect conductor to the connector contact includes electrically coupling the first end of the interconnect conductor to a cavity-facing surface of the electrically conductive section of the connector shell.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to systems and methods for providing a connector that extends into a housing of a control module of an electrical stimulation system and becomes part of a sealed cavity therewith, as well as methods of making and using the connector, control modules, and electrical stimulation systems.
Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed on a distal portion of the lead and one or more terminals disposed on one or more proximal portions of the lead. Leads include, for example, percutaneous leads, paddle leads, cuff leads, or any other arrangement of electrodes on a lead. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,175,710; 8,224,450; 8,271,094; 8,295,944; 8,364,278; 8,391,985; and 8,688,235; and U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0005069; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; 2012/0203321; 2012/0316615; 2013/0105071; and 2013/0197602, all of which are incorporated by reference. In the discussion below, a percutaneous lead will be exemplified, but it will be understood that the methods and systems described herein are also applicable to paddle leads and other leads.
A percutaneous lead for electrical stimulation (for example, deep brain, spinal cord, peripheral nerve, or cardiac-tissue stimulation) includes stimulation electrodes that can be ring electrodes, segmented electrodes that extend only partially around the circumference of the lead, or any other type of electrode, or any combination thereof. The segmented electrodes can be provided in sets of electrodes, with each set having electrodes circumferentially distributed about the lead at a particular longitudinal position. A set of segmented electrodes can include any suitable number of electrodes including, for example, two, three, four, or more electrodes. For illustrative purposes, the leads are described herein relative to use for deep brain stimulation, but it will be understood that any of the leads can be used for applications other than deep brain stimulation, including spinal cord stimulation, peripheral nerve stimulation, dorsal root ganglion stimulation, sacral nerve stimulation, or stimulation of other nerves, muscles, and tissues.
Turning to
The IPG 14 is physically connected, optionally, via one or more lead extensions 24, to the stimulation lead(s) 12. Each lead carries multiple electrodes 26 arranged in an array. The IPG 14 includes pulse generation circuitry that delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform (i.e., a temporal series of electrical pulses) to the electrode array 26 in accordance with a set of stimulation parameters. The implantable pulse generator can be implanted into a patient's body, for example, below the patient's clavicle area or within the patient's buttocks or abdominal cavity. The implantable pulse generator can have eight stimulation channels which may be independently programmable to control the magnitude of the current stimulus from each channel. In some embodiments, the implantable pulse generator can have more or fewer than eight stimulation channels (e.g., 4-, 6-, 16-, 32-, or more stimulation channels). The implantable pulse generator can have one, two, three, four, or more connector ports, for receiving the terminals of the leads and/or lead extensions.
The ETS 20 may also be physically connected, optionally via the percutaneous lead extensions 28 and external cable 30, to the stimulation leads 12. The ETS 20, which may have similar pulse generation circuitry as the IPG 14, also delivers electrical stimulation energy in the form of, for example, a pulsed electrical waveform to the electrode array 26 in accordance with a set of stimulation parameters. One difference between the ETS 20 and the IPG 14 is that the ETS 20 is often a non-implantable device that is used on a trial basis after the neurostimulation leads 12 have been implanted and prior to implantation of the IPG 14, to test the responsiveness of the stimulation that is to be provided. Any functions described herein with respect to the IPG 14 can likewise be performed with respect to the ETS 20.
The RC 16 may be used to telemetrically communicate with or control the IPG 14 or ETS 20 via a uni- or bi-directional wireless communications link 32. Once the IPG 14 and neurostimulation leads 12 are implanted, the RC 16 may be used to telemetrically communicate with or control the IPG 14 via a uni- or bi-directional communications link 34. Such communication or control allows the IPG 14 to be turned on or off and to be programmed with different stimulation parameter sets. The IPG 14 may also be operated to modify the programmed stimulation parameters to actively control the characteristics of the electrical stimulation energy output by the IPG 14. The CP 18 allows a user, such as a clinician, the ability to program stimulation parameters for the IPG 14 and ETS 20 in the operating room and in follow-up sessions. Alternately, or additionally, stimulation parameters can be programed via wireless communications (e.g., Bluetooth) between the RC 16 (or external device such as a hand-held electronic device) and the IPG 14.
The CP 18 may perform this function by indirectly communicating with the IPG 14 or ETS 20, through the RC 16, via a wireless communications link 36. Alternatively, the CP 18 may directly communicate with the IPG 14 or ETS 20 via a wireless communications link (not shown). The stimulation parameters provided by the CP 18 are also used to program the RC 16, so that the stimulation parameters can be subsequently modified by operation of the RC 16 in a stand-alone mode (i.e., without the assistance of the CP 18).
For purposes of brevity, the details of the RC 16, CP 18, ETS 20, and external charger 22 will not be further described herein. Details of exemplary embodiments of these devices are disclosed in U.S. Pat. No. 6,895,280, which is expressly incorporated herein by reference. Other examples of electrical stimulation systems can be found at U.S. Pat. Nos. 6,181,969; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,949,395; 7,244,150; 7,672,734; and 7,761,165; 7,974,706; 8,175,710; 8,224,450; and 8,364,278; and U.S. Patent Application Publication No. 2007/0150036, as well as the other references cited above, all of which are incorporated by reference.
Turning to
Percutaneous leads are described herein for clarity of illustration. It will be understood that paddle leads and cuff leads can be used in lieu of, or in addition to, percutaneous leads. The leads described herein include 8 electrodes (+1 auxiliary electrode in some embodiments). It will be understood that the leads could include any suitable number of electrodes. The leads described herein exclusively include ring electrodes. It will be understood that the leads can include a distal-tip electrode, or one or more segmented electrodes in lieu of, or in addition to one or more ring electrodes. Additionally, the term “elongated member” used herein includes leads (e.g., percutaneous, paddle, cuff, or the like), as well as intermediary devices (e.g., lead extensions, adaptors, splitters, or the like).
