Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band

Information

  • Patent Grant
  • 11817721
  • Patent Number
    11,817,721
  • Date Filed
    Monday, April 25, 2022
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    6 months ago
Abstract
A method of wireless power transmission is performed at a wireless-power-transmitting device having one or more antennas configured to transmit wireless-power signals, one or more processors, and a wireless data transceiver. The method comprises detecting that a wireless-power-receiving device is located in proximity to the wireless-power-transmitting device; establishing a data-traffic profile associated with the wireless-power-receiving device, the data-traffic profile including identifications of data signals to be exchanged over a predetermined frequency band between the wireless-power-receiving device and the wireless-power-transmitting device using the wireless data transceiver, determining windows of time during which to transmit wireless-power signals over the predetermined frequency band to the wireless-power-receiving device based on the data-traffic profile; and at the determined windows of time, transmitting, by the one or more antennas, wireless-power signals over the predetermined frequency band to the wireless-power-receiving device.
Description
TECHNICAL FIELD

The present disclosure relates generally to wireless power transmission, and more particularly, to systems and methods for managing coexistence of wireless-power-transmission signals and data-communication signals.


BACKGROUND

Portable electronic devices, such as laptop computers, mobile phones, tablets, and other electronic devices, require frequent charging of a power-storing component (e.g., a battery) to operate. Many electronic devices require charging one or more times per day. Often, charging an electronic device requires manually connecting an electronic device to an outlet or other power source using a wired charging cable. In some cases, the power-storing component is removed from an electronic device and inserted into charging equipment. Such charging is time consuming, burdensome, and inefficient because it often requires users to carry around multiple charging cables and/or other charging devices, and frequently requires users to locate appropriate power sources, e.g., wall outlets, to charge their electronic devices. Additionally, conventional charging techniques potentially deprive a user of the ability to use the device while it is charging, and/or require the user to remain next to a wall outlet or other power source to which their electronic device or other charging equipment is connected.


One way to address this issue is to wirelessly transmit power to an electronic device via a certain medium, such as radio frequency band(s). Wireless power transmission can use a frequency band that is different from the one used by wireless data communication system to avoid interference. However, there are situations where wireless power transmission shares the same frequency band(s) as wireless data communication to transfer wireless-power signals. As the transmission medium is shared, contention between wireless-power transmission and wireless data communication can result in interference, which reduces the performance or results in denial of these services.


SUMMARY

Accordingly, it would be desirable to provide a mechanism for coexistence and to mitigate the interference between wireless power transmission and data communications systems in the same frequency band. The method and system for wireless power transmission disclosed herein effectively mitigate the interference between the wireless power transmission and wireless data communication. For example, a wireless-power-transmitting device can transmit wireless power during inactive time periods of wireless data communications.


In some embodiments, there is no wireless power transmission when the communication controller of the wireless-power-transmitting device indicates there is data traffic based on coexistence signals generated from communication controller (e.g. Hardware (HW) Packet Timing Arbitration (PTA) signals from Bluetooth Low Energy (BLE) controller). In some embodiments, there is no wireless power transmission when there are programmed data traffic patterns (e.g., traffic profiles) from power profile protocol, such as a set of commands from communication controller to power controller. In some embodiments, the data traffic patterns include:

    • 1) parameters such as period, window size, offset, and priority of traffic patterns (e.g. BT Synchronous connection-oriented (SCO)/enhanced SCO/sniff packet types, BLE connection events, Zigbee Beacon);
    • 2) traffic synchronization and drift compensation (e.g., alignment of traffic profiles from different devices to a common time domain);
    • 3) setting power profiles from devices at different hops (e.g., data traffic between power receiving device and another device); and
    • 4) channel assessment of frequency band (e.g., determination of affect frequency band).


In some embodiments, there is also no wireless power transmission during adjustable time margin between power transmission and data communication.


In some embodiments, interference between the wireless power transmission and wireless data communication can be mitigated while maintaining Quality of Service (QoS) for power transmission and data communication by (1) categorizing and prioritizing different data communication traffic profiles (e.g., prioritization between audio/video data and bulk data transmission); (2) creating policy for prioritizing wireless-power transmission over data communication, and vice versa (e.g., maintaining a minimum charge rate over low priority bulk data transmission; and (3) shaping traffic profiles for wireless power and data frames by modulating power against combined data traffic profiles.


In some embodiments, interference mitigation between the wireless power transmission and wireless data communication further includes modulating power control and adjusting levels of power transmission in the same frequency band, such as lowering charging rate in exchange for reduced interference.


(A1) In some embodiments, a method is performed at a wireless-power-transmitting device having one or more antennas configured to transmit wireless-power signals, one or more processors, and a wireless data transceiver. The method includes: detecting that a wireless-power-receiving device is located in proximity to the wireless-power-transmitting device. After detecting that the wireless-power-receiving device is located in proximity to the wireless-power-transmitting device, the method includes establishing a data-traffic profile associated with the wireless-power-receiving device, the data-traffic profile including identifications of data signals to be exchanged over a predetermined frequency band between the wireless-power-receiving device and the wireless-power-transmitting device using the wireless data transceiver. The method further includes determining, by the one or more processors, windows of time during which to transmit wireless-power signals over the predetermined frequency band to the wireless-power-receiving device based on the data-traffic profile. At the determined windows of time, the method also includes transmitting, by the one or more antennas, wireless-power signals over the predetermined frequency band to the wireless-power-receiving device.


(A2) In some embodiments of the method of A1, the identifications of data signals to be exchanged include information identifying a respective data type for each respective data signal, and a point in time at which each respective data signal is to be exchanged.


(A3) In some embodiments of any one of A1-A2, the establishing the data-traffic profile comprises categorizing the data signals based on each of the respective data types for each of the data signals; and determining respective priority levels for each of the data signals.


(A4) In some embodiments of any one of A1-A3, the windows of time during which to transmit wireless-power signals to the wireless-power-receiving device are windows of time during which no data signals with a high priority level are to be exchanged.


(A5) In some embodiments of any one of A1-A4, the method further includes while transmitting wireless-power signals during a respective window of time, in accordance with a determination that data signals with a high priority level are to be exchanged during the respective window of time, suspending transmission of wireless-power signals to the wireless-power-receiving device.


(A6) In some embodiments of any one of A1-A5, the method further includes in accordance with a determination that a charge level of the wireless-power-receiving device is less than a charge-level threshold, resuming the transmission of wireless-power signals to the wireless-power-receiving device.


(A7) In some embodiments of any one of A1-A6, the method further includes in conjunction with resuming the transmission of wireless-power signals, providing a notification to a user of the wireless-power-receiving device that receipt of data signals may be interrupted.


(A8) In some embodiments of any one of A1-A7, the resuming the transmission of wireless-power signals includes transmitting wireless-power signals while a data signal is being exchanged between the wireless-power-receiving device and another device, and the method further includes adjusting at least one transmission characteristic for the wireless-power signals to minimize interference with the data signal.


(A9) In some embodiments of any one of A1-A8, the adjusting is performed in accordance with a determination that exchange of the data signal has an error rate above a threshold error rate.


(A10) In some embodiments of any one of A1-A9, the adjusting is performed until the error rate falls below the threshold error rate.


(A11) In some embodiments of any one of A1-A10, the method further includes adjusting at least one transmission characteristic for the wireless-power signals based on respective priority levels of the data signals exchanged between the wireless-power transmitting device and the wireless-power-receiving device.


(A12) In some embodiments of any one of A1-A11, the at least one transmission characteristic is a power level.


(A13) In some embodiments of any one of A1-A12, the detecting that the wireless-power-receiving device is in proximity to the wireless-power-transmitting device includes detecting, using measurements of reflected power at the wireless-power transmitting device, that the wireless-power-receiving device has been placed within a predetermined distance of the wireless-power-transmitting device; and in response to detecting that the wireless-power-receiving device has been placed within the predetermined distance of the wireless-power-transmitting device and before establishing the data-traffic profile, transmitting, via the one or more antennas, wireless-power signals with default characteristics to the wireless-power-receiving device until the wireless-power-receiving device provides a wireless-power-control signal to the wireless-power-transmitting device. In some embodiments, the wireless-power-transmitting device uses the wireless-power-control signal to determine specific characteristics, distinct from the default characteristics, to use for transmitting wireless-power signals to the wireless-power-receiving device.


(A14) In some embodiments of any one of A1-A13, the identifications of data signals included in the data-traffic profile include identifications of wireless-power-control signals to be exchanged between the wireless-power-receiving device and the wireless-power-transmitting device, and the wireless-power-transmitting device uses the wireless-power-control signal to determine specific characteristics to use for transmitting wireless-power signals to the wireless-power-receiving device.


(A15) In some embodiments of any one of A1-A14, the identifications of data signals included in the data-traffic profile further include identifications of application-specific data signals to be exchanged between the wireless-power-receiving device and the wireless-power-transmitting device, wherein the application-specific data signals are associated with a software application executing on the wireless-power-receiving device.


(A16) In some embodiments of any one of A1-A15, the data-traffic profile also includes identifications of additional data signals to be exchanged between the wireless-power-transmitting device and an additional device other than the wireless-power-receiving device, the additional device being communicatively coupled to the wireless-power-transmitting device.


(A17) In some embodiments of any one of A1-A16, the additional device is a second wireless-power-receiving device, the additional data signals include wireless-power-control signals to be exchanged between the second wireless-power-receiving device and the wireless-power-transmitting device, and the wireless-power-transmitting device uses the wireless-power-control signals to determine specific characteristics to use for transmitting wireless-power signals to the second wireless-power-receiving device.


(A18) In some embodiments of any one of A1-A17, the additional data signals include application-specific data signals to be exchanged between the second wireless-power-receiving device and the wireless-power-transmitting device, and the application-specific data signals are associated with a software application that is executing on the second wireless-power-receiving device.


(A19) In some embodiments of any one of A1-A18, the data-traffic profile also includes identifications of application-specific data signals to be exchanged between the wireless-power-receiving device and a second device other than the wireless-power-transmitting device, the second device being communicatively coupled to the wireless-power-receiving device, and the application-specific data signals are associated with a software application executing on the wireless-power-receiving device.


(A20) In some embodiments of any one of A1-A19, the data signals are to be exchanged using a same frequency band as the plurality of power transmission signals.


(A21) In some embodiments of any one of A1-A20, the wireless-power-receiving device comprises circuitry for receiving and converting wireless-power signals into usable power, and an electronic device that is coupled to the circuitry, wherein the circuitry provides the usable power to the electronic device to provide operating power or charge a battery thereof.


(A22) In some embodiments of any one of A1-A21, the establishing the data-traffic profile includes receiving, via the one or more processors, information regarding at least some of the data signals from a controller associated with the wireless data transceiver.


(A23) In some embodiments of any one of A1-A22, an identification of a respective data signal of the data signals included in the data-traffic profile includes transmission characteristics for the respective data signal.


(B1) In some embodiments, a method is performed at a wireless-power transmitting device having a controller, a wireless communications component, and one or more antennas configured to transmit wireless-power signals to one or more wireless-power-receiving devices. The method includes: transmitting, via the one or more antennas, wireless-power signals to a wireless-power-receiving device that is located in proximity to the wireless-power transmitting device. The method further includes receiving, by the controller, information regarding transmission of data signals exchanged between the wireless-power transmitting device and the wireless-power-receiving device. The method also includes evaluating one or more characteristics associated with the data signals to determine whether transmission of wireless-power signals to the wireless-power-receiving device is prioritized over transmission of a respective data signal of the data signals, the one or more characteristics indicating that the respective data signal is to be transmitted during a first time period and during a second time period, distinct from the first time period. The method also includes, in accordance with a determination that transmission of the respective data signal is prioritized over transmission of wireless-power signals during the first time period, suspending the transmission of wireless-power signals to the wireless-power-receiving device during the first time period. The method further includes, in accordance with a determination that transmission of wireless-power signals is prioritized over transmission of the respective data signal during the second time period, resuming transmission of wireless-power signals to the wireless-power-receiving device during the second time period.


(B2) In some embodiments of B1, the data signals include one or more of: (1) a set of power control data signals including one or more parameters associated with transmission of the wireless-power signals and (2) a set of application data exchanged between the wireless-power-transmitting device and the first wireless-power-receiving device.


(B3) In some embodiments of B1 or B2, the method includes: after detecting that the wireless-power-receiving device is located in proximity to the wireless-power-transmitting device, the method includes establishing a data-traffic profile associated with the wireless-power-receiving device, the data-traffic profile including identifications of data signals to be exchanged over a predetermined frequency band between the wireless-power-receiving device and the wireless-power-transmitting device using the wireless data transceiver. The method further includes determining, by the one or more processors, windows of time during which to transmit wireless-power signals over the predetermined frequency band to the wireless-power-receiving device based on the data-traffic profile. At the determined windows of time, the method also includes transmitting, by the one or more antennas, wireless-power signals over the predetermined frequency band to the wireless-power-receiving device.


Note that the various embodiments described above can be combined with any other embodiments described herein. The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.



FIG. 1 is a block diagram of components of a representative wireless power transmission environment, in accordance with some embodiments.



FIG. 2 is a block diagram of an example wireless power transmission system, in accordance with some embodiments.



FIG. 3 is a block diagram of an example wireless power transmission system, in accordance with some embodiments.



FIG. 4 is a schematic diagram of an example wireless power transmission system in a dead battery state of operation, in accordance with some embodiments.



FIG. 5 is a schematic diagram of an example wireless power transmission system in an active state of operation without application data transmission, in accordance with some embodiments.



FIGS. 6-9 are schematic diagrams of example wireless power transmission systems in respective active states of operation including both wireless-power transmission and application data transmission, in accordance with some embodiments.



FIG. 10A is a schematic diagram of an example wireless-power transmitter including a single communication controller, in accordance with some embodiments.



FIG. 10B is a schematic diagram of an example wireless power transmitter including multiple communication controllers, in accordance with some embodiments.



FIG. 11 is a schematic diagram of an example traffic profile, in accordance with some embodiments.



FIG. 12 is a schematic diagram of arbitration based on the traffic profile information and the hardware coexistence signals, in accordance with some embodiments.



FIG. 13 is a schematic diagram illustrating an example charge rate profile algorithm, in accordance with some embodiments.



FIG. 14 is a schematic diagram illustrating example combined charge profiles, in accordance with some embodiments.



FIG. 15 is a schematic diagram illustrating an example priority arbitration algorithm, in accordance with some embodiments.



FIG. 16 shows priority arbitration waveforms as a result of applying the priority arbitration algorithm, in accordance with some embodiments.



FIG. 17 is a schematic diagram illustrating an example arbitration system including arbitration subsystems as illustrated in FIGS. 12, 14, and 15, in accordance with some embodiments.



FIG. 18 is a schematic diagram of an example wireless power transmission system illustrating a high to low power level mitigation process, in accordance with some embodiments.



FIGS. 19A-19B are flow diagrams showing respective methods of wireless power transmission, in accordance with some embodiments.





In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.


DETAILED DESCRIPTION

Numerous details are described herein in order to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not been described in exhaustive detail so as not to unnecessarily obscure pertinent aspects of the embodiments described herein.


Although some embodiments herein include the use of Radio Frequency (RF)-based wave transmission technologies as a primary example, it should be appreciated that the wireless charging techniques that might be employed are not be limited to RF-based technologies and transmission techniques. Rather, it should be appreciated that additional or alternative wireless charging techniques may be utilized, including any suitable technology and technique for wirelessly transmitting energy so that a receiver is capable of converting the transmitted energy to electrical power. Such technologies or techniques may transmit various forms of wirelessly transmitted energy including the following non-limiting examples: ultrasound, microwave, resonant and inductive magnetic fields, laser light, infrared, or other forms of electromagnetic energy.


In the case of ultrasound, for example, one or more transducer elements may be disposed so as to form a transducer array that transmits ultrasound waves toward a receiving device that receives the ultrasound waves and converts them to electrical power. In the case of resonant or inductive magnetic fields, magnetic fields are created in a transmitter coil and converted by a receiver coil into electrical power. In addition, although the example receiver system is shown, in some embodiments, as a single unit comprising potentially multiple components, both for RF reception of power and for other power reception methods mentioned in this paragraph, the receiver system can comprise multiple receivers that are physically spread around a room rather than being in a compact regular structure.



FIG. 1 is a block diagram of components of wireless power transmission environment 100, in accordance with some embodiments. Wireless power transmission environment 100 includes, for example, transmitters 102 (e.g., transmitters 102a, 102b . . . 102n) and one or more receivers 120. In some embodiments, the wireless power transmission environment 100 includes a number of receivers 120, each of which is associated with a respective electronic device 122 (e.g., electronic devices 122a, 122b . . . 122m).


An example transmitter 102 (e.g., transmitter 102a) includes, for example, one or more processor(s) 104, memory 106, one or more antenna arrays 110, one or more communications components 112 (also referred to herein as a “wireless data transceiver”), and/or one or more transmitter sensors 114. In some embodiments, these components are interconnected by way of a communications bus 108. References to these components of transmitters 102 cover embodiments in which one or more than one of each of these components (and combinations thereof) are included.


In some embodiments, memory 106 stores one or more programs (e.g., sets of instructions) and/or data structures, collectively referred to as “modules” herein. In some embodiments, memory 106, or the non-transitory computer readable storage medium of memory 106 stores the following modules 107 (e.g., programs and/or data structures), or a subset or superset thereof:

    • information received from receiver 120 (e.g., generated by receiver sensor 128 and then transmitted to the transmitter 102a);
    • information received from transmitter sensor 114;
    • an adaptive pocket-forming module that adjusts one or more power waves 116 transmitted by one or more transmitters 102; and/or
    • a beacon transmitting module that transmits a communication signal 118 for detecting a receiver 120 (e.g., within a transmission field of the one or more transmitters 102).


The above-identified modules (e.g., data structures and/or programs including sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, memory 106 stores a subset of the modules identified above. In some embodiments, an external mapping memory 131 that is communicatively connected to communications component 112 stores one or more modules identified above. Furthermore, the memory 106 and/or external mapping memory 131 may store additional modules not described above. In some embodiments, the modules stored in memory 106, or a non-transitory computer readable storage medium of memory 106, provide instructions for implementing respective operations in the methods described below. In some embodiments, some or all of these modules may be implemented with specialized hardware circuits that subsume part or all of the module functionality. One or more of the above-identified elements may be executed by one or more of processor(s) 104. In some embodiments, one or more of the modules described with regard to memory 106 is implemented on processor(s) 104 of a server (not shown) that is communicatively coupled to one or more transmitters 102 and/or by a memory of electronic device 122 and/or receiver 120.


In some embodiments, a single processor 104 (e.g., processor 104 of transmitter 102a) executes software modules for controlling multiple transmitters 102 (e.g., transmitters 102b . . . 102n). In some embodiments, a single transmitter 102 (e.g., transmitter 102a) includes multiple processors 104, such as one or more transmitter processors (configured to, e.g., control transmission of signals 116 by antenna array 110), one or more communications component processors (configured to, e.g., control communications transmitted by communications component 112 and/or receive communications by way of communications component 112) and/or one or more sensor processors (configured to, e.g., control operation of transmitter sensor 114 and/or receive output from transmitter sensor 114).


Receiver 120 (e.g., a receiver of electronic device 122) receives wireless-power signals 116 and/or data communication signals 118 transmitted by transmitters 102. In some embodiments, receiver 120 includes one or more antennas 124 (e.g., antenna array including multiple antenna elements), rectifier 125, power converter 126, receiver sensor 128 and/or other components or circuitry (e.g., processor(s) 140, memory 142, and/or communications component(s) 144). In some embodiments, these components are interconnected by way of a communications bus 146. References to these components of receiver 120 cover embodiments in which one or more than one of each of these components (and combinations thereof) are included. Receiver 120 converts energy from received wireless-power signals 116 (e.g., power waves) into electrical energy to power and/or charge electronic device 122. For example, receiver 120 uses power converter 126 to convert captured energy from wireless-power waves 116 to alternating current (AC) electricity or direct current (DC) electricity usable to power and/or charge electronic device 122. Non-limiting examples of power converter 126 include rectifiers, rectifying circuits, power management integrated circuits (PMIC), voltage conditioners, among suitable circuitry and devices.


In some embodiments, receiver 120 is a standalone device that is detachably coupled to one or more electronic devices 122. For example, electronic device 122 has processor(s) 132 for controlling one or more functions of electronic device 122 and receiver 120 has processor(s) 140 for controlling one or more functions of receiver 120.


In some embodiments, receiver is a component of electronic device 122. For example, processor(s) 132 controls functions of electronic device 122 and receiver 120.


