All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
This invention relates to methods for male contraception and devices used for the delivery of ablative energy to occlude a patient's ejaculatory ducts or vas differentia.
Several methods are known in the field of male contraception, with surgical vasectomies and occlusion of the vas deferens with implants being the most common approaches.
A surgical vasectomy can be an effective method for causing male sterility, however, the procedure itself can be painful as it requires incisions to access the vas deferens, and in many cases pain can linger over the long term.
Another method of male contraception utilizes plugs that are surgically implanted in the vas deferens. The plugs block the path of sperm from the testicles to the ejaculatory ducts and urethra. Such surgical methods of implanting plugs can be expensive and time-consuming.
Accordingly, the present invention is directed to provide safe, efficient, and timely methods for male sterilization procedures. Additionally, the present invention is directed to providing apparatus that can be easily positioned within the prostate during male sterilization procedures.
Generally, the present invention contemplates the use of a vapor delivery probe to occlude a duct in the male reproductive system.
One aspect of the invention includes a method of male sterilization, comprising introducing a vapor delivery tool into or proximate to a duct of a male reproductive system, and delivering vapor media through the vapor delivery tool into the duct to occlude the duct.
In some embodiments of the method, the introducing step comprises introducing the vapor delivery tool transurethrally. In other embodiments, the introducing step comprises introducing the vapor delivery tool through a skin incision.
In further embodiments, the method further comprises forming a seal in a urethra to contain the vapor media Forming the seal can further direct the vapor media into the duct. In some embodiments, the step of forming the seal includes expanding an expandable member. In other embodiments, forming the seal includes expanding an expandable portion of the vapor delivery tool.
In some embodiments, the vapor media damages a wall of the duct. In other embodiments, the vapor media denatures collagen in the wall of the duct.
In some embodiments, the vapor media has a temperature of at least 60° C. In other embodiments, the vapor media has a temperature between approximately 60° C. and 100° C.
In some embodiments, the vapor media is delivered for an interval ranging from approximately 0.1 second to 30 seconds.
In additional embodiments, the vapor media carries a second composition. The second composition can comprise a pharmacologic agent or a sealant, for example.
In some embodiments of the invention, the duct is an ejaculatory duct. In other embodiments, the duct is a ductus deferens.
In some embodiments, male sterilization method is provided that comprises introducing an energy delivery tool into or proximate to a duct of a male reproductive system, and applying energy by a fluid from the delivery tool to occlude the duct.
In some embodiments, the fluid is selected from the group consisting of a cryogenic fluid, a heated liquid, and high temperature vapor.
A system for male sterilization is also provided, comprising, a vapor delivery probe configured for transurethral introduction into or proximate to a duct of a male reproductive system, and a vapor source in fluid communication with the vapor delivery probe, the vapor source adapted to deliver a vapor media through the vapor delivery probe into the duct to modify the duct.
In some embodiments, the condensable vapor has a temperature of approximately 60° to 100° C.
In other embodiments, the system further comprises a source for introducing a second composition through the vapor delivery probe.
In additional embodiments, the system further comprises a controller configured to control a vapor delivery interval.
In other embodiments, the system further comprises at least one expandable member configured to contain the vapor media. The at least one expandable member can be an inflatable balloon, for example.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which.
In the drawings:
Certain specific details are set forth in the following description and figures to provide an understanding of various embodiments of the invention. Certain well-known details, associated electronics and devices are not set forth in the following disclosure to avoid unnecessarily obscuring the various embodiments of the invention. Further, those of ordinary skill in the relevant art will understand that they can practice other embodiments of the invention without one or more of the details described below. Finally, while various processes are described with reference to steps and sequences in the following disclosure, the description is for providing a clear implementation of particular embodiments of the invention, and the steps and sequences of steps should not be taken as required to practice this invention.
The prostate gland 122 is the largest accessory gland in the male reproductive system. Together with the testes and seminal vesicles 124, the prostate's primary function is the production of semen. The prostate is a walnut-sized organ that surrounds the prostatic urethra 120 that adds secretions to sperm during the ejaculation of semen. Superiorly, the base of the prostate 122 is contiguous with the bladder neck 136 and inferiorly its apex 140 adjoins the urogenital diaphragm. The prostate 120 can be rounded at the top and can narrow to form a blunt point at apex 140. The prostate diameter in the broadest area can be about 4 cm.