Conductors can extend along the longitudinal length of the lead within one or more lumens defined in the lead. In other instances, the conductors may extend along the lead within the lead body itself. The lead 212 includes an auxiliary terminal 208 disposed along the proximal portion of the body to facilitate coupling of the proximal portion of the lead to a connector. The connector may be disposed along a control module. Alternatively, the auxiliary terminal 208 can be used to facilitate coupling of the proximal portion of the lead to a connector of an intermediary device, such as a lead extension which, in turn, is coupled to a connector of a control module.
The lead-extension connector 390 contains a lead-extension connector stack 365 that defines a connector lumen 367 configured to receive the proximal portion of an elongated member (e.g., lead 212). The lead-extension connector stack 365 includes lead-extension connector contacts, such as lead-extension connector contact 369, arranged along the connector lumen 367 and configured to electrically couple with terminals of the elongated member (e.g., lead 212) when the proximal portion of the elongated member is received by the lead-extension connector 390. The connector contacts can be electrically isolated from one another by electrically-nonconductive spacers, such as spacer 371. The connector stack may also include an end stop 373 to promote alignment of the elongated-member terminals with the lead-extension connector contacts.
The lead-extension connector 390 further includes a retention assembly for facilitating retention of the proximal portion of the elongated member (e.g., lead 212) when the proximal portion of the elongated member is received by the lead-extension connector 390. In the illustrated embodiment, the retention assembly includes a lead-extension retention block 392. The lead-extension retention block 392 is positioned to align with the auxiliary terminal (208 in
Lead-extension conductors, such as lead-extension conductor 331, extend along a longitudinal length of the lead extension and electrically couple the lead-extension connector contacts to the array of lead-extension terminals 327. The lead-extension conductors can extend along the longitudinal length of the lead-extension body within one or more lumens defined in the lead extension. In other instances, the lead-extension conductors may extend along the lead extension within the lead-extension body itself. The lead extension 312 includes an auxiliary terminal 308 disposed along the proximal portion of the lead-extension body to facilitate coupling of the proximal portion of the lead extension to a connector, such as a control-module connector, another lead-extension connector, or the like.
A connector assembly 590 is disposed in the header 553. The connector assembly 590 is configured to receive an elongated device (e.g., the lead 212, the lead extension 312, or other intermediary device). The connector assembly 590 defines a connector lumen 567 configured to receive the proximal portion of the elongated member. An array of connector contacts, such as connector contact 569, is arranged along the connector lumen 567 and configured to electrically couple with terminals of the elongated member when the proximal portion of the elongated member is received by the connector 590. The connector contacts can be electrically isolated from one another by electrically-nonconductive spacers, such as spacer 571. The connector stack may also include an end stop 573 to promote alignment of the elongated-member terminals with the connector contacts.
Feedthrough interconnects, such as feedthrough interconnect 582, are electrically coupled to the electrical subassembly 558 and extend within the sealed housing 554 to a feedthrough interface 586 disposed along an interface between the header 553 and the sealed housing 554. The connector contacts are electrically coupled to interconnect conductors, such as interconnect wire 580, that extend along the header 553 and electrically couple the connector contacts to the feedthrough interconnects at the feedthrough interface 586. In some embodiments, the header 553 is positioned over the feedthrough interface 586.
The connector assembly 590, optionally, includes a retention assembly for facilitating retention of the proximal portion of the elongated member when the proximal portion of the elongated member is received by the control module 552. In the illustrated embodiment, the retention assembly includes a retention block 592. The retention block 592 is positioned to align with a retention sleeve (see e.g., 608 in
Connector assemblies are often disposed within headers disposed over sealed housings containing an electronic subassembly (e.g., the IPG). Conventional headers are unsealed and are typically formed using casting techniques. Interconnect conductors used to electrically couple connector contacts with the electronic subassembly are often arranged along the header in complicated wiring configurations encased in epoxy. Interconnect conductors cannot typically couple the connector contacts directly to the electronic subassembly because the header is positioned external to the sealed housing. Instead, the interconnect conductors typically couple the connector contacts to feedthrough interconnects that extend from the electronic subassembly to a feedthrough interface positioned along an outer surface of the sealed housing.
Connector assemblies formed along unsealed, or non-hermetic, portions of control modules may include locations prone to undesired current leakage. Many such potential locations occur along portions of the interconnect conductors. For example, current leakage can occur along portions of interconnect conductors where the interconnect conductors couple with feedthrough interconnects at the feedthrough interface; between two or more non-insulated interconnect conductors; at the interface between the interconnect conductors and the connector contacts; and along portions of interconnect conductors breaching outer surfaces of the casted header.
It may be advantageous to reduce, or even eliminate, current leakage. Reducing, or even eliminating, current leakage may improve therapy, increase the implantable lifespan of the control module, and improve manufacturing (e.g., removing the step of forming, such as casting, a header). Additionally, it may be advantageous to form the feedthrough as an integral part of the connector wiring to generate cost savings. Such a design may further increase the implantable lifespan of the control module, and further improve manufacturing (e.g., reducing, or even eliminating the use of epoxy, eliminating the need for an electrical connection between interconnect conductors and feedthrough interconnects).
Turning to
The interconnect conductors extend from the one or more connector shells within the sealed housing of the control module. Accordingly, the interconnect conductors do not need to be formed from noble metals or be encased in epoxy. In at least some embodiments, utilizing the connector shells reduces the amount of, or even eliminates, epoxy used in the connector. In at least some embodiments, the connector shell enables interconnect conductors to directly couple connector contacts to the electronic subassembly of the control module, thereby eliminating the need for feedthrough interconnects.
The connector assemblies each include at least one connector contact arranged along a connector lumen defined in a connector shell. The connector shell(s) extend(s) into the housing 754. The connector shell(s), along with the housing 754, collectively form the sealed cavity 753.
The connector contacts are suitable for electrically coupling with terminals of elongated members when the elongated members are received by the connector lumens. In the illustrated embodiment, connector assembly 791a includes connector contacts, such as connector contact 769a, arranged along connector lumen 767a defined in a connector shell 793a; connector assembly 791b includes connector contacts, such as connector contact 769b, arranged along connector lumen 767b defined in a connector shell 793b; connector assembly 791c includes connector contacts, such as connector contact 769c, arranged along connector lumen 767c defined in a connector shell 793c; and connector assembly 791d includes connector contacts, such as connector contact 769d, arranged along connector lumen 767d defined in a connector shell 793d.
