This application claims priority to Australian Patent Application No. 2009906141, filed on Dec. 17, 2009, entitled “SYSTEM AND METHODS FOR MANAGING CONFIGURATION DATA AT DISCONNECTED REMOTE DEVICES”, which is incorporated herein by reference.
The present invention relates to data management, and more particularly to systems and methods for managing configuration data at disconnected remote devices. Embodiments of the invention have been particularly developed for reliably providing configuration data to disconnected access control devices and the like, and the present disclosure is primarily focused accordingly. Although the invention is described hereinafter with particular reference to such applications, it will be appreciated that the invention is applicable in broader contexts.
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
It is known to use a large number of access control devices in an access control environment. It is also known for such an environment to include:
Typically, there is a need to periodically provide modified configuration data to access control devices. This is a relatively straightforward process in the case of a connected access control device—the modified configuration data is delivered by the administration server to the device over the network. However, providing modified configuration data to disconnected access control devices presents practical difficulties. One option is to transport the disconnected device to a location where it can receive the configuration data from a computational device, or where it can access an available network connection. However, in many instances, the device is not easily transportable.
As such, a more appropriate technique is to transport a portable manual update device to the disconnected access control device. Manual update devices may include the likes of portable computers (including cell phones and PDAs), smartcards, USB drives, and the like.
Similar problems present themselves in other environments where a plurality of disconnected devices (such a parking meters and the like) need to be configured for operation as a collective, although there is no available common network connection. For the present purposes, such disconnected devices are referred to as “disconnected remote devices”.
Traditionally, applying configuration data to disconnected remote devices via manual update devices has involved “blindly” applying whatever data is stored on those manual update devices to the disconnected remote devices. When there are many such manual update devices (for example ten users with ten different update devices) and only some percentage of these have the most current configuration, it becomes unreliable to know what data has been applied to the disconnected remote devices. Consider scenarios where, for instance, an administrator decides to change the parking rate at a number of parking meters. On Monday user X starts applying this to the meters as he moves around on foot, and later that week user Y also goes past these meters (but with a different manual update device). If user X and user Y do not carry the same information on their manual update devices, the master system has no way of knowing what has been applied. Traditionally this has been solved by manual processes that force each manual update device to carry the same information, which are obviously error prone. Furthermore, such a solution does not scale readily.
These concerns are not limited to disconnected access control devices; they apply to disconnected remote device generally, being devices that operate as a collective within the context of a host system, although they are not in communication with that host system.
It follows that there is a need in the art for improved systems and methods for managing configuration data in disconnected remote devices.
It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
One embodiment provides a method, performable by a disconnected remote device of a host system, for managing configuration data, the method including the steps of:
commencing communication with a manual update device that carries configuration data;
determining version information for the configuration data carried by the manual update device;
comparing the version information of the configuration data carried by the manual update device with version information of configuration data applied by the disconnected remote device;
in the case that the version information for the configuration data carried by the manual update device supersedes version information of configuration data applied by the disconnected remote device, selectively applying the configuration data carried by the manual update device to the disconnected remote device;
in the case that the configuration data carried by the manual update device is successfully applied to the disconnected remote device, writing data indicative of the successful application to the manual update device for subsequent propagation in the host system; and
in the case that the version information for the configuration data carried by the disconnected remote device supersedes version information of configuration data applied by the manual update device, selectively applying the configuration data carried by the disconnected remote device to the manual update device for subsequent propagation.
One embodiment provides a disconnected remote device configured for operation as part of a host system without a communication channel to the host system, the disconnected remote device including:
a communications port for interacting with a manual update device that carries configuration data;
a memory module for maintaining software instructions; and
a processor for executing the software instructions;
wherein the disconnected remote device is configured to:
determine version information for the configuration data carried by the manual update device;
compare the version information of the configuration data carried by the manual update device with version information of configuration data applied by the disconnected remote device;
in the case that the version information for the configuration data carried by the manual update device supersedes version information of configuration data applied by the disconnected remote device, selectively apply the configuration data carried by the manual update device to the disconnected remote device;
in the case that the configuration data carried by the manual update device is successfully applied to the disconnected remote device, provide an instruction for writing data indicative of the successful application to the manual update device for subsequent propagation in the host system; and
in the case that the version information for the configuration data carried by the disconnected remote device supersedes version information of configuration data applied by the manual update device, selectively apply the configuration data carried by the disconnected remote device to the manual update device for subsequent propagation.
One embodiment provides a method for managing configuration data in a host system including one or more connected devices that are connected to a host system network and one or more disconnected remote devices that are not connected to the host system network, the method including:
at a disconnected remote device, reading configuration data from a manual update device, and based on a version control protocol either selectively applying the read configuration data to the disconnected remote device or applying configuration data stored at the disconnected remote device to the manual update device, and in the case that the read configuration data is selectively applied writing data indicative of that application to the manual update device; and
at a connected device, reading from the manual update device data indicative of successful application of configuration data to one or more disconnected remote devices, and propagating that data to a central controller of the host system.