The two ejaculatory ducts, which carry sperm and the fluid secreted by the seminal vesicles 124, pass obliquely through the back portion of the prostate 122 and then narrow and converge toward the prostatic urethra 120 which is angulated at the verumontanum 144 (
Referring to
Now turning to
In
As can be understood from
In general, a method of the invention for vapor delivery to occlude a duct of the male reproductive system comprises introducing a vapor delivery tool or needle into a reproductive duct, and applying at least 1 W, 5 W, 10 W or 50 W of energy from the tool by means vapor energy release to ablate, shrink and/or occlude a duct. The method can cause localized ablation of the duct, and the applied energy from vapor can be localized without substantial damage to the prostate glandular tissue, the prostatic urethra 120 or nerves and other structures surrounding the prostate capsule.
In another aspect of the invention, a method for male sterilization comprises introducing a thermal energy delivery member into duct of male reproductive system and applying energy from the member to ablate, seal and occlude the duct. Again, the energy delivery member can include means to deliver a heated vapor.
In another aspect of the invention, the method can include accessing a vas deferens through a skin incision and then penetration through the wall of the vas deferens.
In general, a method of occluding ejaculatory ducts comprises inserting a tool working end transurethrally to a region proximate a termination of a duct, the working end including a fluid-delivery channel, and delivering a flowable media through the channel into the duct to cause occlusion thereof. The method can include delivering a drug with the flowable media The method can further include delivering vapor through the channel and allowing the vapor to condense within the duct thereby applying heat to the duct. The method can include delivering a polymer or other occluding agent with the vapor. Stated alternatively, another method of the invention includes providing a vapor that carries a second composition, which can comprise a pharmacologic agent, a sealant, a glue or adhesive, a collagen composition, a polymer plug material, a fibrin or albumin or a particulate.
In another method and apparatus corresponding to the invention, the tool for accessing the urethra can include means for expanding and retracting the urethra with a non-condensable gas, such as CO2, to allow simplified access for a tool into a duct 106. In one embodiment, the tool includes first and second axially spaced apart expandable members, such as occlusion balloons. The tool includes means to deliver a gas or a vapor from an outlet between the expandable members.
In one embodiment, the apparatus further includes a small diameter extendable member that can be directed and advanced into a lumen of a vas at least 1 mm, 5 mm, or 10 mm to deliver a treatment fluid, such as vapor, into the lumen of a duct.
Another method of the invention comprises introducing a device working end into a targeted site in the duct and actuating a heat emitter in the working end to occlude the lumen. The heat emitter can be at least one of an electrode, a light energy emitter, an ultrasound emitter, a resistive heating element, a microwave emitter, or an inductively heated emitter. The method can include transurethral introduction or can be inserted through a puncture or incision into the lumen of a reproductive duct.
Another method of the invention comprises introducing a device working end into a targeted region of an ejaculatory duct 106 or vas deferens and actuating a cooling or cryogenic means carried by the working end to modify the lumen. The method includes the cooling or cryogenic means injecting a flow media into the lumen in order to damage, occlude and seal the lumen.
In general, one system embodiment comprises a catheter or probe device configured for treating a reproductive duct that includes an elongated flexible member having an interior passageway extending to an outlet in a working end thereof, the member configured for transurethral introduction into the lumen of an ejaculatory duct, wherein the interior passageway in fluid communication with a vapor source capable of delivering a vapor media into the lumen of the duct to modify the duct. The device includes a vapor source that delivers a condensable vapor. The condensable vapor can have a temperature of at least 60° C., 70° C., 80° C., 90° C. or 100° C. The system further includes a controller for controlling a vapor delivery interval. In another embodiment, the system further includes an aspiration source for applying aspiration forces through the interior passageway of the catheter. The system optionally includes a source for introducing a second composition through the interior passageway. As described above, the source can carry a pharmacologic agent, a sealant, a glue or adhesive, a collagen composition, a polymer plug material, a fibrin or albumin or a particulate.
In another aspect of the invention, the introduction of the vapor probe and the delivery of vapor can be accomplished under any suitable type of imaging. In one method, the steps can be viewed by means of ultrasound or x-ray imaging. In one method, the probe introduction and energy delivery methods of the invention can be imaged by ultrasound means utilizing a trans-rectal ultrasound system commercialized by Envisioneering Medical Technologies, for example.
As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.
