The present disclosure relates to systems and methods for managing domestic storage, treatment, and use of water.
Water scarcity is becoming an increasing problem for many countries, with the scale of the impact affected by multiple factors such as population growth, climate change and the increasing demands of both industry and agriculture. Thus, the demand for water is likely to become further strained in the decades ahead, and indeed many global cities face supply vs demand shortages than cannot be met by today's strategies. One approach to ensuring residential homes have sufficient resources to meet these scarcity challenges is the principle of re-use, in that certain water streams within the home are re-used or re-purposed for a secondary use, sometimes characterized as “greywater.” Conventional approaches to such re-use focus on a “whole home” approach, and require significant initial costs (e.g., installation of hardware and infrastructure, reconfiguration of supply lines and drains, etc.) and maintenance costs (e.g., treatment, cleaning, especially around water waste classified as “sewage”).
The resulting system may treat and divert multiple residential streams of water back to a single stream potable, or non-potable quality form for secondary re-use application (e.g., substantially all water used in the home is diverted to a single reservoir which feeds all future use). However, this potable or non-potable form is not optimized for any particular use and does not take into account the specific needs of the secondary purpose, and so in some cases the treatment of input water may be inefficient, unnecessary, or unsuitable based on the water's previous use and actual characteristics. Due to the high cost of implementation and maintenance, as well as the static, rather than dynamic or reactive, treatment of water, the scale of the savings realized by residential homes using conventional graywater systems is limited, and so they are not considered to be a feasible or realistic option for the majority of domestic users.
In one form, a method comprises receiving, by a reservoir device, a volume of waste water from a washing machine, the washing machine having a waste water output and one more water inputs, wherein the reservoir device is in fluid communication with the waste water output and at least one of the one or more water inputs. The method further comprises storing, by the reservoir device, the volume of waste water in a reservoir of the reservoir device. The method further comprises converting, by the reservoir device, the volume of waste water into a volume of recycled water. The method further comprises identifying, by the reservoir device, a cycle type of a cycle being performed by the washing machine. The method further comprises storing, by a processor, a water use sequence that identifies a plurality of cycle types and, for each of the plurality of cycle types, whether that cycle type uses recycled water or fresh water. The method further comprises, based upon the cycle type and the water use sequence, providing, by the reservoir device, at least a portion of the volume of recycled water to the washing machine for the cycle; or providing, by the reservoir device, a volume of fresh water to the washing machine for the cycle.
In another form, a method comprises receiving, by a reservoir device, a volume of waste water from a first point of use, wherein the reservoir device point is in fluid communication with a waste water output of the first point of use and a water input of a second point of use. The method further comprises storing, by the reservoir device, the volume of waste water in a reservoir of the reservoir device. The method further comprises converting, by the reservoir device, the volume of waste water into a volume of recycled water. The method further comprises identifying, by the reservoir device, a water use event of the second point of use. The method further comprises determining, by a processor, whether to provide recycled water or fresh water to the second point of use based on the water use event. The method further comprises, based on the determination, providing, by the reservoir device, at least a portion of the volume of recycled water to the second point of use for the water use event; or providing, by the reservoir device, a volume of fresh water to the second point of use for the water use event.
In another form, a device comprises a set of connections configured to couple to a waste water output and one or more water inputs of a washing machine. The device further comprises a reservoir configured to receive and store a volume of waste water from the washing machine. The device further comprises one or more treatment devices configured to convert the volume of waste water into a volume of recycled water. The device further comprises a processor configured to identify a cycle type of a cycle being performed by the washing machine. The processor is further configured to store a water use sequence that identifies a plurality of cycle types and, for each of the plurality of cycle types, whether that cycle type uses recycled water or fresh water. The processor is further configured to, based upon the cycle type and the water use sequence, provide at least a portion of the volume of recycled water to the washing machine for the cycle; or provide a volume of fresh water to the washing machine for the cycle.
In another form, a device comprises a set of connections configured to couple to a waste water output of a first point of use and a water input of a second point of use. The device further comprises a reservoir configured to receive and store a volume of waste water from the first point of use. The device further comprises one or more treatment devices configured to convert the volume of waste water into a volume of recycled water. The device further comprises a processor configured to identify a water use event of the second point of use. The processor is further configured to determine whether to provide recycled water or fresh water to the second point of use based on the water use event. The processor is further configured to, based on the determination provide at least a portion of the volume of recycled water to the second point of use for the water use event; or provide a volume of fresh water to the second point of use for the water use event.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and the disclosure itself will be better understood by reference to the following description of non-limiting embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
The present disclosure relates to systems and methods for managing the storage, treatment, and use of water in domestic environments. Various nonlimiting embodiments of the present disclosure will now be described to provide an overall understanding of the principles of the function, design and operation of the systems and methods. One or more examples of these nonlimiting embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the systems and methods described herein and illustrated in the accompanying drawings are nonlimiting example embodiments and that the scope of the various nonlimiting embodiments of the present disclosure are defined solely by the claims. The features illustrated or described in connection with one nonlimiting embodiment may be combined with the features of other nonlimiting embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
Due to the cost, complexity, and maintenance requirements of “whole home” water treatment systems, it may be advantageous to utilize small scale methods and devices to provide water use and reuse management at a particular point of use, that is particularized for that point of use, rather than trying to broadly capture and reuse water across an entire residence. As an example, this might include external and/or peripheral systems and devices that capture water from a specific point of use, such as a washing machine, and make limited reuse of that water for the same washing machine, or for another point of use that is proximately located to the washing machine. In this manner, the limited scope of the water management may be an advantage rather than a burden, as compared to whole-home systems. These limited scope water use and re-use management systems may be combined with point of use water treatment devices, or water conditioners, such as the systems disclosed in U.S. Provisional Patent Application No. 63/118,176, filed on Nov. 25, 2020, the entire disclosure of which is incorporated by reference herein.
An example of a point of use that may benefit from a specialized water management system is the washing machine. Water waste from a washing machine may be a poor candidate for capture and re-use by whole home systems due to the contaminant content, including washing detergents and clothing fibers, and the washing machine may also be a poor candidate for receiving greywater from a whole home system due to the impact that such water can have on the performance of laundry detergents, and the overall process of cleaning clothing. For example, many whole home systems may provide hard water, which can hinder detergent performance and cause build-up over time that gives clothing a ‘dingy’ appearance. As another example, many whole home systems leave small amounts of soil in secondary use water, or subsequent use water, even after treatment and filtration, which can build up in clothing over time and again cause an undesirable appearance or feeling, especially in whites and light colored clothing.