Reference throughout this specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Described herein are systems and methods for managing configuration data. These are particularly directed towards the management of configuration data in disconnected remote devices of a host system. For example, this may be an access control environment having one or more connected access control devices (i.e. devices in communication with a central server), and one or more disconnected access control devices (i.e. devices operating without communication with the central server). In overview, the systems and methods considered herein make use of a versioning protocol to allow the reliable distribution of configuration data to the disconnected remote devices, this protocol operating to best ensure the propagation of the most current configuration data.
Although the present disclosure focuses primarily on the example of disconnected access control devices in an access control environment, the invention is by no means limited as such, and rinds application in the context of disconnected remote devices generally. The term “disconnected remote device” refers to a device that is configured to operate as part of a host system based on centrally defined configuration data, but in absence of a connection to the central server of the host system. Other than access control devices, examples include the likes of street light controllers, parking meters, vending machines, and the like.
One embodiment provides a method, performable by a disconnected remote device of a host system, for managing configuration data. The method includes commencing communication with a manual update device that carries configuration data. Based on this communication, the method includes determining version information for the configuration data carried by the manual update device. A comparison is performed, comparing the version information of the configuration data carried by the manual update device with version information of configuration data applied by the disconnected remote device. In the case that the version information for the configuration data carried by the manual update device supersedes version information of configuration data applied by the disconnected remote device, the method includes selectively applying the configuration data carried by the manual update device to the disconnected remote device in the case that the configuration data carried by the manual update device is successfully applied to the disconnected remote device, the method includes writing data indicative of the successful application to the manual update device for subsequent propagation in the host system. In the case that the version information for the configuration data carried by the disconnected remote device supersedes version information of configuration data applied by the manual update device, the method includes selectively applying the configuration data carried by the disconnected remote device to the manual update device for subsequent propagation.
System Level Overview—Access Control Environment
For the sake of the present disclosure, it is assumed that each of access control devices 102 to 107 include similar hardware and software components, and that each device is configured to progress between a connected state and a disconnected state depending on whether or not a connection to network 108 and central administration server 110 is available. However, in other embodiments a variety of different access control devices are used. For example, in some embodiments the access control devices are designed, from a hardware perspective, to allow/deny control to a variety of different locations or functionalities.
For the present purposes, disconnected devices 105 to 107 are regarded as being disconnected devices of a host system (the host system being access control environment 101). Although the present embodiments are primarily described by reference to an access control environment, the present technology is equally applicable to other systems having disconnected remote devices, where the devices are configured to operate as a collective in the context of a host system, in spite of an inability to communicate over a common network
In the context of the present disclosure, the term “access control device” refers generally to any device having an “access control” functionality. That is, any device with which a user interacts to gain access to a physical region or virtual functionality. An access control device includes hardware and software components. Common examples include devices that control locking mechanisms on doors or other barriers. However, access control devices are also used for purposes such as activating lighting in a room, controlling access to a vehicle (for example verifying a person is permitted to board a bus), the vending of products, parking meters, and so on.
There is mention in the present disclosure of an access control device for operation in an access control system including a central server, one or more disconnected access control devices, and one or more connected access control devices. This compatibility distinguishes an access control device from an alternate form of device (for example a traditional ticket machine located on a bus or the like) in the sense that all devices are configured through a common system for complementary interaction and functionality.
Environment 101 also includes manual update devices 130. These are portable devices used to transport configuration data to disconnected devices. Examples include, but are not limited to, the following:
There may be multiple forms of manual update device used in environment 101. For example, configuration data may be deployed on smartcards, PDAs, and so on.
As indicated by arrow 135, configuration data from database 135 is provided to the manual update devices. The manner by which this data is provided varies between embodiments. For example, in some cases the data is written to the devices via a specialized component (for example an administration PC). In other cases the data is written to the manual update devices by one or more connected access control devices (either automatically based on a set of pre-existing rules, or following a user request).
Access Control Device
Access control device 201 includes a processor 202 coupled to a memory module 203. Memory module 203 carries software instructions 204 which, when executed on processor 202, allow access control device 201 to perform various methods and functionalities described herein.
In the present example, access control device 201 is configured for selectively granting access to a controlled functionality. In particular, processor 201 is coupled to a controlled functionality actuator 209. In the present example actuator 209 is coupled to a controlled external device 208. For example, in one embodiment actuator 209 locks and/or unlocks an external device in the form of a door. In another example the controlled functionality is notional, such as permission to board a bus. In one such example, the controlled functionality actuator provides a tone and/or light to indicate that access is granted.
A user wishing to gain access to the controlled functionality presents an access token to device 201. In the present example, the token takes the form of a smartcard, which is presented to a smartcard reader 210, which is also coupled to processor 201. Upon presentation of the smartcard, processor 201 performs an authorization/authentication process to determine whether or not access should be granted. In the event that the authorization/authentication process is successful, actuator 209 grants access. If the process is unsuccessful, actuator 209 denies access (achieved optionally either by inactivity or positive action).