In some embodiments, electronic device 122 includes processor(s) 132, memory 134, communications component(s) 136, and/or battery/batteries 130. In some embodiments, these components are interconnected by way of a communications bus 138. In some embodiments, communications between electronic device 122 and receiver 120 occur via communications component(s) 136 and/or 144. In some embodiments, communications between electronic device 122 and receiver 120 occur via a wired connection between communications bus 138 and communications bus 146. In some embodiments, electronic device 122 and receiver 120 share a single communications bus.


In some embodiments, receiver 120 receives one or more wireless-power waves 116 directly from transmitter 102. In some embodiments, receiver 120 harvests power waves from one or more pockets of energy created by one or more wireless-power waves 116 transmitted by transmitter 102.


In some embodiments, after the wireless-power waves 116 are received and/or energy is harvested from a pocket of energy, circuitry (e.g., integrated circuits, amplifiers, rectifiers, PMICs and/or voltage conditioner) of the receiver 120 converts the energy of the wireless-power waves (e.g., radio frequency electromagnetic radiation) to usable power (i.e., electricity), which powers electronic device 122 and/or is stored to battery 130 of electronic device 122. In some embodiments, the usable power converted from the wireless-power waves 116 are stored in a battery (not shown) located in the receiver 120, or a battery (not shown) separate from the electronic device 122 and the receiver 120. In some embodiments, the rectifying circuit 125 of the receiver 120 translates the electrical energy from AC to DC for use by electronic device 122. In some embodiments, a voltage conditioning circuit increases or decreases the voltage of the electrical energy as required by the electronic device 122. In some embodiments, an electrical relay conveys electrical energy from the receiver 120 to the electronic device 122.


In some embodiments, receiver 120 is a component of an electronic device 122. In some embodiments, a receiver 120 is coupled (e.g., detachably coupled) to an electronic device 122. In some embodiments, electronic device 122 is a peripheral device of receiver 120. In some embodiments, electronic device 122 obtains power from multiple transmitters 102 and/or using multiple receivers 120. In some embodiments, the wireless power transmission environment 100 includes a plurality of electronic devices 122, each having at least one respective receiver 120 that is used to harvest power waves from the transmitters 102 into usable power for charging the electronic devices 122.


In some embodiments, one or more sets of antenna elements 124 connect with their respective rectifiers 125. There can be multiple rectifiers 125 connected to their respective set of antenna elements 124. For example, in different embodiments, two, four, eight, or sixteen antenna elements are coupled with one rectifier 125. The antenna elements 124 extract or harvest power wirelessly from the wireless power waves transmitted by one or more wireless power transmitters 102. In some embodiments, the antenna element(s) 124 include(s) antenna arm(s) and antenna ground plane(s).


The antenna elements 124 comprise any type of antenna capable of transmitting and/or receiving signals in frequency bands used by the transmitter. Furthermore, the antenna element 124 may be directional and/or omni-directional and include flat antenna elements, patch antenna elements, dipole antenna elements, and/or any other suitable antenna for wireless power transmission. Suitable antenna types may include, for example, patch antennas with heights from about ⅛ inch to about 6 inches and widths from about ⅛ inch to about 6 inches. The shape and orientation of antenna element 124 may vary in dependency of the desired features of receiver system 120; orientation may be flat in X, Y, and/or Z axis, as well as various orientation types and combinations in three dimensional arrangements. Antenna element 124 may be made from any suitable material that allows RF signal transmission with high efficiency, good heat dissipation and the like. The number of antenna elements 124 may vary in relation with the desired range and power transmission capability of the transmitter; the more antenna elements, the wider the range and the higher the power transmission capability.


Antenna element 124 may include suitable antenna types for operating in frequency bands such as 900 MHz, 2.5 GHz or 5.8 GHz as these frequency bands conform to Federal Communications Commission (FCC) regulations part 18 (industrial, scientific, and medical equipment). Antenna element 124 may operate in independent frequencies, allowing a multichannel operation of pocket-forming. In addition, antenna element 124 may be located in various surfaces of receiver 120. Antenna element 124 may operate in single array, pair array, quad array and any other suitable arrangement that may be designed in accordance with the desired application.


In some implementations, the entire side of a printed circuit board PCB or a RF integrated circuit (IC) may be closely packed with antenna element 124. The RFIC may connect to multiple antenna elements. Multiple antenna elements 124 may surround a single RFIC.


Rectifiers 125 of the receiver system 120 may include diodes, resistors, inductors, and/or capacitors to rectify alternating current (AC) voltage generated by antenna elements 124 to direct current (DC) voltage. Rectifiers 125 may be placed as close as is technically possible to antenna elements 124 to minimize losses in electrical energy gathered from power transmission signals. After rectifying AC voltage, the resulting DC voltage may be regulated using power converters (not shown). Power converters can be a DC-to-DC converter that may help provide a constant voltage output, regardless of input, to an electronic device, or as in this example receiver system 120, to a battery (e.g., the battery 130 of the electronic device 122, or a battery (not shown) included in the receiver 120, or a battery (not shown) separate from the electronic device 122 and the receiver 120). Typical voltage outputs can be from about 5 volts to about 10 volts. In some embodiments, power converter may include electronic switched mode DC-DC converters, which can provide high efficiency. In such embodiments, the receiver 120 may comprise a capacitor (not shown) that is situated to receive the electrical energy before power converters. The capacitor may ensure sufficient current is provided to an electronic switching device (e.g., switch mode DC-DC converter), so it may operate effectively. When charging an electronic device, for example a phone or laptop computer, initial high-currents that can exceed the minimum voltage needed to activate operation of an electronic switched mode DC-DC converter, may be required. In such a case, a capacitor (not shown) may be added at the output of receivers 120 to provide the extra energy required. Afterwards, lower power can be provided. For example, 1/80 of the total initial power that may be used while having the phone or laptop still build-up charge.


The current from the rectifiers 125 is provided to a Power Management Integrated Circuit (PMIC) (not shown). A PMIC is an integrated circuit and/or a system block in a system-on-a-chip device for managing power requirements of the host system. The PMIC may include battery management, voltage regulation, and charging functions. It may include a DC-to-DC converter to allow dynamic voltage scaling. In some implementations, the PMIC may provide up to a 95% power conversion efficiency. In some implementations, the PMIC may integrate with dynamic frequency scaling in a combination. The PMIC may be implemented in a battery-operated device such as mobile phones and/or portable media players. In some implementations, the battery 130 may be replaced with an input capacitor and an output capacitor. The PMIC may be directly connected to the battery 130 and/or capacitors. When the battery 130 is being charged directly, a capacitor may not be implemented. In some implementations, the PMIC may be coiled around the battery 130. The PMIC may comprise a power management chip (PMC) that acts as a battery charger, and is connected to the battery 130. The PMIC can use pulse-frequency modulation (PFM) and pulse-width modulation (PWM). It can use switching amplifier (Class-D electronic amplifier). In some implementations, an output converter, a rectifier, and/or a BLE may also be included in the PMIC.


In some embodiments, the one or more transmitters 102 adjust one or more characteristics (e.g., phase, gain, direction, and/or frequency) of power waves 116. For example, a transmitter 102 (e.g., transmitter 102a) selects a subset of one or more antenna elements of antenna array 110 to initiate transmission of power waves 116, cease transmission of power waves 116, and/or adjust one or more characteristics used to transmit power waves 116. In some implementations, the one or more transmitters 102 adjust power waves 116 such that trajectories of power waves 116 converge at a predetermined location within a transmission field (e.g., a location or region in space), resulting in controlled constructive or destructive interference patterns.


In some embodiments, respective antenna arrays 110 of the one or more transmitters 102 may include a set of one or more antennas configured to transmit the power waves 116 into respective transmission fields of the one or more transmitters 102. Integrated circuits (not shown) of the respective transmitter 102, such as a controller circuit and/or waveform generator, may control the behavior of the antennas. For example, based on the information received from the receiver by way of the communications signal 118, a controller circuit may determine a set of one or more characteristics or waveform characteristics (e.g., amplitude, frequency, trajectory, direction, phase, among other characteristics) used for transmitting the power waves 116 that would effectively provide power to the receiver 102 and electronic device 122. The controller circuit may also identify a subset of antennas from the antenna arrays 110 that would be effective in transmitting the wireless-power waves 116. As another example, a waveform generator circuit of the respective transmitter 102 coupled to the processor 104 may convert energy and generate the wireless-power waves 116 having the waveform characteristics identified by the controller, and then provide the power waves to the antenna arrays 110 for transmission.


In some embodiments, different subsets of antennas from the antenna arrays 110 are used to charge receivers 120 or electronic devices 122 at different locations. In some embodiments, different subsets of antennas with different frequencies from the antenna arrays 110 are used to charge receivers 120 or electronic devices 122 at different locations, e.g., each receiver 120 or electronic device 122 receives a particular frequency from a subset of antennas from the antenna arrays 110. In some embodiments, the frequencies from the different subsets of antennas are non-overlapping. In some embodiments, different subsets of antennas from the antenna arrays 110 are used to form pockets of energy around receivers 120 or electronic devices 122 at different locations.


In some embodiments, constructive interference of power waves occurs when two or more power waves 116 are in phase with one another and converge into a combined wave such that an amplitude of the combined wave is greater than amplitude of a single one of the power waves. For example, the positive and negative peaks of sinusoidal waveforms arriving at a location from multiple antennas “add together” to create larger positive and negative peaks. In some embodiments, a pocket of energy is formed at a location in a transmission field where constructive interference of power waves occurs. In some embodiments, largest dimension of the pocket of energy created by the constructive interference patterns is more than 5 millimeters (mm), more than 10 mm, more than 15 mm, more than 20 mm, more than 50 mm, more than 100 mm, more than 500 mm, more than 1000 mm, more than 2000 mm, or more than 5000 mm. In some embodiments, the largest dimension of the pocket of energy created by the constructive interference patterns for a particular transmitted frequency is more than half of a wavelength, more than one wavelength, more than 5 wavelengths, more than 10 wavelengths, more than 100 wavelengths, more than 1000 wavelengths, or more than 10000 wavelengths.


In some embodiments, destructive interference of power waves occurs when two or more power waves are out of phase and converge into a combined wave such that the amplitude of the combined wave is less than the amplitude of a single one of the power waves. For example, the power waves “cancel one another out,” thereby diminishing the amount of energy concentrated at a location in the transmission field. In some embodiments, destructive interference is used to generate a negligible amount of energy or “null” at a location within the transmission field where the power waves converge. In some embodiments, the “null” space is created adjacent to the pockets of energy formed by the constructive interference patterns. In some embodiments, largest dimension of the “null” space created by the destructive interference patterns is more than 5 mm, more than 10 mm, more than 15 mm, more than 20 mm, more than 50 mm, more than 100 mm, more than 500 mm, more than 1000 mm, more than 2000 mm, or more than 5000 mm. In some embodiments, the largest dimension of the “null” space created by the destructive interference patterns for a particular transmitted frequency is more than half of a wavelength, more than one wavelength, more than 5 wavelengths, more than 10 wavelengths, more than 100 wavelengths, more than 1000 wavelengths, or more than 10000 wavelengths.


In some embodiments, the one or more transmitters 102 transmit power waves 116 that create two or more discrete transmission fields (e.g., overlapping and/or non-overlapping discrete transmission fields). In some embodiments, a first transmission field is managed by a first processor 104 of a first transmitter (e.g. transmitter 102a) and a second transmission field is managed by a second processor 104 of a second transmitter (e.g., transmitter 102b). In some embodiments, the two or more discrete transmission fields (e.g., overlapping and/or non-overlapping) are managed by the transmitter processors 104 as a single transmission field.


In some embodiments, communications component 112 transmits communication signals 118 by way of a wired and/or wireless communication connection to receiver 120. In some embodiments, communications component 112 generates communications signals 118 used for triangulation of receiver 120. In some embodiments, communication signals 118 are used to convey information between transmitter 102 and receiver 120 for adjusting one or more characteristics used to transmit the power waves 116. In some embodiments, communication signals 118 include information related to data-traffic profile associated with one or more receivers 120, status, efficiency, user data, power consumption, billing, geo-location, relative location, and other types of information.


In some embodiments, receiver 120 includes a transmitter (not shown), or is a part of a transceiver, that transmits communications signals 118 to communications component 112 of transmitter 102.


In some embodiments, communications component 112 (e.g., communications component 112 of transmitter 102a) includes a communications component antenna for communicating with receiver 120 and/or other transmitters 102 (e.g., transmitters 102b through 102n). In some embodiments, these communications signals 118 represent a distinct channel of signals transmitted by transmitter 102, independent from a channel of signals used for transmission of the power waves 116.


In some embodiments, the receiver 120 includes a receiver-side communications component 144 configured to communicate various types of data with one or more of the transmitters 102, through a respective communications signal 118 generated by the receiver-side communications component. The data may include location indicators for the receiver 102 and/or electronic device 122, a power status of the device 122, status information for the receiver 102, status information for the electronic device 122, status information about the power waves 116, and/or status information for pockets of energy. In other words, the receiver 102 may provide data to the transmitter 102, by way of the communications signal 118, regarding the current operation of the system 100, including: information identifying a present location of the receiver 102 or the device 122, an amount of energy received by the receiver 120, and an amount of power received and/or used by the electronic device 122, among other possible data points containing other types of information.


In some embodiments, the data contained within communications signals 118 is used by electronic device 122, receiver 120, and/or transmitters 102 for determining adjustments of the one or more characteristics used by the antenna array 110 to transmit the power waves 116. Using a communications signal 118, the transmitter 102 communicates data that is used, e.g., to identify receivers 120 within a transmission field, identify electronic devices 122, determine safe and effective waveform characteristics for power waves, and/or hone the placement of pockets of energy. In some embodiments, receiver 120 uses a communications signal 118 to communicate data for, e.g., alerting transmitters 102 that the receiver 120 has entered or is about to enter a transmission field, provide information about electronic device 122, provide user information that corresponds to electronic device 122, indicate the effectiveness of received power waves 116, and/or provide updated characteristics or transmission parameters that the one or more transmitters 102 use to adjust transmission of the power waves 116.


As an example, the communications component 112 of the transmitter 102 communicates (e.g., transmits and/or receives) one or more types of data (including, e.g., authentication data and/or transmission parameters) including various information such as a beacon message, a transmitter identifier, a device identifier for an electronic device 122, a user identifier, a charge level for electronic device 122, a location of receiver 120 in a transmission field, and/or a location of electronic device 122 in a transmission field.


In some embodiments, transmitter sensor 114 and/or receiver sensor 128 detect and/or identify conditions of electronic device 122, receiver 120, transmitter 102, and/or a transmission field. In some embodiments, data generated by transmitter sensor 114 and/or receiver sensor 128 is used by transmitter 102 to determine appropriate adjustments to the one or more characteristics used to transmit the power waves 106. Data from transmitter sensor 114 and/or receiver sensor 128 received by transmitter 102 includes, e.g., raw sensor data and/or sensor data processed by a processor 104, such as a sensor processor. Processed sensor data includes, e.g., determinations based upon sensor data output. In some embodiments, sensor data received from sensors that are external to the receiver 120 and the transmitters 102 is also used (such as thermal imaging data, information from optical sensors, and others).


In some embodiments, receiver sensor 128 is a gyroscope that provides raw data such as orientation data (e.g., tri-axial orientation data), and processing this raw data may include determining a location of receiver 120 and/or or a location of receiver antenna 124 using the orientation data.


In some embodiments, receiver sensor 128 includes one or more infrared sensors (e.g., that output thermal imaging information), and processing this infrared sensor data includes identifying a person (e.g., indicating presence of the person and/or indicating an identification of the person) or other sensitive object based upon the thermal imaging information.


In some embodiments, receiver sensor 128 includes a gyroscope and/or an accelerometer that indicates an orientation of receiver 120 and/or electronic device 122. As one example, transmitters 102 receive orientation information from receiver sensor 128 and the transmitters 102 (or a component thereof, such as the processor 104) use the received orientation information to determine whether electronic device 122 is flat on a table, in motion, and/or in use (e.g., next to a user's head).


In some embodiments, receiver sensor 128 is a sensor of electronic device 122 (e.g., an electronic device 122 that is remote from receiver 102). In some embodiments, receiver 120 and/or electronic device 122 includes a communication system for transmitting signals (e.g., sensor signals output by receiver sensor 128) to transmitter 102.


Non-limiting examples of transmitter sensor 114 and/or receiver sensor 128 include, e.g., infrared, pyroelectric, ultrasonic, laser, optical, Doppler, gyro, accelerometer, microwave, millimeter, RF standing-wave sensors, resonant LC sensors, capacitive sensors, and/or inductive sensors. In some embodiments, technologies for transmitter sensor 114 and/or receiver sensor 128 include binary sensors that acquire stereoscopic sensor data, such as the location of a human or other sensitive object.


In some embodiments, transmitter sensor 114 and/or receiver sensor 128 is configured for human recognition (e.g., capable of distinguishing between a person and other objects, such as furniture). Examples of sensor data output by human recognition-enabled sensors include: body temperature data, infrared range-finder data, motion data, activity recognition data, silhouette detection and recognition data, gesture data, heart rate data, portable devices data, and wearable device data (e.g., biometric readings and output, accelerometer data).


In some embodiments, transmitters 102 adjust one or more characteristics used to transmit the power waves 116 to ensure compliance with electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits). These include, for example, limits established by the Federal Communications Commission (FCC) for maximum permissible exposure (MPE), and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per unit area. For example, power density can be commonly expressed in terms of watts per square meter (W/m2), milliwatts per square centimeter (mW/cm2), or microwatts per square centimeter (μW/cm2). In some embodiments, output from transmitter sensor 114 and/or receiver sensor 128 is used by transmitter 102 to detect whether a person or other sensitive object enters a power transmission region (e.g., a location within a predetermined distance of a transmitter 102, power waves generated by transmitter 102, and/or a pocket of energy). In some embodiments, in response to detecting that a person or other sensitive object has entered the power transmission region, the transmitter 102 adjusts one or more power waves 116 (e.g., by ceasing power wave transmission, reducing power wave transmission, and/or adjusting the one or more characteristics of the power waves). In some embodiments, in response to detecting that a person or other sensitive object has entered the power transmission region, the transmitter 102 activates an alarm (e.g., by transmitting a signal to a loudspeaker that is a component of transmitter 102 or to an alarm device that is remote from transmitter 102). In some embodiments, in response to detecting that a person or other sensitive object has entered a power transmission region, the transmitter 102 transmits a digital message to a system log or administrative computing device.


In some embodiments, antenna array 110 includes multiple antenna elements (e.g., configurable “tiles”) collectively forming an antenna array. Antenna array 110 generates power transmission signals, e.g., RF power waves, ultrasonic power waves, infrared power waves, and/or magnetic resonance power waves. In some embodiments, the antennas of an antenna array 110 (e.g., of a single transmitter, such as transmitter 102a, and/or of multiple transmitters, such as transmitters 102a, 102b, . . . , 102n) transmit two or more power waves that intersect at a defined location (e.g., a location corresponding to a detected location of a receiver 120), thereby forming a pocket of energy (e.g., a concentration of energy) at the defined location.


In some embodiments, transmitter 102 assigns a first task to a first subset of antenna elements of antenna array 110, a second task to a second subset of antenna elements of antenna array 110, and so on, such that the constituent antennas of antenna array 110 perform different tasks (e.g., determining locations of previously undetected receivers 120 and/or transmitting power waves 116 to one or more receivers 120). As one example, in an antenna array 110 with ten antennas, nine antennas transmit power waves 116 that form a pocket of energy and the tenth antenna operates in conjunction with communications component 112 to identify new receivers in the transmission field. In another example, an antenna array 110 having ten antenna elements is split into two groups of five antenna elements, each of which transmits power waves 116 to two different receivers 120 in the transmission field.



FIG. 2 is a block diagram of an example wireless power transmission system 200, in accordance with some embodiments. In some embodiments, the wireless power transmission system includes a wireless-power transmitter 210 (e.g., “PwrTx”) in communication with a wireless-power receiver 220 (e.g., “PwrRx”). In some embodiments, the wireless-power transmitter 210 transmits wireless-power signals (e.g., “Power”) via a frequency band to power the wireless-power receiver 220 and/or to charge a battery of the wireless-power receiver 220. In some embodiments, the wireless-power transmitter 210 exchanges wireless data signals with the wireless-power receiver 220, including power control data (e.g., “Pwr Control Data”) for managing the wireless-power transmission between the wireless-power transmitter 210 and the wireless-power receiver 220. In some embodiments, the wireless-power signals are transmitted using the same frequency band as the wireless data signals between the wireless-power transmitter 210 and the wireless-power receiver 220.


