Systems and methods for managing video data

Information

  • Patent Grant
  • 8878931
  • Patent Number
    8,878,931
  • Date Filed
    Thursday, March 4, 2010
    14 years ago
  • Date Issued
    Tuesday, November 4, 2014
    9 years ago
Abstract
Described herein are systems and methods for managing video data. In overview, various embodiments provide software, hardware and methodologies associated with the management of video data. In overview, a distributed DVM system includes a plurality of discrete DVM systems, which may be geographically or notionally distributed. Each discrete DVM system includes a respective central DVM database server thereby to provide autonomy to the discrete system. This server supports one or more camera servers, these camera servers in turn each being configured to make available live video data from one or more cameras. Each system additionally includes one or more clients, which provide a user interface for displaying video data (such as video data from one of the cameras). The discrete DVM systems are primarily linked by way of a centralized database server/database server communications interface. However, the clients are configured to connect directly to camera servers belonging to their local DVM system or a remote DVM system in the distributed architecture.
Description

This application is a 371 of International Application PCT/AU2010/000247 filed Mar. 4, 2010.


FIELD OF THE INVENTION

The present invention relates to systems and methods for managing video data. Embodiments of the invention have been particularly developed for managing access to live and/or recorded video data between distributed Digital Video Management (DVM) systems. While some embodiments will be described herein with particular reference to that application, it will be appreciated that the invention is not limited to such a field of use, and is applicable in broader contexts.


BACKGROUND

Any discussion of the background art throughout the specification should in no way be considered as an admission that such art is widely known or forms part of common general knowledge in the field.


Digital Video Management (DVM) systems are widely used. In overview, a plurality of cameras are assigned to a plurality camera servers, with each camera server being configured to make available (for live viewing or recording purposes) video data from an assigned one or more cameras. The camera servers are all centrally managed by a DVM database server. In general terms, a client wishing to view live video data from a given one of the cameras provides a request to the DVM database server, and is informed which camera server makes available video data for that camera. The client then opens a connection with that camera server, and streams the live video data for local viewing.


There is an inherent limitation on the number of cameras that can be supported by a single DVM system. This leads to complications in terms of scalability. Furthermore, various situations arise where geographically dispersed sites require local autonomy but also central monitoring. Bandwidth between such sites presents a limiting factor to constrain the manner in which video data and/or other data is shared.


There is a need in the art for improved systems and methods for managing video data.


SUMMARY OF THE INVENTION

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.


One embodiment provides a DVM system including:


one or more local cameras,


one or more local camera servers, each having a respective one or more assigned local cameras, the local camera servers being configured to make available, to DVM clients, video data from their respective one or more assigned local cameras;


a local DVM database server that maintains data indicative of the local cameras and local camera servers, wherein the local DVM database server is in communication with a remote DVM database server for a remote DVM system, wherein the remote DVM system includes:


one or more remote cameras, and


one or more remote camera servers, each having a respective one or more assigned remote cameras, the remote camera servers being configured to make available, to DVM clients, video data from their respective one or more assigned remote cameras; and


a local client in communication with the local DVM database server, the local client being configured for displaying live video data to a user, wherein the local client is configured to communicate with a local camera server for displaying video data from one of its respective one or more assigned local cameras, and configured to communicate with a remote camera server for displaying video data from one of its respective one or more assigned remote cameras.


One embodiment provides a method for operating a client in a local DVM system, the method including the steps of:


receiving a user command to display live video data from a predetermined camera;


identifying, based on data maintained by the local DVM system, details for a camera server that is configured for providing live video data for the predetermined camera;


in the case that the camera server is part of a remote DVM system, providing to the camera server a request to view live video data from the predetermined camera, wherein the request is provided over a TCP/IP connection between the client and the camera server;


receiving from the camera server the live video data via the TCP/IP connection between the client and the camera server; and


displaying the live video data.


One embodiment provides a method for operating a local camera server in a local DVM system, the method including the steps of:


receiving, from a remote client in a remote DVM system, via a TCP/IP connection between the remote client and the local camera server, a request to display live video data from a predetermined camera;


identifying credentials for the client; and


in the case that the identified credentials match locally stored pre-approved credentials, providing the live video data to the client via the TCP/IP connection between the remote client and the local camera server.


One embodiment provides a computer program product for performing a method as described herein.


One embodiment provides a carrier medium for carrying computer executable code that, when executed on a processor, allows the processor to perform a method as described herein.


One embodiment provides a system configured for performing a method as described herein.


One embodiment provides a distributed DVM system including:


a first DVM system including one or more first-system cameras, one or more first-system camera servers, each having a respective one or more assigned first-system cameras, the first-system camera servers being configured to make available video data from their respective one or more assigned first-system cameras to DVM clients, a first-system DVM database server that maintains data indicative of the first-system cameras and first-system camera servers, and one or more first-system clients for displaying video data to users; and


a second DVM system including one or more second-system cameras, one or more second-system camera servers, each having a respective one or more assigned second-system cameras, the second-system camera servers being configured to make available video data from their respective one or more assigned second-system cameras to DVM clients, a second-system DVM database server that maintains data indicative of the second-system cameras and second-system camera servers, and one or more second-system clients for displaying video data to users.