Another difficulty with using greywater with washing machines is effectively pairing water management techniques with the operation of a particular washing machine, and the characteristics of particular cycles of washing machines. As described above, not all greywater, unless filtered and treated to high standards, is appropriate for use with a washing machine, and even high quality greywater may be inappropriate for certain portions of laundry cycles. Implementations of the disclosed system and method may provide water savings of up to 60% or more, based upon particular user habits (e.g., the system may encourage users to opt for washing machine modes or cycles that maximize use of recycled water).
Turning now to the figures,
As can be seen, the modular infrastructure 13 is more limited in the scope than the primary infrastructure 11. The modular infrastructure 13 may be encased within the structure of the domestic setting 10 (e.g., encased within walls, floors, or ceilings), or may be installed externally to such structures. The modular infrastructure 13 may include some aspects of the primary infrastructure 11, such as copper or plastic piping encased within structures, but may also include flexible tubing, flat tubing, temporary tubing with quick attach and release features, and other materials to aid in transport of water across relatively short distances and/or within a single room or adjacent rooms. In some implementations, the modular infrastructure 13 may also include transportable mobile elements, such as canisters, cartridges, or tanks that may be carried or otherwise conveyed (e.g., such as by rolling on a set of wheels) from location to location. In some implementations, the modular infrastructure 13 may include point of use water treatment devices that may receive fresh water, or treated water, and perform treatments on demand at a point of use, as will be described in more detail below.
While the particular layout and design of the modular infrastructure 13 will depend upon particular households and varying implementations, and may also change from to time as modular connections are added or removed,
While not required in all implementations, the exemplary system 100 depicted in
Referring to
Data available to the water use hub 102 might also include user data that is gathered based upon historic uses or is received from a user device 108, or both. This may include, by manual configurations received via a user device 108 and/or predictive information derived from past usage, a number of persons using water within the setting, the days and times that each person is likely to take a shower, wash clothing, use an outdoor faucet, or perform some other water use, or dynamically requested particular uses (e.g., such as an indication from a user device 108 that a user is preparing to wash a car or water plans).
Data available to the water use hub 102 might also include sensor data describing characteristics of water used at points of use 101. This may include data from sensors capable of determining various characteristics of volumes of water. Such information might be used by point of use devices 104 or other devices to evaluate and prepare captured water for subsequent uses, and may be reported to the water use hub 102 so that it may be used for other purposes such as identifying ways to improve the overall quality of water in a household, to detect the presence of contaminants, or to suggest different products (e.g., chemical treatment cartridges, filtration modules) that may improve or reduce the level of chemical contaminants present in water at the point of use 101.
Data gathered by the water use hub 102 may be provided to a remote server 106 and used as part of aggregate information on water use across a group of users or a geographical area from which it originated, for example, and may be used to produce and refine configurations of the a plurality of systems 100 across many users. For example, data reported from a plurality of users within a single city may indicate that most or all residents of the city receive water with an undesirably high mineral content from the fresh water input 12. Such information may be used to remotely configure many point of use devices 104 within that city, to account for and treat the known high mineral content. The water use hub 102 and/or server 106 may also use gathered data to communicate with the user device 108 and provide information, recommendations, and other data to users via a one or more graphical user interfaces. For example, the user device 108 may receive a notification indicating high mineral content in the fresh water input 12, and recommending a whole-home water softener or other solution. As another example, the user device 108 may receive a notification indicating that, based on their historic and/or configured usage sequences, if they can wash a load of laundry at 9 p.m. instead of at 7 p.m., the entire water usage for that wash will come from re-used water that will be available at that time, instead of from the fresh water input 12. As another example, the user device 108 may receive a notification indicating that a chemical cartridge fill level for a point of use device 104 is low and should be replaced.
As further example of a point of use device 104,
The point of use reservoir 200 may include a treatment module in the form of one or more injection pumps 204 that are operable to introduce an additive to water flow in the water channel 202, or water stored in a storage reservoir 222. In varying implementations, injection pumps 204 may draw additives from an internal reservoir, or may draw additives from a cartridge or other external replaceable reservoir. In cartridge based implementations, the point of use reservoir 200 may include a cartridge receiver 210 that receives a cartridge containing chemical treatments, user experience treatments, or other additives, and provides such additives to the injection pumps 204. Cartridge receivers 210 may include additional features, such as optical, electrical, or wireless data readers or receivers operable to receive information from an inserted cartridge that is usable to identify the cartridge and its contents, or enable/disable other features of the point of use reservoir 200 based upon an inserted cartridge. Treatments provided to water may include the provision of one or more of surfactants, optical agents, dyes, fluorescent markers, buffers, pH modifiers, perfumes, de-scaling agents, metal sequestration agents, polymers, colors, surface tension modifiers, viscosity modifiers, lubrication agents, silicones, deodorization agents, bleaches including halogens and peroxygen compounds, preservation agents, biocidal agents, anti-fungal agents, anti-viral agents and cleaning compositions containing one or more of the preceding list.
The point of use reservoir 200 may include a user interface 206 that allows a user to provide inputs to the point of use reservoir 200, receive information from the point of use reservoir 200, or both. The user interface may include, for example, a display screen, a touch screen, a set of light indicators or other visual indicators, a set of buttons or other controls, voice activation features, or a software interface accessible wirelessly from another device (e.g., such as a smartphone connecting to the point of use reservoir 200 via Bluetooth or Wi-Fi). The user interface 206 may be configured to allow a user to activate certain water treatments, activate or deactivate water capture and reuse features, create and change software configurations of the point of use reservoir 200, receive information relating to the function of the point of use reservoir 200 such as operational status, cartridge contents, cartridge levels, and receive warning messages or other notifications relating to the function of the point of use reservoir 200.
The point of use reservoir 200 may include other features and components such as power sources 208 (e.g., a rechargeable/replaceable battery, hardwired connection, power cable), communication devices 212 (e.g., Bluetooth transceivers, Wi-Fi transceivers, optical transceivers, or other devices capable of receiving and transmitting data wirelessly or via a hardwired connection), processors 218 (e.g., one or more computer processors within the point of use reservoir 200 or within a device in communication with the point of use reservoir 200, that are configured to execute programming instructions and exchange control signals with other devices of the point of use reservoir 200 such as the injection pumps 204, user interfaces 206, and others), as well as components such as memories, storage devices, and sealants against water and humidity, for example. One or more processors 218 may also include computer processors of varying types include microprocessors, and may also include control boards, programmable logic devices, field programmable gate arrays, and other devices capable of receiving an input signal, determining an output signal, and providing the output signal to one or more other devices or components.