The process whereby a user presents a smartcard (or other token), and the token is read and data processed, is presently referred to as an access transaction.
The nature of card reader present varies between embodiments depending on the nature of access card that is used in a given access control environment. In the embodiment of
Access control device 201 is presently configured to operate as a connected access control device or a disconnected access control device, depending on whether a connection to a central administration server is available. To this end, in the present embodiment, device 201 includes a network interface 212 (such as a Ethernet or other wired/wireless network interface) coupled to processor 202 for allowing access control device 201 to communicate over a network (such as network 108 of
Device 201 includes additional interfaces 213, such as a USB interface, Bluetooth adapter, or the like. These are optionally utilized for allowing communication between device 201 and a manual update device that is not configured to connect via the smartcard reader or network interface. Other interfaces, such as keypads, biometric scanners, and the like may also be used.
Configuration Data Distribution Method
Any reference to “configuration data” should be read as “one or more aspects of configuration data”. That is, the term should be read broadly enough to encompass the possibility of a single aspect of configuration data (for example a set of pricing information) though to a full set of configuration data for a device.
Administration server 110 is used to deliver configuration data for access control devices 102 to 107, however, it will be appreciated that the server is only able to deliver such information to connected access control devices 102 to 104 via network 108. As such, other methods are required to allow the provision of configuration data to disconnected access control devices 105 to 107, and some embodiments of the present invention provide such methods. For example,
Step 301 includes defining configuration data at the central server. For example, a user interacts with a software application that allows for configuration data to be defined, modified, or the like. This software application in some embodiments allows a user to specify to which devices the configuration data is to be applied. Each set of configuration data is provided with an identifier to allow for version control. For example, in one embodiment each set of configuration data is provided with an identifier in the form XXX-YYYY, where XXX defines the nature of configuration (that is the aspect of configuration it affects) and YYYY is an incremented counter for allowing version control and comparison (i.e. the counter increments for each version created, allowing simple determination of which of two sets of configuration data is newer). This is exemplary only, and other approaches for version control may also be used. In some cases the XXX component is omitted, and determination of versions is simply based on comparing an incrementing counter type identifier for a proposed set of configuration data with a corresponding identifier for the data that propose set would replace. Other approaches, including timestamps and the like, may also be used.
Where relevant, configuration data is propagated to connected devices at step 302. It will be appreciated that this step only occurs where data is intended for connected devices, and connected devices exist within the relevant environment. In some embodiments there are only disconnected remote devices, and step 302 is omitted.
Step 303 includes providing the configuration data to one or more manual update devices. This may be performed at an administration server, or via a special procedure at one or the connected devices. In general terms, each device is provided with one or more data files indicative of the configuration data and indicative of rules concerning the application of that configuration data.
The manual update devices are deployed at 304. For example, the manual update devices are provided to persons responsible for carrying out the updating, and physically taken to the disconnected remote devices. In some embodiments configuration data is loaded onto access control smartcards by connected devices upon the presentation of those smartcards to connected devices, thereby to assist in data propagation simply by cardholder movements and interactions.
Step 305 includes the use of manual update devices. In overview, a user connects a manual update device to a disconnected remote device, with the nature of connection depending on the form of manual update device being used. This results in a process such as that described further below in relation to
Step 306 includes a back-propagation method whereby the results of manual configuration data updates are propagated back to the central server via manual update devices. This is discussed further below.
Disconnected Remote Device Manual Update Procedure
A key element of the technology described herein is that a disconnected remote device is able to autonomously make a decision as to whether configuration data carried by a manual update device should be applied. In this regard,
Step 401 includes commencing communication with a manual update device. In practice, the manual update device connects to the disconnected remote device (optionally via a wired or wireless connection), and the disconnected remote device determines that configuration data is present on the manual update device. The disconnected remote device then adopts a mode of operation that allows the review and selective application of configuration data.
Step 402 includes determining version information for configuration data carried by the manual update device. As noted above, each set of configuration data is provided with an identifier which allows it to be compared in age with like configuration data (for example based on a timestamp, incrementing counter, or the like). Step 403 includes comparing the version information for configuration data carried by the manual update device with version information for configuration data currently applied by the disconnected remote device. Based on this comparison, a determination is made at decision 404 to determine based on the version information which set of configuration data should prevail (i.e. which is newer/supersedes the other). Based on this:
Considering initially the case where the method progresses to 405, step 406 subsequently includes selectively applying the configuration data carried by the manual update device to the disconnected remote device. For example, the configuration data is read into memory of the disconnected remote device, installed, and applied. The application is selective in the sense that it is only performed in the case that certain predefined conditions are met. For example, step 406 may include taking a hash of the configuration data prior to application, and only applying the data it if it is complete. The disconnected remote device may also check what is present on the manual update device with its loaded data of that data to confirm that the transfer has been complete.