In some embodiments, the wireless-power receiver 220 is the same as the receiver 120 as discussed with reference to FIG. 1. In some embodiments, the wireless-power receiver 220 includes a power receiver unit (e.g., “Power Receiver” including rectifier 125 and power converter 126 of FIG. 1) that converts wireless-power signals received from the transmitter 210 into electric power. In some embodiments, the wireless-power receiver 220 monitors the wireless-power signals received at the receiver 220, and the receiver 220 further includes a communication controller that communicates with the transmitter 210 regarding one or more characteristics of the wireless-power signals received at the receiver 220 and responds to commands received from the transmitter 210. In some embodiments, the antenna(s) of the receiver 220 used for receiving the wireless-power signals are separate from the antenna(s) used for communicating the wireless data signals with the transmitter 210. Alternatively, the antenna(s) of the receiver 220 used for receiving the wireless-power signals are the same as the antenna(s) used for communicating the wireless data signals with the transmitter 210.


In some embodiments, the wireless-power transmitter 210 is the same as the transmitter 102 as discussed with reference to FIG. 1. In some embodiments, the wireless-power transmitter 210 may support one or more wireless-power receivers simultaneously. In some embodiments, the wireless-power transmitter 210 includes a power controller configured to generate wireless-power signals for transmission at a certain frequency band and to control the modulation and power level of the wireless-power signals. In some embodiments, the wireless-power transmitter 210 further includes a communication controller that establishes and maintains a communication channel with the wireless-power receiver 220 for exchanging wireless power control data (e.g., “Pwr Control Data”) with the receiver 220 to control and monitor the wireless-power transmissions. For example, the communication controller of the transmitter 210 can receive one or more characteristics of the wireless-power signals generated by the power controller via the control pipe as shown in FIG. 2. In another example, the communication controller can receive commands from the wireless-power receiver 220 (e.g., “Pwr Control Data” including requests to adjust the wireless-power signals to be received at the receiver 220), and then send controlling commands to the power controller via the control pipe to adjust one or more characteristics of the wireless-power signals in accordance with the requests received from the receiver 220.


In some embodiments, the wireless power transmission system as shown in FIG. 2 is a dedicated wireless power transmission system including a dedicated wireless-power transmitter 210 (e.g., “Dedicated PwrTx”), because the Communication Controller of the transmitter 210 is used to establish a control channel between the transmitter 210 and the receiver 220 to control and monitor the wireless-power and data communications in-between (e.g., over the control pipe). The Communication Controller of the transmitter 210 does not receive or transmit other types of data, such as application data (as discussed elsewhere herein). In some embodiments, the antenna(s) of the transmitter 210 used for transmitting the wireless-power signals are separate from the antenna(s) used for communicating the wireless data signals with the receiver 220. Alternatively, the antenna(s) of the transmitter 210 used for transmitting the wireless-power signals are the same as the antenna(s) used for communicating the wireless data signals with the receiver 220.



FIG. 3 is a block diagram of an example wireless power transmission system 300, in accordance with some embodiments. In some embodiments, the wireless power transmission system 300 includes a wireless power transmitter 310 in communication with a power receiver 330. In some embodiments, the wireless power transmission system 300 is an integrated wireless power transmission system including an integrated wireless-power transmitter 310 (e.g., “Integrated PwrTx”), because the transmitter 310 is integrated into a host system 350 (e.g., a desktop computer) that supports multiple functions in addition to transmitting wireless-power signals. In some embodiments as illustrated in FIG. 1, the receiver 330 is associated with (e.g., integrated into) an electronic device 340 (also referred to as a data communication device or an application device) that exchanges application data with another electronic device over a data channel at a certain frequency band, such as Bluetooth, Zigbee, WiFi. In some embodiments, the application data includes, but is not limited to, audio data, video data, and/or text data, that are transmitted between two electronic devices (e.g., Bluetooth Low Energy (BLE) Human Interface Devices (HID)) via Bluetooth Advanced Audio Distribution Profile (A2DP) protocol. For example, the electronic device is a Bluetooth wireless headset that exchanges audio data with the host system 350, and the Bluetooth wireless headset also includes a wireless-power receiver that receives wireless-power signals from the wireless-power transmitter 310 to charge and/or power the Bluetooth headset.


In some embodiments, the wireless-power transmitter 310 includes a communication controller that establishes and maintains a control channel with the wireless-power receiver 330 for exchanging wireless power control data (e.g., “Pwr Control Data”) with the receiver 330 to control and monitor the wireless-power transmissions. In some embodiments, the transmitter 310 shares the communication controller with the host system 350, and the communication controller further establishes a data channel to exchange application data (e.g., audio data, video data, text data, etc.) via the data channel between the host system 350 and the electronic device 340. In some embodiments, the application data is application specific between the host system 350 and the electronic device 340. For example, the application data is audio data between a computer and a Bluetooth headset. In some embodiments, the application data may be transmitted via the same frequency band as the wireless-power signals and the power control data, resulting in interference and reduced performance or denial of the wireless charging and/or wireless data services.



FIG. 4 is a schematic diagram of an example wireless power transmission system 400 in a dead battery state of operation, in accordance with some embodiments. The wireless power transmission system 400 includes a wireless power receiver 410 and a wireless power transmitter 420 that are similar to the respective wireless power receiver and wireless power transmitter discussed with reference to FIGS. 1-3. In some embodiments, a battery of the wireless power receiver 410 or a battery of an electronic device integrated with the wireless power receiver 410 is depleted (e.g., unpowered, dead battery), thus there is no control channel or communication channel available between the receiver 410 and the transmitter 420.


In some embodiments, the transmitter 420 detects an electronic device including the receiver 410 nearby using an object detection procedure. For example, the electronic device including the receiver 410 is directly placed on the transmitter 420 or is placed within a predetermined distance from the transmitter 420. In some embodiments, the transmitter 420 detects that the receiver 410 is in proximity to the transmitter 420 using measurements of reflected power at the transmitter 420, and determines that the receiver 410 has been placed within a predetermined distance of (e.g., within 1-2 inches of a surface of) the transmitter 420. Upon detecting the receiver 410, the transmitter 420 transmits wireless-power signals (e.g., “Power”) with default characteristics to the receiver 410. In some embodiments, the transmitter 420 transmits the wireless-power signals to the receiver 410 for a period of time that is sufficient to restart the communication channel between the receiver 410 and the transmitter 420. In some embodiments, the transmitter 420 transmits the wireless-power signals to the receiver 410 until the receiver 410 provides a wireless-power control signal (e.g., power control data, one or more characteristics of the wireless-power signals received at the receiver 410, and/or requests to adjust the characteristics of the wireless-power signals) to the transmitter 420.


In some embodiments, when the control channel or communication channel becomes available between the receiver 410 and the transmitter 420, the transmitter 420 transitions to an active state of operation as discussed with reference to FIG. 5. In the dead battery state of operation, the interference between transmitting the wireless-power signals and transmitting data signals (e.g., power control data, traffic profile data, and/or application data) may be avoided when the transmitter 420 is an integrated transmitter within a host system (as shown in FIG. 3).



FIG. 5 is a schematic diagram of an example wireless power transmission system 500 in an active state of operation without application data transmission, in accordance with some embodiments. In this active state, the transmitter 510 is unaware of any application data communications within the system 500. There is no coexistence mitigation for application data channels. Instead, because a power control channel for transmitting power control data exists between the transmitter 520 and the receiver 510, the coexistence mitigation is mainly focused on the arbitration between transmission of the wireless-power signals and the power control data via the same frequency band in this state.


In some embodiments, the transmitter 520 detects the receiver 510 and establishes a connection to the receiver 510. Once the control channel is established between the transmitter 520 and the receiver 510, power control messages (e.g., power control data) are exchanged via the control channel to setup and optimize the wireless-power transmitted from the transmitter 520 to the receiver 510. After the power transmission has been established and optimized, the power control is enabled, and the transmitter 520 transmits wireless-power signals to the receiver 510. In some embodiments, the receiver 510 actively monitors the wireless-power signals received at the receiver 510 and communicates with the transmitter 520 through the control channel regarding the characteristics of the wireless-power signals received at the receiver 510.


In some embodiments, during a process of coexistence arbitration (e.g., to determine when to transmit power and/or data signals) between the transmission of wireless-power signals and power control data using the same frequency band, the transmission of wireless-power signals may be suspended when power control data is transmitted between the transmitter 520 and the receiver 510 using the power control channel. In some embodiments, this coexistence arbitration may happen when a small amount of power control data needs to be transmitted between the transmitter 520 and the receiver 520. For example, when the receiver 510 detects that the efficiency of wireless charging by the transmitter 520 is drastically reducing or has fallen below a predetermined threshold, the receiver 510 may send a power control message including commands to adjust the characteristics of the wireless-power signals to the transmitter 520. The system 500 may suspend the wireless-power signal transmission when the receiver 510 and the transmitter 520 further exchange power control data to adjust and optimize the wireless-power signals transmission. The transmission of wireless-power signals may be resumed once the optimization process is completed.



FIGS. 6-9 are schematic diagrams of example wireless power transmission systems in respective active states of operation including both wireless-power transmission and application data transmission, in accordance with some embodiments. In some embodiments, the transmitter is aware of the multiple channels of traffic (e.g., including transmissions of wireless-power signals, power control data, and application data). In some embodiments, the transmitter aggregates the information related to wireless-power transmission with the information related to application data transmission, and applies coexistence techniques to mitigate interference between the wireless-power transmission and application data transmission.


In some embodiments as shown in the wireless power transmission system 600 in FIG. 6 and in reference to FIG. 3, the transmitter 620 (e.g., “PwrTx”) uses the same communication controller to transmit the power control data and the application data to the receiver 610 (e.g., “PwrRx”) or an electronic device associated with the receiver 610. In some embodiments, the transmitter 620 obtains data traffic profile based on hardware (HW) signals from the communication controller of the transmitter 620 as well as traffic profile commands from the integrated transmitter 620 within the host system. In some embodiments, the data traffic is synchronous to the timer of the communication controller of the transmitter 620, and thus, techniques of synchronization are not required.


In some embodiments as shown in the wireless power transmission system 700 in FIG. 7 and further in reference to FIG. 3, application data traffic is routed between the electronic device 730 (e.g., “ComDev”) and the integrated transmitter 720 (e.g., “PwrTx”) via the communication controller of the transmitter 720. In some embodiments, the communication controller is also used to manage and transmit power control data. In some embodiments, the transmitter 720 obtains data traffic profile based on hardware (HW) signals from the communication controller of the transmitter 720 as well as traffic profile commands from the integrated transmitter 720 within the host system (e.g., the host system 350, FIG. 3). In some embodiments, the transmitter 720 further obtains traffic profile commands (e.g., for application data) from the host system (e.g., the host system 350, FIG. 3) associated with the integrated transmitter 720 to suit the application. In some embodiments, the data traffic timing between the electronic device 730 may not be synchronous to the timer of the communication controller of the transmitter 720, and thus, techniques of synchronization may need to be applied.


In some embodiments as shown in the wireless power transmission system 800 in FIG. 8 and further in reference to FIG. 3, the electronic device 830 (e.g., “ComDev”) is associated with the wireless-power receiver 810 (e.g., “PwrRx”). For example, the electronic device 830 is a Bluetooth headset including a wireless-power receiver 810. In some embodiments, the application data traffic does not go through the communication controller of the wireless-power transmitter 820 (e.g., “PwrTx”), so the transmitter 820 does not receive traffic profile commands as discussed with reference to FIGS. 6-7. In some embodiments, the transmitter 820 obtains traffic profiles from the receiver 810, which can infer the traffic profile between the electronic device 830 and receiver 810 (e.g., coupled with the electronic device 830). In some embodiments, the receiver 810 sends the traffic profile commands to the transmitter 820 over the control channel (e.g., “Ctrl Channel”). In some embodiments, a software application on the receiver 810 may also send additional traffic profile commands to the transmitter 820 over the control channel. In some embodiments, the data traffic is not synchronous to the timer of the communication controller of the transmitter 820, and thus, techniques of synchronization may need to be applied.


In some embodiments as shown in the wireless power transmission system 900 in FIG. 9 and further in reference to FIG. 3, the wireless-power transmitter 920 (e.g., “PwrTx”) obtains the traffic profile information in similar processes as discussed with reference to FIGS. 6-8 above. In some embodiments, the wireless power transmission system 900 includes multiple electronic devices, such as electronic device 930 (e.g., “ComDev 930”) coupled to the wireless-power receiver 910 (e.g., “PwrRx”) and electronic device 940 (e.g., “ComDev 940”) coupled to the transmitter 920 as shown in FIG. 9. In some embodiments, the electronic device 930 exchanges application data with the receiver 910, and the electronic device 940 exchanges application data with the transmitter 920. The application data of the electronic device 930 is distinct from the application data of the electronic device 940. In some embodiments, the transmitter 920 aggregates different streams of traffic profiles (e.g., including wireless-power signals and wireless data signals) within the wireless power transmission system 900, and applies arbitration mechanisms as discussed later in the present disclosure for coexistence of the various data traffic profiles. In some embodiments, due to the size of the load of various data streams on the shared medium using the same frequency band, the transmitter 920 may choose to lower its priority or power level to balance the load accordingly.



FIG. 10A is a schematic diagram of an example wireless-power transmitter 1000 including a single communication controller 1010, in accordance with some embodiments. FIG. 10B is a schematic diagram of an example wireless power transmitter 1050 including multiple communication controllers (e.g., communication controllers 1060 and 1070), in accordance with some embodiments. In some embodiments, a traffic profile includes a set of parameters that define a deterministic timing pattern of a stream of application data traffic (e.g., traffic profile or data traffic profile) or power transmission (e.g., power profile). In some embodiments, to successfully mitigate interference between wireless-power signals transmission, power control data, and application data communications, the transmitter obtains the traffic profiles of concurrent data transmissions to determine the arbitration decisions. In some embodiments, the transmitter obtains the traffic profiles from the hardware (HW) packet timing arbitration (PTA) signals. In one example as shown in FIG. 10A, the communication controller 1010 of the transmitter 1000 provides the HW PTA signals as arbitration signals (e.g. IEEE 802.2) to the power controller 1020. In another example as shown in FIG. 10B, the communication controllers 1060 and 1070 provide arbitration signals (e.g. IEEE 802.2) to the power controller 1080. In some embodiments, the communication controllers further provide additional real-time traffic activity to the power controller through multiple coexistence control signals, such as power control data for controlling high-priority wireless-power signals “PRI” and power control data for controlling low-priority wireless-power signals “ACT”, to be used to directly modulate the power transmission.


In some embodiments, a power profile protocol includes a set of commands and procedures for configuring the transmitter with a traffic profile for each stream of communication (e.g., application data stream, power control data stream, or wireless-power signals) as well as maintaining synchronization. In some embodiments, some traffic patterns are deterministic and periodic such that the corresponding traffic profiles can be sent to the power controller, and the power controller can accurately model the traffic patterns.



FIG. 11 is a schematic diagram of an example traffic profile, in accordance with some embodiments. In some embodiments, the traffic profile provides at least the following information:

    • Period—Period between frames of data traffic transmission;
    • Window—Size of the frame where data traffic is expected to be present;
    • Offset—Timing difference from the Power Controller clock timing or a specific point in time from the Power Controller's timing;
    • Priority—The relative priority of this stream of traffic relative to other streams;
    • Clock Source—Indicates which clock timing is used (e.g., Power Controller timing or external device whose timing can drift relative to Power Controller).


In some embodiments, the power profile information can be provided by the host system (“Host”), the communication controller(s), or the wireless-power receiver (not shown). In some embodiments, the power profile protocol may be obtained from different devices that are in direct communication or indirect communication with the transmitter. For example, the power profile protocol may be obtained from an electronic device coupled with the receiver, thus the commands may be sent from the electronic device and forwarded to the transmitter through the receiver.


In some embodiments, the traffic timing information is synchronized to a common clock and the traffic profiles are remapped to this clock. In some embodiments, the traffic timing synchronization is performed using synchronization procedure and/or clock drift compensation procedure.



FIG. 12 is a schematic diagram of arbitration based on the traffic profile information and the hardware (HW) coexistence signals, in accordance with some embodiments. In some embodiments, arbitration is where the wireless-power transmitter modulates its wireless-power transmissions to avoid conflicts with data traffic (e.g., power control data and/or application data). The transmitter utilizes the traffic profile information in combination with HW coexistence signals to maintain a quality of service (QoS) Policy.


In some embodiments, the traffic profile protocol provides enough information to locally generate the traffic pattern on the transmitter. In some embodiments, the HW coexistence signals are treated as the hardware equivalent of a traffic profile such that they can be grouped together with other traffic profiles and combined (i.e. logic OR) into a single group profile. For example, as shown in FIG. 12, wireless-power signals with high priority can be combined with HW coexistence signals (e.g., power control data for controlling high priority wireless-power signals “PRI”) to generate a single group profile “OR_PRI.” In another example, wireless-power signals with low priority can be combined with HW coexistence signals (e.g., power control data for controlling low priority wireless-power signals “ACT”) to generate a signal group profile “OR_ACT.”



FIG. 13 is a schematic diagram illustrating an example charge rate profile algorithm, in accordance with some embodiments. In some embodiments, to ensure that the minimum charge rate is maintained, the transmitter can generate a set of Charge Rate Profiles based on the arbitration signal (e.g., “CHG_ENABLE”). In some embodiments, the example algorithm for generating the profile for minimum charge rate includes:

    • 1) an internal counter (e.g., “CHG_CNT”) will increment (e.g., CHG_CNT=CHG_CNT+1) up to a configurable max value (e.g., “CNT_MAX”) when the transmitter is not transmitting power (e.g., “CHG_ENABLE==0”), and will decrement (e.g., CHG_CNT=CHG_CNT−1) to zero when the transmitter is transmitting power (e.g., “CHG_ENABLE==1”);
    • 2) the signals CHG_PRI (e.g., power control signals for controlling high-priority wireless-power signals) and the signals CHG_ACT (e.g., power control signals for controlling low-priority wireless-power signals) are then generated based on the CHG_CNT and its thresholds:
      • a) if counter value (e.g., “CHG_CNT”)>=high threshold for CHG_PRI (e.g., “PRI_THRESH_HIGH”), then charge CHG_PRI is asserted (e.g., “CHG_PRI=1”) until counter value falls below low threshold for CHG_PRI (e.g., “CHG_PRI=1 and PRI_THRESH_LOW>=CHG_CNT”), then suspends CHG_PRI=0;
      • b) if counter value (e.g., “CHG_CNT”)>=high threshold for CHG_ACT (e.g., “ACT_THRESH_HIGH”), then charge CHG_ACT is asserted (e.g., “CHG_ACT=1”) until counter value falls below low threshold for CHG_ACT (e.g., “CHG_ACT=1 and ACT_THRESH_LOW>=CHG_CNT”), then suspends CHG_ACT=0;
      • c) the high threshold needs to be greater than the low threshold for hysteresis, e.g., PRI_THRESH_HIGH>PRI_THRESH_LOW, and ACT_THRESH_HIGH>ACT_THRESH_LOW.



FIG. 14 is a schematic diagram illustrating example combined charge profiles, in accordance with some embodiments. In some embodiments, charge profiles (e.g., a charge profile for high-priority wireless-power signals “CHG_PRI,” and/or a charge profile for low-priority wireless-power signals “CHG_ACT”), which are detected by the receiver, can also be included in transmission arbitration to ensure power transmission during the receiver power sampling for feedback. These charge profiles are like the power profiles used to resolve conflicts between wireless-power signals and data traffic, except that charge profiles are obtained after the wireless-power signals are transmitted and received at the receiver. These charge profile signals are then combined with Charge Rate Profile Algorithm. For example, the CHG_PRI (e.g., detected by the receiver) is combined with the charge profiles for high-priority wireless-power signals (e.g., “Charge Profile(s) at High Priority” (e.g. may be obtained from power controller of the transmitter) under “OR” logic to obtain the combined profile “OR_CHG_PRI.” In another example, the CHG_ACT (e.g., detected by the receiver) is combined with the charge profiles for low-priority wireless-power signals (e.g., “Charge Profile(s) at Low Priority” (e.g. may be obtained from power controller of the transmitter) under “OR” logic to obtain the combined profile “OR_CHG_ACT.”



FIG. 15 is a schematic diagram illustrating an example priority arbitration algorithm, in accordance with some embodiments. In some embodiments, all the signals (e.g., including OR_CHG_PRI, OR_CHG_ACT, OR_PRI, and OR_ACT) can then be computed to generate the priority arbitration signal CHG_ENABLE as shown in FIG. 15. In some embodiments, the CHG_ENABLE is asserted when (OR_PRI or OR_ACT)′ or (OR_CHG_ACT and OR_PRI′) or (OR_CHG_PRI). In some embodiments, wireless-power transmission takes the shared medium when CHG_ENABLE is asserted. Otherwise data communications takes the shared medium. FIG. 16 shows priority arbitration waveforms as a result of applying the priority arbitration algorithm, in accordance with some embodiments.