The point of use reservoir 200 may include a sensor module 214 that includes one or more sensor capabilities such as flow sensors, pressure sensors, contaminant sensors, water characteristic sensors (e.g., for determining pH, hardness, clarity), temperature sensors, motion sensors, proximity sensors, sound sensors, or other sensor devices capable of measuring physical characteristics of the proximate environment and generating datasets for use by the processor 218. Additional characteristics that may be measured by use of the sensor module 214 may include one or more of pH, conductivity, dissolved oxygen, chemical oxygen demand, biological oxygen demand, suspended solids, dissolved solids, turbidity, presence of pathogens, pathogenic levels, pathogenic species, fecal coliforms, presence of blood, human biomarkers, ammonia, residual chlorine, bromine, phosphorus, nitrogen, boron, turbidity, color, particle size, flow and temperature.
The point of use reservoir 200 may also include a filtration module 216, which may include one or more filtration membranes, chambers, or substances, and may be positioned inline along the water channel 202 (e.g., prior to the storage reservoir 222), prior to the water channel 202 and external to the point of use reservoir 200 itself (e.g., inline along a hose or other channel that provides fresh water 12 to the point of use reservoir 200), or after the water channel 202 and external to the point of use reservoir 200 (e.g., inline along a hose or other channel that provides post-modification water to a point of use such as a shower 112). The filtration module 216 may filter water by one or more physical treatments such as gravitational separation, filtration, foam fractionation, hydro-dynamic separation, reverse osmosis, forward osmosis, ultra-filtration, nano-filtration, gravitational separation, sedimentation, centrifugation, flocculation, aeration, deaeration, and electro-coagulation.
In some implementations, the water channel 202 may have two or more outputs, with one output providing post-modification water to a point of use such as the shower 112, and a second output terminating at a secondary device connector 220. The secondary device connector 220 may be configured to couple with any of a variety of secondary devices to allow for post-modification water to be provided selectively to the shower 112, a connected secondary device, or both simultaneously. Secondary devices may receive a steady stream of water from the point of use reservoir 200 based upon the operation of a passive or active valve system within the water channel 202 and/or secondary device connector 220, or may include their own supply valve that controls the flow of water by pressing a button or adjusting another control, or both.
In some implementations, the point of use reservoir 200 may additionally be configured for point of use water capture and re-use via modular infrastructure. Such implementations may additionally include one or more storage reservoirs 222. The storage reservoir 222 may be inline with, or otherwise in fluid communication with the water channel 202, such that water received via some or all of the water inputs passes into the storage reservoir 222, and water from the storage reservoir 222 may flow out of the point of use reservoir 200 via one or more water outputs. Water provided by the point of use reservoir 200 may be from the fresh water input 12 that bypasses the storage reservoir 222 completely, may flow from the storage reservoir 222, or may be a mix.
Water that is provided to the storage reservoir 222 may be stored and treated or conditioned over time, while water bypassing the storage reservoir 222 may be treated and provided in real-time. Water provided to the storage reservoir 222 may be from the fresh water input 12, or may be water captured from a point of use via modular infrastructure 13. Water captured for treatment in the storage reservoir 222 during a precedent use may be treated, and then provided from the storage reservoir 222 for a subsequent use, and is typically captured prior to entering the primary infrastructure 11 (e.g., captured prior to entering a drain). Components of the point of use reservoir 200 related to water modification (e.g., the injection pump 204, the cartridge receiver 210, and the filtration module 216) may operate to treat water that bypasses the storage reservoir 222, water stored within the storage reservoir 222, or both. For example, where a point of use reservoir 200 may receive four cartridges including water modification chemistry, additive from each cartridge may be used to treat water in real-time or in the storage reservoir 222, or cartridges may be dedicated to particular uses (e.g., two cartridges may be used to treat water bypassing the storage reservoir 222, while two cartridges may be used to treat water within the storage reservoir 222).
Implementations of the point of use reservoir 200 having a storage reservoir 222 may also include a water transport device 224, which may be, for example, a pump that is operable to create pressure and/or vacuum in order to transport water within a closed system. The water transport device 224 may be operable to capture water from a point of use and transport it to the storage reservoir, and may be used to transport water from the storage reservoir 222 into the water channel 202 for output to a subsequent use.
A waste water input 308 may be coupled to a waste water output line from a washing machine in order to receive water that drains from the washing machine. A cold water input 310 may be coupled to a fresh water input 12 that provides cold water. A cold water output 312 may be coupled to a cold water supply on a washing machine to provide cold water to the washing machine. A hot water input 314 may be coupled to a supply line that that provides fresh hot water (e.g., such as the fresh water input 12). A hot water output 316 may be coupled to a hot water supply on a washing machine to provide hot water to the washing machine. In some implementations, the hot water input 314 and hot water output 316 may be a simple pass-through channel, such that fresh hot water passes through the reservoir device 300 without being stored, treated, or filtered. Such implementations could supply recycled water for cold wash and rinse cycles, but would supply fresh water for hot wash and rinse cycles. Some implementations of the reservoir device 300 may include heating elements to heat water within a separate, hot water specific, storage reservoir, or heat water inline and on demand as it is supplied from a single reservoir. A drain output 318 may be coupled to a drainage pipe, so that water that is unsuitable for treatment and reuse, or that otherwise needs to be drained from the reservoir, may be transported to the water waste output 16.
The case 302 of the reservoir device includes a reservoir 320 adapted to store water, which may have some or all of the features of the storage reservoir 222 of
A supply pump 328 is in fluid communication with the reservoir 320 and is operable to transport water from the reservoir for reuse by the washing machine or other appliance. The supply pump 328 may be a gear pump or other pump type capable of providing between about 4 liters and about 10 liters of displacement per minute at around 0.5 bar. Water transported by the supply pump 328 passes through a primary filter 324 and water sensor module 326. The primary filter 324 may be replaceable and/or serviceable and reusable. As one example, the primary filter 324 may be a two stage filter with a first stage having micron rating between about 30 and about 90, and may include features such as automated electrical or mechanical anti-clogging to clear the filter mesh (e.g., a mechanical brushing arm), and self-cleaning to divert filtered debris to the reservoir 320 or to a waste outlet. A second stage may have a micron rating between about 2 and about 10 microns, selected to filter fibers from water to wash clothing, and may be a removable and/or replaceable filter or serviceable component.