The connector assemblies can be configured for receiving elongated members with different numbers of terminals including, for example, 1, 2, 4, 8, 12, 16, 24, or more terminals. Additionally, different numbers of connector assemblies can be disposed in the control module including, for example, one, two, three, four, six, eight, or more connector assemblies.
In the illustrated embodiment, the connector assemblies 791a, 791b each include eight connector contacts. Accordingly, the connector assemblies 791a, 791b are each configured to receive elongated members 712a, 712b, respectively, each having eight terminals 727. The connector assemblies 791c, 791d each include sixteen connector contacts. Accordingly, the connector assemblies 791c, 791d are each configured to receive elongated members 712c, 712d, respectively, each having sixteen terminals 727.
Interconnect conductors electrically couple the connector contacts to the electronic subassembly 758. In the illustrated embodiment, interconnect wire 780a electrically couples connector contact 769a to the electronic subassembly 758; interconnect wire 780b electrically couples connector contact 769b to the electronic subassembly 758; interconnect wire 780c electrically couples connector contact 769c to the electronic subassembly 758; and interconnect wire 780d electrically couples connector contact 769d to the electronic subassembly 758.
In
The control module can be formed in any suitable arrangement to accommodate the components of the control module including, for example, the connector shell(s), the electronic subassembly, and the electrical connections extending therebetween.
The control module further includes a connector assembly for receiving an elongated member (e.g., a lead or lead extension) and electrically coupling terminals of the received elongated member to the electronic subassembly 858. In the illustrated embodiment, the control module 852 is shown with a single connector assembly 891. The connector assembly 891 includes connector contacts, such as connector contact 869, arranged along connector lumen 867 defined in connector shell 893. In the illustrated embodiment, the connector assembly 891 includes four connector contacts and is configured to receive an elongated member 812 with four terminals 827.
The connector shell 893 has an elongated shape with a first end 804, an opposing second end 805, and a sidewall 806. The first end 804 of the connector shell is open to receive the elongated member. The illustrated embodiment shows an optional flange 895 disposed along the open first end 804 of the of the connector shell 893. The flange 895 may be useful for facilitating insertion of the elongated member into the connector shell. The flange 895 can be attached to the connector shell using any suitable technique (e.g., brazing, welding, co-firing, or the like). A hermetic weld 897 is formed around a perimeter of the first end 804 of the connector shell 893 (or a perimeter of the flange, if applicable) to seal the connector shell 893 with the housing 854.
In at least some embodiments, the connector assembly includes a strain relief disposed in proximity to the open first end 804 of the connector shell. In at least some embodiments, the connector assembly includes a retention assembly (see e.g., retention block 592 and retaining member 594 of
The arrangements shown in
In
Turning to
In at least some embodiments, the connector shell defines one or more interconnect apertures along the sidewall (longitudinal length) of the connector shell. The interconnect apertures facilitate electrical coupling of the connector contacts to the electronic subassembly by interconnect conductors.
The interconnect apertures can be hermetically sealed using either electrically conductive material (e.g., solder, cermet, or the like), or electrically nonconductive material (e.g., glass or ceramic). In at least some embodiments, the interconnect apertures are sealed using vias electrically coupled to the connector contacts. In at least some embodiments, the vias are formed after the interconnect conductors are extended through the interconnector apertures and electrically coupled to connector contacts. In other embodiments, the vias are formed before the interconnect conductors are coupled to the connector contacts, and the interconnect conductors electrically couple to the connector contacts by electrically coupling to the vias. In at least some embodiments, the vias are brazed to walls of the interconnect apertures. In other embodiments, the vias are welded to walls of the interconnect apertures.
The connector assembly 991 includes connector contacts 869a-h disposed in a connector lumen 967 of a connector shell 993. The connector contacts 869a-h are physically and electrically isolated from one another by electrically nonconductive spacers 971a-h. Interconnect conductors 880a-h electrically couple with the connector contacts 869a-h, respectively, via interconnect apertures 999a-h, respectively, defined along a sidewall 906 of the connector shell 993. In the illustrated embodiment, each interconnect wire extends through a different interconnect aperture. In at least some embodiments, multiple interconnect conductors extend through at least one of the interconnect apertures.
The interconnect conductors can, in some embodiments, be electrically coupled directly to the connector contacts using any suitable technique (e.g., laser welding). The interconnect apertures can be hermetically sealed before or after the interconnect conductors are electrically-coupled to the connector contacts. In at least some embodiments, the interconnect apertures are sealed using a hermetic sealing material including, for example, metal (e.g., solder, cermet, or the like), glass, or ceramic. In embodiments with electrically conductive sealing material (e.g., vias), the interconnector conductors can, optionally, be coupled to the connector contacts indirectly by electrically coupling to the vias. In at least some embodiments, one or more of the connector contacts, interconnect conductors, and interconnect apertures surfaces are coated with one or more materials in preparation for accepting the hermetic sealing material. In at least some embodiments, one or more of the connector contacts, interconnect conductors, and interconnect apertures surfaces are preheated prior to application of the hermetic sealing material.
The connector contacts can be formed from any electrically-conductive material suitable for implantation. The connector contacts can be formed in any suitable configuration to make electrical contact with terminals of a received elongated member. In the illustrated embodiments, the connector contacts are formed as leaf springs.
Turning to
As shown in
The interconnected ring-shaped sections 1014a-d and 1016a-f can be interconnected using any suitable technique including, for example, brazing, 3D printing, co-firing (low- or high-temperature). Similarly, the optional flange 1095 can be coupled to the connector shell 1093 using any suitable technique including, for example, brazing, 3D printing, co-firing (low- or high-temperature). In at least some embodiments, the ring-shaped sections (and the end piece and the flange, if applicable) are interconnected to form a hermetic seal along the sidewall (longitudinal length) and the second end of the connector shell.
In at least some embodiments, the ring-shaped sections are arranged such that each of the electrically conductive ring-shaped sections 1014a-d is separated from each of the remaining electrically conductive ring-shaped sections 1014a-d by at least one electrically nonconductive ring-shaped section 1016a-e in either direction along the longitudinal length 1006 of the connector shell 1093.