Reference throughout this specification to “one embodiment”, “some embodiments” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in some embodiments” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.


As used herein, unless otherwise specified the use of the ordinal adjectives “first”, “second”, “third”, etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.


In the claims below and the description herein, any one of the terms comprising, comprised of or which comprises is an open term that means including at least the elements/features that follow, but not excluding others. Thus, the term comprising, when used in the claims, should not be interpreted as being limitative to the means or elements or steps listed thereafter. For example, the scope of the expression a device comprising A and B should not be limited to devices consisting only of elements A and B. Any one of the terms including or which includes or that includes as used herein is also an open term that also means including at least the elements/features that follow the term, but not excluding others. Thus, including is synonymous with and means comprising.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1 schematically illustrates a discrete DVM system according to one embodiment.



FIG. 2 schematically illustrates a distributed DVM system according to one embodiment, including two individual discrete DVM systems.



FIG. 3 schematically illustrates a distributed DVM system according to one embodiment, including two individual discrete DVM systems.



FIG. 4 illustrates a method according to one embodiment.



FIG. 5 illustrates a method according to one embodiment.



FIG. 6 illustrates a method according to one embodiment.





DETAILED DESCRIPTION

Described herein are systems and methods for managing video data. In overview, various embodiments provide software, hardware and methodologies associated with the management of video data. In overview, a distributed DVM system includes a plurality of discrete DVM systems, which may be geographically or notionally distributed. Each discrete DVM system includes a respective central DVM database server thereby to provide autonomy to the discrete system. This server supports one or more camera servers, these camera servers in turn each being configured to make available live video data from one or more cameras. Each system additionally includes one or more clients, which provide a user interface for displaying video data (such as video data from one of the cameras). The discrete DVM systems are primarily linked by way of a centralized database server/database server communications interface. However, the clients are configured to connect directly to camera servers belonging to their local DVM system or a remote DVM system in the distributed architecture.


System Level Overview—Single System



FIG. 1 illustrates a general Digital Video Management (DVM) system 101. System 101 is described to provide general context to various embodiments discussed below. Although embodiments are described by reference to DVM systems based on system 101, the present invention is not limited as such. That is, system 101 is provided as a general example to highlight various features of an exemplary DVM system. In practice, many systems omit one or more of these features, and/or include additional features.


System 101 includes a plurality of cameras 102. Cameras 102 include conventional cameras 104 (including analogue video cameras), and IP streaming cameras 105. Cameras 102 stream video data, presently in the form of surveillance footage, on a TCP/IP network 106. This is readily achieved using IP streaming cameras 105, which are inherently adapted for such a task. However, in the case of other cameras 104 (such as conventional analogue cameras), a camera streamer 107 is required to convert a captured video signal into a format suitable for IP streaming. A plurality of cameras 104 can be connected to a single streamer 107, however it is preferable to have the streamer in close proximity to the camera, and as such multiple streamers are often used.


One or more camera servers 109 are also connected to network 106 (these may be either physical servers or virtual servers). Each camera server is enabled to have assigned to it one or more of cameras 102. This assignment is carried out using a software-based configuration tool, and it follows that camera assignment is virtual rather than physical. That is, the relationships are set by software configuration rather than hardware manipulation. In practice, each camera has a unique identifier. Data indicative of this identifier is included with surveillance footage being streamed by that camera such that components on the network are able to ascertain from which camera a given stream originates.


In the present embodiment, camera servers are responsible for making available both live and stored video data. In relation to the former, each camera server provides a live stream interface, which consists of socket connections between the camera manager and clients. Clients request live video through the camera server's COM interfaces and the camera server then pipes video and audio straight from the camera encoder to the client through TCP sockets. In relation to the latter, each camera server has access to a data store for recording video data. Although FIG. 1 suggests a one-to-one relationship between camera servers and data stores, this is by no means necessary. Each camera server also provides a playback stream interface, which consists of socket connections between the camera manager and clients. Clients create and control the playback of video stored that the camera server's data store through the camera manager's COM interfaces and the stream is sent to clients via TCP sockets.


Although, in the context of the present disclosure, there is discussion of one or more cameras being assigned to a common camera server, this is a conceptual notion, and is essentially no different from a camera server being assigned to one or more cameras.