Filtered debris may be purged from the reservoir 320 and primary filter 324 using a low-mounted drain plug or outlet, or by use of an unfiltered drain pump such as the drain pump 322. The water sensor module 326 may sample water at rest within the reservoir 320, and water passing through the primary filter 324 by operation of the supply pump 328. The water sensor module 326 may determine the presence of contaminants in the water (e.g., bacteria, sediment, fibers), and such measurements may be used to determine whether stored water is reusable, or should be discarded via operation of the drain pump 322. The water sensor module 326, as well as the water sensors 336 may include some or all of the features described in the context of the sensor module 214 of
A treatment cartridge 338 includes a receiver that may receive and couple with a cartridge of chemical treatment or other substance usable to treat captured water to prevent bacterial growth, neutralize detergents or other chemicals, reduce mineral content, and otherwise improve the quality of water for reuse. A cartridge pump 332 is operable to transport treatment substances from the treatment cartridge 338 directly into the reservoir 320, or into the stream of incoming waste water received from the washing machine via the waste water input 308. Treatment may also be provided by ultraviolet or ozone sanitization of water within the reservoir 320 or within a transport channel. An inbound water sensor module 336 may be similar to the water sensor 326, but is positioned near and in fluid communication with the waste water input 308. This water sensor module 336 is configured to determine characteristics of captured water prior to entering the reservoir 320, and may measure characteristics such as chemical contaminants from detergents or other laundry treatments, physical contamination from dirt or fibers, or biological contamination from bacteria or biological material. Information from this water sensor module 336 may be used determine the status of a diverter valve 330 of the waste water input 308. The diverter valve 330 may be actuated, based upon the configured state of the reservoir device (e.g., the device may be in a disabled mode where water is not stored or treated) or the output of the water sensor module 336, between a first state where incoming waste water flows into the reservoir 320, and a second state where incoming water flows to the drain output 318 and is discarded without passing through the reservoir 320.
Water transported by the supply pump 328 passes through a secondary filter 340, and, in some implementations, enters a regulator tank 342. The secondary filter 340 removes particulate and fibrous debris from recycled water prior to exiting the reservoir device 300 and being provided to the washing machine or other point of use. Each of the primary filter 324 and secondary filter 340 may include some or all of the features of the filtration module 216 of
With reference to
The hot water bypass is also illustrated as connecting the hot water input 314 to the hot water output 316. The cold water input 310 is illustrated as connecting to the regulator tank 342. A flow meter 348 is positioned inline on the hot water bypass, a flow meter 350 is positioned inline on the cold water input 310, and the water sensor module 336 may also include a flow meter. Each of the flow meters is configured to detect the flow of water into the system from a different source (e.g., waste water from washing machine, fresh cold water, fresh hot water), and such flow information may be used to control the operation of the reservoir device 300 and/or to provide information to users about their water use habits. As an example, information from the flow sensors may be used to provide an interface to a user via a user device 108 showing the total volume of fresh cold water and fresh hot water used during a period of time, and the total volume of water that was captured and reused by the system during the period of time. This may also include suggestions or recommendations based on such information, such as the amount of water that may be saved during a month or year if a user switches to only using cold wash cycles. As another example, flow data from the water sensor module 336 may be used to prepare other components to receive and measure, treat, or otherwise process incoming wastewater.
In
The drain pump 322 is shown receiving water from the reservoir 320, and diverting such water to the drain outlet 318 so that it can be discarded. The supply pump 328 is shown receiving water from the reservoir 320, which passes by or through the primary filter 324 and water sensor module 326, passes through the secondary filter 340, and enters the regulator tank 342. The regulator tank 342 is shown receiving water from the reservoir 320 and the fresh water input 310, and may include a set of valves that are selectively operable to supply only recycled water, only fresh water, or a mix of water to the cold water output 312.
In some implementations, a point of use reservoir such as the reservoir device 300 may selectively provide recycled water or fresh water to a washing machine or other point of use. As an example related to a washing machine, a single use of the washing machine may last for 90 minutes or more, and may include several discrete instances where water is supplied to the washing machine. As an example, this may include a wash cycle and one or more rinse cycles. In a typical scenario, the washing machine would receive fresh water, mix detergent with the fresh water, and perform an initial wash of the clothing. Once complete, the wash water would be disposed of, and fresh water would be again provided for a first rinse. Once the first rinse is complete, the rinse water would be disposed of, and fresh water would be again provided for a second, and sometimes final, rinse.
While a device such as the reservoir device 300 may be configured to capture and reuse the same volume of water each time the washing machine signals that water is needed, regardless of cycle (e.g., wash, first rinse, second rinse), it may be advantageous to identify each cycle as it occurs and selectively provide recycled water or fresh water based upon the identified cycle. As one example, this may include identifying the final rinse cycle of a washing machine, and providing fresh water for the final rinse, rather than recycled water. While this method of cycle detection and selective water use may be entirely pre-configured (e.g., the reservoir device 300 would have access to preconfigured cycle information for each mode of each washing machine, and would be able to determine the occurrence of cycles based upon elapsed time, or detection of outgoing waste water, or ingoing fresh water recycled water), it may also be advantageous to provide cycle detection devices usable with the reservoir device to aid in automatically learning washing machine cycles, or otherwise identifying washing machine cycles, where preconfigured cycle information is not available.
As an example,
As one example, an imaging device 364 may include a camera or other optical receiver that may be positioned within view of the washing machine 114 interface screen and controls, and may be configured to determine the current mode and/or cycle of the washing machine 114 based upon displayed information, lighted signal indicators, or the positions of dials or buttons. Initial configuration of the imaging device 364 may include a user setting the washing machine 114 to each state (e.g., wash mode and cycle) and providing inputs that identify the characteristics of each state. Images of the washing machine 114 control interface (e.g., dials, buttons, light indicators, LED displays) may be captured in each state, and when future images matching those configured images are detected the reservoir device 360 can identify the state of the washing machine 114.
As another example, a microphone 366 or vibration sensor may be positioned near the washing machine 114 and configured to record audio during various operational states of the washing machine 114, or detect patterns of motion of vibration. As with the prior example, a user may initially set the washing machine 114 into each state and provide inputs identifying the characteristics of that state, and the recorded audio or vibration patterns associated with each state may be used to recognize that state in the future based upon subsequently recorded audio or vibration patterns.