Step 407 includes determining whether the configuration data has been successfully applied to the disconnected remote device. In the event that there was successful application of configuration data, data indicative of that successful application is written to the manual update device for subsequent propagation back to the host system. For example, step 407 may include writing a data file to the remote update device, or updating a table on the manual update device, to specify the disconnected remote device to which configuration data was applied, and version information for the configuration data that was applied. This is optionally combined with other data, such as a timestamp or the like. The data is propagated back to the host system at a later stage when the manual update device is connected to that system (for example either subject to connection with a connected device, such as an access control device, or an administration terminal).
Considering the case where the method progresses to from 404 to 410, step 411 subsequently includes applying the configuration data currently applied to the disconnected remote device configuration data to manual update device. That is, the configuration data carried by the disconnected remote device is replaced by the configuration data applied by the disconnected remote device. In this manner, following step 411, the remote update device carries more up-to-date configuration data than it did previously. This is a significant result: it essentially means that most recent configuration propagates itself around the environment, often negating the need for all manual update devices to need to return to the host system to collect each new set of configuration data.
In the case that the remote update device carries multiple sets of configuration data (relating to different configurationally aspects), method 400 is optionally performed repeatedly in resects of the multiple individual sets of data.
Conclusions and Interpretation
It will be appreciated that the present disclosure provides for various systems and methods for configuring access control devices, particularly disconnected access control devices, which are advantageous in light of what is known in the art.
Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining”, analyzing” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities into other data similarly represented as physical quantities.
In a similar manner, the term “processor” may refer to any device or portion of a device that processes electronic data, e.g., from registers and/or memory to transform that electronic data into other electronic data that, e.g., may be stored in registers and/or memory. A “computer” or a “computing machine” or a “computing platform” may include one or more processors.
The methodologies described herein are, in one embodiment, performable by one or more processors that accept computer-readable (also called machine-readable) code containing a set of instructions that when executed by one or more of the processors carry out at least one of the methods described herein. Any processor capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken are included. Thus, one example is a typical processing system that includes one or more processors. Each processor may include one or more of a CPU, a graphics processing unit, and a programmable DSP unit. The processing system further may include a memory subsystem including main RAM and/or a static RAM, and/or ROM. A bus subsystem may be included for communicating between the components. The processing system further may be a distributed processing system with processors coupled by a network. If the processing system requires a display, such a display may be included, e.g., an liquid crystal display (LCD) or a cathode ray tube (CRT) display. If manual data entry is required, the processing system also includes an input device such as one or more of an alphanumeric input unit such as a keyboard, a pointing control device such as a mouse, and so forth. The term memory unit as used herein, if clear from the context and unless explicitly stated otherwise, also encompasses a storage system such as a disk drive unit. The processing system in some configurations may include a sound output device, and a network interface device. The memory subsystem thus includes a computer-readable carrier medium that carries computer-readable code (e.g., software) including a set of instructions to cause performing, when executed by one or more processors, one of more of the methods described herein. Note that when the method includes several elements, e.g., several steps, no ordering of such elements is implied, unless specifically stated. The software may reside in the hard disk, or may also reside, completely or at least partially, within the RAM and/or within the processor during execution thereof by the computer system. Thus, the memory and the processor also constitute computer-readable carrier medium carrying computer-readable code.
Furthermore, a computer-readable carrier medium may form, or be includes in a computer program product.
In alternative embodiments, the one or more processors operate as a standalone device or may be connected, e.g., networked to other processor(s), in a networked deployment, the one or more processors may operate in the capacity of a server or a user machine in server-user network environment, or as a peer machine in a peer-to-peer or distributed network environment. The one or more processors may form a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
Note that while some diagrams only show a single processor and a single memory that carries the computer-readable code, those in the art will understand that many of the components described above are included, but not explicitly shown or described in order not to obscure the inventive aspect. For example, while only a single machine is illustrated, the term “machine” or “device” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
At least one embodiment of each of the methods described herein is in the form of a computer-readable carrier medium carrying a set of instructions, e.g., a computer program that are for execution on one or more processors, e.g., one or more processors that are part an information system. Thus, as will be appreciated by those skilled in the art, embodiments of the present invention may be embodied as a method, an apparatus such as a special purpose apparatus, an apparatus such as a data processing system, or a computer-readable carrier medium, e.g., a computer program product. The computer-readable carrier medium carries computer readable code including a set of instructions that when executed on one or more processors cause the processor or processors to implement a method. Accordingly, aspects of the present invention may take the form of a method, an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of carrier medium (e.g., a computer program product on a computer-readable storage medium) carrying computer-readable program code embodied in the medium.
The software may further be transmitted or received over a network via a network interface device. While the carrier medium is shown in an exemplary embodiment to be a single medium, the term “carrier medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “carrier medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by one or more of the processors and that cause the one or more processors to perform any one or more of the methodologies of the present invention. A carrier medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical, magnetic disks, and magneto-optical disks. Volatile media includes dynamic memory, such as main memory. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise a bus subsystem. Transmission media also may also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications. For example, the term “carrier medium” shall accordingly be taken to included, but not be limited to, solid-state memories, a computer product embodied in optical and magnetic media, a medium bearing a propagated signal detectable by at least one processor of one or more processors and representing a set of instructions that when executed implement a method, a carrier wave bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions a propagated signal and representing the set of instructions, and a transmission medium in a network bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions.
