Two different systems for implementing Controller Pilot Data Link Communications (CPDLC) for air traffic control are available for commercial aircraft today. The first CPDLC system is referred to as the Future Air Navigation System (FANS), or FANS CPDLC. FANS based applications are typically implemented on an aircraft's Flight Management Computer (FMC), also referred to as the Flight Management System (FMS), and communicate with air traffic control (ATC) stations using text based messages communicated over the Aircraft Communications Addressing and Reporting System (ACARS). The second CPDLC system is implemented over the Aeronautical Telecommunication Network (ATN) via an aircraft's Communication Management Function (CMF) and is commonly referred to as ATN CPDLC. Use of FANS CPDLC versus ATN CPDLC on an aircraft is largely based on geographical considerations such that an aircraft that travels from a FANS CPDLC region to an ATN CPDLC region would greatly benefit from being able to support both CPDLC systems.
There are problems that arise however when both FANS CPDLC and ATN CPDLC systems are available to an aircraft's flight crew. First, creating a single integrated solution that manages and provides both CPDLC options has proven to be expensive to design and implement as compared to non-integrated solutions. Second, FANS and ATN CPDLC systems both require a logon (AFN logon or CM logon) and share “alerting” approaches when a CPDLC message is received from a ground controller. In cases where the CMF supports an ATN CPDLC application and the FMC independently supports a FANS CPDLC application, members of the flight crew may become confused as to which system to logon to and which system to access after getting a CPDLC alert. Also, with non-integrated system, it is potentially possible to establish two different CPDLC sessions using the different CPDLC systems at the same time. This present a potentially dangerous situation because an aircraft cannot allow two different Current Data Authority (CDA) CPDLC concurrent connections because it is not permitted by regulation to have two different air traffic controllers in charge of any one aircraft. Such a configuration may further face regulatory certification issues if not resolved and could also create training and flight work-load issues.
For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the specification, there is a need in the art for improved systems and methods for managing non-integrated (CPDLC) systems on a single aircraft.
The Embodiments of the present invention provide methods and systems for managing non-integrated (CPDLC) systems on a single aircraft and will be understood by reading and studying the following specification.
In one embodiment, a system for implementing a non-integrated FANS/ATN CPDLC solution comprises: a first computing system executing a first CPDLC application; a second computing system executing a second CPDLC application; at least one Human Machine Interface (HMI) coupled to the first computing system and the second computing system, the Human Machine Interface configured to display screens generated by the first CPDLC application and configured to display screens generated by the second CPDLC application; and a manager function that arbitrates Human Machine Interface access to the screens generated by the first CPDLC application and the screens generated by the second CPDLC application. The manager function restricts access to one or more of the screens generated by the first CPDLC application based on a logon status of the second CPDLC application. The manager function restricts access to one or more of the screens generated by the second CPDLC application based on a logon status of the first CPDLC application.
Embodiments of the present invention can be more easily understood and further advantages and uses thereof more readily apparent, when considered in view of the description of the preferred embodiments and the following figures in which:
In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize features relevant to the present invention. Reference characters denote like elements throughout figures and text.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
With embodiments of the present invention, an aircraft's flight crew will decide which CPDLC system to 10 g into via a Human Machine Interface (HMI). The decision can be communicated to the HMI by either an explicit system selection, or by indicating which system to logon to. Access to the non-select system will be disabled to prevent establishment of another simultaneous CPDLC session. The flight crew will thus only have access to the active system and know that any received datalink message alert is for the selected system. By preventing access to the non-selected system, one or more embodiments of the present invention will also prevent the inadvertent establishment of multiple CPDLC sessions.