As yet another example, a signal detector 362 may be coupled to or positioned nearby electrical components of the washing machine 114, such as the power cable, motor, control board, or user interface. The signal detector 362 may be configured to detect signals such as electrical current drawn by the washing machine 114, or passive electromagnetic signals or frequencies produced by the motor, control board, user interface, or other electrical components of the washing machine 114 during operation. As with prior examples, a user may initially set the washing machine 114 into each state and provide inputs identifying the characteristics of that state, and saved signal characteristics may be used to recognize that state in the future based upon subsequently detected signals.
The reservoir device 360 may also be capable of automatically identifying cycle characteristics and wash modes for a washing machine based upon information generated by the flow meters 348, 350 and other water sensors, and may utilize such automatic identifications independently, or in combination with information from a cycle sensor. As an example, once the reservoir device 360 is coupled to a washing machine, the reservoir device 360 may be placed into a training mode and each mode of the washing machine may be used. During each mode, the reservoir device 360 may determine characteristics such as the length of the wash mode (e.g., based upon audio feedback from the washing machine indicating it is running, or based upon a duration of elapsed time from a final draining of the washing machine with no subsequent draw of water), the start time, stop time, and duration of each cycle (e.g., based upon flow meter data showing when water was provided to the washing machine, and when water was drained from the washing), the volume and type of water provided, and other characteristics. Such information may be used to produce a timeline for when each cycle starts and stops, and the type of cycle (e.g., hot, warm, or cold, and whether the cycle was a rinse or wash based upon the volume of water drawn, whether detergent is present in the waste water, and the length of the cycle).
The disclosed reservoir devices may be fully or partially automated once installed and configured, such that user requirements are minimized to cleaning of filters, exchanging treatment cartridges, or other maintenance tasks. Features such as automatic cycle detection and sensor based diversion of water to either the reservoir 320 or drain outlet 318 allow a reservoir device to function with little manual configuration or input from a user, and do not require user inputs during each use, or between each cycle.
As an example,
Where no configuration exists 502, the system may determine 506 the type of wash mode that the washing machine is currently operating in (e.g., normal wash, colors wash, quick wash, etc.) and then detect 508 the characteristics of each cycle. Determining 506 the wash mode type may include receiving manual input from a user identifying the mode, or may include automatically identifying the wash mode based upon feedback from a device such as the imaging device 364, signal detector 362, or microphone 366, or water and flow sensors of the reservoir device 300, which may also be used to detect 508 the cycle characteristics. If the type of cycle is identifiable 510 based upon the detected 508 cycle characteristics, the system may store 514 the cycle identity and associated characteristics so that it is more readily identifiable 510 in the future. The cycle may be identifiable 510 based upon a captured image of the control interface, captured audio of the cycle, detected electric or other signals, or water flow data matching or being substantially similar to prior characteristics that have been associated with certain cycles, as has been described.
Where the cycle is not automatically identifiable 510, the user may provide input that is received 512 and used to identify the cycle. As an example, during the first time that a certain cycle is performed the system may not be able to identify 510 the cycle due to a lack of historical comparison. In such an example, the user may identify the cycle as a wash, first rinse, second rinse, or so on, and such a received 512 cycle type may be associated with cycle characteristics so that it is identifiable in the future, as has been previously described.
Where the water is usable 604, the diverter 330 may be actuated to divert the waste water to be stored 608 in the reservoir 320. While stored in the reservoir 320, the water may be filtered 610 (e.g., either by being circulated through the primary filter 324 by the supply pump 328, or by being filtered on demand as it is transported to the regulator tank), and treated 612 by injections from the cartridge pump 332 or, in the case of non-chemical treatments (e.g., ultraviolet sanitization, electro disinfection, ozone treatment, rapid heating, or plasma treatment), by contact or optical exposure via a treatment module or other device. Treatments 612 may include, for example, introduction of chlorine, bleach, bleach boosters, or other chemicals to inhibit the growth of bacteria or mold, introduction of chemical binders, soil repellent polymers, chelants, or builders to mitigate or aid in the filtration of detergents, fibers, and sediment, and other treatments. Other examples of treatments and filtration may include, for example, gravitational separation, filtration, foam fractionation, hydro-dynamic separation, reverse osmosis, forward osmosis, ultra-filtration, nano-filtration, gravitational separation, sedimentation, centrifugation, coagulation, flocculation, aeration, deaeration, electro-coagulation, electro-disinfection, cold plasma injection, and UV treatment.
Similarly, the reservoir device 300 may provide 706 recycled and treated water to some wash cycles, and may provide 706 fresh water to other wash cycles. As an example, recycled water may be used for an initial wash of clothing and then disposed of, while fresh water may be used for a final rinse cycle.
Where the water is usable 806 based upon feedback from the water sensor module 326, the system may perform secondary filtration 810 using the secondary filter 340, and provide the recycled water to the regulator tank 342 so that the outgoing flow and pressure of water may be regulated 812, and the water may be provided 814 to the coupled device via the cold water output 312. Regulation 812 of the outgoing flow and pressure may include passive features, such as flow restrictors or other devices to limit and stabilize the flow of outgoing water, and may also include active features such as the use of additional pumps to build water pressure to a level expected by the receiving device. Regulation 812 may also include mixing of recycled water and fresh water, either to build pressure or volume to required levels, or based upon a particular identified cycle (e.g., a first rinse cycle may receive a mix of recycled and fresh water, while a final rinse cycle may receive entirely fresh water).
Configuration of water use sequences may be preconfigured, or may be dynamically determined based upon sensor data from historic uses of the system. In either case, determination of whether water is used, captured, disposed, or reused may be based at least in part on balancing efficiency against ability to remove detergent or other residue from clothing. For preconfigured sequences, this may include testing with various washing machines and detergents, while for sequences that are at least partially dynamically determined, this may include evaluating sensor data for a particular washing machine and particular detergent over the first several uses of the reservoir device, with the water use sequence being updated after each use.
While the reservoir device 300 and other devices have been described in the context of enabling the capture and use of recycled water for a washing machine, it should be understood that the features disclosed herein may also be readily implemented with a toilet, shower, sink faucet, or other points of use. As an example, this may include water waste from a shower being captured, treated, and reused to provide water for a toilet flush, or water waste from a sink faucet being captured, treated, and reused to provide water for outdoor uses (e.g., automotive cleaning, or watering of plants). Filtration and treatment performed on captured water may vary based upon the point of use it is captured from, and the point of use it is provided to. As an example, water captured from a shower, and intended for subsequent use at a toilet may undergo minimal filtration and may be treated to add a scented perfume or toilet bowl cleaner prior to being provided to the toilet.