In at least some embodiments, the alternating ring-shaped sections are aligned along the longitudinal length of the connector shell with corresponding connector contacts and spacers within the connector shell.
The alternating rings can be aligned along the longitudinal length of the connector shell 1193 with corresponding connector contacts and spacers. In the illustrated embodiment, the electrically conductive rings 1114a-h are aligned along the longitudinal length of the connector shell 1193 with the connector contacts 1169a-h, respectively. In at least some embodiments, the electrically conductive rings 1114a-h are electrically coupled to the connector contacts 1169a-h, respectively, to which they are longitudinally aligned. In at least some embodiments, the electrically nonconductive rings 1116a-h are aligned along the longitudinal length of the connector shell 1193 with the spacers 1171a-h.
In at least some embodiments, one or more interconnect apertures are defined along sidewalls of the connector shell 1193 to facilitate electrical coupling of interconnect conductors to the connector contacts. In the illustrated embodiment, interconnect apertures 1199a-h are defined along sidewalls of the electrically conductive rings 1114a-h. The interconnect apertures 1199a-h are suitable for enabling interconnect conductors (not shown in
In other embodiments, interconnect conductors are electrically coupleable to connector contacts 1169a-h by coupling the interconnect conductors to a cavity-facing surface (see e.g.,
Some of the components (for example, a power source 1212, an antenna 1218, a receiver 1202, and a processor 1204) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator (see e.g., 14 in
As another alternative, power can be supplied by an external power source through inductive coupling via the optional antenna 1218 or a secondary antenna. In at least some embodiments, the antenna 1218 (or the secondary antenna) is implemented using the auxiliary electrically-conductive conductor. The external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.
If the power source 1212 is a rechargeable battery, the battery may be recharged using the optional antenna 1218, if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 1216 external to the user. Examples of such arrangements can be found in the references identified above. The electronic subassembly 1258 and, optionally, the power source 1212 can be disposed within a control module (e.g., the IPG 14 or the ETS 20 of
In one embodiment, electrical stimulation signals are emitted by the electrodes (e.g., 26 in
Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 1208 that, for example, allows modification of pulse characteristics. In the illustrated embodiment, the processor 1204 is coupled to a receiver 1202 which, in turn, is coupled to the optional antenna 1218. This allows the processor 1204 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.
In one embodiment, the antenna 1218 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 1206 which is programmed by the programming unit 1208. The programming unit 1208 can be external to, or part of, the telemetry unit 1206. The telemetry unit 1206 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired. As another alternative, the telemetry unit 1206 may not be worn or carried by the user but may only be available at a home station or at a clinician's office. The programming unit 1208 can be any unit that can provide information to the telemetry unit 1206 for transmission to the electrical stimulation system 1200. The programming unit 1208 can be part of the telemetry unit 1206 or can provide signals or information to the telemetry unit 1206 via a wireless or wired connection. One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 1206.
The signals sent to the processor 1204 via the antenna 1218 and the receiver 1302 can be used to modify or otherwise direct the operation of the electrical stimulation system. For example, the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength. The signals may also direct the electrical stimulation system 1200 to cease operation, to start operation, to start charging the battery, or to stop charging the battery. In other embodiments, the stimulation system does not include the antenna 1218 or receiver 1202 and the processor 1204 operates as programmed.
Optionally, the electrical stimulation system 1200 may include a transmitter (not shown) coupled to the processor 1204 and the antenna 1218 for transmitting signals back to the telemetry unit 1206 or another unit capable of receiving the signals. For example, the electrical stimulation system 1200 may transmit signals indicating whether the electrical stimulation system 1200 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery. The processor 1204 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.