FIG. 17 is a schematic diagram illustrating an example arbitration system including arbitration subsystems as illustrated in FIGS. 12, 14, and 15, in accordance with some embodiments. In some embodiments, the arbitration system as illustrated in FIG. 17 includes a combined charge profile as discussed in FIG. 14, a combined power profile as discussed in FIG. 12, and a priority arbitration subsystem as discussed din FIG. 15. In some embodiments, the diagram in FIG. 17 shows the points where the hardware signals PRI and ACT are connected to, the internal signals generated from power and charge profiles and the final output CHG_ENABLE.



FIG. 18 is a schematic diagram of an example wireless power transmission system illustrating a high to low power level mitigation process, in accordance with some embodiments. In some embodiments, when wireless-power signals are transmitted from the transmitter to the receiver at a high power level as shown in the left portion of FIG. 18, such wireless-power transmission may interfere with data communication to a bigger area and at a greater extent as indicated by the bigger dashed ellipse. For example, the wireless-power transmission may interfere with the application data of the electronic device “ComDev” and result in a high bit error. In some embodiments, when wireless-power signals are transmitted from the transmitter to the receiver at a low power level as shown in the right portion of FIG. 18, such wireless-power transmission may interfere with data communication to a smaller area and at a less extent as indicated by the smaller dashed ellipse. For example, the wireless-power transmission may not interfere with the application data of the electronic device “ComDev” or may interfere with the application data of the electronic device less significantly and result in a low bit error.


In some embodiments, the wireless-power transmitter (e.g., “PwrTx”) may reduce its peak power level during power transmission to reduce its area of interference (as indicated by the dashed ellipse shrinking from left to right in FIG. 18) on other electronic devices (e.g., “ComDev(s)”) in proximity. In some embodiments, this may effectively lower the charging rate of the wireless-power receiver in exchange for mitigated interference between the wireless-power transmission and the application data communication (e.g. improving Bit Error Rate) on ComDev(s).


In some embodiments, the transmitter determines whether to reduce the wireless-power level, when to reduce the wireless-power level, and how much to reduce the wireless-power transmission level based on its assessment of the wireless-power transmission load (e.g., number of power profiles, activity of load) and statistics (e.g., bit error rate, packet error rate). In some embodiments, the transmitter may use a combination of power control and arbitration to optimize the balance between wireless-power transmission and data communication.



FIG. 19A is a flow diagram showing a method 1900 of wireless power transmission, in accordance with some embodiments. Operations (e.g., steps) of the method 1900 may be performed by a wireless-power-transmitting device (e.g., transmitter 102, FIG. 1; also referred to as “wireless-power transmitter”, “transmitter”) having one or more antennas (e.g., antenna array(s) 110, FIG. 1) configured to transmit wireless-power signals, one or more processors (processor(s) 104, FIG. 1) and a wireless data transceiver (e.g., communications component(s) 112, FIG. 1). In some embodiments, at least some of the operations shown in FIG. 19A correspond to instructions stored in a computer memory or computer-readable storage medium (e.g., memory 104 of the transmitter 102, FIG. 1).


In some embodiments, the wireless-power-transmitting device includes a controller (with the one or more processors) and the wireless data transceiver in a same housing as the one or more antennas. In some embodiments, the controller and wireless data communications component may be in a housing that is separate from a housing that includes the one or more antennas. In some embodiments, instead of including the controller and wireless data transceiver in a same housing as other components of the wireless-power-transmitting device, the controller and/or wireless data transceiver can be included in a separate host device that is in communication with and is configured to control operation of the wireless-power-transmitting device.


The wireless-power transmitter detects (1902) that a wireless-power-receiving device (e.g., receiver 120, FIG. 1; also referred to as “wireless-power receiver”, “receiver”) is located in proximity to the wireless-power-transmitting device. In some embodiments, the wireless-power-transmitting device is a charging pad, and the wireless-power-transmitting device detects that the wireless-power receiver (e.g., a Bluetooth headset, or a mobile phone) is placed on the charging pad.


After detecting that the wireless-power-receiving device is located in proximity to the wireless-power-transmitting device, the wireless-power-transmitting device establishes (1904) a data-traffic profile associated with the wireless-power-receiving device. In some embodiments, the data-traffic profile includes identifications of data signals to be (or actively being) exchanged over a predetermined frequency band between the wireless-power-receiving device and the wireless-power-transmitting device using the wireless data transceiver. In some embodiments, a data-traffic profile is a data structure that is used to represent data signals that are to be exchanged between different devices. In some embodiments, more than one data-traffic profile is generated.


The wireless-power-transmitting device further determines (1906), by the one or more processors, windows of time during which to transmit wireless-power signals over the predetermined frequency band to the wireless-power-receiving device based on the data-traffic profile. In some embodiments, the wireless-power transmitter builds a combined profile that identifies when to transmit the power signals as discussed with reference to FIGS. 12, 14-15, and 17.


At the determined windows of time, the wireless-power transmitter transmits (1908), by the one or more antennas, wireless-power signals over the predetermined frequency band to the wireless-power-receiving device.


In some embodiments, the identifications of data signals to be exchanged include information identifying a respective data type (e.g., audio data, video data, text data, etc.) for each respective data signal, and a point in time at which each respective data signal is to be exchanged.


In some embodiments, establishing the data-traffic profile comprises categorizing, by the wireless-power transmitter, the data signals based on each of the respective data types for each of the data signals. In some embodiments, the wireless-power transmitter then determines respective priority levels for each of the data signals. For example, when a video application is running on the electronic device coupled with the wireless-power receiver, the video data is given the higher priority, with text data having lower priority. In another example, when data reception is restricted, text data may be given a higher priority, while video data and audio data are given a lower priority. The data types and established priority levels associated with respective data types are used to establish the data-traffic profile.


In some embodiments, the windows of time during which to transmit wireless-power signals to the first wireless-power-receiving device are windows of time during which no data signals with a high priority level are to be exchanged.


In some embodiments, while transmitting wireless-power signals during a respective window of time and in accordance with a determination that data signals with a high priority level are to be exchanged during the respective window of time, the wireless-power transmitter suspends transmission of wireless-power signals to the wireless-power-receiving device.


In some embodiments, in accordance with a determination that a charge level (current battery level or current charging rate) of the wireless-power-receiving device is less than a charge-level threshold, the wireless-power transmitter resumes the transmission of wireless-power signals to the wireless-power-receiving device. In some examples, if priority data is lost (e.g., bit error is high), the wireless-power transmitter resends the priority data when transmission of wireless-power charging idles. In some embodiments, the wireless-power transmitter chooses to interrupt data transmissions (even for high priority data) because the charge level of the wireless-power receiver is too low (e.g., lower than a predetermined threshold). In some embodiments, the wireless-power transmitter then monitors whether the transmission of data has been negatively impacted, such as data signals either not transmitted or transmitted only incompletely (i.e., with too much loss of information). In some embodiments, in accordance with a determination that a set of data signals associated with a high priority level was lost while transmitting the plurality of wireless-power signals to the wireless-power-receiving device, the wireless-power transmitter schedules the transmission of the set of data signals to the wireless-power-receiving device during the next power transmission idle period.


In some embodiments, in conjunction with resuming the transmission of wireless-power signals, the wireless-power transmitter provides a notification to a user of the wireless-power-receiving device that receipt of data signals may be interrupted. For example, the user is notified that resuming the wireless charging will interrupt their data traffic, e.g., audio data or video data they are interacting with. In some embodiments, in accordance with a determination that data signals with high priority are pending for transmission and resuming the wireless charging will suspend the priority data traffic, the wireless-power transmitter further provides a notification to notify the user of the suspension of the transmission of the data signals. In some embodiments, the user may choose to select a time to resume data transmission later, e.g., in 10 minutes. In some embodiments, the system may enforce alternating charging and data transmission to maintain a minimum charging rate while maintaining the data transmission.


In some embodiments, when the wireless-power transmitter determines that a wireless-power receiver has been charged for too long (e.g., longer than a predetermined time period), and there is data waiting in line to be transmitted, the wireless-power transmitter chooses to suspend the wireless charging and transmit data in the waiting queue. For example, when the wireless-power transmitter determines that a wireless-power receiver has been charged for too long, the transmitter queries the battery state. When the battery state is higher than a threshold, e.g., 50% (or some greater or lesser percentage) of the full battery state, the wireless charging is paused to exchange data. In some embodiments, data with higher priority is transmitted first, and data with lower priority is transmitted after the high-priority data transmission is completed.


In some embodiments, resuming the transmission of wireless-power signals includes transmitting wireless-power signals while a data signal is being exchanged between the wireless-power-receiving device and another device. In some embodiments, the wireless-power transmitter adjusts at least one transmission characteristic for the wireless-power signals to minimize interference with the data signal. In some embodiments, the adjusting is performed by the wireless-power transmitter in accordance with a determination that exchange of the data signal has an error rate above a threshold error rate (e.g., bit error rate is too high, indicating data not being reliably exchanged anymore). In some embodiments, the adjusting is performed by the wireless-power transmitter until the error rate falls below the threshold error rate.


In some embodiments, the wireless-power transmitter adjusts at least one transmission characteristic (e.g., adjusts a value of the at least one transmission characteristic) for the wireless-power signals based on respective priority levels of the data signals exchanged between the wireless-power transmitting device and the wireless-power-receiving device. In some embodiments, the at least one transmission characteristic is a power level, such as an amplitude used for transmission of the wireless-power signals. For example, a high level of power is selected when transmitting low-priority data, and a low level of power is selected when transmitting high-priority data.


In some embodiments, detecting that the wireless-power-receiving device is in proximity to the wireless-power-transmitting device includes detecting, using measurements of reflected power at the wireless-power transmitting device, that the wireless-power-receiving device has been placed within a predetermined distance of (e.g., within 1-2 inches of a surface of) the wireless-power-transmitting device. In some embodiments, when the wireless-power-receiving device is out of power, the wireless-power transmitter may detect a dead-battery device being placed on the wireless-power-transmitting device using way(s) disclosed in U.S. application Ser. No. 15/943,559, entitled “Methods of Selectively Activating Antenna Zones of a Near-Field Charging Pad to Maximize Wireless Power Delivered to a Receiver” filed on Apr. 2, 2018, which is incorporated herein by reference in its entirety.


In some embodiments, in response to detecting that the wireless-power-receiving device has been placed within the predetermined distance of the wireless-power-transmitting device and before establishing the data-traffic profile, the wireless-power transmitter transmits, via the one or more antennas, wireless-power signals with default characteristics to the wireless-power-receiving device until the wireless-power-receiving device provides a wireless-power-control signal to the wireless-power-transmitting device. In some embodiments, the power of the wireless-power-receiving device is at least partially restored to have sufficient power for starting communication with the wireless-power-transmitting device.


In some embodiments, the wireless-power-transmitting device uses the wireless-power-control signal to determine specific values to use for transmission characteristics (e.g., values used for certain waveform characteristics, such as values for amplitude, frequency, phase, etc.), distinct from default values used for those characteristics, and those specific values for the transmission characteristics are then used for transmitting wireless-power signals to the wireless-power-receiving device. In some embodiments, the wireless-power-transmitting device also optimizes transmission of wireless power signals by manipulating the specific values. In some embodiments, the established data-communications traffic profile includes a traffic profile of the wireless power control signals exchanged between the wireless-power-transmitting device and the wireless-power-receiving device.


In some embodiments, the identifications of data signals included in the data-traffic profile include identifications of wireless-power-control signals to be exchanged between the wireless-power-receiving device and the wireless-power-transmitting device. In some embodiments, the wireless-power-transmitting device uses the wireless-power-control signal to determine specific characteristics to use for transmitting wireless-power signals to the wireless-power-receiving device.


In some embodiments, the identifications of data signals included in the data-traffic profile further include identifications of application-specific data signals to be exchanged between the wireless-power-receiving device and the wireless-power-transmitting device. In some embodiments, the application-specific data signals are associated with a software application executing on the wireless-power-receiving device.


In some embodiments, establishing one or more data-communications traffic profiles associated with the wireless-power-receiving device comprises: detecting application data exchanged via the wireless communications component between the wireless-power-transmitting device and the wireless-power-receiving device to establish a first data-communications traffic profile; detecting wireless power control messages exchanged via the wireless communications component between the wireless-power-transmitting device and the first wireless-power-receiving device to establish a second data-communications traffic profile, the wireless power control messages including one or more parameters associated with the plurality of first wireless-power signals; assigning priority levels to the application data and the wireless power control messages respectively. In some embodiments, determining the first wireless power transmission profile comprises: prioritizing transmission of the plurality of first wireless-power signals based on the priority levels of the first data-communications traffic profile and the second data-communications traffic profile. In some embodiments, the timings of transmitting the application data and the wireless power control messages are synchronized, for example, using the same the internal clock associated with the transmitter communications component (e.g., controller). In some embodiments, the wireless-power transmitter further aggregates, categorizes (if multiple types of application data exist), and determines priorities of the first data-communications traffic profile and the second data-communications traffic profile.


In some embodiments, the data-traffic profile also includes identifications of additional data signals to be exchanged between the wireless-power-transmitting device and an additional device other than the wireless-power-receiving device. In some embodiments, the additional device is communicatively coupled to the wireless-power-transmitting device. In some embodiments, the additional device is another power receiver in addition to the first wireless-power-receiving device. In some embodiments, the data-communications traffic profile includes traffic profiles for application data and power control data, and such traffic profiles might be for devices that are going to receive wireless power from the pad, as well as other devices that will not receive power from the pad (e.g., a pair of headphones receiving audio data from a phone that is to receive wireless power).


In some embodiments, the timings of transmitting the application data and the wireless power control messages are not synchronized. In these circumstances, respective internal clocks of transmitter and computing device(s) are used for timing synchronization. In some embodiments, when there is more than one data-communications traffic profile, prior to determining the first wireless power transmission profile, the wireless-power transmitter synchronizes timings of the more than one data-communications traffic profile.


In some embodiments, the additional device is a second wireless-power-receiving device, the additional data signals include wireless-power-control signals to be exchanged between the second wireless-power-receiving device and the wireless-power-transmitting device, and the wireless-power-transmitting device uses the wireless-power-control signals to determine specific characteristics to use for transmitting wireless-power signals to the second wireless-power-receiving device.


In some embodiments, the additional data signals include application-specific data signals to be exchanged between the second wireless-power-receiving device and the wireless-power-transmitting device. In some embodiments, the application-specific data signals are associated with a software application that is executing on the second wireless-power-receiving device. In some embodiments, additional adjustments may also be made to signal transmissions and to prioritize when to transmit power and data to two or more different receiving devices. For example, transmission of the first wireless power signals and the transmission of the second wireless power signals may be prioritized in accordance with one or more of: (1) respective battery states of the first wireless-power-receiving device and the third device, (2) respective device types of the first wireless-power-receiving device and the third device (e.g., work/study related device prioritized over gaming device), and (3) priority levels of application data exchanged respectively (i) between the wireless-power-transmitting device and the first wireless-power-receiving device, and (ii) between the wireless-power-transmitting device and the third device. For example, video streaming may be prioritized over document data when using a video streaming device, or vice versa when data reception is restricted.


In some embodiments, the data-traffic profile also includes identifications of application-specific data signals to be exchanged between the wireless-power-receiving device and a second device other than the wireless-power-transmitting device. In some embodiments, the second device is communicatively coupled to the wireless-power-receiving device, and the application-specific data signals are associated with a software application executing on the wireless-power-receiving device. In some embodiments, the second device is a peripheral device of the receiver, such as a pair of headphones receiving audio data from a phone that is wireless charged by a wireless-power transmitter. In some embodiments, the second device (the peripheral device) does not receive wireless power signals from the wireless-power-transmitting device.


In some embodiments, the wireless-power transmitter can setup different data-traffic profiles for each different power-receiving device to allow for determining when to transmit power to each of the receiving devices. In some embodiments, the wireless-power-transmitting device is (a) coupled to the third device and (b) configured to transmit a plurality of wireless-power signals to the third device. In some embodiments, establishing the one or more data-communications traffic profiles further comprises: establishing a first data-communications traffic profile associated with a plurality of first wireless power control messages exchanged between the wireless-power-transmitting device and the first wireless-power-receiving device and associated with transmission of the plurality of first wireless-power signals; and establishing a second data-communications traffic profile associated with a plurality of second wireless power control messages exchanged between the third device and the wireless-power-transmitting device and associated with transmission of the plurality of second wireless-power signals.


In some embodiments, the one or more data-communications traffic profiles are further associated with one or more types of application data exchanged between the wireless-power-transmitting device and the first wireless-power-receiving device. In some embodiments, there are multiple power profiles for charging multiple power receivers.


In some embodiments, the wireless-power transmitter further determines a second wireless power transmission profile associated with transmitting the plurality of second wireless-power signals based on the one or more data-communications traffic profiles and the first wireless power transmission profile. In some embodiments, the wireless-power transmitter then transmits, by the plurality of antennas, the plurality of first wireless power signals to the first wireless-power-receiving device in accordance with the first wireless power transmission profile, and also transmits the plurality of second wireless power signals to the third device in accordance with the second wireless power transmission profile.


In some embodiments, the wireless-power transmitter prioritizes the transmission of the first wireless power signals and the transmission of the second wireless power signals in accordance with one or more of: (1) respective battery states of the first wireless-power-receiving device and the third device, (2) respective device types of the first wireless-power-receiving device and the third device, and (e.g., work/study related device prioritized over gaming device), and (3) priority levels of application data exchanged respectively (i) between the wireless-power-transmitting device and the first wireless-power-receiving device, and (ii) between the wireless-power-transmitting device and the third device (e.g., video streaming prioritized over document data).


In some embodiments, the data signals are to be exchanged using a same frequency band as the plurality of power transmission signals. In some embodiments, the wireless-power-receiving device comprises circuitry for receiving and converting wireless-power signals into usable power, and an electronic device that is coupled to the circuitry. In some embodiments, the circuitry provides the usable power to the electronic device to provide operating power or charge a battery thereof. In some embodiments, establishing the data-traffic profile includes receiving, via the one or more processors, information regarding at least some of the data signals from a controller associated with the wireless data transceiver. In some embodiments, an identification of a respective data signal of the data signals included in the data-traffic profile includes transmission characteristics for the respective data signal.



FIG. 19B is a flow diagram showing a method 1950 of wireless power transmission, in accordance with some embodiments. Operations (e.g., steps) of the method 1950 may be combined with one or more operations of the method 1900 to perform the wireless power transmission. In some embodiments, the method 1950 may be performed by a wireless-power-transmitting device (e.g., transmitter 102, FIG. 1; also referred to as “wireless-power transmitter”, “transmitter”) having a controller, a wireless data transceiver (e.g., communications component(s) 112, FIG. 1), one or more antennas (e.g., antenna array(s) 110, FIG. 1) configured to transmit wireless-power signals to one or more wireless-power-receiving devices, and one or more processors (processor(s) 104, FIG. 1). In some embodiments, at least some of the operations shown in FIG. 19B correspond to instructions stored in a computer memory or computer-readable storage medium (e.g., memory 104 of the transmitter 102, FIG. 1).


In some embodiments, the establishing of traffic profiles may be predetermined (i.e., no need to establish in accordance with one or more triggering events) and also that the information regarding the data signals may be detected on the fly or may be reported to the transmitter by the power-receiving device or some other device. In some embodiments, the power-receiving device may aggregate information for more than itself (e.g., the receiver may aggregate information from nearby peripheral or other power receiving or data communicating device(s)). For example, the receiver may report data signals that are to be exchanged between a nearby Bluetooth mouse and keyboard, as those signals could also be affected by transmission of high-power level signals nearby.


The wireless-power transmitter transmits (1952), via the one or more antennas, wireless-power signals to a wireless-power-receiving device that is located in proximity to the wireless-power-transmitting device. The wireless-power transmitter then receives (1954), by the controller, information regarding transmission of data signals exchanged between the wireless-power-transmitting device and the wireless-power-receiving device.


The wireless-power transmitter evaluates (1956) one or more characteristics associated with the data signals to determine whether transmission of wireless-power signals to the wireless-power-receiving device is prioritized over transmission of a respective data signal of the data signals. In some embodiments, the one or more characteristics indicate that the respective data signal is to be transmitted during a first time period and during a second time period, distinct from the first time period. For example, for a certain time period, which type of data is transmitted when considering the battery level and/or charging need.


In accordance with a determination that transmission of the respective data signal is prioritized over transmission of wireless-power signals during the first time period, the wireless-power transmitter suspends (1958) the transmission of wireless-power signals to the wireless-power-receiving device during the first time period.