It will be understood that the steps of methods discussed are performed in one embodiment by an appropriate processor (or processors) of a processing (i.e., computer) system executing instructions (computer-readable code) stored in storage. It will also be understood that the invention is not limited to any particular implementation or programming technique and that the invention may be implemented using any appropriate techniques for implementing the functionality described herein. The invention is not limited to any particular programming language or operating system.
Similarly it should be appreciated that in the above description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.
Furthermore, some of the embodiments are described herein as a method or combination of elements of a method that can be implemented by a processor of a computer system or by other means of carrying out the function. Thus, a processor with the necessary instructions for carrying out such a method or element of a method forms a means for carrying out the method or element of a method. Furthermore, an element described herein of an apparatus embodiment is an example of a means for carrying out the function performed by the element for the purpose of carrying out the invention.
In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
As used herein, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.
In the claims below and the description herein, any one of the terms comprising, comprised of or which comprises is an open term that means including at least the elements/features that follow, but not excluding others. Thus, the term comprising, when used in the claims, should not be interpreted as being limitative to the means or elements or steps listed thereafter. For example, the scope of the expression a device comprising A and B should not be limited to devices consisting only of elements A and B. Any one of the terms including or which includes or that includes as used herein is also an open term that also means including at least the elements/features that follow the term, but not excluding others. Thus, including is synonymous with and means comprising.
Similarly, it is to be noticed that the term coupled, when used in the claims, should not be interpreted as being limitative to direct connections only. The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Thus, the scope of the expression a device A coupled to a device B should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means. “Coupled” may mean that two or more elements are either in direct physical or electrical contact, or that two or more elements are not in direct contact with each other but yet still co-operate or interact with each other.
Thus, while there has been described what are believed to be the preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the invention, and it is intended to claim all such changes and modifications as fall within the scope of the invention. For example, any formulas given above are merely representative of procedures that may be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among functional blocks. Steps may be added or deleted to methods described within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2009906141 | Dec 2009 | AU | national |
Number | Name | Date | Kind |
---|---|---|---|
3753232 | Sporer | Aug 1973 | A |
3806911 | Pripusich | Apr 1974 | A |
3857018 | Stark et al. | Dec 1974 | A |
3860911 | Hinman et al. | Jan 1975 | A |
3866173 | Moorman et al. | Feb 1975 | A |
3906447 | Crafton | Sep 1975 | A |
4095739 | Fox et al. | Jun 1978 | A |
4146085 | Wills | Mar 1979 | A |
4148012 | Baump et al. | Apr 1979 | A |
4161778 | Getson, Jr. et al. | Jul 1979 | A |
4213118 | Genest et al. | Jul 1980 | A |
4283710 | Genest et al. | Aug 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4332852 | Korklan et al. | Jun 1982 | A |
4336902 | Neal | Jun 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4353064 | Stamm | Oct 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4462028 | Ryan et al. | Jul 1984 | A |
4525777 | Webster et al. | Jun 1985 | A |
4538056 | Young et al. | Aug 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4628201 | Schmitt | Dec 1986 | A |
4646964 | Parker et al. | Mar 1987 | A |
4685615 | Hart | Aug 1987 | A |
4821177 | Koegel et al. | Apr 1989 | A |