A water management method comprising: (a) receiving, by a reservoir device, a volume of waste water from a washing machine, the washing machine having a waste water output and one more water inputs, wherein the reservoir device is in fluid communication with the waste water output and at least one of the one or more water inputs; (b) storing, by the reservoir device, the volume of waste water in a reservoir of the reservoir device; (c) converting, by the reservoir device, the volume of waste water into a volume of recycled water; (d) identifying, by the reservoir device, a cycle type of a cycle being performed by the washing machine; (e) storing, by a processor, a water use sequence that identifies a plurality of cycle types and, for each of the plurality of cycle types, whether that cycle type uses recycled water or fresh water; and (f) based upon the cycle type and the water use sequence: (i) providing, by the reservoir device, at least a portion of the volume of recycled water to the washing machine for the cycle; or (ii) providing, by the reservoir device, a volume of fresh water to the washing machine for the cycle.
The method of example 1, wherein converting the volume of waste water into the volume of recycled water comprises: (a) filtering, by one or more filters of the reservoir device, the volume waste water; and (b) introducing, by a treatment module of the reservoir device, at least one treatment into the volume of waste water.
The method of example 2, wherein the one or more filters of the reservoir device comprise a first filter having a micron rating between about 30 and about 90 microns and a second filter having a micron rating between about 2 and about 10 microns.
The method of any one or more of examples 2 through 3, wherein introducing at least one treatment into the volume of waste water comprises: (a) introducing at least one chemistry selected from the group consisting of surfactants, optical agents, buffers, pH modifiers, perfumes, de-scaling agents, metal sequestration agents, polymers, silicones, deodorization agents, bleaches including halogens and peroxygen compounds, preservation agents, biocidal agents, anti-fungal agents, anti-viral agents and cleaning compositions containing one or more chemistry of the preceding list; (b) subjecting the volume of waste water to one or more of ultraviolet light, electrolysis treatment, ozone treatment, or rapid heating.
The method of any one or more of examples 1 through 5, further comprising: (a) measuring, by a first water sensor module, a set of pre-storage characteristics of the volume of waste water prior to storing the volume of waste water in the reservoir; (b) determining, by the processor, whether the volume of waste water is usable based on the set of pre-storage characteristics; and (c) when the volume of waste water is not usable, operating, by the reservoir device, a diverter valve to cause the volume of waste water to be disposed of via a drain outlet of the reservoir device.
The method of example 5, further comprising: (a) measuring, by a second water sensor module, a set of post-storage characteristics of the volume of recycled water prior to providing the volume of recycled water to the washing machine; (b) determining, by the processor, whether the volume of recycled water is usable based on the set of post-storage characteristics; (c) when the volume of recycled water is not usable: (i) operating, by the reservoir device, a drain pump of the reservoir device to cause the volume of recycled water to be disposed of via a drain outlet of the reservoir device; and (ii) operating, by the reservoir device, a water feed valve to provide fresh water to the washing machine.
The method of any one or more of examples 1 through 6, wherein the one or more water inputs of the washing machine comprise a hot water input and a cold water input, the method further comprising: (a) providing, by the reservoir device, the volume of recycled water or the volume of fresh water via the cold water input; (b) providing, by the reservoir device, hot fresh water to the hot water input by: (i) receiving hot fresh water from a primary infrastructure source; and (ii) transporting the hot fresh water through a bypass channel to the hot water input of the washing machine.
The method of example 7, further comprising: (a) receiving, by the processor, a first set of flow data from a first flow sensor of the reservoir device configured to measure the flow of the volume of fresh water to the washing machine; and (b) receiving, by the processor, a second set of flow data from a second flow sensor of the reservoir device configured to measure the flow of hot fresh water to the washing machine.
The method of example 8, further comprising, causing, by the processor, an interface to display on a user device, wherein the interface comprises: (a) a description of the first set of flow data; (b) a description of the second set of flow data; and (c) a recommendation for using the washing machine and the impact that following the recommendation will have on the first set of flow data and the second set of flow data.
The method of any one or more of examples 1 through 9, further comprising, identifying, by the processor, the cycle type of the cycle being performed by the washing machine by: (a) receiving a set of cycle characteristics from a cycle sensor; and (b) identifying the cycle type based on the set of cycle characteristics.
The method of example 10, wherein the cycle sensor is an imaging device configured to capture images of a control panel of the washing machine during the cycle.
The method of any one or more of examples 10 through 11, wherein the cycle sensor is a microphone configured to capture audible sounds produced by the washing during the cycle.
The method of any one or more of examples 10 through 12, wherein the cycle sensor is an electrical signal detector configured to detect electricity used by the washing machine, or electrical signals emitted by the washing machine, during the cycle.
The method of any one or more of examples 10 through 13, wherein identifying the cycle type based on the set of cycle characteristics comprises: (a) matching, by the processor, the set of cycle characteristics to a previously detected set of cycle characteristics; and (b) identifying, by the processor, the cycle based upon a previously identified cycle that is associated with the previously detected set of cycle characteristics.
The method of any one or more of examples 1 through 14, wherein the water use sequence is configured to cause: (a) providing, by the reservoir device, the volume of recycled water for use during a wash cycle type, and disposing of the volume of waste water produced by the wash cycle type; (b) providing, by the reservoir device, the volume of recycled water for use during a first rinse cycle type, and saving the volume of waste water produced by the first rinse cycle type in the reservoir; and (c) providing, by the reservoir device, the volume of fresh water for use during a subsequent rinse cycle type, and saving the volume of waste water produced by the subsequent rinse cycle type.
The method of any one or more of examples 1 through 15, wherein the water use sequence is configured to cause: (a) providing, by the reservoir device, the volume of recycled water for use during a wash cycle type, and disposing of the volume of waste water produced by the wash cycle type; (b) providing, by the reservoir device, the volume of fresh water for use during a first rinse cycle type, and saving the volume of waste water produced by the first rinse cycle type in the reservoir; and (c) providing, by the reservoir device, the volume of recycled water for use during a subsequent rinse cycle type, and saving the volume of waste water produced by the subsequent rinse cycle type.
The method of any one or more of examples 1 through 16, wherein the water use sequence is configured to cause: (a) providing, by the reservoir device, the volume of recycled water for use during a wash cycle type, and saving the volume of waste water produced by the wash cycle type; (b) providing, by the reservoir device, the volume of recycled water for use during a first rinse cycle type, and disposing of the volume of waste water produced by the first rinse cycle type; and (c) providing, by the reservoir device, the volume of fresh water for use during a subsequent rinse cycle type, and saving the volume of waste water produced by the subsequent rinse cycle type.