Clients 110 execute on a plurality of client terminals, which in some embodiments include all computational platform on network 106 that are provided with appropriate permissions. Clients 110 provide a user interface (UI) that allows surveillance footage to be viewed in real time by an end-user. For example, one UI component is a render window, in which streamed video data is rendered for display to a user. In some cases this user interface is provided through an existing application (such as Microsoft Internet Explorer), whilst in other cases it is a standalone application. The user interface optionally provides the end-user with access to other system and camera functionalities, including mechanical, digital and optical camera controls, control over video storage, and other configuration and administrative functionalities (such as the assignment and reassignment of cameras to camera servers). Typically clients 110 are relatively “thin”, and commands provided via the relevant user interfaces are implemented at a remote server, typically a camera server. In some embodiments different clients have different levels of access rights. For example, in some embodiments there is a desire to limit the number of users with access to change configuration settings or mechanically control cameras.


System 101 also includes a DVM database server 115. Database server 115 is responsible for maintaining various information relating to configurations and operational characteristics of system 101, and for managing events within the system. In terms of events, the general notion is that an action in the system (such as the modification of data in the database, or the reservation of a camera, as discusses below) causes an event to be “fired” (i.e. published), this having follow-on effects depending on the nature of the event.


In the present example, the system makes use of a preferred and redundant database server (115 and 116 respectively), the redundant server essentially operating as a backup for the preferred server. The relationship between these database servers is generally beyond the concern of the present disclosure.


Distributed System Architecture


Embodiments of the present invention are directed to distributed DVM systems, also referred to as “distributed system architecture” (DSA). In general terms, a distributed DVM system includes a plurality of (i.e. two or more) discrete DVM systems, such as system 101. These systems are discrete in the sense that they are in essence standalone systems, able to function autonomously without the other by way of their own DVM servers. They may be distributed geographically (for example in different buildings, cities or countries), or notionally (in a common geographic location, but split due to individual system constraints, for example camera server numbers, or simply to take advantage of benefits of a distributed architecture).


Various components (hardware and software) are configured to allow communications between the systems, for example via a network connection (including, but not limited to, an Intranet or Internet connection), or other communications interface. For the sake of the present embodiments, it is assumed that the inter-system communications occur by way of TCP/IP connections, and in this manner any communications channel supporting TCP/IP may be used.



FIG. 2 provides a relatively simple schematic representation of a distributed DVM system 200. A limited selection of components is illustrated to provide for simplicity, whilst allowing an appreciation of some key functionalities.


System 200 includes a first DVM system 201A and a second DVM system 201B. These discrete systems are separated by a distributed system architecture (DSA) boundary 202. Boundary 202 is, to some extent, notional only. In the present embodiment, communication across boundary 202 is realized via a TCP/IP connection, although other system-system communications links are used to provide TCP/IP communications channels in other embodiments. In some embodiments the DVM systems are on a common domain, for example in the context of an Intranet arrangement. However, the present embodiments are not limited to any particular network arrangement, and are in some cases implemented over the Internet in a general sense.


System 201A includes a DVM database server 210A. Server 210A operates in conjunction with a DVM database 211A, which maintains data indicative of cameras and camera servers in both system 201A and system 201B. The manner by which inter-system information sharing is configured is discussed further below. An event service component 212A is responsible for publishing events in system 201A. For example, component 212A is informed of various activities, such as modifications to database records, and publishes events accordingly (for example in one embodiment various components in the system are configured to monitor such happenings and inform component 212A). Other components take action responsive to the publication of events. A DSA service component 213A is responsible for managing communications with system 201B, via a TCP/IP connection with a corresponding component in system 201B. A UI services component 214A is responsible for allowing a client to interface with DVM database 211A, for example in the context of an object oriented software architecture (for example using IIS Web Services in a .NET software framework). That is, UI services component 214A operates in conjunction with a repository of business objects which provide for various software functionalities, and allow for the construction and/or population of UI components in a client machine.


System 201A additionally includes a client 220A, being defined by a client machine such as a personal computer, or being defined by a software application executing on a client machine, depending on perspective. Client 220A provides a render window component 221A, which is configured for rendering and displaying video data. A DVM adapter component 222A is configured to obtain video data from a camera sever, based on the location of video data requested by a user, and information contained in database 211A, which reveals the location of the camera server that makes available the video data requested by the user. A camera control component 223A provides UI components for allowing a user to control a physical camera, for example in terms of pan, tilt and zoom.


System 201A additionally includes a camera server 230A, which is configured for making available live video data from one or more cameras (not shown), and optionally for making available stored video data from one or more storage locations in system 201A.


System 201B presently includes the same components as system 201A, and these are allocated corresponding reference numerals, with a “B” suffix rather than an “A” suffix. For example, system 201A includes a server 210A, whereas system 201B includes a server 210B, and so on. In later examples, system 201A is referred to as system A, and system 201B as system B.


By virtue of having their own respective database servers 210A and 210B, systems 201A and 201B are able to function autonomously. That is, they are discrete systems, and do not depend on one another to function. This is contrasted with a situation where a single database server manages geographically distributed camera servers, cameras and clients. That is simply a single system. The present embodiments, on the other hand, are two systems, and gain advantages stemming from that (for example support of a greater number of cameras, etc).