4847839 | Hudson, Jr. et al. | Jul 1989 | A |
5070468 | Niinomi et al. | Dec 1991 | A |
5071065 | Aalto et al. | Dec 1991 | A |
5099420 | Barlow et al. | Mar 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5204663 | Lee | Apr 1993 | A |
5227122 | Scarola et al. | Jul 1993 | A |
5259553 | Shyu | Nov 1993 | A |
5271453 | Yoshida et al. | Dec 1993 | A |
5361982 | Liebl et al. | Nov 1994 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5420927 | Micali | May 1995 | A |
5449112 | Heitmain et al. | Sep 1995 | A |
5465082 | Chaco | Nov 1995 | A |
5479154 | Wolfram | Dec 1995 | A |
5481481 | Frey et al. | Jan 1996 | A |
5526871 | Musser et al. | Jun 1996 | A |
5541585 | Duhame et al. | Jul 1996 | A |
5591950 | Imedio-Ocana | Jan 1997 | A |
5594429 | Nakahara | Jan 1997 | A |
5604804 | Micali | Feb 1997 | A |
5610982 | Micali | Mar 1997 | A |
5631825 | van Weele et al. | May 1997 | A |
5640151 | Reis et al. | Jun 1997 | A |
5644302 | Hana et al. | Jul 1997 | A |
5663957 | Dent | Sep 1997 | A |
5666416 | Micali | Sep 1997 | A |
5717757 | Micali | Feb 1998 | A |
5717758 | Micali | Feb 1998 | A |
5717759 | Micali | Feb 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5774058 | Henry et al. | Jun 1998 | A |
5778256 | Darbee | Jul 1998 | A |
5793868 | Micali | Aug 1998 | A |
5914875 | Monta et al. | Jun 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5923817 | Nakamura | Jul 1999 | A |
5927398 | Maciulewicz | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5960083 | Micali | Sep 1999 | A |
5973613 | Reis et al. | Oct 1999 | A |
5992194 | Baukholt et al. | Nov 1999 | A |
6072402 | Kniffin et al. | Jun 2000 | A |
6097811 | Micali | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6233954 | Mchaffey et al. | May 2001 | B1 |
6241156 | Kline et al. | Jun 2001 | B1 |
6249755 | Yemini et al. | Jun 2001 | B1 |
6260765 | Natale et al. | Jul 2001 | B1 |
6268797 | Berube et al. | Jul 2001 | B1 |
6292893 | Micali | Sep 2001 | B1 |
6301659 | Micali | Oct 2001 | B1 |
6318137 | Chaum | Nov 2001 | B1 |
6324854 | Jayanth | Dec 2001 | B1 |
6334121 | Primeaux et al. | Dec 2001 | B1 |
6347374 | Drake et al. | Feb 2002 | B1 |
6366558 | Howes et al. | Apr 2002 | B1 |
6369719 | Tracy et al. | Apr 2002 | B1 |
6374356 | Daigneault et al. | Apr 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6394359 | Morgan | May 2002 | B1 |
6424068 | Nakagashi | Jul 2002 | B2 |
6453426 | Gamache et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6483697 | Jenks et al. | Nov 2002 | B1 |
6487658 | Micali | Nov 2002 | B1 |
6490610 | Rizvi et al. | Dec 2002 | B1 |
6496575 | Vasell et al. | Dec 2002 | B1 |
6516357 | Hamann et al. | Feb 2003 | B1 |
6518953 | Armstrong | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6583712 | Reed et al. | Jun 2003 | B1 |
6604023 | Brown et al. | Aug 2003 | B1 |
6615594 | Jayanth et al. | Sep 2003 | B2 |
6628997 | Fox et al. | Sep 2003 | B1 |
6647317 | Takai et al. | Nov 2003 | B2 |
6647400 | Moran | Nov 2003 | B1 |
6658373 | Rossi et al. | Dec 2003 | B2 |
6663010 | Chene et al. | Dec 2003 | B2 |
6665669 | Han et al. | Dec 2003 | B2 |
6667690 | Durej et al. | Dec 2003 | B2 |
6741915 | Poth | May 2004 | B2 |
6758051 | Jayanth et al. | Jul 2004 | B2 |
6766450 | Micali | Jul 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6796494 | Gonzalo | Sep 2004 | B1 |
6801849 | Szukala et al. | Oct 2004 | B2 |
6801907 | Zagami | Oct 2004 | B1 |
6826454 | Sulfstede | Nov 2004 | B2 |
6829332 | Farris et al. | Dec 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6871193 | Campbell et al. | Mar 2005 | B1 |
6886742 | Stoutenburg et al. | May 2005 | B2 |
6895215 | Uhlmann | May 2005 | B2 |
6910135 | Grainger | Jun 2005 | B1 |
6967612 | Gorman et al. | Nov 2005 | B1 |
6969542 | Klasen-Memmer et al. | Nov 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6973410 | Seigel | Dec 2005 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6989742 | Ueno et al. | Jan 2006 | B2 |
7004401 | Kallestad | Feb 2006 | B2 |
7019614 | Lavelle et al. | Mar 2006 | B2 |
7032114 | Moran | Apr 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7076083 | Blazey | Jul 2006 | B2 |
7117356 | LaCous | Oct 2006 | B2 |
7124943 | Quan et al. | Oct 2006 | B2 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7183894 | Yui et al. | Feb 2007 | B2 |
7203962 | Moran | Apr 2007 | B1 |
7205882 | Libin | Apr 2007 | B2 |