In accordance with a determination that transmission of wireless-power signals is prioritized over transmission of the respective data signal during the second time period, the wireless-power transmitter resumes (1960) transmission of wireless-power signals to the first wireless-power-receiving device during the second time period.


In some embodiments, the one or more sets of data communication signals include one or more of: (1) a set of power control data signals including one or more parameters associated with transmission of the plurality of first wireless-power signals and (2) a set of application data exchanged between the wireless-power-transmitting device and the first wireless-power-receiving device.


The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the embodiments described herein and variations thereof. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the subject matter disclosed herein. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.


Features of the present invention can be implemented in, using, or with the assistance of a computer program product, such as a storage medium (media) or computer readable storage medium (media) having instructions stored thereon/in which can be used to program a processing system to perform any of the features presented herein. The storage medium (e.g., memory 106, 134, and/or 142) can include, but is not limited to, high-speed random access memory, such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, and may include non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory (e.g., 106, 134, and/or 142) optionally includes one or more storage devices remotely located from the CPU(s) (e.g., processor(s) 104, 132, and/or 140). Memory (e.g., 106, 134, and/or 142), or alternatively the non-volatile memory device(s) within the memory, comprises a non-transitory computer readable storage medium.


Stored on any one of the machine readable medium (media), features of the present invention can be incorporated in software and/or firmware for controlling the hardware of a processing system (such as the components associated with the transmitters 102 and/or receivers 120), and for enabling a processing system to interact with other mechanisms utilizing the results of the present invention. Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.


Communication systems as referred to herein (e.g., communications components 112, 136, and/or 144) optionally communicate via wired and/or wireless communication connections. Communication systems optionally communicate with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. Wireless communication connections optionally use any of a plurality of communications standards, protocols and technologies, including but not limited to radio-frequency (RF), radio-frequency identification (RFID), infrared, radar, sound, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), ZigBee, wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (e.g., IEEE 102.11a, IEEE 102.11ac, IEEE 102.11ax, IEEE 102.11b, IEEE 102.11g and/or IEEE 102.11n), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the claims. As used in the description of the embodiments and the appended claims, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain principles of operation and practical applications, to thereby enable others skilled in the art.

Claims
  • 1. A method of wireless power transmission, the method comprising: while a wireless-power-transmitting device is transmitting wireless power to a wireless-power-receiving device based on a data-traffic profile that includes identifications of (i) data signals that will be exchanged at different points of time over a predetermined frequency band, and (ii) respective priority levels of each respective data signal, the respective priority levels including a high-priority level and a low-priority level: determining, using the data-traffic profile: a first window of time of a set of windows of time during which to, over the predetermined frequency band, (i) transmit wireless-power signals and (ii) exchange low-priority data signals, to the wireless-power-receiving device; anda second window of time of the set of windows of time during which to suspend transmission of wireless-power signals while exchanging high-priority data signals to the wireless-power-receiving device;after determining, using the data-traffic profile, the first and second windows of time, transmitting the wireless-power signals during the first window of time while exchanging the low-priority data signals and suspending the wireless-power signals during the second window of time while exchanging the high-priority data signals;during the second window of time, based on data indicating a charge level of the wireless-power-receiving device, (i) interrupting the exchanging of high-priority data signals, and (ii) resuming transmission of wireless-power signals;providing a notification to a user regarding the interruption of the high-priority data signals with a choice to select a time to resume transmission of the high-priority data signals; andresponsive to a selected time to resume exchange of the high-priority data signals, determining, using the data-traffic profile, a third window of time of the set of windows of time during which to, over the predetermined frequency band, alternate (i) transmitting wireless-power signals and (ii) exchanging the high-priority data signals.
  • 2. The method of claim 1, wherein: the data indicating the charge level of the wireless-power-receiving device indicates that the charge level of the wireless-power-receiving device is below a charge-level threshold.
  • 3. The method of claim 2, further comprising resuming exchange of the high-priority data signals during a fourth window of time after the charge level of the wireless-power-receiving device is above the charge-level threshold.
  • 4. The method of claim 1, wherein: wireless-power signals are transmitted at a lower power level during the first window of time as compared to a power level used to transmit wireless-power signals during the third window of time.
  • 5. The method of claim 1, further comprising: based on determining that at least some high-priority data has been lost in accordance with interrupting the exchange of the high-priority data signals: determining, using the data-traffic profile, a respective window of time to resend the data signals associated with the high-priority data.
  • 6. The method of claim 1, wherein: the low-priority data signals are associated with text data; andthe high-priority data signals are associated with video data.
  • 7. The method of claim 1, wherein: the wireless-power-receiving device is a first wireless-power-receiving device; andthe transmitting of the wireless-power signals to the first wireless-power-receiving device during the first window of time is based on the wireless-power-transmitting device prioritizing the first wireless-power-receiving device over a second wireless-power-receiving device based on one or more of: respective battery states of the first wireless-power-receiving device and the second wireless-power-receiving device;respective device types of the first wireless-power-receiving device and the second wireless-power-receiving device; andrespective priority levels of application data exchanged respectively (i) between the wireless-power-transmitting device and the first wireless-power-receiving device, and (ii) between the second wireless-power-receiving device.
  • 8. The method of claim 7, wherein: the low-priority data signals are being transmitted to the first wireless-power-receiving device; andthe high-priority data signals are being transmitted to the second wireless-power-receiving device.
  • 9. A wireless-power-transmitting device, comprising: one or more antennas configured to transmit wireless-power signals;one or more processors; anda wireless data transceiver,wherein the wireless-power-transmitting device is configured to: while the wireless-power-transmitting device is transmitting wireless power to a wireless-power-receiving device based on a data-traffic profile that includes identifications of (i) data signals that will be exchanged at different points of time over a predetermined frequency band, and (ii) respective priority levels of each respective data signal, the respective priority levels including a high-priority level and a low-priority level: determining, using the data-traffic profile: a first window of time of a set of windows of time during which to, over the predetermined frequency band, (i) transmitting wireless-power signals and (ii) exchanging low-priority data signals, to the wireless-power-receiving device; anda second window of time of the set of windows of time during which to suspend transmission of wireless-power signals while exchanging high-priority data signals to the wireless-power-receiving device;after determining, using the data-traffic profile, the first and second windows of time, transmitting the wireless-power signals during the first window of time while exchanging the low-priority data signals and suspending the wireless-power signals during the second window of time while exchanging the high-priority data signals;during the second window of time, based on data indicating a charge level of the wireless-power-receiving device, (i) interrupting the exchanging of high-priority data signals, and (ii) resuming transmission of wireless-power signals;providing a notification to a user regarding the interruption of the high-priority data signals with a choice to select a time to resume transmission of the high-priority data signals; andresponsive to a selected time to resume exchange of the high-priority data signals, determining, using the data-traffic profile, a third window of time of the set of windows of time during which to, over the predetermined frequency band, alternate (i) transmitting wireless-power signals and (ii) exchanging the high-priority data signals.
  • 10. A non-transitory computer-readable storage medium comprising instructions, which when executed by one or more processors of a wireless-power-transmitting device having one or more antennas configured to transmit wireless-power signals and a wireless data transceiver, cause the wireless data transceiver to: while a wireless-power-transmitting device is transmitting wireless power to a wireless-power-receiving device based on a data-traffic profile that includes identifications of (i) data signals that will be exchanged at different points of time over a predetermined frequency band, and (ii) respective priority levels of each respective data signal, the respective priority levels including a high-priority level and a low-priority level: determining, using the data-traffic profile: a first window of time of a set of windows of time during which to, over the predetermined frequency band, (i) transmit wireless-power signals and (ii) exchange low-priority data signals, to the wireless-power-receiving device; anda second window of time of the set of windows of time during which to suspend transmission of wireless-power signals while exchanging high-priority data signals to the wireless-power-receiving device;after determining, using the data-traffic profile, the first and second windows of time, transmitting the wireless-power signals during the first window of time while exchanging the low-priority data signals and suspending the wireless-power signals during the second window of time while exchanging the high-priority data signals;during the second window of time, based on data indicating a charge level of the wireless-power-receiving device, (i) interrupting the exchanging of high-priority data signals, and (ii) resuming transmission of wireless-power signals;providing a notification to a user regarding the interruption of the high-priority data signals with a choice to select a time to resume transmission of the high-priority data signals; andresponsive to a selected time to resume exchange of the high-priority data signals, determining, using the data-traffic profile, a third window of time of the set of windows of time during which to, over the predetermined frequency band, alternate (i) transmitting wireless-power signals and (ii) exchanging the high-priority data signals.
  • 11. The wireless-power-transmitting device of claim 9, wherein the data indicating the charge level of the wireless-power-receiving device indicates that the charge level of the wireless-power-receiving device is below a charge-level threshold.
  • 12. The wireless-power-transmitting device of claim 11, wherein the wireless-power-transmitting device is further configured to: resume exchange of the high-priority data signals during a fourth window of time after the charge level of the wireless-power-receiving device is above the charge-level threshold.
  • 13. The wireless-power-transmitting device of claim 9, wherein wireless-power signals are transmitted at a lower power level during the first window of time as compared to a power level used to transmit wireless-power signals during the third window of time.
  • 14. The wireless-power-transmitting device of claim 9, wherein the wireless-power-transmitting device is further configured to: based on determining that at least some high-priority data has been lost in accordance with interrupting the exchange of the high-priority data signals: determining, using the data-traffic profile, a respective window of time to resend signals associated with the high-priority data.
  • 15. The wireless-power-transmitting device of claim 9, wherein: the low-priority data signals are associated with text data; andthe high-priority data signals are associated with video data.
  • 16. The non-transitory computer-readable storage medium of claim 10, wherein the data indicating the charge level of the wireless-power-receiving device indicates that the charge level of the wireless-power-receiving device is below a charge-level threshold.
  • 17. The non-transitory computer-readable storage medium of claim 16, further comprising instructions for: resume exchange of the high-priority data signals during a fourth window of time after the charge level of the wireless-power-receiving device is above the charge-level threshold.
  • 18. The non-transitory computer-readable storage medium of claim 10, wherein wireless-power signals are transmitted at a lower power level during the first window of time as compared to a power level used to transmit wireless-power signals during the third window of time.
  • 19. The non-transitory computer-readable storage medium of claim 10, further comprising instructions for: based on determining that at least some high-priority data has been lost in accordance with interrupting the exchange of the high-priority data signals: determining, using the data-traffic profile, a respective window of time to resend data signals associated with the high-priority data.
  • 20. The non-transitory computer-readable storage medium of claim 10, wherein: the low-priority data signals are associated with text data; andthe high-priority data signals are associated with video data.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/174,172, filed Oct. 29, 2018, entitled “Systems And Methods For Managing Coexistence Of Wireless-Power Signals And Data Signals Operating In A Same Frequency Band,” which claims the benefit of U.S. Provisional Patent Application Ser. 62/579,049, filed Oct. 30, 2017, entitled “Systems and Methods for Managing Coexistence of Wireless-Power-Transmission Signals and Data-Communication Signals Operating In A Same Frequency Band,” each of which is herein fully incorporated by reference in its respective entirety.