The connection between servers 210A and 210B is fundamental in implementing the present distributed architecture. In particular, it allows the two discrete systems to discover and connect to one another, share information via synchronization of various aspects of data in their respective databases (such as camera/camera server information), and additionally allows the passing of event information between the systems (for example allowing an event occurring in one system, such as detection of motion at a given camera, to have effect in the other system, for example by launching a view on a client in that system). Servers 210A and 210B communicate via one or more TCP sockets ports and/or one or more WCF ports.


It has been recognized by the present inventors that centralized communication between database servers, in itself, is not able to sustain an appropriate degree of inter-system communication to provide effective distributed system architecture. In this regard, a decision was made to configure client 220A to connect directly to camera server 230B for the purposes of obtaining live video data, and also for recorded video data. Likewise, client 220B is able to connect directly to camera server 230A (although this is not shown for the sake of simplicity). This allows for a substantially seamless integration of remote camera servers with a local system, as the mechanism by which a camera server is addressed (via TCP/IP communications) is generally the same for both local and remote variants. Furthermore, resource-intensive video data able to be shared directly between the client and camera server, rather than having to pass between the database servers across boundary 202. This is significant in reducing latency, and improving the effectiveness of the connection between the database servers (by reducing resource intensive traffic between those servers).



FIG. 3 illustrates a distributed system architecture according to a further embodiment. Various components are common with system 200, and corresponding reference numerals are used. A brief over view of some of the components follows. In terms of the DSA service 213A:

    • A DSA runtime engine 301A provides a central point for the overall distributed architecture, providing the local system with a view to the distributed architecture. That is, when a local system communicates with a DSA service, it will only interact with interfaces exposed by the DSA runtime engine.
    • A DSA discovery engine 302A listens to requests from remote systems, or makes requests to remote systems. This occurs in terms of creating links between systems, modifying links between systems, or destroying links between systems.
    • A DSA event engine 303A is responsible for the flow of events (being object model events) between distributed systems. As context, one embodiment provides for a process flow whereby various components inform local event service 212A of an event which needs to be published, the event service publishes messages to all object models in the system, and the object model is then responsible for taking pertinent actions and broadcasting such events to any registered clients. Event engine 303 is responsible for converting object model events into a DSA-transportable format, and vice versa. That is, it receives data indicative of a local event and translates that for delivery to remote sites in a DSA transportable format, or receives from a remote site data in a DSA-transportable format, and converts that to publish a local event. In some embodiments events are grouped and transported between the distributed systems in bulk, optionally at predefined times (for example periodically at a rate of between every 1 to 60 seconds) as configured by a system administrator. In this embodiment engine 303A communicates with a local event service 212A outside of the DSA service: it receives from that service data indicative of local events, and provides to that service data indicative of remote events for publication in the local system. The communication between service 212A and engine 303A is not necessarily direct; in one embodiment the object model receives raw data from local event service 212A, and performs processing on that data before delivering information to event engine 303A.
    • A DSA monitoring engine 304A monitors the link between systems. In one embodiment, this makes use of heartbeat messaging. In one embodiment, a local monitoring agent is provided in respect of each remote site with which the local site communicates in the context of a distributed system architecture. This adds flexibility to the architecture, as each communication link is optionally individually configured with specific settings, for example in terms of the time between passing each heartbeat message.
    • A DSA data engine 305A is responsible for requesting and servicing requests for information across DSA boundary 202. This includes a listening component and dispatching component, respectively for receiving and providing requests for information between distributed systems. One example is fetching video recordings information for a camera at a remote system. As described further below, recorded video data is transferred by a local client/remote camera server link, but there is an initial step whereby the details of recorded data, for example the unique identifiers for individual video recordings occurring in a particular time period, for a remote camera known to the local system are identified via inter-system communication via engine 304A (and 304B).



FIG. 3 also depicts business objects 310A for interfacing a user with the database in conjunction with UI services 214A, an integrity service 311A for monitoring local system health, an integrated server 312A (such as a building management server) and a multi monitor client 313A, which is configured for displaying video data from multiple camera services at a given point in time.


Various aspects and functionalities of the distributed system architectures are discussed in more detail further below by reference to specific embodiments.


DSA Initial Configuration



FIG. 4 illustrates an exemplary method 400 for initial configuration of a distributed system architecture according to one embodiment.


At step 401, one system discovers another system, via messaging between DSA services components. As part of this, the respective DSA services compare credentials to verify that a link is allowable, for example in the context of security considerations. In one embodiment the creation of a link is only allowable where the DVM systems have been installed to run under the same administrative account/password.


Although the term “discovery” is used, this should not be read to necessarily imply automated “discovery”, for instance in the sense of plug-and-play functionality or the like. In some embodiments discovery is a manual process based on system-system requests.