7216007 | Johnson | May 2007 | B2 |
7216015 | Poth | May 2007 | B2 |
7218243 | Hayes et al. | May 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7233243 | Roche et al. | Jun 2007 | B2 |
7243001 | Janert et al. | Jul 2007 | B2 |
7245223 | Trela | Jul 2007 | B2 |
7250853 | Flynn | Jul 2007 | B2 |
7274676 | Cardei et al. | Sep 2007 | B2 |
7283489 | Palaez et al. | Oct 2007 | B2 |
7313819 | Burnett et al. | Dec 2007 | B2 |
7321784 | Serceki et al. | Jan 2008 | B2 |
7337315 | Micali | Feb 2008 | B2 |
7343265 | Andarawis et al. | Mar 2008 | B2 |
7353396 | Micali et al. | Apr 2008 | B2 |
7362210 | Bazakos et al. | Apr 2008 | B2 |
7376839 | Carta et al. | May 2008 | B2 |
7379997 | Ehlers et al. | May 2008 | B2 |
7380125 | Di Luoffo et al. | May 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7397371 | Martin et al. | Jul 2008 | B2 |
7408925 | Boyle et al. | Aug 2008 | B1 |
7487538 | Mok | Feb 2009 | B2 |
7505914 | McCall | Mar 2009 | B2 |
7542867 | Steger et al. | Jun 2009 | B2 |
7543327 | Kaplinsky | Jun 2009 | B1 |
7574734 | Fedronic et al. | Aug 2009 | B2 |
7576770 | Metzger et al. | Aug 2009 | B2 |
7583401 | Lewis | Sep 2009 | B2 |
7586398 | Huang et al. | Sep 2009 | B2 |
7600679 | Kshirsagar et al. | Oct 2009 | B2 |
7634662 | Monroe | Dec 2009 | B2 |
7661603 | Yoon et al. | Feb 2010 | B2 |
7683940 | Fleming | Mar 2010 | B2 |
7735132 | Brown et al. | Jun 2010 | B2 |
7735145 | Kuehnel et al. | Jun 2010 | B2 |
7796536 | Roy et al. | Sep 2010 | B2 |
7818026 | Hartikainen et al. | Oct 2010 | B2 |
7839926 | Metzger et al. | Nov 2010 | B1 |
7853987 | Balasubramanian et al. | Dec 2010 | B2 |
7861314 | Serani et al. | Dec 2010 | B2 |
7873441 | Synesiou et al. | Jan 2011 | B2 |
7907753 | Wilson et al. | Mar 2011 | B2 |
7937669 | Zhang et al. | May 2011 | B2 |
7983892 | Anne et al. | Jul 2011 | B2 |
7995526 | Liu et al. | Aug 2011 | B2 |
7999847 | Donovan et al. | Aug 2011 | B2 |
8045960 | Orakkan | Oct 2011 | B2 |
8089341 | Nakagawa et al. | Jan 2012 | B2 |
8095889 | DeBlaey et al. | Jan 2012 | B2 |
8199196 | Klein et al. | Jun 2012 | B2 |
8316407 | Lee et al. | Nov 2012 | B2 |
8509987 | Resner | Aug 2013 | B2 |
8560970 | Liddington | Oct 2013 | B2 |
8605151 | Bellamy et al. | Dec 2013 | B2 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020046337 | Micali | Apr 2002 | A1 |
20020118096 | Hoyos et al. | Aug 2002 | A1 |
20020121961 | Huff | Sep 2002 | A1 |
20020165824 | Micali | Nov 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030071714 | Bayer et al. | Apr 2003 | A1 |
20030174049 | Beigel et al. | Sep 2003 | A1 |
20030208689 | Garza | Nov 2003 | A1 |
20030233432 | Davis et al. | Dec 2003 | A1 |
20040062421 | Jakubowski et al. | Apr 2004 | A1 |
20040064453 | Ruiz et al. | Apr 2004 | A1 |
20040068583 | Monroe et al. | Apr 2004 | A1 |
20040087362 | Beavers | May 2004 | A1 |
20040205350 | Waterhouse et al. | Oct 2004 | A1 |
20050138380 | Fedronic et al. | Jun 2005 | A1 |
20050200714 | Marchese | Sep 2005 | A1 |
20060017939 | Jamieson et al. | Jan 2006 | A1 |
20060059557 | Markham et al. | Mar 2006 | A1 |
20070109098 | Siemon et al. | May 2007 | A1 |
20070132550 | Avraham et al. | Jun 2007 | A1 |
20070171862 | Tang et al. | Jul 2007 | A1 |
20070268145 | Bazakos et al. | Nov 2007 | A1 |
20070272744 | Bantwal et al. | Nov 2007 | A1 |
20080086758 | Chowdhury et al. | Apr 2008 | A1 |
20080104142 | Oh et al. | May 2008 | A1 |
20080173709 | Ghosh | Jul 2008 | A1 |
20080272881 | Goel | Nov 2008 | A1 |
20090018900 | Waldron et al. | Jan 2009 | A1 |
20090080443 | Dziadosz | Mar 2009 | A1 |
20090086692 | Chen | Apr 2009 | A1 |
20090097815 | Lahr et al. | Apr 2009 | A1 |
20090121830 | Dziadosz | May 2009 | A1 |
20090167485 | Birchbauer et al. | Jul 2009 | A1 |
20090168695 | Johar et al. | Jul 2009 | A1 |
20090258643 | McGuffin | Oct 2009 | A1 |
20090266885 | Marcinowski et al. | Oct 2009 | A1 |
20090292524 | Anne et al. | Nov 2009 | A1 |
20090292995 | Anne et al. | Nov 2009 | A1 |
20090292996 | Anne et al. | Nov 2009 | A1 |
20090328152 | Thomas et al. | Dec 2009 | A1 |
20090328203 | Haas | Dec 2009 | A1 |
20100026811 | Palmer | Feb 2010 | A1 |
20100036511 | Dongare | Feb 2010 | A1 |
20100037216 | Carcerano et al. | Feb 2010 | A1 |
20100148918 | Gerner et al. | Jun 2010 | A1 |
20100164720 | Kore | Jul 2010 | A1 |
20100220715 | Cherchali et al. | Sep 2010 | A1 |
20100268844 | Quinlan et al. | Oct 2010 | A1 |