Human Machine Interface 130 provides at least one common display device 132 to present screens generated by the FANS and ATN CPDLC applications 114 and 124 to the aircrafts flight crew. In one embodiment, Human Machine Interface 130 comprises a Multifunction Display (MFD) which is a forward field graphical display device that graphically displays screens to the flight crew and provides a cursor controlled interface to flight crew users. In one embodiment, such as shown in
In the embodiment of
In one embodiment, manager function 134 arbitrates screen access by internally keeping track of whatever system the flight crew logged on last. In one embodiment, the manager function 134 is provided with the name of the currently active air traffic control center. When the currently active air traffic control center is a FANS CPDLC center, manager function 134 provides access to FANS CPDLC application screens and prevents access to ATN CPDLC application screens. Conversely, when the current active air traffic control center is an ATN CPDLC center, manager function 134 provides access to ATN CPDLC screen and prevents access to FANS CPDLC application screens. In one such embodiment, the manager function 134 includes a look-up table 135, or other such list or database that indicates whether an air traffic control center is a FANS or ATN center based on the name of air traffic control center.
In another embodiment, manager function 134 polls the FANS and ATN CPDLC applications 114, 124, or otherwise periodically receives logon information from them. For example, in one embodiment, manager function 134 receives from the first computing system 110 information regarding the name of any active FANS CPDLC connection with an air traffic control center (or an indication that there is no active FANS CPDLC air traffic control center) and information regarding any FANS CPDLC logon request that is pending. Similarly, manager function 134 receives from the second computing system 120 information regarding the name of any active ATN CPDLC connection with an air traffic control center (or an indication that there is no active ATN CPDLC air traffic control center) and information regarding any ATN CPDLC logon request that is pending. Manager function 134 will read these parameters to determine which CPDLC function is, or will become, the active control function based first on any currently active center alternately based on any logon pending. Theoretically there should not be two logons pending since initiating a logon request from one CPDLC system will, in at least one embodiment, trigger manager function 134 to cancel any pending logon request for the other system. Alternately, manager function 134 can alert the flight crew when there is an attempt to logon to one CPDLC system while there is a still logon request pending on the other system. The flight crew can then decide whether to cancel the pending logon and proceed with the second logon request, or cancel the second logon request and wait for resolution of the pending logon.
Human Machine Interface 330 provides a common display device 332 to present screens generated by the FANS and ATN CPDLC applications 314 and 324 to the aircraft's flight crew. In one embodiment, Human Machine Interface 330 comprises a Multifunction Display (MFD) which is a forward field graphical display device that graphically displays screens to the flight crew and provides a cursor controlled interface to flight crew users. In one embodiment, Human Machine Interface 330 comprises a Control Display Unit (CDU) 210 such as described with respect to
Unlike the embodiment of
For example, in one embodiment, when a flight crew user attempts to logon to ATN CPDLC, the distributed manager function 334-2 will determine the status of the FANS CPDLC system. If there is no current or pending FANS CPDLC connecting, distributed manager function 334-2 permits HMI 330 to directly access the ATN CPDLC application 324 logon screen. When there is a current or pending FANS CPDLC, distributed manager function 334-2 alerts the flight crew. The flight crew can then decide whether to disconnect the current CPDLC connection (or cancel a pending logon) and proceed with an ATN CPDLC logon, or cancel the ATN CPDLC logon request. Distributed manager function 334-1 would arbitrate access to the FANS CPDLC logon by similarly monitoring the status of current or pending ATN CPDLC connections.
Although the embodiment discussed above provide examples utilizing FANS and ATN CPDLC applications running over ACARS and ATN networks, embodiments of the present invention are not limited to just these two CPDLC and network options. HMI arbitration between any two computing systems used to implement separate CPDLC solutions can be realized by one of ordinary skill in the art using the teachings provided by this specification.
Several means are available to implement the systems and methods of the current invention as discussed in this specification. These means include, but are not limited to, digital computer systems, microprocessors, general purpose computers, programmable controllers and field programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs). Therefore other embodiments of the present invention are program instructions resident on computer readable media which when implemented by such means enable them to implement embodiments of the present invention. Computer readable media include any form of a physical computer memory storage device. Examples of such a physical computer memory device include, but is not limited to, punch cards, magnetic disks or tapes, optical data storage system, flash read only memory (ROM), non-volatile ROM, programmable ROM (PROM), erasable-programmable ROM (E-PROM), random access memory (RAM), or any other form of permanent, semi-permanent, or temporary memory storage system or device. Program instructions include, but are not limited to computer-executable instructions executed by computer system processors and hardware description languages such as Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL).
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.