The results of the discovery process indicate to the requestor system (i.e. the system initiating discovery) the suitability of joining with the other system in a distributed system architecture. That is, if the other end of the link is in fact contactable (and if the remote system of an appropriate system version to allow communications, and security/credential requirements are satisfied) the link can be configured and saved.


At step 402 a user inputs various aspects of information about the nature of the link, if required. For example, this information may affect the data to be synchronized in the following step. Details of the link are then written to the local database, and a cache of links updated. Then, at step 403, synchronization occurs. In one embodiment, this includes obtaining a snapshot of required data from the remote system, updating the local database with information regarding remote cameras and servers, and updating the local event engine and monitor engine based on the new link.


Inter-System Event Management



FIG. 5 illustrates a method 500 for managing events between distributed DVM systems according to one embodiment. This is described by reference to a method in a DVM system A and a DVM system B. This is exemplary only, and there may be a greater number of discrete systems in the overall distributed architecture.


At step 501, there is a local action in DVM system A, for example in terms of a camera reservation being made (as discussed further below), a modification to camera or system configuration settings, or the like. At step 502, a local event service is notified of this action and is responsible for firing a local event in the local system. The DSA service observes this local event at 503, and determines at 504 whether that event should be provided to the remote system (system B). For example, the DSA service is configured to recognize various events as being of interest to the remote system, which is in some cases due to manual user configuration of the distributed architecture. In the case that the event should be provided to the remote system, the DSA service converts the local (object model) event into a DSA transportable format, and transports it across the DSA boundary. The DSA service in system B receives the resulting data at 506, and assuming it recognizes it as requiring a local event (based on decision 507), takes action. In very general terms, this includes arranging for a local event to be raised. More specifically, in one embodiment the remote system receives the events in DSA-transportable format. It then unformats and parses the events, notifying the local event service of the particular events to be raised and the particular parameters with which those events are to be raised. The event service then converts this data and sends a message to each local DVM object model. Each local object model then processes and broadcasts an actual object model event to all its clients.


Examples of events that are transported across the DSA boundary include:

    • Camera/camera server status changes, such as reassignment of cameras between camera servers, cameras/camera servers going online or offline, and so on. It will be appreciated that, due to the direct communications between clients and remote camera servers, it is important that up-to-date remote camera/camera server information needs to be maintained in the local system. In one embodiment, a change in camera number or the like results in a local event, which causes a partial data push of the affected data to the remote system for updating the remote database (thereby to maintain the synchronization of step 403) as well as the delivery of an object model event to the remote system.
    • Analytics information, such as motion detection information. In this regard, motion detection events often have an impact for clients. For example, in some cases a client is configured to respond to events indicative of motion detection at a predetermined camera, for example to provide a notification and/or launch a view from that camera (optionally within a multi-camera view).
    • Camera reservation information. In the present embodiment, when a client connects to a camera server for obtaining live video data for a particular camera, the client receives a time-limited reservation over that camera. This gives the client control over the camera for that time (for example in terms of pan/tilt/zoom) in preference to other clients (although in some embodiments a client with a higher access right is able to take control at any time regardless of such a reservation). Reservation information is displayed in a client UI, and as such the reservation of a remote camera needs to be communicated to a local client, this occurring via the server-server event management process. For example, a local client connects to a remote camera server directly to obtain live video data from a given camera, and receives live video data from the remote camera server directly. An event indicative of the reservation publishes in the remote system, and filters to the local system and client via a method such as method 500.


It will be appreciated that this is a small selection of events, provided for the sake of explanation only. Various other events are present in practical implementations.


Local Client to Remote Camera Server Interaction


As noted above, a local client wishing to view live video data from a remote camera server does so via direct communications with the remote camera server. An example of this is provided through method 600 of FIG. 6. This method is again described by reference to exemplary DVM systems A and B.


At step 601, a client receives from a user data indicative of a request to view live video data from a specified camera. For the sake of the present example, it is assumed that the specified camera is provided within a DVM system remote of that in which the client operates. That is, in a distributed DVM architecture, the client is considered to be local as opposed to a remote camera server. Step 601 may come about, for instance, as a result of a user input, or as a result of an automated process.


At step 602, the client identifies the location of the specified camera. In the present embodiment this is achieved by submitting a request to the local DVM database server which, as noted above, maintains data indicative of remote cameras and camera servers. This data allows the client to contact the relevant camera server directly. The client then, at 603, invokes relevant UI components for viewing the relevant live video data. For example, following the example of FIG. 2, these include render window component 221A, which is configured for rendering and displaying video data, DVM adapter component 222A configured to obtain video data from a camera sever, and camera control component 223A for allowing a user to control the selected camera, for example in terms of pan, tilt and zoom (with these commands being provided via the DVM adapter). In the present embodiment these are built based on business objects and UI services component 214A, for example using a .NET framework. That is, the UI services component uses a .NET Framework. The individual UI components, such as the render window and DVM adapter and camera control components, are in the present embodiment C++ COM objects.