US Referenced Citations (1302)
Number Name Date Kind
787412 Tesla Apr 1905 A
2863148 Gammon et al. Dec 1958 A
3167775 Guertler Jan 1965 A
3434678 Brown et al. Mar 1969 A
3696384 Lester Oct 1972 A
3754269 Gavin Aug 1973 A
4101895 Jones, Jr. Jul 1978 A
4360741 Fitzsimmons et al. Nov 1982 A
4944036 Hyatt Jul 1990 A
4995010 Knight Feb 1991 A
5142292 Chang Aug 1992 A
5200759 McGinnis Apr 1993 A
5211471 Rohrs May 1993 A
5276455 Fitzsimmons et al. Jan 1994 A
5548292 Hirshfield et al. Aug 1996 A
5556749 Mitsuhashi et al. Sep 1996 A
5568088 Dent et al. Oct 1996 A
5631572 Sheen et al. May 1997 A
5646633 Dahlberg Jul 1997 A
5697063 Kishigami et al. Dec 1997 A
5712642 Hulderman Jan 1998 A
5936527 Isaacman et al. Aug 1999 A
5982139 Parise Nov 1999 A
6046708 MacDonald, Jr. et al. Apr 2000 A
6061025 Jackson et al. May 2000 A
6127799 Krishnan Oct 2000 A
6127942 Welle Oct 2000 A
6163296 Lier et al. Dec 2000 A
6176433 Uesaka et al. Jan 2001 B1
6271799 Rief Aug 2001 B1
6289237 Mickle et al. Sep 2001 B1
6329908 Frecska Dec 2001 B1
6400586 Raddi et al. Jun 2002 B2
6421235 Ditzik Jul 2002 B2
6437685 Hanaki Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6476795 Derocher et al. Nov 2002 B1
6501414 Amdt et al. Dec 2002 B2
6583723 Watanabe et al. Jun 2003 B2
6597897 Tang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6650376 Obitsu Nov 2003 B1
6664920 Mott et al. Dec 2003 B1
6680700 Hilgers Jan 2004 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6853197 McFarland Feb 2005 B1
6856291 Mickle et al. Feb 2005 B2
6911945 Korva Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6988026 Breed et al. Jan 2006 B2
7003350 Denker et al. Feb 2006 B2
7012572 Schaffner et al. Mar 2006 B1
7027311 Vanderelli et al. Apr 2006 B2
7068234 Sievenpiper Jun 2006 B2
7068991 Parise Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7183748 Unno et al. Feb 2007 B1
7191013 Miranda et al. Mar 2007 B1
7193644 Carter Mar 2007 B2
7196663 Bolzer et al. Mar 2007 B2
7205749 Hagen et al. Apr 2007 B2
7215296 Abramov et al. May 2007 B2
7222356 Yonezawa et al. May 2007 B1
7274334 O'Riordan et al. Sep 2007 B2
7274336 Carson Sep 2007 B2
7351975 Brady et al. Apr 2008 B2
7359730 Dennis et al. Apr 2008 B2
7372408 Gaucher May 2008 B2
7392068 Dayan Jun 2008 B2
7403803 Mickle et al. Jul 2008 B2
7443057 Nunally Oct 2008 B2
7451839 Perlman Nov 2008 B2
7463201 Chiang et al. Dec 2008 B2
7471247 Saily Dec 2008 B2
7535195 Horovitz et al. May 2009 B1
7614556 Overhultz et al. Nov 2009 B2
7639994 Greene et al. Dec 2009 B2
7643312 Vanderelli et al. Jan 2010 B2
7652577 Madhow et al. Jan 2010 B1
7679576 Riedel et al. Mar 2010 B2
7702771 Ewing et al. Apr 2010 B2
7786419 Hyde et al. Aug 2010 B2
7812771 Greene et al. Oct 2010 B2
7830312 Choudhury et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7898105 Greene et al. Mar 2011 B2
7904117 Doan et al. Mar 2011 B2
7911386 Ito et al. Mar 2011 B1
7925308 Greene et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
8049676 Yoon et al. Nov 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8070595 Alderucci et al. Dec 2011 B2
8072380 Crouch Dec 2011 B2
8092301 Alderucci et al. Jan 2012 B2
8099140 Arai Jan 2012 B2
8115448 John Feb 2012 B2
8159090 Greene et al. Apr 2012 B2
8159364 Zeine Apr 2012 B2
8180286 Yamasuge May 2012 B2
8184454 Mao May 2012 B2
8228194 Mickle Jul 2012 B2
8234509 Gioscia et al. Jul 2012 B2
8264101 Hyde et al. Sep 2012 B2
8264291 Morita Sep 2012 B2
8276325 Clifton et al. Oct 2012 B2
8278784 Cook et al. Oct 2012 B2
8284101 Fusco Oct 2012 B2
8310201 Wright Nov 2012 B1
8338991 Von Novak et al. Dec 2012 B2
8362745 Tinaphong Jan 2013 B2
8380255 Shearer et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8410953 Zeine Apr 2013 B2
8411963 Luff Apr 2013 B2
8432062 Greene et al. Apr 2013 B2
8432071 Huang et al. Apr 2013 B2
8446248 Zeine May 2013 B2
8447234 Cook et al. May 2013 B2
8451189 Fluhler May 2013 B1
8452235 Kirby et al. May 2013 B2
8457656 Perkins et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8467733 Leabman Jun 2013 B2
8497601 Hall et al. Jul 2013 B2
8497658 Von Novak et al. Jul 2013 B2
8552597 Song et al. Aug 2013 B2
8558661 Zeine Oct 2013 B2
8560026 Chanterac Oct 2013 B2
8564485 Milosavljevic et al. Oct 2013 B2
8604746 Lee Dec 2013 B2
8614643 Leabman Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8626249 Kuusilinna et al. Jan 2014 B2
8629576 Levine Jan 2014 B2
8653966 Rao et al. Feb 2014 B2
8655272 Saunamäki Feb 2014 B2
8674551 Low et al. Mar 2014 B2
8686685 Moshfeghi Apr 2014 B2
8686905 Shtrom Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8712485 Tam Apr 2014 B2
8718773 Wills et al. May 2014 B2
8729737 Schatz et al. May 2014 B2
8736228 Freed et al. May 2014 B1
8760113 Keating Jun 2014 B2
8770482 Ackermann et al. Jul 2014 B2
8772960 Yoshida Jul 2014 B2
8823319 Von Novak, III et al. Sep 2014 B2
8832646 Wendling Sep 2014 B1
8854176 Zeine Oct 2014 B2
8860364 Low et al. Oct 2014 B2
8897770 Frolov et al. Nov 2014 B1
8903456 Chu et al. Dec 2014 B2
8917057 Hui Dec 2014 B2
8923189 Leabman Dec 2014 B2
8928544 Massie et al. Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8946940 Kim et al. Feb 2015 B2
8963486 Kirby et al. Feb 2015 B2
8970070 Sada et al. Mar 2015 B2
8989053 Skaaksrud et al. Mar 2015 B1
9000616 Greene et al. Apr 2015 B2
9001622 Perry Apr 2015 B2
9006934 Kozakai et al. Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9030161 Lu et al. May 2015 B2
9059598 Kang et al. Jun 2015 B2
9059599 Won et al. Jun 2015 B2
9077188 Moshfeghi Jul 2015 B2
9083595 Rakib et al. Jul 2015 B2
9088216 Garrity et al. Jul 2015 B2
9124125 Leabman et al. Sep 2015 B2
9130397 Leabman et al. Sep 2015 B2
9130602 Cook Sep 2015 B2
9142998 Yu et al. Sep 2015 B2
9143000 Leabman et al. Sep 2015 B2
9143010 Urano Sep 2015 B2
9153074 Zhou et al. Oct 2015 B2
9178389 Hwang Nov 2015 B2
9225196 Huang et al. Dec 2015 B2
9240469 Sun et al. Jan 2016 B2
9242411 Kritchman et al. Jan 2016 B2
9244500 Cain et al. Jan 2016 B2
9252628 Leabman et al. Feb 2016 B2
9270344 Rosenberg Feb 2016 B2
9276329 Jones et al. Mar 2016 B2
9282582 Dunsbergen et al. Mar 2016 B1
9294840 Anderson et al. Mar 2016 B1
9297896 Andrews Mar 2016 B1
9318898 John Apr 2016 B2
9368020 Bell et al. Jun 2016 B1
9401977 Gaw Jul 2016 B1
9409490 Kawashima Aug 2016 B2
9419335 Pintos Aug 2016 B2
9419443 Leabman Aug 2016 B2
450449 Leabman et al. Sep 2016 A1
9438045 Leabman Sep 2016 B1
9438046 Leabman Sep 2016 B1
9444283 Son et al. Sep 2016 B2
9461502 Lee et al. Oct 2016 B2
9520725 Masaoka et al. Dec 2016 B2
9520748 Hyde et al. Dec 2016 B2
9521926 Leabman et al. Dec 2016 B1
9522270 Perryman et al. Dec 2016 B2
9532748 Denison et al. Jan 2017 B2
9537354 Bell et al. Jan 2017 B2
9537357 Leabman Jan 2017 B2
9537358 Leabman Jan 2017 B2
9538382 Bell et al. Jan 2017 B2
9544640 Lau Jan 2017 B2
9559553 Bae Jan 2017 B2
9564773 Pogorelik et al. Feb 2017 B2
9571974 Choi et al. Feb 2017 B2
9590317 Zimmerman et al. Mar 2017 B2
9590444 Walley Mar 2017 B2
9620996 Zeine Apr 2017 B2
9647328 Dobric May 2017 B2
9706137 Scanlon et al. Jul 2017 B2
9711999 Hietala et al. Jul 2017 B2
9723635 Nambord et al. Aug 2017 B2
9787103 Leabman et al. Oct 2017 B1
9793758 Leabman Oct 2017 B2
9793764 Perry Oct 2017 B2
9800080 Leabman et al. Oct 2017 B2
9800172 Leabman Oct 2017 B1
9806564 Leabman Oct 2017 B2
9812890 Leabman et al. Nov 2017 B1
9819230 Petras et al. Nov 2017 B2
9824815 Leabman et al. Nov 2017 B2
9825674 Leabman Nov 2017 B1
9831718 Leabman et al. Nov 2017 B2
9838083 Bell et al. Dec 2017 B2
9843201 Leabman et al. Dec 2017 B1
9843213 Leabman et al. Dec 2017 B2
9843229 Leabman Dec 2017 B2
9843763 Leabman et al. Dec 2017 B2
9847669 Leabman Dec 2017 B2
9847677 Leabman Dec 2017 B1
9847679 Bell et al. Dec 2017 B2
9853361 Chen et al. Dec 2017 B2
9853458 Bell et al. Dec 2017 B1
9853485 Contopanagos Dec 2017 B2
9853692 Bell et al. Dec 2017 B1
9859756 Leabman et al. Jan 2018 B2
9859757 Leabman et al. Jan 2018 B1
9859758 Leabman Jan 2018 B1
9859797 Leabman Jan 2018 B1
9866279 Bell et al. Jan 2018 B2
9867032 Verma et al. Jan 2018 B2
9867062 Bell et al. Jan 2018 B1
9871301 Contopanagos Jan 2018 B2
9871387 Bell et al. Jan 2018 B1
9871398 Leabman Jan 2018 B1
9876379 Leabman et al. Jan 2018 B1
9876380 Leabman et al. Jan 2018 B1
9876394 Leabman Jan 2018 B1
9876536 Bell et al. Jan 2018 B1
9876648 Bell Jan 2018 B2
9882394 Bell et al. Jan 2018 B1
9882395 Leabman et al. Jan 2018 B1
9882427 Leabman et al. Jan 2018 B2
9882430 Leabman et al. Jan 2018 B1
9887584 Bell et al. Feb 2018 B1
9887739 Leabman et al. Feb 2018 B2
9891669 Bell Feb 2018 B2
9893535 Leabman Feb 2018 B2
9893538 Bell et al. Feb 2018 B1
9893554 Bell et al. Feb 2018 B2
9893555 Leabman et al. Feb 2018 B1
9893564 de Rochemont Feb 2018 B2
9899744 Contopanagos et al. Feb 2018 B1
9899861 Leabman et al. Feb 2018 B1
9899873 Bell et al. Feb 2018 B2
9906065 Leabman et al. Feb 2018 B2
9906275 Leabman Feb 2018 B2
9912199 Leabman et al. Mar 2018 B2
9916485 Lilly et al. Mar 2018 B1
9917477 Bell et al. Mar 2018 B1
9923386 Leabman et al. Mar 2018 B1
9939864 Bell et al. Apr 2018 B1
9941747 Bell et al. Apr 2018 B2
9941754 Leabman et al. Apr 2018 B2
9948135 Leabman et al. Apr 2018 B2
9965009 Bell et al. May 2018 B1
9966765 Leabman May 2018 B1
9966784 Leabman May 2018 B2
9967743 Bell et al. May 2018 B1
9973008 Leabman May 2018 B1
10003211 Leabman et al. Jun 2018 B1
10008777 Broyde et al. Jun 2018 B1
10008889 Bell et al. Jun 2018 B2
10014728 Leabman Jul 2018 B1
10027159 Hosseini Jul 2018 B2
10038337 Leabman et al. Jul 2018 B1
10050462 Leabman et al. Aug 2018 B1
10056782 Leabman Aug 2018 B1
10063064 Bell et al. Aug 2018 B1
10063105 Leabman Aug 2018 B2
10063106 Bell et al. Aug 2018 B2
10068703 Contopanagos Sep 2018 B1
10075008 Bell et al. Sep 2018 B1
10075017 Leabman et al. Sep 2018 B2
10079515 Hosseini et al. Sep 2018 B2
10090699 Leabman Oct 2018 B1
10090714 Bohn et al. Oct 2018 B2
10090886 Bell et al. Oct 2018 B1
10103552 Leabman et al. Oct 2018 B1
10103582 Leabman et al. Oct 2018 B2
10110046 Esquibel et al. Oct 2018 B1
10116143 Leabman et al. Oct 2018 B1
10116162 Hosseini et al. Oct 2018 B2
10116170 Leabman Oct 2018 B1
10122219 Hosseini et al. Nov 2018 B1
10122415 Bell et al. Nov 2018 B2
10124754 Leabman Nov 2018 B1
10128686 Leabman et al. Nov 2018 B1
10128693 Bell et al. Nov 2018 B2
10128695 Leabman et al. Nov 2018 B2
10128699 Leabman Nov 2018 B2
10134260 Bell et al. Nov 2018 B1
10135112 Hosseini Nov 2018 B1
10135286 Hosseini et al. Nov 2018 B2
10135294 Leabman Nov 2018 B1
10135295 Leabman Nov 2018 B2
10141768 Leabman et al. Nov 2018 B2
10141771 Hosseini et al. Nov 2018 B1
10141791 Bell et al. Nov 2018 B2
10148097 Leabman et al. Dec 2018 B1
10148133 Leabman et al. Dec 2018 B2
10153645 Bell et al. Dec 2018 B1
10153653 Bell et al. Dec 2018 B1
10153660 Leabman et al. Dec 2018 B1
10158257 Leabman Dec 2018 B2
10158259 Leabman Dec 2018 B1
10164478 Leabman Dec 2018 B2
10170917 Bell et al. Jan 2019 B1
10177594 Contopanagos Jan 2019 B2
10181756 Bae et al. Jan 2019 B2
10186892 Hosseini et al. Jan 2019 B2
10186893 Bell et al. Jan 2019 B2
10186911 Leabman Jan 2019 B2
10186913 Leabman et al. Jan 2019 B2
10193396 Bell et al. Jan 2019 B1
10199835 Bell Feb 2019 B2
10199849 Bell Feb 2019 B1
10199850 Leabman Feb 2019 B2
10205239 Contopanagos et al. Feb 2019 B1
10206185 Leabman et al. Feb 2019 B2
10211674 Leabman et al. Feb 2019 B1
10211680 Leabman et al. Feb 2019 B2
10211682 Bell et al. Feb 2019 B2
10211685 Bell et al. Feb 2019 B2
10218207 Hosseini et al. Feb 2019 B2
10218227 Leabman et al. Feb 2019 B2
10223717 Bell Mar 2019 B1
10224758 Leabman et al. Mar 2019 B2
10224982 Leabman Mar 2019 B1
10230266 Leabman et al. Mar 2019 B1
10243414 Leabman et al. Mar 2019 B1
10256657 Hosseini et al. Apr 2019 B2
10256677 Hosseini et al. Apr 2019 B2
10263432 Leabman et al. Apr 2019 B1
10263476 Leabman Apr 2019 B2
10270261 Bell et al. Apr 2019 B2
10277054 Hosseini Apr 2019 B2
10291055 Bell et al. May 2019 B1
10291056 Bell et al. May 2019 B2
10291066 Leabman May 2019 B1
10291294 Leabman May 2019 B2
10298024 Leabman May 2019 B2
10298133 Leabman May 2019 B2
10305315 Leabman et al. May 2019 B2
10312715 Leabman Jun 2019 B2
10320446 Hosseini Jun 2019 B2
10333332 Hosseini Jun 2019 B1
10381880 Leabman et al. Aug 2019 B2
10389161 Hosseini et al. Aug 2019 B2
10396588 Leabman Aug 2019 B2
10396604 Bell et al. Aug 2019 B2
10439442 Hosseini et al. Oct 2019 B2
10439448 Bell et al. Oct 2019 B2
10447093 Hosseini Oct 2019 B2
10476312 Johnston et al. Nov 2019 B2
10491029 Hosseini Nov 2019 B2
10498144 Leabman et al. Dec 2019 B2
10511097 Kornaros et al. Dec 2019 B2
10516289 Leabman et al. Dec 2019 B2
10516301 Leabman Dec 2019 B2
10523033 Leabman Dec 2019 B2
10523058 Leabman Dec 2019 B2
10554052 Bell et al. Feb 2020 B2
10594165 Hosseini Mar 2020 B2
10615647 Johnston et al. Apr 2020 B2
10680319 Hosseini et al. Jun 2020 B2
10714984 Hosseini et al. Jul 2020 B2
10734717 Hosseini Aug 2020 B2
10778041 Leabman Sep 2020 B2
10790674 Bell et al. Sep 2020 B2
10840743 Johnston et al. Nov 2020 B2
10848853 Leabman et al. Nov 2020 B2
10879740 Hosseini Dec 2020 B2
10923954 Leabman Feb 2021 B2
10958095 Leabman et al. Mar 2021 B2
10965164 Leabman et al. Mar 2021 B2
10992185 Leabman Apr 2021 B2
10992187 Leabman Apr 2021 B2
11011942 Liu May 2021 B2
11018779 Sarajedini May 2021 B2
11056929 Bell et al. Jul 2021 B2
11114885 Hosseini et al. Sep 2021 B2
11159057 Kabiri et al. Oct 2021 B2
11233425 Leabman Jan 2022 B2
11245191 Kornaros et al. Feb 2022 B2
11342798 Johnston et al. May 2022 B2
11437735 Papio-Toda et al. Sep 2022 B2
20010027876 Tsukamoto et al. Oct 2001 A1
20020001307 Nguyen et al. Jan 2002 A1
20020024471 Ishitobi Feb 2002 A1
20020028655 Rosener et al. Mar 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020054330 Jinbo et al. May 2002 A1
20020065052 Pande et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095980 Breed et al. Jul 2002 A1
20020103447 Terry Aug 2002 A1
20020123776 Von Arx Sep 2002 A1
20020133592 Matsuda Sep 2002 A1
20020171594 Fang Nov 2002 A1
20020172223 Stilp Nov 2002 A1
20030005759 Breed et al. Jan 2003 A1
20030038750 Chen Feb 2003 A1
20030058187 Billiet et al. Mar 2003 A1
20030076274 Phelan et al. Apr 2003 A1
20030179152 Watada et al. Sep 2003 A1
20030179573 Chun Sep 2003 A1
20030192053 Sheppard et al. Oct 2003 A1
20040019624 Sukegawa Jan 2004 A1
20040020100 O'Brian et al. Feb 2004 A1
20040036657 Forster et al. Feb 2004 A1
20040066251 Eleftheriades et al. Apr 2004 A1
20040107641 Walton et al. Jun 2004 A1
20040113543 Daniels Jun 2004 A1
20040119675 Washio et al. Jun 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130442 Breed Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040145342 Lyon Jul 2004 A1
20040155832 Yuanzhu Aug 2004 A1
20040196190 Mendolia et al. Oct 2004 A1
20040203979 Attar et al. Oct 2004 A1
20040207559 Milosavljevic Oct 2004 A1
20040218759 Yacobi Nov 2004 A1
20040241402 Kawate Dec 2004 A1
20040259604 Mickle et al. Dec 2004 A1
20040263124 Wieck et al. Dec 2004 A1
20050007276 Barrick et al. Jan 2005 A1
20050030118 Wang Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050055316 Williams Mar 2005 A1
20050077872 Single Apr 2005 A1
20050093766 Turner May 2005 A1
20050116683 Cheng Jun 2005 A1
20050117660 Vialle et al. Jun 2005 A1
20050134517 Gottl Jun 2005 A1
20050171411 KenKnight Aug 2005 A1
20050198673 Kit et al. Sep 2005 A1
20050227619 Lee et al. Oct 2005 A1
20050232469 Schofield Oct 2005 A1
20050237249 Nagel Oct 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050282591 Shaff Dec 2005 A1
20060013335 Leabman Jan 2006 A1
20060019712 Choi Jan 2006 A1
20060030279 Leabman et al. Feb 2006 A1
20060033674 Essig, Jr. et al. Feb 2006 A1
20060056855 Nakagawa et al. Mar 2006 A1
20060071308 Tang et al. Apr 2006 A1
20060092079 de Rochemont May 2006 A1
20060094425 Mickle et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060119532 Yun et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060160517 Yoon Jul 2006 A1
20060183473 Ukon Aug 2006 A1
20060184705 Nakajima Aug 2006 A1
20060190063 Kanzius Aug 2006 A1
20060192913 Shutou et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060266564 Perlman et al. Nov 2006 A1
20060266917 Baldis et al. Nov 2006 A1
20060278706 Hatakayama et al. Dec 2006 A1
20060284593 Nagy et al. Dec 2006 A1
20060287094 Mahaffey et al. Dec 2006 A1
20070007821 Rossetti Jan 2007 A1
20070019693 Graham Jan 2007 A1
20070021140 Keyes Jan 2007 A1
20070060185 Simon et al. Mar 2007 A1
20070070490 Tsunoda et al. Mar 2007 A1
20070090997 Brown et al. Apr 2007 A1
20070093269 Leabman et al. Apr 2007 A1
20070097653 Gilliland et al. May 2007 A1
20070099644 Batra et al. May 2007 A1
20070103110 Sagoo May 2007 A1
20070106894 Zhang May 2007 A1
20070109121 Cohen May 2007 A1
20070139000 Kozuma Jun 2007 A1
20070149162 Greene et al. Jun 2007 A1
20070164868 Deavours et al. Jul 2007 A1
20070173196 Gallic Jul 2007 A1
20070173214 Mickle et al. Jul 2007 A1
20070178857 Greene et al. Aug 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070191074 Harrist et al. Aug 2007 A1
20070191075 Greene et al. Aug 2007 A1
20070197281 Stronach Aug 2007 A1
20070210960 Rofougaran et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070228833 Stevens et al. Oct 2007 A1
20070229261 Zimmerman et al. Oct 2007 A1
20070240297 Yang et al. Oct 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273486 Shiotsu Nov 2007 A1
20070291165 Wang Dec 2007 A1
20070296639 Hook et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080014897 Cook et al. Jan 2008 A1
20080024376 Norris et al. Jan 2008 A1
20080048917 Achour et al. Feb 2008 A1
20080062062 Borau et al. Mar 2008 A1
20080062255 Gal Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080074324 Puzella et al. Mar 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080110263 Klessel et al. May 2008 A1
20080113816 Mahaffey et al. May 2008 A1
20080122297 Arai May 2008 A1
20080123383 Shionoiri May 2008 A1
20080129536 Randall et al. Jun 2008 A1
20080140278 Breed Jun 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080197802 Onishi Aug 2008 A1
20080204342 Kharadly Aug 2008 A1
20080204350 Tam et al. Aug 2008 A1
20080210762 Osada et al. Sep 2008 A1
20080211458 Lawther et al. Sep 2008 A1
20080233890 Baker Sep 2008 A1
20080248758 Schedelbeck et al. Oct 2008 A1
20080248846 Stronach et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266191 Hilgers Oct 2008 A1
20080278378 Chang et al. Nov 2008 A1
20080309452 Zeine Dec 2008 A1
20090002493 Kates Jan 2009 A1
20090010316 Rofougaran et al. Jan 2009 A1
20090019183 Wu et al. Jan 2009 A1
20090036065 Siu Feb 2009 A1
20090039828 Jakubowski Feb 2009 A1
20090047998 Alberth, Jr. Feb 2009 A1
20090058354 Harrison Mar 2009 A1
20090058361 John Mar 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090060012 Gresset et al. Mar 2009 A1
20090067198 Graham et al. Mar 2009 A1
20090067208 Martin et al. Mar 2009 A1
20090073066 Jordon et al. Mar 2009 A1
20090096412 Huang Apr 2009 A1
20090096413 Partovi Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090122847 Nysen et al. May 2009 A1
20090128262 Lee et al. May 2009 A1
20090157911 Aihara Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090180653 Sjursen et al. Jul 2009 A1
20090200985 Zane et al. Aug 2009 A1
20090206791 Jung Aug 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090207092 Nysen et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090218891 McCollough Sep 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090256752 Akkermans et al. Oct 2009 A1
20090264069 Yamasuge Oct 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090280866 Lo et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284325 Rossiter et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090286476 Toncich et al. Nov 2009 A1
20090291634 Saarisalo Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312046 Clevenger et al. Dec 2009 A1
20090315412 Yamamoto et al. Dec 2009 A1
20090322281 Kamijo et al. Dec 2009 A1
20100001683 Huang et al. Jan 2010 A1
20100007307 Baarman et al. Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100019686 Gutierrez, Jr. Jan 2010 A1
20100019908 Cho et al. Jan 2010 A1
20100026605 Yang et al. Feb 2010 A1
20100027379 Saulnier et al. Feb 2010 A1
20100029383 Dai Feb 2010 A1
20100033021 Bennett Feb 2010 A1
20100033390 Alamouti et al. Feb 2010 A1
20100034238 Bennett Feb 2010 A1
20100041453 Grimm, Jr. Feb 2010 A1
20100044123 Perlman et al. Feb 2010 A1
20100054200 Tsai Mar 2010 A1
20100060534 Oodachi Mar 2010 A1
20100066631 Puzella et al. Mar 2010 A1
20100069112 Sun Mar 2010 A1
20100075607 Hosoya Mar 2010 A1
20100079005 Hyde et al. Apr 2010 A1
20100079011 Hyde et al. Apr 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100090524 Obayashi Apr 2010 A1