The above specification and examples provide a description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/536,839, filed Jul. 25, 2017, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3222471 | Steinkamp | Dec 1965 | A |
3601747 | Prall et al. | Aug 1971 | A |
3718142 | Mulier | Feb 1973 | A |
3757789 | Shenker | Sep 1973 | A |
3771106 | Matsumoto et al. | Nov 1973 | A |
3908668 | Bolduc | Sep 1975 | A |
3951154 | Hartlaub | Apr 1976 | A |
3990727 | Gallagher | Nov 1976 | A |
4003616 | Springer | Jan 1977 | A |
4112953 | Shenker et al. | Sep 1978 | A |
4142532 | Ware | Mar 1979 | A |
4180078 | Anderson | Dec 1979 | A |
4245642 | Skubitz et al. | Jan 1981 | A |
4259962 | Peers-Trevarton | Apr 1981 | A |
4310001 | Comben | Jan 1982 | A |
4364625 | Baker et al. | Dec 1982 | A |
4367907 | Buck | Jan 1983 | A |
4411276 | Dickhudt et al. | Oct 1983 | A |
4411277 | Dickhudt | Oct 1983 | A |
4461194 | Moore | Jul 1984 | A |
4466441 | Skubitz et al. | Aug 1984 | A |
4516820 | Kuzma | May 1985 | A |
RE31990 | Sluetz et al. | Sep 1985 | E |
4540236 | Peers-Trevarton | Sep 1985 | A |
4602624 | Naples et al. | Jul 1986 | A |
4603696 | Cross, Jr. et al. | Aug 1986 | A |
4614395 | Peers-Trevarton | Sep 1986 | A |
4630611 | King | Dec 1986 | A |
4695116 | Bailey et al. | Sep 1987 | A |
4695117 | Kysiak | Sep 1987 | A |
4712557 | Harris | Dec 1987 | A |
4715380 | Harris | Dec 1987 | A |
4744370 | Harris | May 1988 | A |
4784141 | Peers-Trevarton | Nov 1988 | A |
4832032 | Schneider | May 1989 | A |
4840580 | Saell et al. | Jun 1989 | A |
4850359 | Putz | Jul 1989 | A |
4860750 | Frey et al. | Aug 1989 | A |
4867708 | Iizuka | Sep 1989 | A |
4869255 | Putz | Sep 1989 | A |
4898173 | Daglow et al. | Feb 1990 | A |
4899753 | Inoue et al. | Feb 1990 | A |
4934366 | Truex | Jun 1990 | A |
4951687 | Ufford et al. | Aug 1990 | A |
4995389 | Harris | Feb 1991 | A |
5000177 | Hoffmann et al. | Mar 1991 | A |
5000194 | van den Honert et al. | Mar 1991 | A |
5007435 | Doan et al. | Apr 1991 | A |
5007864 | Stutz, Jr. | Apr 1991 | A |
5070605 | Daglow et al. | Dec 1991 | A |
5082453 | Stutz, Jr. | Jan 1992 | A |
5086773 | Ware | Feb 1992 | A |
5135001 | Sinofsky et al. | Aug 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5201865 | Kuehn | Apr 1993 | A |
5241957 | Camps et al. | Sep 1993 | A |
5252090 | Giurtino et al. | Oct 1993 | A |
5261395 | Oleen et al. | Nov 1993 | A |
5312439 | Loeb | May 1994 | A |
5324312 | Stokes et al. | Jun 1994 | A |
5330521 | Cohen | Jul 1994 | A |
5336246 | Dantanarayana | Aug 1994 | A |
5348481 | Ortiz | Sep 1994 | A |
5354326 | Comben et al. | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5368496 | Ranalletta et al. | Nov 1994 | A |
5374279 | Duffin, Jr. et al. | Dec 1994 | A |
5374285 | Vaiani et al. | Dec 1994 | A |
5383913 | Schiff | Jan 1995 | A |
5413595 | Stutz, Jr. | May 1995 | A |
5433734 | Stokes et al. | Jul 1995 | A |
5435731 | Kang | Jul 1995 | A |
5458629 | Baudino et al. | Oct 1995 | A |
5486202 | Bradshaw | Jan 1996 | A |
5489225 | Julian | Feb 1996 | A |
5509928 | Acken | Apr 1996 | A |
5522874 | Gates | Jun 1996 | A |
5534019 | Paspa | Jul 1996 | A |
5545188 | Bradshaw et al. | Aug 1996 | A |
5545189 | Fayram | Aug 1996 | A |
5582180 | Manset et al. | Aug 1996 | A |
5560358 | Arnold et al. | Oct 1996 | A |
5679026 | Fain et al. | Oct 1997 | A |
5683433 | Carson | Nov 1997 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5720631 | Carson et al. | Feb 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5755743 | Volz et al. | May 1998 | A |
5766042 | Ries et al. | Jun 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5796044 | Cobian et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5800495 | Machek et al. | Sep 1998 | A |
5807144 | Sivard | Sep 1998 | A |
5837006 | Ocel et al. | Nov 1998 | A |
5843141 | Bischoff et al. | Dec 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5906634 | Flynn et al. | May 1999 | A |
5931861 | Werner et al. | Aug 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5951595 | Moberg et al. | Sep 1999 | A |
5968082 | Heil | Oct 1999 | A |
5987361 | Mortimer | Nov 1999 | A |
5989077 | Mast et al. | Nov 1999 | A |
6006135 | Kast et al. | Dec 1999 | A |
6018684 | Bartig et al. | Jan 2000 | A |
6029089 | Hawkins | Feb 2000 | A |
6038479 | Werner et al. | Mar 2000 | A |
6038481 | Werner et al. | Mar 2000 | A |
6042432 | Hashazawa et al. | Mar 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6080188 | Rowley et al. | Jun 2000 | A |
6112120 | Correas | Aug 2000 | A |
6112121 | Paul et al. | Aug 2000 | A |
6125302 | Kuzma | Sep 2000 | A |
6134478 | Spehr | Oct 2000 | A |
6154678 | Lauro | Nov 2000 | A |
6161047 | King et al. | Dec 2000 | A |
6162101 | Fischer et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6167314 | Fischer, Sr. et al. | Dec 2000 | A |