At step 604, the client provides a request, via the DVM adapter, to the remote camera server. This request is received in the remote camera server at 605. Step 606 includes determining client credentials, which in the present embodiment is achieved based on analyzing the context of the request to determine information about the client/user. That is, the client does not transmit explicit credential information for the present purposes (although that does occur in other embodiments). At 607, the camera server verifies the client credentials based on local (system B) data. In the present embodiment, this data is maintained at the camera server, and furthermore is indicative of Windows-based users and/or groups who have appropriate access rights for the present purposes. Other embodiments adopt different approaches, including the use of credential information stored maintained at the local database of system B.


Assuming credentials were verified successfully (and that there are no other bars to the client viewing live video data from the relevant camera, such as camera failure or the like), the camera server grants reservation to the relevant client at 608. This fires a local event, and in turn results in a remote event, with data indicative of the reservation filtering back to the client UI via the server-server link, such that the user is able to view information regarding the reservation (for example time remaining). However, independent of that process, the camera server provides directly to the client a “control cookie”, which is effectively a token that allows subsequent communications, at least within the scope of the reservation, to proceed without a need to repeatedly verify credentials. The control cookie is received at step 610. The method then progresses to steps 611 and 612, which respectively describe the process by which the client provides requests (for live video data and/or camera control) and the process by which the camera server receives and progresses those requests (and delivers live video data to the client and/or provides control instructions to the camera).


In terms of reservations, a client may still view live video data during another client's reservation; control functionality is however prevented. In some embodiments a prioritization protocol is implemented such that certain users are able to gain control in spite of other users' reservations, for example based on access permissions or scope of responsibility.


In the present embodiment, the client component of method 600 remains generally unchanged regardless of whether the camera server is local or remote. In this manner, the user experience is generally seamless regardless of whether cameras are located locally or remotely.


In spite of the generally seamless experience, it will be appreciated that the bandwidth of link between distributed systems might affect the quality of live video data from a remote system. Some embodiments make use of client side frame rate management for these purposes. In particular, when requesting live video data, the client specifies how that live video data should be delivered, for example in terms of frame skipping (e.g. “deliver only every second frame”), and the camera server delivers the data accordingly. In other embodiments throttling of data is managed centrally by a component that monitors bandwidth resources of the system-system link, and instructs for reduced bandwidth video transfers where predefined conditions are met.


In terms of recorded video data, in the present embodiments there is an additional preliminary step where the client requests to the local sever to identify the location of that recorded video data. If that data is remote, the local server communicates with the remote server (e.g. via a data engine described in relation to FIG. 3) to retrieve the unique identifiers for discrete video recordings on the camera in question. These unique identifiers include, for example, the start date and time of the video recording, and a numeric video recording id used for connection purposes. Method 600 then continues generally as described above, although it is recorded video data being obtained/presented, rather than live video data. In some embodiments, a recording is created by a camera while that camera is connected to one camera server, and then later that camera is moved such that it becomes managed by another camera server. In such an instance, to retrieve the resulting video recording, the local client will still always attempt an initial connection to the camera server which is currently managing the camera. If that camera server has no knowledge of the requested recording (e.g. because the recording was created while the camera was previously managed by a different camera server), then the current camera server will look up the location of the recording and will return the alternate camera server connection details to the client. The client then retries its request for the video recording by connecting to this alternate camera server.


Conclusions and Interpretation


It will be appreciated that the disclosure above provides various significant systems and methods for managing video data. For example, the present embodiments allow for a distributed system architecture in the context of DVM systems, and does so in a manner that efficiently manages concerns associated with the transfer of bandwidth intensive video data.


Unless specifically stated otherwise, as apparent from the following discussions, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining”, analyzing” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities into other data similarly represented as physical quantities.


In a similar manner, the term “processor” may refer to any device or portion of a device that processes electronic data, e.g., from registers and/or memory to transform that electronic data into other electronic data that, e.g., may be stored in registers and/or memory. A “computer” or a “computing machine” or a “computing platform” may include one or more processors.