20100090656 Shearer et al. Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100117596 Cook et al. May 2010 A1
20100117926 DeJean, II May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100123618 Martin et al. May 2010 A1
20100123624 Minear et al. May 2010 A1
20100124040 Diebel et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100142418 Nishioka et al. Jun 2010 A1
20100142509 Zhu et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100156741 Vazquez et al. Jun 2010 A1
20100164296 Kurs et al. Jul 2010 A1
20100164433 Janefalker et al. Jul 2010 A1
20100167664 Szini Jul 2010 A1
20100171461 Baarman et al. Jul 2010 A1
20100171676 Tani et al. Jul 2010 A1
20100174629 Taylor et al. Jul 2010 A1
20100176934 Chou et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201314 Toncich et al. Aug 2010 A1
20100207572 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100214177 Parsche Aug 2010 A1
20100222010 Ozaki et al. Sep 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100227570 Hendin Sep 2010 A1
20100231470 Lee et al. Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100253281 Li Oct 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100259447 Crouch Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100279606 Hillan et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100295372 Hyde et al. Nov 2010 A1
20100308767 Rofougaran et al. Dec 2010 A1
20100309079 Rofougaran et al. Dec 2010 A1
20100309088 Hyvonen et al. Dec 2010 A1
20100315045 Zeine Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110009057 Saunamäki Jan 2011 A1
20110013198 Shirley Jan 2011 A1
20110018360 Baarman et al. Jan 2011 A1
20110028114 Kerselaers Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110032149 Leabman Feb 2011 A1
20110032866 Leabman Feb 2011 A1
20110034190 Leabman Feb 2011 A1
20110034191 Leabman Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043163 Baarman et al. Feb 2011 A1
20110043327 Baarman et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110056215 Ham Mar 2011 A1
20110057607 Carobolante Mar 2011 A1
20110057853 Kim et al. Mar 2011 A1
20110062788 Chen et al. Mar 2011 A1
20110074342 MacLaughlin Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110078092 Kim et al. Mar 2011 A1
20110090126 Szini et al. Apr 2011 A1
20110109167 Park et al. May 2011 A1
20110114401 Kanno et al. May 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115432 El-Maleh May 2011 A1
20110115605 Dimig et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110122018 Tarng et al. May 2011 A1
20110122026 DeLaquil et al. May 2011 A1
20110127845 Walley et al. Jun 2011 A1
20110127952 Walley et al. Jun 2011 A1
20110133655 Recker et al. Jun 2011 A1
20110133691 Hautanen Jun 2011 A1
20110148578 Aioi et al. Jun 2011 A1
20110148595 Miller et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110154429 Stantchev Jun 2011 A1
20110156493 Bennett Jun 2011 A1
20110156494 Mashinsky Jun 2011 A1
20110156640 Moshfeghi Jun 2011 A1
20110163128 Taguchi et al. Jul 2011 A1
20110175455 Hashiguchi Jul 2011 A1
20110175461 Tinaphong Jul 2011 A1
20110181120 Liu et al. Jul 2011 A1
20110182245 Malkamaki et al. Jul 2011 A1
20110184842 Melen Jul 2011 A1
20110188207 Won et al. Aug 2011 A1
20110193688 Forsell Aug 2011 A1
20110194543 Zhao et al. Aug 2011 A1
20110195722 Walter et al. Aug 2011 A1
20110199046 Tsai et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110217923 Ma Sep 2011 A1
20110220634 Yeh Sep 2011 A1
20110221389 Won et al. Sep 2011 A1
20110222272 Yeh Sep 2011 A1
20110227725 Muirhead Sep 2011 A1
20110243040 Khan et al. Oct 2011 A1
20110243050 Yanover Oct 2011 A1
20110244913 Kim et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110249678 Bonicatto Oct 2011 A1
20110254377 Widmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110259953 Baarman et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110278941 Krishna et al. Nov 2011 A1
20110279226 Chen et al. Nov 2011 A1
20110281535 Low et al. Nov 2011 A1
20110282415 Eckhoff et al. Nov 2011 A1
20110285213 Kowalewski Nov 2011 A1
20110286374 Shin et al. Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110302078 Failing Dec 2011 A1
20110304216 Baarman Dec 2011 A1
20110304437 Beeler Dec 2011 A1
20110304521 Ando et al. Dec 2011 A1
20120007441 John Jan 2012 A1
20120013196 Kim et al. Jan 2012 A1
20120013198 Uramoto et al. Jan 2012 A1
20120013296 Heydari et al. Jan 2012 A1
20120019419 Prat et al. Jan 2012 A1
20120043887 Mesibov Feb 2012 A1
20120051109 Kim et al. Mar 2012 A1
20120051294 Guillouard Mar 2012 A1
20120056486 Endo et al. Mar 2012 A1
20120056741 Zhu et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120074891 Anderson et al. Mar 2012 A1
20120075072 Pappu Mar 2012 A1
20120080944 Recker et al. Apr 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120086284 Capanella et al. Apr 2012 A1
20120086615 Norair Apr 2012 A1
20120095617 Martin et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120098485 Kang et al. Apr 2012 A1
20120099675 Kitamura et al. Apr 2012 A1
20120103562 Clayton May 2012 A1
20120104849 Jackson May 2012 A1
20120105252 Wang May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120126743 Rivers, Jr May 2012 A1
20120132647 Beverly et al. May 2012 A1
20120133214 Yun et al. May 2012 A1
20120142291 Rath et al. Jun 2012 A1
20120146426 Sabo Jun 2012 A1
20120146576 Partovi Jun 2012 A1
20120146577 Tanabe Jun 2012 A1
20120147802 Ukita et al. Jun 2012 A1
20120149307 Terada et al. Jun 2012 A1
20120150670 Taylor et al. Jun 2012 A1
20120153894 Widmer et al. Jun 2012 A1
20120157019 Li Jun 2012 A1
20120161531 Kim et al. Jun 2012 A1
20120161544 Kashiwagi et al. Jun 2012 A1
20120169276 Wang Jul 2012 A1
20120169278 Choi Jul 2012 A1
20120173418 Beardsmore et al. Jul 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120181973 Lyden Jul 2012 A1
20120182427 Marshall Jul 2012 A1
20120188142 Shashi et al. Jul 2012 A1
20120187851 Huggins et al. Aug 2012 A1
20120193999 Zeine Aug 2012 A1
20120200399 Chae Aug 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jian et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120211214 Phan Aug 2012 A1
20120212071 Miyabayashi et al. Aug 2012 A1
20120212072 Miyabayashi et al. Aug 2012 A1
20120214462 Chu et al. Aug 2012 A1
20120214536 Kim et al. Aug 2012 A1
20120228392 Cameron et al. Sep 2012 A1
20120228956 Kamata Sep 2012 A1
20120231856 Lee et al. Sep 2012 A1
20120235636 Partovi Sep 2012 A1
20120242283 Kim et al. Sep 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248888 Kesler et al. Oct 2012 A1
20120248891 Drennen Oct 2012 A1
20120249051 Son et al. Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120265272 Judkins Oct 2012 A1
20120267900 Huffman et al. Oct 2012 A1
20120268238 Park et al. Oct 2012 A1
20120270592 Ngai Oct 2012 A1
20120274154 DeLuca Nov 2012 A1
20120280650 Kim et al. Nov 2012 A1
20120286582 Kim et al. Nov 2012 A1
20120292993 Mettler et al. Nov 2012 A1
20120293021 Teggatz et al. Nov 2012 A1
20120293119 Park et al. Nov 2012 A1
20120299389 Lee et al. Nov 2012 A1
20120299540 Perry Nov 2012 A1
20120299541 Perry Nov 2012 A1
20120299542 Perry Nov 2012 A1
20120300588 Perry Nov 2012 A1
20120300592 Perry Nov 2012 A1
20120300593 Perry Nov 2012 A1
20120306284 Lee et al. Dec 2012 A1
20120306433 Kim et al. Dec 2012 A1
20120306705 Sakurai et al. Dec 2012 A1
20120306707 Yang et al. Dec 2012 A1
20120306720 Tanmi et al. Dec 2012 A1
20120307873 Kim et al. Dec 2012 A1
20120309295 Maguire Dec 2012 A1
20120309308 Kim et al. Dec 2012 A1
20120309332 Liao Dec 2012 A1
20120312446 Hood Dec 2012 A1
20120313446 Park et al. Dec 2012 A1
20120313449 Kurs Dec 2012 A1
20120313835 Gebretnsae Dec 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130002550 Zalewski Jan 2013 A1
20130005252 Lee et al. Jan 2013 A1
20130018439 Chow et al. Jan 2013 A1
20130024059 Miller et al. Jan 2013 A1
20130026981 Van Der Lee Jan 2013 A1
20130026982 Rothenbaum Jan 2013 A1
20130032589 Chung Feb 2013 A1
20130033571 Steen Feb 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130043738 Park et al. Feb 2013 A1
20130044035 Zhuang Feb 2013 A1
20130049471 Oleynik Feb 2013 A1
20130049475 Kim et al. Feb 2013 A1
20130049484 Weissentern et al. Feb 2013 A1
20130057078 Lee Mar 2013 A1
20130057205 Lee et al. Mar 2013 A1
20130057210 Negaard et al. Mar 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130058379 Kim et al. Mar 2013 A1
20130062959 Lee et al. Mar 2013 A1
20130063082 Lee et al. Mar 2013 A1
20130063143 Adalsteinsson et al. Mar 2013 A1
20130063266 Yunker et al. Mar 2013 A1
20130069444 Waffenschmidt et al. Mar 2013 A1
20130076308 Niskala et al. Mar 2013 A1
20130077650 Traxler et al. Mar 2013 A1
20130078918 Crowley et al. Mar 2013 A1
20130082651 Park et al. Apr 2013 A1
20130082653 Lee et al. Apr 2013 A1
20130083774 Son et al. Apr 2013 A1
20130088082 Kang et al. Apr 2013 A1
20130088090 Wu Apr 2013 A1
20130088192 Eaton Apr 2013 A1
20130088331 Cho Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130099389 Hong et al. Apr 2013 A1
20130099586 Kato Apr 2013 A1
20130106197 Bae et al. May 2013 A1
20130107023 Tanaka et al. May 2013 A1
20130119777 Rees May 2013 A1
20130119778 Jung May 2013 A1
20130119929 Partovi May 2013 A1
20130120052 Siska May 2013 A1
20130120205 Thomson et al. May 2013 A1
20130120206 Biancotto et al. May 2013 A1
20130120217 Ueda et al. May 2013 A1
20130130621 Kim et al. May 2013 A1
20130132010 Winger et al. May 2013 A1
20130134923 Smith May 2013 A1
20130137455 Xia May 2013 A1
20130141037 Jenwatanavet et al. Jun 2013 A1
20130148341 Williams Jun 2013 A1
20130149975 Yu et al. Jun 2013 A1
20130154387 Lee et al. Jun 2013 A1
20130155748 Sundstrom Jun 2013 A1
20130157729 Tabe Jun 2013 A1
20130162335 Kim et al. Jun 2013 A1
20130169061 Microshnichenko et al. Jul 2013 A1
20130169219 Gray Jul 2013 A1
20130169348 Shi Jul 2013 A1
20130171939 Tian et al. Jul 2013 A1
20130175877 Abe et al. Jul 2013 A1
20130178253 Karaoguz Jul 2013 A1
20130181881 Christie et al. Jul 2013 A1
20130187475 Vendik Jul 2013 A1
20130190031 Persson et al. Jul 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130200064 Alexander Aug 2013 A1
20130207477 Nam et al. Aug 2013 A1
20130207604 Zeine Aug 2013 A1
20130207879 Rada et al. Aug 2013 A1
20130210357 Qin et al. Aug 2013 A1
20130221757 Cho et al. Aug 2013 A1
20130222201 Ma et al. Aug 2013 A1
20130223538 Wang et al. Aug 2013 A1
20130234530 Miyauchi Sep 2013 A1
20130234536 Chemishkian et al. Sep 2013 A1
20130234658 Endo et al. Sep 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130241474 Moshfeghi Sep 2013 A1
20130249478 Hirano Sep 2013 A1
20130249479 Partovi Sep 2013 A1
20130249682 Van Wiemeersch et al. Sep 2013 A1
20130250102 Scanlon et al. Sep 2013 A1
20130254578 Huang et al. Sep 2013 A1
20130264997 Lee et al. Oct 2013 A1
20130268782 Tam et al. Oct 2013 A1
20130270923 Cook et al. Oct 2013 A1
20130278076 Proud Oct 2013 A1
20130278209 Von Novak Oct 2013 A1
20130285464 Miwa Oct 2013 A1
20130285477 Lo et al. Oct 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20130288600 Kuusilinna et al. Oct 2013 A1
20130288617 Kim et al. Oct 2013 A1
20130293423 Moshfeghi Nov 2013 A1
20130300356 Yang Nov 2013 A1
20130307751 Yu-Juin et al. Nov 2013 A1
20130310020 Kazuhiro Nov 2013 A1
20130311798 Sultenfuss Nov 2013 A1
20130328417 Takeuchi Dec 2013 A1
20130334883 Kim et al. Dec 2013 A1
20130339108 Ryder et al. Dec 2013 A1
20130343208 Sexton et al. Dec 2013 A1
20130343251 Zhang Dec 2013 A1
20130343585 Bennett et al. Dec 2013 A1
20140001846 Mosebrook Jan 2014 A1
20140001875 Nahidipour Jan 2014 A1
20140001876 Fujiwara et al. Jan 2014 A1
20140006017 Sen Jan 2014 A1
20140008993 Leabman Jan 2014 A1
20140009110 Lee Jan 2014 A1
20140011531 Burstrom et al. Jan 2014 A1
20140015336 Weber et al. Jan 2014 A1
20140015344 Mohamadi Jan 2014 A1
20140021907 Yu et al. Jan 2014 A1
20140021908 McCool Jan 2014 A1
20140035524 Zeine Feb 2014 A1
20140035526 Tripathi et al. Feb 2014 A1
20140035786 Ley Feb 2014 A1
20140043248 Yeh Feb 2014 A1
20140049422 Von Novak et al. Feb 2014 A1
20140054971 Kissin Feb 2014 A1
20140055098 Lee et al. Feb 2014 A1
20140057618 Zirwas et al. Feb 2014 A1
20140062395 Kwon et al. Mar 2014 A1
20140082435 Kitgawa Mar 2014 A1
20140086125 Polo et al. Mar 2014 A1
20140086592 Nakahara et al. Mar 2014 A1
20140091756 Ofstein et al. Apr 2014 A1
20140091968 Harel et al. Apr 2014 A1
20140091974 Desclos et al. Apr 2014 A1
20140103869 Radovic Apr 2014 A1
20140104157 Burns Apr 2014 A1
20140111147 Soar Apr 2014 A1
20140111153 Kwon et al. Apr 2014 A1
20140113689 Lee Apr 2014 A1
20140117921 Suomela May 2014 A1
20140117946 Muller et al. May 2014 A1
20140118140 Amis May 2014 A1
20140128107 An May 2014 A1
20140132210 Partovi May 2014 A1
20140133279 Khuri-Yakub May 2014 A1
20140139034 Sankar et al. May 2014 A1
20140139039 Cook et al. May 2014 A1
20140139180 Kim et al. May 2014 A1
20140141838 Cai et al. May 2014 A1
20140142876 John et al. May 2014 A1
20140143933 Low et al. May 2014 A1
20140145879 Pan May 2014 A1
20140145884 Dang et al. May 2014 A1
20140152117 Sanker Jun 2014 A1
20140159651 Von Novak et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140159662 Furui Jun 2014 A1
20140159667 Kim et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140175876 Cheatham, III et al. Jun 2014 A1
20140175893 Sengupta et al. Jun 2014 A1
20140176054 Porat et al. Jun 2014 A1
20140176061 Cheatham, III et al. Jun 2014 A1
20140176082 Visser Jun 2014 A1
20140177399 Teng et al. Jun 2014 A1
20140183964 Walley Jul 2014 A1
20140184148 Van Der Lee et al. Jul 2014 A1
20140184155 Cha Jul 2014 A1
20140184163 Das et al. Jul 2014 A1
20140184170 Jeong Jul 2014 A1
20140191568 Partovi Jul 2014 A1
20140191818 Waffenschmidt et al. Jul 2014 A1
20140194092 Wanstedt et al. Jul 2014 A1
20140194095 Wanstedt et al. Jul 2014 A1
20140197691 Wang Jul 2014 A1
20140203629 Hoffman et al. Jul 2014 A1
20140206384 Kim et al. Jul 2014 A1
20140210281 Ito et al. Jul 2014 A1
20140217955 Lin Aug 2014 A1
20140217967 Zeine et al. Aug 2014 A1
20140225805 Pan et al. Aug 2014 A1
20140232320 Ento July et al. Aug 2014 A1
20140232610 Shigemoto et al. Aug 2014 A1
20140239733 Mach et al. Aug 2014 A1
20140241231 Zeine Aug 2014 A1
20140245036 Oishi Aug 2014 A1
20140246416 White Sep 2014 A1
20140247152 Proud Sep 2014 A1
20140252813 Lee et al. Sep 2014 A1
20140252866 Walsh et al. Sep 2014 A1
20140265725 Angle et al. Sep 2014 A1
20140265727 Berte Sep 2014 A1
20140265943 Angle et al. Sep 2014 A1
20140266025 Jakubowski Sep 2014 A1
20140266946 Bily et al. Sep 2014 A1
20140273819 Nadakuduti et al. Sep 2014 A1
20140273892 Nourbakhsh Sep 2014 A1
20140281655 Angle et al. Sep 2014 A1
20140292090 Cordeiro et al. Oct 2014 A1
20140292269 Keating et al. Oct 2014 A1
20140292451 Zimmerman Oct 2014 A1
20140300452 Rofe et al. Oct 2014 A1
20140312706 Fiorello et al. Oct 2014 A1
20140325218 Shimizu et al. Oct 2014 A1
20140327320 Muhs et al. Nov 2014 A1
20140327390 Park et al. Nov 2014 A1
20140333142 Desrosiers Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140354063 Leabman et al. Dec 2014 A1
20140354221 Leabman et al. Dec 2014 A1
20140355718 Guan et al. Dec 2014 A1
20140368048 Leabman et al. Dec 2014 A1
20140368161 Leabman et al. Dec 2014 A1
20140368405 Ek et al. Dec 2014 A1
20140370929 Khawand et al. Dec 2014 A1
20140375139 Tsukamoto Dec 2014 A1
20140375253 Leabman et al. Dec 2014 A1
20140375258 Arkhipenkov Dec 2014 A1
20140375261 Manova-Elssibony et al. Dec 2014 A1
20150001949 Leabman et al. Jan 2015 A1
20150002086 Matos et al. Jan 2015 A1
20150003207 Lee et al. Jan 2015 A1
20150008980 Kim et al. Jan 2015 A1
20150011160 Uurgovan et al. Jan 2015 A1
20150015180 Miller et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150015192 Leabman et al. Jan 2015 A1
20150021990 Myer et al. Jan 2015 A1
20150022008 Leabman et al. Jan 2015 A1
20150022010 Leabman et al. Jan 2015 A1
20150022194 Almalki et al. Jan 2015 A1
20150023204 Wil et al. Jan 2015 A1
20150028688 Masaoka Jan 2015 A1
20150028694 Leabman et al. Jan 2015 A1
20150028697 Leabman et al. Jan 2015 A1
20150028875 Irie et al. Jan 2015 A1
20150029397 Leabman et al. Jan 2015 A1
20150035378 Calhoun et al. Feb 2015 A1
20150035709 Lim Feb 2015 A1
20150035715 Kim et al. Feb 2015 A1
20150039482 Fuinaga Feb 2015 A1
20150041459 Leabman et al. Feb 2015 A1
20150042265 Leabman et al. Feb 2015 A1
20150044977 Ramasamy et al. Feb 2015 A1
20150046526 Bush et al. Feb 2015 A1
20150061404 Lamenza et al. Mar 2015 A1
20150076917 Leabman et al. Mar 2015 A1
20150076927 Leabman et al. Mar 2015 A1
20150077036 Leabman et al. Mar 2015 A1
20150077037 Leabman et al. Mar 2015 A1
20150087228 Porat Mar 2015 A1
20150091520 Blum et al. Apr 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150097442 Muurinen Apr 2015 A1
20150097663 Sloo et al. Apr 2015 A1
20150102764 Leabman et al. Apr 2015 A1
20150102769 Leabman et al. Apr 2015 A1
20150102942 Houser et al. Apr 2015 A1
20150102973 Hand et al. Apr 2015 A1
20150108848 Joehren Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150115877 Aria et al. Apr 2015 A1
20150115878 Park Apr 2015 A1
20150116153 Chen et al. Apr 2015 A1
20150128733 Taylor et al. May 2015 A1
20150130285 Leabman et al. May 2015 A1
20150130293 Hajimiri et al. May 2015 A1
20150137612 Yamakawa et al. May 2015 A1
20150139124 Da May 2015 A1
20150148664 Stolka et al. May 2015 A1
20150155737 Mayo Jun 2015 A1
20150155738 Leabman et al. Jun 2015 A1
20150162662 Chen et al. Jun 2015 A1
20150162751 Leabman et al. Jun 2015 A1
20150162779 Lee et al. Jun 2015 A1
20150171512 Chen et al. Jun 2015 A1
20150171513 Chen et al. Jun 2015 A1
20150171656 Leabman et al. Jun 2015 A1
20150171658 Manova-Elssibony et al. Jun 2015 A1
20150171931 Won et al. Jun 2015 A1
20150177326 Chakraborty et al. Jun 2015 A1
20150180133 Hunt Jun 2015 A1
20150180249 Jeon et al. Jun 2015 A1
20150180284 Kang et al. Jun 2015 A1
20150181117 Park et al. Jun 2015 A1
20150187491 Yanagawa Jul 2015 A1
20150188352 Peek et al. Jul 2015 A1
20150199665 Chu Jul 2015 A1
20150201385 Mercer et al. Jul 2015 A1
20150207333 Baarman et al. Jul 2015 A1
20150207542 Zeine Jul 2015 A1
20150222126 Leabman et al. Aug 2015 A1
20150233987 Von Novak, III et al. Aug 2015 A1
20150234144 Cameron et al. Aug 2015 A1
20150236520 Baarman Aug 2015 A1
20150244070 Cheng et al. Aug 2015 A1
20150244080 Gregoire Aug 2015 A1
20150244187 Horie Aug 2015 A1
20150244201 Chu Aug 2015 A1
20150244341 Ritter et al. Aug 2015 A1
20150249484 Mach et al. Sep 2015 A1
20150255989 Walley et al. Sep 2015 A1
20150256097 Gudan et al. Sep 2015 A1
20150260835 Widmer et al. Sep 2015 A1
20150262465 Pritchett Sep 2015 A1
20150263534 Lee et al. Sep 2015 A1
20150263548 Cooper Sep 2015 A1
20150270618 Zhu et al. Sep 2015 A1
20150270622 Takasaki et al. Sep 2015 A1
20150270741 Leabman et al. Sep 2015 A1
20150278558 Priev et al. Oct 2015 A1
20150280429 Makita et al. Oct 2015 A1
20150280484 Radziemski et al. Oct 2015 A1
20150288074 Harper et al. Oct 2015 A1
20150288438 Maltsev et al. Oct 2015 A1
20150311585 Church et al. Oct 2015 A1
20150312721 Singh Oct 2015 A1
20150318729 Leabman Nov 2015 A1
20150326024 Bell et al. Nov 2015 A1
20150326069 Petras et al. Nov 2015 A1
20150326070 Petras et al. Nov 2015 A1
20150326072 Petras et al. Nov 2015 A1
20150326143 Petras et al. Nov 2015 A1
20150327085 Hadani Nov 2015 A1
20150333528 Leabman Nov 2015 A1
20150333573 Leabman Nov 2015 A1
20150333800 Perry et al. Nov 2015 A1
20150339497 Kurian Nov 2015 A1
20150340759 Bridgelall et al. Nov 2015 A1
20150340903 Bell et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150358222 Berger et al. Dec 2015 A1
20150365137 Miller et al. Dec 2015 A1
20150365138 Miller et al. Dec 2015 A1
20160005068 Im et al. Jan 2016 A1
20160012695 Bell et al. Jan 2016 A1
20160013560 Daniels Jan 2016 A1
20160013677 Bell et al. Jan 2016 A1
20160013855 Campos Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160020831 Hamada Jan 2016 A1
20160028403 McCaughan et al. Jan 2016 A1
20160033254 Zeine et al. Feb 2016 A1
20160042206 Pesavento et al. Feb 2016 A1
20160043571 Kesler et al. Feb 2016 A1
20160043572 Cooper et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160056635 Bell Feb 2016 A1
20160056640 Mao Feb 2016 A1
20160064959 Jung Mar 2016 A1
20160065005 Won et al. Mar 2016 A1
20160079799 Khlat Mar 2016 A1
20160087483 Hietala et al. Mar 2016 A1
20160087486 Pogorelik et al. Mar 2016 A1
20160094091 Shin et al. Mar 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160099601 Leabman et al. Apr 2016 A1
20160099602 Leabman Apr 2016 A1
20160099614 Leabman et al. Apr 2016 A1
20160099755 Leabman et al. Apr 2016 A1
20160099757 Leabman et al. Apr 2016 A1
20160112787 Rich Apr 2016 A1
20160126749 Shichino et al. May 2016 A1
20160126752 Vuori et al. May 2016 A1