6175710 | Kamaji et al. | Jan 2001 | B1 |
6181969 | Gard | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6192278 | Werner et al. | Feb 2001 | B1 |
6198969 | Kuzma | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6224450 | Norton | May 2001 | B1 |
6271094 | Boyd et al. | Aug 2001 | B1 |
6295944 | Lovett | Oct 2001 | B1 |
6319021 | Billman | Nov 2001 | B1 |
6321126 | Kuzma | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6343233 | Werner et al. | Jan 2002 | B1 |
6364278 | Lin et al. | Apr 2002 | B1 |
6370434 | Zhang et al. | Apr 2002 | B1 |
6391985 | Goode et al. | May 2002 | B1 |
6397108 | Camps et al. | May 2002 | B1 |
6415168 | Putz | Jul 2002 | B1 |
6428336 | Akerfeldt | Aug 2002 | B1 |
6428368 | Hawkins et al. | Aug 2002 | B1 |
6430442 | Peters et al. | Aug 2002 | B1 |
6466824 | Struble | Oct 2002 | B1 |
6473654 | Chinn | Oct 2002 | B1 |
6498952 | Imani et al. | Dec 2002 | B2 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6556873 | Smits | Apr 2003 | B1 |
6564078 | Marino et al. | May 2003 | B1 |
6604283 | Kuzma | Aug 2003 | B1 |
6605094 | Mann et al. | Aug 2003 | B1 |
6609029 | Mann et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6654641 | Froberg | Nov 2003 | B1 |
6662035 | Sochor | Dec 2003 | B2 |
6663570 | Mott | Dec 2003 | B2 |
6671534 | Putz | Dec 2003 | B2 |
6671553 | Helland et al. | Dec 2003 | B1 |
6678564 | Ketterl et al. | Jan 2004 | B2 |
6725096 | Chinn et al. | Apr 2004 | B2 |
6741892 | Meadows et al. | May 2004 | B1 |
6757039 | Ma | Jun 2004 | B2 |
6757970 | Kuzma et al. | Jul 2004 | B1 |
6799991 | Williams et al. | Oct 2004 | B2 |
6805675 | Gardeski et al. | Oct 2004 | B1 |
6854994 | Stein et al. | Feb 2005 | B2 |
6878013 | Behan | Apr 2005 | B1 |
6895276 | Kast et al. | May 2005 | B2 |
6913478 | Lamrey | Jul 2005 | B2 |
6921295 | Sommer et al. | Jul 2005 | B2 |
6968235 | Belden et al. | Nov 2005 | B2 |
6980863 | van Venrooj et al. | Dec 2005 | B2 |
7027852 | Helland | Apr 2006 | B2 |
7047084 | Erickson et al. | May 2006 | B2 |
7058452 | Dahlberg | Jun 2006 | B2 |
7069081 | Biggs et al. | Jun 2006 | B2 |
7083474 | Fleck et al. | Aug 2006 | B1 |
7108549 | Lyu et al. | Sep 2006 | B2 |
7110819 | O'Hara | Sep 2006 | B1 |
7110827 | Sage et al. | Sep 2006 | B2 |
7128600 | Osypka | Oct 2006 | B2 |
7155283 | Ries et al. | Dec 2006 | B2 |
7164951 | Ries et al. | Jan 2007 | B2 |
7168165 | Calzada et al. | Jan 2007 | B2 |
7191009 | Laske et al. | Mar 2007 | B2 |
7195523 | Naviaux | Mar 2007 | B2 |
7203548 | Whitehurst et al. | Apr 2007 | B2 |
7225034 | Ries et al. | May 2007 | B2 |
7231253 | Tidemand et al. | Jun 2007 | B2 |
7241180 | Rentas | Jul 2007 | B1 |
7242987 | Holleman et al. | Jul 2007 | B2 |
7244150 | Brase | Jul 2007 | B1 |
7270568 | Osypka | Sep 2007 | B2 |
7283878 | Brostrom et al. | Oct 2007 | B2 |
7286882 | Cole | Oct 2007 | B2 |
7287995 | Stein et al. | Oct 2007 | B2 |
7292890 | Whitehurst et al. | Nov 2007 | B2 |
7396335 | Gardeski et al. | Jul 2008 | B2 |
7402083 | Kast et al. | Jul 2008 | B2 |
7422487 | Osypka | Sep 2008 | B2 |
7430958 | Wong | Oct 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7450997 | Pianca et al. | Nov 2008 | B1 |
7489971 | Franz | Feb 2009 | B1 |
7512446 | Honeck | Mar 2009 | B2 |
7516447 | Marvin et al. | Apr 2009 | B2 |
7526339 | Lahti et al. | Apr 2009 | B2 |
7539542 | Malinowski | May 2009 | B1 |
7548788 | Chinn et al. | Jun 2009 | B2 |
7554493 | Rahman | Jun 2009 | B1 |
7583999 | Bedenbaugh | Sep 2009 | B2 |
7585190 | Osypka | Sep 2009 | B2 |
7590451 | Tronnes et al. | Sep 2009 | B2 |
7650184 | Walter | Jan 2010 | B2 |
7650191 | Lim et al. | Jan 2010 | B1 |
7668601 | Hegland et al. | Feb 2010 | B2 |
7672734 | Anderson et al. | Mar 2010 | B2 |
7736191 | Sochor | Jun 2010 | B1 |
7758384 | Alexander et al. | Jul 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7761985 | Hegland et al. | Jul 2010 | B2 |
7783359 | Meadows | Aug 2010 | B2 |
7792590 | Pianca et al. | Sep 2010 | B1 |
7798864 | Barker et al. | Sep 2010 | B2 |
7803021 | Brase | Sep 2010 | B1 |
7809446 | Meadows | Oct 2010 | B2 |
7822477 | Rey et al. | Oct 2010 | B2 |
7822482 | Gerber | Oct 2010 | B2 |
7840188 | Kurokawa | Nov 2010 | B2 |
7848802 | Goetz | Dec 2010 | B2 |
7856707 | Cole | Dec 2010 | B2 |
7860570 | Whitehurst et al. | Dec 2010 | B2 |
7949395 | Kuzma | May 2011 | B2 |
7974705 | Zdeblick et al. | Jul 2011 | B2 |
7974706 | Moffitt et al. | Jul 2011 | B2 |
7979140 | Schulman | Jul 2011 | B2 |
8000808 | Hegland et al. | Aug 2011 | B2 |
8019440 | Kokones et al. | Sep 2011 | B2 |
8036755 | Franz | Oct 2011 | B2 |
8041309 | Kurokawa | Oct 2011 | B2 |
8046073 | Pianca | Oct 2011 | B1 |
8046074 | Barker | Oct 2011 | B2 |
8078280 | Sage | Dec 2011 | B2 |
8099177 | Dahlberg | Jan 2012 | B2 |
8100726 | Harlan et al. | Jan 2012 | B2 |