The methodologies described herein are, in one embodiment, performable by one or more processors that accept computer-readable (also called machine-readable) code containing a set of instructions that when executed by one or more of the processors carry out at least one of the methods described herein. Any processor capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken are included. Thus, one example is a typical processing system that includes one or more processors. Each processor may include one or more of a CPU, a graphics processing unit, and a programmable DSP unit. The processing system further may include a memory subsystem including main RAM and/or a static RAM, and/or ROM. A bus subsystem may be included for communicating between the components. The processing system further may be a distributed processing system with processors coupled by a network. If the processing system requires a display, such a display may be included, e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT) display. If manual data entry is required, the processing system also includes an input device such as one or more of an alphanumeric input unit such as a keyboard, a pointing control device such as a mouse, and so forth. The term memory unit as used herein, if clear from the context and unless explicitly stated otherwise, also encompasses a storage system such as a disk drive unit. The processing system in some configurations may include a sound output device, and a network interface device. The memory subsystem thus includes a computer-readable carrier medium that carries computer-readable code (e.g., software) including a set of instructions to cause performing, when executed by one or more processors, one of more of the methods described herein. Note that when the method includes several elements, e.g., several steps, no ordering of such elements is implied, unless specifically stated. The software may reside in the hard disk, or may also reside, completely or at least partially, within the RAM and/or within the processor during execution thereof by the computer system. Thus, the memory and the processor also constitute computer-readable carrier medium carrying computer-readable code.


Furthermore, a computer-readable carrier medium may form, or be included in a computer program product.


In alternative embodiments, the one or more processors operate as a standalone device or may be connected, e.g., networked to other processor(s), in a networked deployment, the one or more processors may operate in the capacity of a server or a user machine in server-user network environment, or as a peer machine in a peer-to-peer or distributed network environment. The one or more processors may form a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


Note that while some diagrams only show a single processor and a single memory that carries the computer-readable code, those in the art will understand that many of the components described above are included, but not explicitly shown or described in order not to obscure the inventive aspect. For example, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.


Thus, one embodiment of each of the methods described herein is in the form of a computer-readable carrier medium carrying a set of instructions, e.g., a computer program that is for execution on one or more processors, e.g., one or more processors that are part of web server arrangement. Thus, as will be appreciated by those skilled in the art, embodiments of the present invention may be embodied as a method, an apparatus such as a special purpose apparatus, an apparatus such as a data processing system, or a computer-readable carrier medium, e.g., a computer program product. The computer-readable carrier medium carries computer readable code including a set of instructions that when executed on one or more processors cause the processor or processors to implement a method. Accordingly, aspects of the present invention may take the form of a method, an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of carrier medium (e.g., a computer program product on a computer-readable storage medium) carrying computer-readable program code embodied in the medium.


The software may further be transmitted or received over a network via a network interface device. While the carrier medium is shown in an exemplary embodiment to be a single medium, the term “carrier medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “carrier medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by one or more of the processors and that cause the one or more processors to perform any one or more of the methodologies of the present invention. A carrier medium may take many forms, including but not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media includes, for example, optical, magnetic disks, and magneto-optical disks. Volatile media includes dynamic memory, such as main memory. Transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise a bus subsystem. Transmission media also may also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications. For example, the term “carrier medium” shall accordingly be taken to included, but not be limited to, solid-state memories, a computer product embodied in optical and magnetic media; a medium bearing a propagated signal detectable by at least one processor of one or more processors and representing a set of instructions that, when executed, implement a method; a carrier wave bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions a propagated signal and representing the set of instructions; and a transmission medium in a network bearing a propagated signal detectable by at least one processor of the one or more processors and representing the set of instructions.


It will be understood that the steps of methods discussed are performed in one embodiment by an appropriate processor (or processors) of a processing (i.e., computer) system executing instructions (computer-readable code) stored in storage. It will also be understood that the invention is not limited to any particular implementation or programming technique and that the invention may be implemented using any appropriate techniques for implementing the functionality described herein. The invention is not limited to any particular programming language or operating system.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.


Similarly it should be appreciated that in the above description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, FIG., or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.


Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those skilled in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.


Furthermore, some of the embodiments are described herein as a method or combination of elements of a method that can be implemented by a processor of a computer system or by other means of carrying out the function. Thus, a processor with the necessary instructions for carrying out such a method or element of a method forms a means for carrying out the method or element of a method. Furthermore, an element described herein of an apparatus embodiment is an example of a means for carrying out the function performed by the element for the purpose of carrying out the invention.


In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.


Similarly, it is to be noticed that the term coupled, when used in the claims, should not be interpreted as being limited to direct connections only. The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Thus, the scope of the expression a device A coupled to a device B should not be limited to devices or systems wherein an output of device A is directly connected to an input of device B. It means that there exists a path between an output of A and an input of B which may be a path including other devices or means. “Coupled” may mean that two or more elements are either in direct physical or electrical contact, or that two or more elements are not in direct contact with each other but yet still co-operate or interact with each other.


Thus, while there has been described what are believed to be the preferred embodiments of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the invention, and it is intended to claim all such changes and modifications as falling within the scope of the invention. For example, any formulas given above are merely representative of procedures that may be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among functional blocks. Steps may be added or deleted to methods described within the scope of the present invention.