This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/126,620, filed May 6, 2008, titled “MEDICAL SYSTEM AND METHOD OF USE.” This application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4672963 | Barken | Jun 1987 | A |
4950267 | Ishihara et al. | Aug 1990 | A |
5312399 | Hakky et al. | May 1994 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5366490 | Edwards et al. | Nov 1994 | A |
5370609 | Drasler et al. | Dec 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5435805 | Edwards et al. | Jul 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5470309 | Edwards et al. | Nov 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5542915 | Edwards et al. | Aug 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5545171 | Sharkey et al. | Aug 1996 | A |
5549644 | Lundquist et al. | Aug 1996 | A |
5554110 | Edwards et al. | Sep 1996 | A |
5556377 | Rosen et al. | Sep 1996 | A |
5558673 | Edwards et al. | Sep 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5591125 | Edwards et al. | Jan 1997 | A |
5599294 | Edwards et al. | Feb 1997 | A |
5601591 | Edwards et al. | Feb 1997 | A |
5630794 | Lax et al. | May 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5720718 | Rosen et al. | Feb 1998 | A |
5720719 | Edwards et al. | Feb 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5830179 | Mikus et al. | Nov 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5871481 | Kannenberg et al. | Feb 1999 | A |
5873877 | McGaffigan et al. | Feb 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5957922 | Imran | Sep 1999 | A |
5964752 | Stone | Oct 1999 | A |
5964756 | McGaffigan et al. | Oct 1999 | A |
5976123 | Baumgardner et al. | Nov 1999 | A |
6017361 | Mikus et al. | Jan 2000 | A |
6036713 | Kieturakis | Mar 2000 | A |
6077257 | Edwards et al. | Jun 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6206847 | Edwards et al. | Mar 2001 | B1 |
6238391 | Olsen et al. | May 2001 | B1 |
6241702 | Lundquist et al. | Jun 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6423027 | Gonon | Jul 2002 | B1 |
6440127 | McGovern et al. | Aug 2002 | B2 |
6551300 | McGaffigan | Apr 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6669694 | Shadduck | Dec 2003 | B2 |
6716252 | Lazarovitz et al. | Apr 2004 | B2 |
6719738 | Mehier | Apr 2004 | B2 |
6726696 | Houser et al. | Apr 2004 | B1 |
6730079 | Lovewell | May 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6827718 | Hutchins et al. | Dec 2004 | B2 |
6905475 | Hauschild et al. | Jun 2005 | B2 |
6969376 | Takagi et al. | Nov 2005 | B2 |
7014652 | Cioanta et al. | Mar 2006 | B2 |
7089064 | Manker et al. | Aug 2006 | B2 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
7261709 | Swoyer et al. | Aug 2007 | B2 |
7261710 | Elmouelhi et al. | Aug 2007 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7429262 | Woloszko et al. | Sep 2008 | B2 |
7470228 | Connors et al. | Dec 2008 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20030069575 | Chin et al. | Apr 2003 | A1 |
20040068306 | Shadduck | Apr 2004 | A1 |
20040230316 | Cioanta et al. | Nov 2004 | A1 |
20060135955 | Shadduck | Jun 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070142846 | Catanese, III et al. | Jun 2007 | A1 |
20080021484 | Catanese, III et al. | Jan 2008 | A1 |
20080021485 | Catanese, III et al. | Jan 2008 | A1 |
20080033232 | Catanese, III et al. | Feb 2008 | A1 |
20080033458 | McLean et al. | Feb 2008 | A1 |
20080033488 | Catanese, III et al. | Feb 2008 | A1 |
20080039833 | Catanese, III et al. | Feb 2008 | A1 |
20080039872 | Catanese, III et al. | Feb 2008 | A1 |
20080039874 | Catanese, III et al. | Feb 2008 | A1 |
20080039875 | Catanese, III et al. | Feb 2008 | A1 |
20080039876 | Catanese, III et al. | Feb 2008 | A1 |
20080039893 | McLean et al. | Feb 2008 | A1 |
20080039894 | Catanese, III et al. | Feb 2008 | A1 |
20080046045 | Yon et al. | Feb 2008 | A1 |
20080132826 | Shadduck et al. | Jun 2008 | A1 |
20080208187 | Bhushan et al. | Aug 2008 | A1 |
20080249399 | Appling et al. | Oct 2008 | A1 |
20080275440 | Kratoska et al. | Nov 2008 | A1 |
20090018553 | McLean et al. | Jan 2009 | A1 |
20090054871 | Sharkey et al. | Feb 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090216220 | Hoey et al. | Aug 2009 | A1 |
20090227998 | Aljuri et al. | Sep 2009 | A1 |
20100016757 | Greenburg et al. | Jan 2010 | A1 |
20100049031 | Fruland et al. | Feb 2010 | A1 |
20100286679 | Hoey et al. | Nov 2010 | A1 |
20100292767 | Hoey et al. | Nov 2010 | A1 |
20100298948 | Hoey et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 9210142 | Jun 1992 | WO |
WO 0124715 | Apr 2001 | WO |
WO 2006004482 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090277457 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
61126620 | May 2008 | US |