8140163 | Daglow et al. | Mar 2012 | B1 |
8167660 | Dilmaghanian et al. | May 2012 | B2 |
8175710 | He | May 2012 | B2 |
8190259 | Smith et al. | May 2012 | B1 |
8206180 | Kast et al. | Jun 2012 | B1 |
8224450 | Brase | Jul 2012 | B2 |
8225504 | Dye et al. | Jul 2012 | B2 |
8239042 | Chinn et al. | Aug 2012 | B2 |
8271094 | Moffitt et al. | Sep 2012 | B1 |
8295944 | Howard et al. | Oct 2012 | B2 |
8301255 | Barker | Oct 2012 | B2 |
8321025 | Bedenbaugh | Nov 2012 | B2 |
8342887 | Gleason et al. | Jan 2013 | B2 |
8359107 | Pianca et al. | Jan 2013 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8391985 | McDonald | Mar 2013 | B2 |
8412330 | Kast et al. | Apr 2013 | B2 |
8527054 | North | Sep 2013 | B2 |
8583237 | Bedenbaugh | Nov 2013 | B2 |
8600507 | Brase et al. | Dec 2013 | B2 |
8682439 | DeRohan et al. | Mar 2014 | B2 |
8688235 | Pianca et al. | Apr 2014 | B1 |
8784143 | Edgell et al. | Jul 2014 | B2 |
8831742 | Pianca et al. | Sep 2014 | B2 |
8849396 | DeRohan et al. | Sep 2014 | B2 |
8849415 | Bedenbaugh | Sep 2014 | B2 |
8897876 | Sundaramurthy et al. | Nov 2014 | B2 |
8897891 | Romero | Nov 2014 | B2 |
8968331 | Sochor | Mar 2015 | B1 |
9101775 | Barker | Aug 2015 | B2 |
9149630 | Howard et al. | Oct 2015 | B2 |
9162048 | Romero et al. | Oct 2015 | B2 |
9234591 | Dilmaghanian et al. | Jan 2016 | B2 |
9270070 | Pianca | Feb 2016 | B2 |
9289596 | Leven | Mar 2016 | B2 |
9352147 | Nguyen-stella et al. | May 2016 | B2 |
9381348 | Romero et al. | Jul 2016 | B2 |
9403022 | Ries et al. | Aug 2016 | B2 |
9409032 | Brase et al. | Aug 2016 | B2 |
9440066 | Black | Sep 2016 | B2 |
9498618 | Stetson et al. | Nov 2016 | B2 |
9498620 | Romero et al. | Nov 2016 | B2 |
9504839 | Leven | Nov 2016 | B2 |
9604068 | Malinowski | Mar 2017 | B2 |
9656093 | Villarta et al. | May 2017 | B2 |
9770598 | Malinowski et al. | Sep 2017 | B2 |
9855413 | Vadlamudi et al. | Jan 2018 | B2 |
20010023368 | Black et al. | Sep 2001 | A1 |
20020128692 | Imani | Sep 2002 | A1 |
20020143376 | Chinn et al. | Oct 2002 | A1 |
20020156513 | Borkan | Oct 2002 | A1 |
20020183817 | Van Venroolj et al. | Dec 2002 | A1 |
20030050672 | Dahlberg | Mar 2003 | A1 |
20030163171 | Kast et al. | Aug 2003 | A1 |
20040064164 | Ries et al. | Apr 2004 | A1 |
20040230268 | Huff et al. | Nov 2004 | A1 |
20040260373 | Ries et al. | Dec 2004 | A1 |
20050015130 | Gill | Jan 2005 | A1 |
20050027326 | Ries et al. | Feb 2005 | A1 |
20050027327 | Ries et al. | Feb 2005 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050043770 | Hine et al. | Feb 2005 | A1 |
20050043771 | Sommer et al. | Feb 2005 | A1 |
20050137665 | Cole | Jun 2005 | A1 |
20050171587 | Daglow et al. | Aug 2005 | A1 |
20050186829 | Balsells | Aug 2005 | A1 |
20050272280 | Osypka | Dec 2005 | A1 |
20060015163 | Brown | Jan 2006 | A1 |
20060025841 | McIntyre | Feb 2006 | A1 |
20060030918 | Chinn | Feb 2006 | A1 |
20060167522 | Malinowski | Jul 2006 | A1 |
20060224208 | Naviaux | Oct 2006 | A1 |
20060247697 | Sharma et al. | Nov 2006 | A1 |
20060247749 | Colvin | Nov 2006 | A1 |
20060259106 | Arnholt et al. | Nov 2006 | A1 |
20070042648 | Balsells | Feb 2007 | A1 |
20070142889 | Whitehurst et al. | Jun 2007 | A1 |
20070150036 | Anderson | Jun 2007 | A1 |
20070161294 | Brase et al. | Jul 2007 | A1 |
20070168007 | Kuzma et al. | Jul 2007 | A1 |
20070203546 | Stone et al. | Aug 2007 | A1 |
20070219551 | Honour et al. | Sep 2007 | A1 |
20070255332 | Cabelka et al. | Nov 2007 | A1 |
20080077186 | Thompson et al. | Mar 2008 | A1 |
20080103580 | Gerber | May 2008 | A1 |
20080114230 | Addis | May 2008 | A1 |
20080139031 | Ries et al. | Jun 2008 | A1 |
20080177167 | Janzig et al. | Jul 2008 | A1 |
20080198530 | Zhao | Aug 2008 | A1 |
20080208277 | Janzig et al. | Aug 2008 | A1 |
20080208278 | Janzig et al. | Aug 2008 | A1 |
20080208279 | Janzig et al. | Aug 2008 | A1 |
20080215125 | Farah et al. | Sep 2008 | A1 |
20080255647 | Jensen et al. | Oct 2008 | A1 |
20080274651 | Boyd et al. | Nov 2008 | A1 |
20090054941 | Eggen et al. | Feb 2009 | A1 |
20090054949 | Alexander | Feb 2009 | A1 |
20090187222 | Barker | Jul 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090264943 | Barker | Oct 2009 | A1 |
20090276021 | Meadows et al. | Nov 2009 | A1 |
20090287191 | Ferren et al. | Nov 2009 | A1 |
20100029127 | Sjostedt | Feb 2010 | A1 |
20100030298 | Martens et al. | Feb 2010 | A1 |
20100036468 | Decre et al. | Feb 2010 | A1 |
20100057176 | Barker | Mar 2010 | A1 |
20100070012 | Chinn et al. | Mar 2010 | A1 |
20100076535 | Pianca et al. | Mar 2010 | A1 |
20100077606 | Black et al. | Apr 2010 | A1 |
20100082076 | Lee et al. | Apr 2010 | A1 |
20100094387 | Pianca et al. | Apr 2010 | A1 |
20100100152 | Martens et al. | Apr 2010 | A1 |
20100268298 | Moffitt et al. | Oct 2010 | A1 |
20100269338 | Dye | Oct 2010 | A1 |
20100269339 | Dye et al. | Oct 2010 | A1 |