A water management method comprising: (a) receiving, by a reservoir device, a volume of waste water from a first point of use, wherein the reservoir device point is in fluid communication with a waste water output of the first point of use and a water input of a second point of use; (b) storing, by the reservoir device, the volume of waste water in a reservoir of the reservoir device; (c) converting, by the reservoir device, the volume of waste water into a volume of recycled water; (d) identifying, by the reservoir device, a water use event of the second point of use; (e) determining, by a processor, whether to provide recycled water or fresh water to the second point of use based on the water use event; and (f) based on the determination: (i) providing, by the reservoir device, at least a portion of the volume of recycled water to the second point of use for the water use event; or (ii) providing, by the reservoir device, a volume of fresh water to the second point of use for the water use event.
The method of example 18, wherein converting the volume of waste water into the volume of recycled water comprises: (a) filtering, by one or more filter modules of the reservoir device, the volume waste water; and (b) introducing, by a treatment module of the reservoir device, at least one treatment into the volume of waste water.
The method of example 19, wherein the one or more filter modules are configured to filter the volume of waste water via one or more of gravitational separation, filtration, foam fractionation, hydro-dynamic separation, reverse osmosis, forward osmosis, ultra-filtration, nano-filtration, gravitational separation, sedimentation, centrifugation, flocculation, aeration, deaeration, electro-coagulation, electro-disinfection, cold plasma injection, and UV treatment.
The method of any one or more of examples 19 through 20, wherein introducing at least one treatment into the volume of waste water includes: (a) introducing at least one chemistry selected from the group consisting of surfactants, optical agents, buffers, pH modifiers, perfumes, de-scaling agents, metal sequestration agents, polymers, silicones, deodorization agents, bleaches including halogens and peroxygen compounds, preservation agents, biocidal agents, anti-fungal agents, anti-viral agents and cleaning compositions containing one or more of the preceding list;
or (b) subjecting the volume of waste water to one or more of ultraviolet light, electrolysis treatment, ozone treatment, or rapid heating.
The method of any one or more of examples 18 through 21, further comprising: (a) measuring, by a first water sensor module, a set of pre-storage characteristics of the volume of waste water prior to storing the volume of waste water in the reservoir; (b) determining, by the processor, whether the volume of waste water is usable based on the set of pre-storage characteristics; and (c) when the volume of waste water is not usable, operating, by the reservoir device, a diverter valve to cause the volume of waste water to be disposed of via a drain outlet of the reservoir device.
The method of example 22, further comprising: (a) measuring, by a second water sensor module, a set of post-storage characteristics of the volume of recycled water prior to providing the volume of recycled water to the second point of use; (b) determining, by the processor, whether the volume of recycled water is usable based on the set of post-storage characteristics; (c) when the volume of recycled water is not usable: (i) operating, by the reservoir, a drain pump of the reservoir device to cause the volume of recycled water to be disposed of via a drain outlet of the reservoir device; and (ii) operating, by the reservoir, a water feed valve to provide fresh water to the second point of use.
A reservoir device comprising: (a) a set of connections configured to couple to a waste water output and one or more water inputs of a washing machine; (b) a reservoir configured to receive and store a volume of waste water from the washing machine; (c) one or more treatment devices configured to convert the volume of waste water into a volume of recycled water; (d) a processor configured to: (i) identify a cycle type of a cycle being performed by the washing machine; (ii) store a water use sequence that identifies a plurality of cycle types and, for each of the plurality of cycle types, whether that cycle type uses recycled water or fresh water; and (iii) based upon the cycle type and the water use sequence: (A) provide at least a portion of the volume of recycled water to the washing machine for the cycle; or (B) provide a volume of fresh water to the washing machine for the cycle.
The device of example 24, wherein the one or more treatment devices comprise: (a) one or more filters configured to separate a contaminant from the volume of waste water; (b) a treatment module configured to introduce at least one treatment to the volume of waste water.
The device of example 25, wherein the one or more filters of the reservoir device comprise a first filter having a micron rating between about 30 and about 90 microns and a second filter having a micron rating between about 2 and about 10 microns.
The device of any one or more of examples 25 through 26, wherein the treatment module is further configured to: (a) introduce at least one chemistry selected from the group consisting of surfactants, optical agents, buffers, pH modifiers, perfumes, de-scaling agents, metal sequestration agents, polymers, silicones, deodorization agents, bleaches including halogens and peroxygen compounds, preservation agents, biocidal agents, anti-fungal agents, anti-viral agents and cleaning compositions containing one or more chemistry of the preceding list; (b) subject the volume of waste water to one or more of ultraviolet light, electrolysis treatment, ozone treatment, or rapid heating.
The device of any one or more of examples 24 through 26, further comprising: (a) a first water sensor module configured to measure a set of pre-storage characteristics of the volume of waste water prior to storing the volume of waste water in the reservoir; (b) a diverter valve configured to selectively dispose of the volume of waste water via a drain outlet of the reservoir device prior to storing the volume of waste water in the reservoir; wherein the processor is further configured to: (i) determine whether the volume of waste water is usable based on the set of pre-storage characteristics; and (ii) when the volume of waste water is not usable, operate the diverter valve to cause the volume of waste water to be disposed of.
The device of example 28, further comprising: (a) a second water sensor module configured to measure a set of post-storage characteristics of the volume of recycled water prior to providing the volume of recycled water to the washing machine from the reservoir; (b) a drain pump operable to transport water from the reservoir to a drain outlet of the reservoir device; (c) a water feed valve configured to selectively provide recycled water from the reservoir or fresh water to the washing machine; wherein the processor is further configured to: (i) determine whether the volume of recycled water is usable based on the set of post-storage characteristics; and (ii) when the volume of recycled water is not usable: (A) operate the drain pump to cause the volume of recycled water to be disposed of via the drain outlet; and (B) operate the water feed valve to provide fresh water to the washing machine.
The device of any one or more of examples 24 through 29, further comprising a water feed valve configured to selectively provide recycled water from the reservoir or fresh water to the washing machine, wherein: (a) the one or more water inputs of the washing machine comprise a hot water input and a cold water input; (b) the processor is further configured to operate the water feed valve to provide the volume of recycled water or the volume of fresh water via the cold water input; and (c) hot fresh water is received from a primary infrastructure source and provided to the hot water input through a bypass channel of the reservoir device.