20160126776 Kim et al. May 2016 A1
20160141908 Jakl et al. May 2016 A1
20160164563 Khawand et al. Jun 2016 A1
20160174162 Nadakuduti et al. Jun 2016 A1
20160181849 Govindaraj Jun 2016 A1
20160181867 Daniel et al. Jun 2016 A1
20160181873 Mitcheson et al. Jun 2016 A1
20160191121 Bell Jun 2016 A1
20160197522 Zeine et al. Jul 2016 A1
20160202343 Okutsu Jul 2016 A1
20160204642 Oh Jul 2016 A1
20160218545 Schroeder et al. Jul 2016 A1
20160233582 Piskun Aug 2016 A1
20160238365 Wixey et al. Aug 2016 A1
20160240908 Strong Aug 2016 A1
20160248276 Hong et al. Aug 2016 A1
20160294225 Blum et al. Oct 2016 A1
20160299210 Zeine Oct 2016 A1
20160301240 Zeine Oct 2016 A1
20160322868 Akuzawa et al. Nov 2016 A1
20160323000 Liu et al. Nov 2016 A1
20160336804 Son et al. Nov 2016 A1
20160339258 Perryman et al. Nov 2016 A1
20160344098 Ming Nov 2016 A1
20160359367 Rothschild Dec 2016 A1
20160380464 Chin et al. Dec 2016 A1
20160380466 Yang et al. Dec 2016 A1
20170005481 Von Novak, III et al. Jan 2017 A1
20170005516 Leabman et al. Jan 2017 A9
20170005524 Akuzawa et al. Jan 2017 A1
20170005530 Zeine et al. Jan 2017 A1
20170012448 Miller et al. Jan 2017 A1
20170025887 Hyun et al. Jan 2017 A1
20170025903 Song et al. Jan 2017 A1
20170026087 Tanabe Jan 2017 A1
20170040700 Leung Feb 2017 A1
20170043675 Jones et al. Feb 2017 A1
20170047784 Jung et al. Feb 2017 A1
20170063168 Uchida Mar 2017 A1
20170077733 Jeong et al. Mar 2017 A1
20170077765 Bell et al. Mar 2017 A1
20170077979 Papa et al. Mar 2017 A1
20170085437 Condeixa et al. Mar 2017 A1
20170092115 Sloo et al. Mar 2017 A1
20170110886 Reynolds et al. Apr 2017 A1
20170118714 Kaechi Apr 2017 A1
20170127196 Blum et al. May 2017 A1
20170134686 Leabman May 2017 A9
20170141582 Adolf et al. May 2017 A1
20170141583 Adolf et al. May 2017 A1
20170163076 Park et al. Jun 2017 A1
20170168595 Sakaguchi et al. Jun 2017 A1
20170179763 Leabman Jun 2017 A9
20170214422 Na et al. Jul 2017 A1
20170274787 Salter et al. Sep 2017 A1
20170338695 Port Nov 2017 A1
20180040929 Chappelle Feb 2018 A1
20180048178 Leabman Feb 2018 A1
20180090992 Shrivastava et al. Mar 2018 A1
20180248409 Johnston Aug 2018 A1
20180262050 Yankowitz Sep 2018 A1
20180309314 White et al. Oct 2018 A1
20180343040 Luzinski et al. Nov 2018 A1
20190052979 Chen et al. Feb 2019 A1
20190074133 Contopanagos Mar 2019 A1
20190131827 Johnston May 2019 A1
20190296586 Moshfeghi Sep 2019 A1
20190393729 Contopanagos et al. Dec 2019 A1
20190393928 Leabman Dec 2019 A1
20200112204 Hosseini et al. Apr 2020 A1
20200244104 Katajamaki et al. Jul 2020 A1
20200244111 Johnston et al. Jul 2020 A1
Foreign Referenced Citations (123)
Number Date Country
1829999 Sep 2006 CN
101465471 Jun 2009 CN
201278367 Jul 2009 CN
101507044 Aug 2009 CN
102027690 Apr 2011 CN
102089952 Jun 2011 CN
102227884 Oct 2011 CN
102292896 Dec 2011 CN
102860037 Jan 2013 CN
103151848 Jun 2013 CN
103348563 Oct 2013 CN
103594776 Feb 2014 CN
104040789 Sep 2014 CN
203826555 Sep 2014 CN
104090265 Oct 2014 CN
104167773 Nov 2014 CN
104347915 Feb 2015 CN
104584449 Apr 2015 CN
105762946 Jul 2016 CN
105765821 Jul 2016 CN
105932407 Sep 2016 CN
106329116 Jan 2017 CN
103380561 Sep 2017 CN
20016655 Feb 2002 DE
102013216953 Feb 2015 DE
102014219679 Mar 2016 DE
1028482 Aug 2000 EP
1081506 Mar 2001 EP
2346136 Jul 2011 EP
2397973 Feb 2012 EP
2545635 Jan 2013 EP
2747195 Jun 2014 EP
3067983 Sep 2016 EP
3118970 Jan 2017 EP
3145052 Mar 2017 EP
2404497 Feb 2005 GB
2556620 Jun 2018 GB
2000323916 Nov 2000 JP
2002209343 Jul 2002 JP
2002319816 Oct 2002 JP
2006157586 Jun 2006 JP
2007043432 Feb 2007 JP
2007135335 May 2007 JP
2008092704 Apr 2008 JP
2008167017 Jul 2008 JP
2009525715 Jul 2009 JP
2009201328 Sep 2009 JP
2009247125 Oct 2009 JP
2009253649 Oct 2009 JP
2011514781 May 2011 JP
2012016171 Jan 2012 JP
2012023950 Feb 2012 JP
2012095226 May 2012 JP
2012157167 Aug 2012 JP
2013099249 May 2013 JP
2013162624 Aug 2013 JP
2013169106 Aug 2013 JP
2014501080 Jan 2014 JP
2014075927 Apr 2014 JP
2014112063 Jun 2014 JP
2014176131 Sep 2014 JP
2014179746 Sep 2014 JP
2014223018 Nov 2014 JP
2015027345 Feb 2015 JP
2015128349 Jul 2015 JP
2015128370 Jul 2015 JP
2017077093 Apr 2017 JP
WO2015177859 Apr 2017 JP
2017085682 May 2017 JP
20060061776 Jun 2006 KR
20070044302 Apr 2007 KR
100755144 Sep 2007 KR
20110132059 Dec 2011 KR
20110135540 Dec 2011 KR
20120009843 Feb 2012 KR
20120108759 Oct 2012 KR
20130026977 Mar 2013 KR
20140023409 Feb 2014 KR
20140023410 Mar 2014 KR
20140085200 Jul 2014 KR
20150077678 Jul 2015 KR
2658332 Jun 2018 RU
WO 199508125 Mar 1995 WO
WO 199831070 Jul 1998 WO
WO 199952173 Oct 1999 WO
WO 2000111716 Feb 2001 WO
WO 2003091943 Nov 2003 WO
WO 2004077550 Sep 2004 WO
WO 2006122783 Nov 2006 WO
WO 2007070571 Jun 2007 WO
WO 2008024993 Feb 2008 WO
WO 2008156571 Dec 2008 WO
WO 2010022181 Feb 2010 WO
WO 2010039246 Apr 2010 WO
WO 2010116441 Oct 2010 WO
WO 2010138994 Dec 2010 WO
WO 2011112022 Sep 2011 WO
WO 2012177283 Dec 2012 WO
WO 2013031988 Mar 2013 WO
WO 2013035190 Mar 2013 WO
WO 2013038074 Mar 2013 WO
WO 2013042399 Mar 2013 WO
WO 2013052950 Apr 2013 WO
WO 2013105920 Jul 2013 WO
WO 2013175596 Nov 2013 WO
WO 2014068992 May 2014 WO
WO 2014075103 May 2014 WO
WO 2014113093 Jul 2014 WO
WO 2014132258 Sep 2014 WO
WO 2014134996 Sep 2014 WO
WO 2014156465 Oct 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014197472 Dec 2014 WO
WO 2014209587 Dec 2014 WO
WO 2015038773 Mar 2015 WO
WO 2015097809 Jul 2015 WO
WO 2015130902 Sep 2015 WO
WO 2015161323 Oct 2015 WO
WO 2016024869 Feb 2016 WO
WO 2016048512 Mar 2016 WO
WO 2016088261 Jun 2016 WO
WO 2016187357 Nov 2016 WO
Non-Patent Literature Citations (201)
Entry
Energous Corp., IPRP, PCT/US2014/037072, Nov. 10, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/037109, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/037170, Nov. 10, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040648, Dec. 8, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040697, Dec. 8, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/040705, Dec. 8, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041323, Dec. 22, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041342, Dec. 15, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041534, Dec. 29, 2015, 7 pgs.
Energous Corp., IPRP, PCT/US2014/041546, Dec. 29, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/041558, Dec. 29, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/044810, Jan. 5, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/045102, Jan. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/045119, Jan. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/045237, Jan. 12, 2016, 12 pgs.
Energous Corp., IPRP, PCT/US2014/046941, Jan. 19, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/046956, Jan. 19, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2014/046961, Jan. 19, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/047963, Jan. 26, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/048002, Feb. 12, 2015 8 pgs.
Energous Corp., IPRP, PCT/US2014/049666, Feb. 9, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/049669, Feb. 9, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/049673, Feb. 9, 2016, 6 pgs.
Energous Corp., IPRP, PCT/US2014/054891, Mar. 15, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/054897, Mar. 15, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/054953, Mar. 22, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/055195, Mar. 22, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/059317, Apr. 12, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/059340, Apr. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/059871, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/062661, May 3, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/062672, May 10, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/062682, May 3, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068282, Jun. 7, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/068568, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068586, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067242, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067243, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067245, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067246, Jun. 27, 2017, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067249, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067250, Mar. 30, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2015/067271, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2015/067275, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067279, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067282, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067287, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067291, Jul. 4, 2017, 4 pgs.
Energous Corp., IPRP, PCT/US2015/067294, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067325, Jul. 4, 2017, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067334, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068498, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068504, Jun. 26, 2018, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068565, Jun. 26, 2018, 9 pgs.
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs.
Energous Corp., IPRP, PCT/US2016/069313, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/069316, Jul. 3, 2018, 12 pgs.
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2017/065886, Jun. 18, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2018/012806, Jul. 9, 2019, 6 pgs.
Energous Corp., IPRP, PCT/US2018/025465, Oct. 1, 2019, 8 pgs.
Energous Corp., IPRP, PCT/US2018/031768, Nov. 12, 2019, 8 pgs.
Energous Corp., IPRP, PCT/US2018/031786, Apr. 14, 2020, 7 pgs.
Energous Corp., IPRP, PCT/US2018/039334, Dec. 24, 2019, 8 pgs.
Energous Corp., IPRP, PCT/US2018/051082, Mar. 17, 2020, 9 pgs.
Energous Corp., IPRP, PCT/US2018/058178, May 5, 2020, 7 pgs.
Energous Corp., IPRP, PCT/US2019/015820, Aug. 4, 2020, 7 pgs.
Energous Corp., IPRP, PCT/US2019/021817, Sep. 15, 2020, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/037072, Sep. 12, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/037109, Apr. 8, 2016, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/037170, Sep. 15, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040648, Oct. 10, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040697, Oct. 1, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/040705, Sep. 23, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/041323, Oct. 1, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041342, Jan. 27, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041534, Oct. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041546, Oct. 16, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/041558, Oct. 10, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/044810 Oct. 21, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/045102, Oct. 28, 2014, 14 pgs.
Energous Corp., ISRWO, PCT/US2014/045119, Oct. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/045237, Oct. 13, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/046941, Nov. 6, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/046956, Nov. 12, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/046961, Nov. 24, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/047963, Nov. 7, 2014, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/048002, Nov. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/049666, Nov. 10, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/049669, Nov. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/049673, Nov. 18, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054891, Dec. 18, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/054897, Feb. 17, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054953, Dec. 4, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/055195, Dec. 22, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/059317, Feb. 24, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059340, Jan. 15, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059871, Jan. 23, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062661, Jan. 27, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062672, Jan. 26, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/062682, Feb. 12, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068282, Mar. 19, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/068568, Mar. 20, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068586, Mar. 20, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067242, Mar. 16, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067243, Mar. 10, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067245, Mar. 17, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067246, May 11, 2016, 18 pgs.
Energous Corp., ISRWO, PCT/US2015/067249, Mar. 29, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067250, Mar. 30, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067271, Mar. 11, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2015/067275, Mar. 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067279, Mar. 11, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2015/067282, Jul. 5, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067287, Feb. 2, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067291, Mar. 4, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/067294, Mar. 29, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067325, Mar. 10, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067334, Mar. 3, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2016/068495, Mar. 30, 2017, 9 pgs.
Energous Corp., ISRWO, PCT/US2016/068498, May 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068504, Mar. 30, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068551, Mar. 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068565, Mar. 8, 2017, 11 pgs.
Energous Corp., ISRWO, PCT/US2016/068987, May 8, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/068993, Mar. 13, 2017, 12 pgs.
Energous Corp., ISRWO, PCT/US2016/069313, Nov. 13, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/069316, Mar. 16, 2017, 15 pgs.
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs.
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs.
Energous Corp., ISRWO, PCT/US2018/012806, Mar. 23, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/025465, Jun. 22, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031786, Aug. 8, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/039334, Sep. 11, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/051082, Dec. 12, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/058178, Mar. 13, 2019, 10 pgs.
Energous Corp., ISRWO, PCT/US2018/064289, Apr. 25, 2019, 12 pgs.
Energous Corp., ISRWO, PCT/US2019/015820, May 14, 2019, 9 pgs.
Energous Corp., ISRWO, PCT/US2019/021817, Apr. 6, 2019, 11 pgs.
Energous Corp., ISRWO, PCT/US2019/039014, Oct. 4, 2019, 15 pgs.
Energous Corp., ISRWO, PCT/US2019/061445, Jan. 7, 2020, 19 pgs.
Energous Corp., ISRWO, PCT/US2020/015450, May 18, 2020, 8 pgs.
Energous Corp., ISRWO, PCT/US2020/016975, May 15, 2020, 15 pgs.
Energous Corp., ISRWO, PCT/US2020/027409, Jul. 24, 2020, 11 pgs.
Notice of Intent to Issue Reexam Certificate: 90/013793 Feb. 2, 2017, 8 pgs.
Order Granting Reexamination Request, U.S. Appl. No. 90/013,793 Aug. 31, 2016, 23 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00023, May 31, 2016, 144 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, PGR2016-00024, May 31, 2016, 122 pgs.
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, Sep. 8, 2016, 95 pgs.
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 86 pgs.
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9,124,125, May 31, 2016, 92 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00023—Institution Decision, Nov. 29, 2016, 29 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024—Institution Decision, Nov. 29, 2016, 50 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024—Judgement-Adverse, Jan. 20, 2017, 3 pgs.
Extended European Search Report, EP14818136.5, dated Jul. 21, 2016, 9 pgs.
Extended European Search Report, EP14822971.9, dated Feb. 10, 2017, 10 pgs.
Extended European Search Report, EP14868901.1, dated Jul. 17, 2017, 6 pgs.
Extended European Search Report, EP15874273.4, dated May 11, 2018, 7 pgs.
Extended European Search Report, EP15876033.0, dated Jun. 13, 2018, 10 pgs.
Extended European Search Report, EP15876036.3, dated May 3, 2018, 9 pgs.
Extended European Search Report, EP15876043.9, dated Aug. 9, 2018, 9 pgs.
Extended European Search Report, EP16189052.0, dated Feb. 10, 2017, 13 pgs.
Extended European Search Report, EP16189300.3, dated Mar. 24, 2017, 6 pgs.
Extended European Search Report, EP16189319.3, dated Feb. 10, 2017, 11 pgs.
Extended European Search Report, EP16189974.5, dated Mar. 13, 2017, 7 pgs.
Extended European Search Report, EP16189982.8, dated Feb. 7, 2017, 11 pgs.
Extended European Search Report, EP16189987.7, dated Feb. 9, 2017, 10 pgs.
Extended European Search Report, EP16189988.5, dated Mar. 13, 2017, 6 pgs.
Extended European Search Report, EP16193743.8, dated Feb. 8, 2017, 9 pgs.
Extended European Search Report, EP16196205,5, dated Apr. 7, 2017, 9 pgs.
Extended European Search Report, EP16880139.7, dated Jul. 12, 2019, 5 pgs.
Extended European Search Report, EP16880153.8, dated Jul. 2, 2019, 9 pgs.
Extended European Search Report, EP16880158.7, dated Jul. 15, 2019, 8 pgs.
Extended European Search Report, EPl6882597,4, dated Aug. 7, 2019, 9 pgs.
Extended European Search Report, EP16882696.4, dated Jul. 3, 2019, 10 pgs.
Extended European Search Report, EP17840412.5, dated Jul. 15, 2019, 8 pgs.
Extended European Search Report, EP17882087.4, dated Sep. 17, 2019, 10 pgs.
Extended European Search Report, EPl8204043,6, dated Feb. 14, 2019, 5 pgs.
Extended European Search Report, EP18797695.6, dated Nov. 19, 2020, 9 pgs.
Extended European Search Report, EP19214719.7, dated Jan. 17, 2020, 9 pgs.
Adamiuk et al., “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric,” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, Feb. 1, 2010, 8 pgs.
Gill et al., “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs.
Han et al., Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5., pp. 1318-1334, Oct. 3, 2013.
Hsieh et al., “Development of a Retrodirective Wireless Microwave Power Transmission System”, IEEE, 2003, pp. 393-396.
Leabman, “Adaptive Band-partitioning for Interference Cancellation in Communication System,” Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70.
Li et al., “High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management,” Mar./Apr. 2012 Issue, 8 pgs.
Mao et al., “BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks”, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA, vol. 6, No. 11, Nov. 1, 2007, 13 pgs.
Mascarenas et al., “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes,” Nov. 28, 2009, Journal of Sound and Vibration, 13 pgs.
Mishra et al., “SIW-based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications”, IEEE APSURSI, Jul. 2012, 2 pgs.
Nenzi et al., “U-Helix: On-Chip Short Conical Antenna”, 7th European Conference on Antennas and Propagation (EUCAP), ISBN: 978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs.
Qing et al., “UHF Near-Field Segmented Loop Antennas with Enlarged Interrogation Zone,” 2012 IEEE International Workshop on Antenna Technology (iWAT), Mar. 1, 2012, pp. 132-135, XP055572059, ISBN: 978-1-4673-0035-3.
Singh, “Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN”, 4th International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, 1 pg.
Smolders, “Broadband Microstrip Array Antennas”, Institute of Electrical and Electronics Engineers, Digest of the Antennas and Propagation Society International Symposium, Seattle, WA, Jun. 19-24, 1994, 3 pgs.
Van Veen et al., “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24.
Wei et al., “Design of a Wideband Horizontally Polarized Omnidirectional Printed Loop Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 11, Jan. 3, 2012, 4 pgs.
Zeng et al., “A Compact Fractal Loop Rectenna for RF Energy Harvesting,” IEEE Antennas And Wireless Propagation Letters, vol. 16, Jun. 26, 2017, 4 pgs.
Zhai et al., “A Practical Wireless Charging System Based on Ultra-Wideband Retro-Reflective Beamforming”, 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, 2010, 4 pgs.
Related Publications (1)
Number Date Country
20230010476 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62579049 Oct 2017 US
Continuations (1)
Number Date Country
Parent 16174172 Oct 2018 US
Child 17728634 US