20100287770 | Dadd et al. | Nov 2010 | A1 |
20110004267 | Meadows | Jan 2011 | A1 |
20110005069 | Pianca | Jan 2011 | A1 |
20110022100 | Brase et al. | Jan 2011 | A1 |
20110047795 | Turner et al. | Mar 2011 | A1 |
20110056076 | Hegland et al. | Mar 2011 | A1 |
20110077699 | Swanson et al. | Mar 2011 | A1 |
20110078900 | Pianca et al. | Apr 2011 | A1 |
20110130803 | McDonald | Jun 2011 | A1 |
20110130816 | Howard et al. | Jun 2011 | A1 |
20110130817 | Chen | Jun 2011 | A1 |
20110130818 | Chen | Jun 2011 | A1 |
20110131808 | Gill | Jun 2011 | A1 |
20110184480 | Kast et al. | Jul 2011 | A1 |
20110238129 | Moffitt et al. | Sep 2011 | A1 |
20110245903 | Schulte et al. | Oct 2011 | A1 |
20110270330 | Janzig et al. | Nov 2011 | A1 |
20110301665 | Mercanzini et al. | Dec 2011 | A1 |
20110313500 | Barker et al. | Dec 2011 | A1 |
20120016378 | Pianca et al. | Jan 2012 | A1 |
20120046710 | DiGiore et al. | Feb 2012 | A1 |
20120053646 | Brase et al. | Mar 2012 | A1 |
20120071937 | Sundaramurthy et al. | Mar 2012 | A1 |
20120071949 | Pianca et al. | Mar 2012 | A1 |
20120165911 | Pianca | Jun 2012 | A1 |
20120185019 | Schramm et al. | Jul 2012 | A1 |
20120197375 | Pianca et al. | Aug 2012 | A1 |
20120203302 | Moffitt et al. | Aug 2012 | A1 |
20120203316 | Moffitt et al. | Aug 2012 | A1 |
20120203320 | DiGiore et al. | Aug 2012 | A1 |
20120203321 | Moffitt et al. | Aug 2012 | A1 |
20120232603 | Sage | Sep 2012 | A1 |
20120253443 | Dilmaghanian et al. | Oct 2012 | A1 |
20120259386 | DeRohan et al. | Oct 2012 | A1 |
20120316615 | DiGiore et al. | Dec 2012 | A1 |
20130053864 | Geroy et al. | Feb 2013 | A1 |
20130098678 | Barker | Apr 2013 | A1 |
20130105071 | DiGiore et al. | May 2013 | A1 |
20130109254 | Klardie et al. | May 2013 | A1 |
20130116754 | Sharma et al. | May 2013 | A1 |
20130149031 | Changsrivong et al. | Jun 2013 | A1 |
20130197424 | Bedenbaugh | Aug 2013 | A1 |
20130197602 | Pianca et al. | Aug 2013 | A1 |
20130197603 | Eiger | Aug 2013 | A1 |
20130218154 | Carbunaru | Aug 2013 | A1 |
20130261684 | Howard | Oct 2013 | A1 |
20130288501 | Russell et al. | Oct 2013 | A1 |
20130304140 | Derohan et al. | Nov 2013 | A1 |
20130317587 | Barker | Nov 2013 | A1 |
20130325091 | Pianca et al. | Dec 2013 | A1 |
20140039587 | Romero | Feb 2014 | A1 |
20140088666 | Goetz et al. | Mar 2014 | A1 |
20140142671 | Moffitt et al. | May 2014 | A1 |
20140148885 | DeRohan et al. | May 2014 | A1 |
20140180375 | Pianca et al. | Jun 2014 | A1 |
20140358207 | Romero | Dec 2014 | A1 |
20140358208 | Howard et al. | Dec 2014 | A1 |
20140358209 | Romero et al. | Dec 2014 | A1 |
20140358210 | Howard et al. | Dec 2014 | A1 |
20150018915 | Leven | Jan 2015 | A1 |
20150021817 | Romero et al. | Jan 2015 | A1 |
20150025609 | Govea | Jan 2015 | A1 |
20150045864 | Howard | Feb 2015 | A1 |
20150066120 | Govea | Mar 2015 | A1 |
20150119965 | Govea | Apr 2015 | A1 |
20150151113 | Govea et al. | Jun 2015 | A1 |
20150209575 | Black | Jul 2015 | A1 |
20150360023 | Howard et al. | Dec 2015 | A1 |
20150374978 | Howard et al. | Dec 2015 | A1 |
20160059019 | Malinowski et al. | Mar 2016 | A1 |
20160129242 | Malinowski | May 2016 | A1 |
20160158558 | Shanahan et al. | Jun 2016 | A1 |
20160206891 | Howard et al. | Jul 2016 | A1 |
20160228692 | Steinke et al. | Aug 2016 | A1 |
20160296745 | Govea et al. | Oct 2016 | A1 |
20160375238 | Leven et al. | Dec 2016 | A1 |
20170072187 | Howard et al. | Mar 2017 | A1 |
20170143978 | Barker | May 2017 | A1 |
20170203104 | Nageri et al. | Jul 2017 | A1 |
20170361108 | Leven | Dec 2017 | A1 |
20180008832 | Leven | Jan 2018 | A1 |
20180028820 | Nageri | Feb 2018 | A1 |
20180093098 | Nageri et al. | Apr 2018 | A1 |
20180214687 | Nageri et al. | Aug 2018 | A1 |
20180243570 | Malinowski et al. | Aug 2018 | A1 |
20180289968 | Lopez | Oct 2018 | A1 |
20180369596 | Funderburk | Dec 2018 | A1 |
20190030345 | Funderburk | Jan 2019 | A1 |
20190083793 | Nageri | Mar 2019 | A1 |
20190083794 | Nageri | Mar 2019 | A1 |
20190103696 | Conger | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
0580928 | Feb 1994 | EP |
0650694 | Jul 1998 | EP |
0832667 | Feb 2004 | EP |
1181947 | Jan 2006 | EP |
1625875 | Feb 2006 | EP |
2092952 | Aug 2009 | EP |
1997032628 | Sep 1997 | WO |
1999055411 | Feb 2000 | WO |
2000038574 | Jul 2000 | WO |
2001058520 | Aug 2001 | WO |
2002068042 | Sep 2002 | WO |
2004045707 | Jun 2004 | WO |
2008018067 | Feb 2008 | WO |
2008053789 | May 2008 | WO |
2008100841 | Aug 2008 | WO |
2009025816 | Feb 2009 | WO |
2009102536 | Aug 2009 | WO |
2009148939 | Dec 2009 | WO |
2013162775 | Oct 2013 | WO |
2014018092 | Jan 2014 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2018/043119 dated Nov. 12, 2018. |
Number | Date | Country | |
---|---|---|---|
20190030345 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62536839 | Jul 2017 | US |