The device of example 30, further comprising: (a) a first flow sensor configured to measure the flow of the volume of fresh water to the washing machine; and (b) a second flow sensor configured to measure the flow of hot fresh water to the washing machine; wherein the processor is further configured to: (i) receive a first set of flow data from the first flow sensor; (b) receive, by the processor, a second set of flow data from a second flow sensor of the reservoir device configured to measure the flow of hot fresh water to the washing machine.
The device of example 31, wherein the processor is further configured to cause an interface to display on a user device, wherein the interface comprises: (a) a description of the first set of flow data; (b) a description of the second set of flow data; and (c) a recommendation for using the washing machine and the impact that following the recommendation will have on the first set of flow data and the second set of flow data.
The device of any one or more of examples 24 through 32, further comprising a cycle sensor, wherein the processor is further configured to: (a) receiving a set of cycle characteristics from the cycle sensor; and (b) identify the cycle type of the cycle being performed by the washing machine based on the set of cycle characteristics.
The device of example 33, wherein the cycle sensor comprises an imaging device configured to capture images of a control panel of the washing machine during the cycle.
The device of any one or more of examples 33 through 34, wherein the cycle sensor comprises a microphone configured to capture audible sounds produced by the washing during the cycle.
The device of any one or more of examples 33 through 35, wherein the cycle sensor comprises an electrical signal detector configured to detect electricity used by the washing machine, or electrical signals emitted by the washing machine, during the cycle.
The device of any one or more of examples 33 through 36, wherein the processor is further configured to, when identifying the cycle type based on the set of cycle characteristics: (a) match the set of cycle characteristics to a previously detected set of cycle characteristics; and (b) identify the cycle based upon a previously identified cycle that is associated with the previously detected set of cycle characteristics.
The device of any one or more of examples 24 through 37 wherein the processor is further configured to, based on the water use sequence: (a) cause the volume of recycled water to be provided for use during a wash cycle type, and cause the volume of waste water produced by the wash cycle type to be disposed of; (b) cause the volume of recycled water to be provided for use during a first rinse cycle type, and cause the volume of waste water produced by the first rinse cycle type to be saved in the reservoir; and (c) cause the volume of fresh water to be provided for use during a subsequent rinse cycle type, and cause the volume of waste water produced by the subsequent rinse cycle type to be saved in the reservoir.
The device of any one or more of examples 24 through 38 wherein the processor is further configured to, based on the water use sequence: (a) cause the volume of recycled water to be provided for use during a wash cycle type, and cause the volume of waste water produced by the wash cycle type to be disposed of; (b) cause the volume of fresh water to be provided for use during a first rinse cycle type, and cause the volume of waste water produced by the first rinse cycle type to be saved in the reservoir; and (c) cause the volume of recycled water to be provided for use during a subsequent rinse cycle type, and cause the volume of waste water produced by the subsequent rinse cycle type to be saved in the reservoir.
The device of any one or more of examples 24 through 39, wherein the processor is further configured to, based on the water use sequence: (a) cause the volume of recycled water to be provided for use during a wash cycle type, and cause the volume of waste water produced by the wash cycle type to be saved in the reservoir; (b) cause the volume of recycled water to be provided for use during a first rinse cycle type, and cause the volume of waste water produced by the first rinse cycle type to be disposed of; and (c) cause the volume of fresh water to be provided for use during a subsequent rinse cycle type, and cause the volume of waste water produced by the subsequent rinse cycle type to be saved in the reservoir.
A reservoir device comprising: (a) a set of connections configured to couple to a waste water output of a first point of use and a water input of a second point of use; (b) a reservoir configured to receive and store a volume of waste water from the first point of use; (c) one or more treatment devices configured to convert the volume of waste water into a volume of recycled water; (d) a processor configured to: (i) identify a water use event of the second point of use; (ii) determine whether to provide recycled water or fresh water to the second point of use based on the water use event; and (iii) based on the determination: (i) provide at least a portion of the volume of recycled water to the second point of use for the water use event; or (ii) provide a volume of fresh water to the second point of use for the water use event.
The device of example 41, wherein the one or more treatment devices comprise: (a) one or more filter modules configured to separate a contaminant from the volume of recycled water; and (b) a treatment module configured to introduce at least one treatment into the volume of waste water.
The device of example 42, wherein the one or more filter modules are configured to filter the volume of waste water via one or more of gravitational separation, filtration, foam fractionation, hydro-dynamic separation, reverse osmosis, forward osmosis, ultra-filtration, nano-filtration, gravitational separation, sedimentation, centrifugation, flocculation, aeration, deaeration, electro-coagulation, electro-disinfection, cold plasma injection, and UV treatment.
The device of any one or more of examples 42 through 43, wherein the treatment module is further configured to: (a) introduce at least one chemistry selected from the group consisting of surfactants, optical agents, buffers, pH modifiers, perfumes, de-scaling agents, metal sequestration agents, polymers, silicones, deodorization agents, bleaches including halogens and peroxygen compounds, preservation agents, biocidal agents, anti-fungal agents, anti-viral agents and cleaning compositions containing one or more chemistry of the preceding list; (b) subject the volume of waste water to one or more of ultraviolet light, electrolysis treatment, ozone treatment, or rapid heating.
The device of any one or more of examples 41 through 44, further comprising: (a) a first water sensor module configured to measure a set of pre-storage characteristics of the volume of waste water prior to storing the volume of waste water in the reservoir; (b) a diverter valve configured to selectively dispose of the volume of waste water via a drain outlet of the reservoir device prior to storing the volume of waste water in the reservoir; wherein the processor is further configured to: (i) determine whether the volume of waste water is usable based on the set of pre-storage characteristics; and (ii) when the volume of waste water is not usable, operate the diverter valve to cause the volume of waste water to be disposed of.
The device of example 45, further comprising: (a) a second water sensor module configured to measure a set of post-storage characteristics of the volume of recycled water prior to providing the volume of recycled water to the second point of use from the reservoir; (b) a drain pump operable to transport water from the reservoir to a drain outlet of the reservoir device; (c) a water feed valve configured to selectively provide recycled water from the reservoir or fresh water to the second point of use; wherein the processor is further configured to: (i) determine whether the volume of recycled water is usable based on the set of post-storage characteristics; and (ii) when the volume of recycled water is not usable: (A) operate the drain pump to cause the volume of recycled water to be disposed of via the drain outlet; and (B) operate the water feed valve to provide fresh water to the second point of use.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
63168286 | Mar 2021 | US |