20100269173 | Srinvasa et al. | Oct 2010 | A1 |
20110038278 | Bhandari et al. | Feb 2011 | A1 |
20110043631 | Marman et al. | Feb 2011 | A1 |
20110071929 | Morrison | Mar 2011 | A1 |
20110115602 | Bhandari et al. | May 2011 | A1 |
20110133884 | Kumar et al. | Jun 2011 | A1 |
20110167488 | Roy et al. | Jul 2011 | A1 |
20110181414 | G et al. | Jul 2011 | A1 |
20120096131 | Bhandari et al. | Apr 2012 | A1 |
20120106915 | Palmer | May 2012 | A1 |
20120121229 | Lee | May 2012 | A1 |
20120133482 | Bhandari et al. | May 2012 | A1 |
20120233681 | Adams et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
2240881 | Dec 1999 | CA |
1265762 | Sep 2000 | CN |
19945861 | Mar 2001 | DE |
0043270 | Jan 1982 | EP |
0122244 | Oct 1984 | EP |
0152678 | Aug 1985 | EP |
0629940 | Dec 1994 | EP |
0858702 | Apr 2002 | EP |
1339028 | Aug 2003 | EP |
1630639 | Mar 2006 | EP |
2251266 | Jul 1992 | GB |
2390705 | Jan 2004 | GB |
6019911 | Jan 1994 | JP |
2003074942 | Mar 2003 | JP |
2003240318 | Aug 2003 | JP |
WO 8402786 | Jul 1984 | WO |
WO 9419912 | Sep 1994 | WO |
WO 9627858 | Sep 1996 | WO |
WO 0011592 | Mar 2000 | WO |
0076220 | Dec 2000 | WO |
WO 0142598 | Jun 2001 | WO |
0157489 | Aug 2001 | WO |
WO 0160024 | Aug 2001 | WO |
WO 0232045 | Apr 2002 | WO |
WO 02091311 | Nov 2002 | WO |
03090000 | Oct 2003 | WO |
WO 2004092514 | Oct 2004 | WO |
WO 2005038727 | Apr 2005 | WO |
WO 2006021047 | Mar 2006 | WO |
WO 2006049181 | May 2006 | WO |
2006126974 | Nov 2006 | WO |
2007043798 | Apr 2007 | WO |
WO 2008045918 | Apr 2008 | WO |
2008144803 | Dec 2008 | WO |
WO 2010039598 | Apr 2010 | WO |
WO 2010106474 | Sep 2010 | WO |
Entry |
---|
“Certificate Validation Choices,” CoreStreet, Inc., 8 pages, 2002. |
“CoreStreet Cuts the PKI Gordian Knot,” Digital ID World, pp. 22-25, Jun./Jul. 2004. |
“Distributed Certificate Validation,” CoreStreet, Ltd., 17 pages, 2006. |
“Identity Services Infrastructure,” CoreStreet Solutions—Whitepaper, 12 pages, 2006. |
“Important FIPS 201 Deployment Considerations,” Corestreet Ltd.—Whitepaper, 11 pages, 2005. |
“Introduction to Validation for Federated PKI,” Corestreet Ltd, 20 pages, 2006. |
“Manageable Secure Physical Access,” Corestreet Ltd, 3 pages, 2002. |
“MiniCRL, Corestreet Technology Datasheet,” CoreStreet, 1 page, 2006. |
“Nonce Sense, Freshness and Security in OCSP Responses,” Corestreet Ltd, 2 pages, 2003. |
“Real Time Credential Validation, Secure, Efficient Permissions Management,” Corestreet Ltd, 5 pages, 2002. |
“The Role of Practical Validation for Homeland Security,” Corestreet Ltd, 3 pages, 2002. |
“The Roles of Authentication, Authorization & Cryptography in Expanding Security Industry Technology,” Security Industry Association (SIA), Quarterly Technical Update, 32 pages, Dec. 2005. |
“Vulnerability Analysis of Certificate Validation Systems,” Corestreet Ltd—Whitepaper, 14 pages, 2006. |
U.S. Appl. No. 13/292,992, filed Nov. 9, 2011. |
Goldman et al., “Information Modeling for Intrusion Report Aggregation,” IEEE, Proceedings DARPA Information Survivability Conference and Exposition II, pp. 329-342, 2001. |
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
http://www.tcsbasys.com/products/superstats.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1009.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1017a.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1017n.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1020nseries.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1022.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1024.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1030series.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://wwww.tcsbasys.com/products/sz1031.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1033.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1035.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1041.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1050series.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1051.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
http://www.tcsbasys.com/products/sz1053.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003. |
U.S. Appl. No. 13/533,334, filed Jun. 26, 2012. |
“Keyfast Technical Overview,” Corestreet Ltd, 21 pages, 2004. |
U.S. Appl. No. 14/129,086, filed Dec. 23, 2013. |
Number | Date | Country | |
---|---|---|---|
20110153791 A1 | Jun 2011 | US |