Claims
  • 1. A first Digital Video Management (DVM) system comprising: one or more first-system cameras,one or more first-system camera servers, each having a respective one or more assigned first-system cameras, the first-system camera servers being configured to make available, to DVM clients, video data from their respective one or more assigned first-system cameras;a first-system DVM database server that maintains data indicative of the first-system cameras and first-system camera servers, wherein the first-system DVM database server is configured to enable a first-system client to access video data from the one or more first-system cameras via the first-system camera servers;wherein the first-system DVM database server is configured to communicate with a second-system DVM database server for a second DVM system remote of the first DVM system, wherein the second DVM system comprises: one or more second-system cameras distinct from the one or more first-system cameras, andone or more second-system camera servers distinct from the one or more first-system camera servers, each having a respective one or more assigned second-system cameras, the second-system camera servers being configured to make available, to DVM clients, video data from their respective one or more assigned second-system cameras;the second-system DVM database server, distinct from the first-system DVM database server, maintains data indicative of the second-system cameras and second-system camera servers, wherein the second-system DVM database server is configured to enable a second-system client to access video data from the one or more second-system cameras via the second-system camera servers; anda first-system client in communication with the first-system DVM database server, the first-system client being configured for displaying live video data to a user, wherein the first-system client is configured to communicate with a first-system camera server for displaying video data from one of its respective one or more assigned first-system cameras, and configured to communicate with a second-system camera server for displaying video data from one of its respective one or more assigned second-system cameras;wherein the first-system DVM database server and second-system DVM database server each execute a respective DSA event engine, wherein the first-system DSA event engine is configured to: monitor object model events in the first DVM system;for predefined categories of monitored object model events, define DSA transportable data indicative of those events, and communicate the DSA transportable data to the second DVM system; andreceive DSA transportable data from the second DVM system, and process that data thereby to publish a local object model event based on a second-system object model event based upon which the received DSA transportable data is defined.
  • 2. A DVM system according to claim 1 wherein the first-system DVM database server maintains data indicative of the second-system cameras and the second-system camera servers.
  • 3. A DVM system according to claim 1 wherein the second-system DVM system includes a second-system client, the second-system client being configured for displaying live video data to a user, wherein the second-system client is configured to communicate with a second-system camera server for displaying video data from one of its respective one or more assigned second-system cameras, and configured to communicate with a first-system camera server for displaying video data from one of its respective one or more assigned first-system cameras.
  • 4. A DVM system according to claim 1 wherein the first-system DVM database server receives from the second-system database server data indicative of a second-system event, and in response triggers a first-system event.
  • 5. A DVM system according to claim 1 wherein the first-system DVM database server is configured to provide to the second-system DVM database server data indicative of a first-system event, such that the second-system database server in response triggers an event in the second DVM system.
  • 6. A method for operating a client in a first Digital Video Management (DVM) system, the method comprising: receiving a user command to display live video data from a predetermined camera;identifying, based on data maintained by the first DVM system, details for a camera server that is configured for providing live video data for the predetermined camera;in the case that the camera server is part of a second DVM system, providing to the camera server a request to view live video data from the predetermined camera, wherein the request is provided over a TCP/IP connection between the client and the camera server;receiving from the camera server the live video data via the TCP/IP connection between the client and the camera server;displaying the live video data;wherein the first DVM system and second DVM system each execute a respective DSA event engine, wherein the first-system DSA event engine is configured to: monitor object model events in the first DVM system;for predefined categories of monitored object model events, define DSA transportable data indicative of those events, and communicate the DSA transportable data to the second DVM system; andreceive DSA transportable data from the second DVM system, and process that data thereby to publish a local object model event based on a second-system object model event based upon which the received DSA transportable data is defined.
  • 7. A method according to claim 6 comprising: generating UI components for displaying the live video data and one or more aspects of information regarding the predetermined camera, wherein at least one of the aspects of information regarding the predetermined camera is obtained from a DVM database server of the first DVM system, wherein the information is received by the DVM database server of the first DVM system from a DVM database server of the second DVM system.
  • 8. A method according to claim 6 comprising: providing UI control components for controlling the predetermined camera, wherein in response to input provided to the UI control components control signals are provided to the camera server via the TCP/IP connection between the client and the camera server.
  • 9. A method according to claim 6 wherein the request to view live video data from the predetermined camera is indicative of first-system-specified video parameters.
  • 10. A method according to claim 9 wherein the first-system-specified video parameters include frame rate.
  • 11. A method for operating a first-system camera server in a first Digital Video Management (DVM) system, the method comprising: receiving, from a second-system client in a second DVM system, via a TCP/IP connection between the second-system client and the first-system camera server, a request to display live video data from a predetermined camera;identifying credentials for the client; andin the case that the identified credentials match first-system stored pre-approved credentials, providing the live video data to the client via the TCP/IP connection between the second-system client and the first-system camera server;wherein the first DVM system and the second DVM system each execute a respective DSA event engine, wherein the first-system DSA event engine is configured to: monitor object model events in the first DVM system;for predefined categories of monitored object model events, define DSA transportable data indicative of those events, and communicate the DSA transportable data to the second DVM system; andreceive DSA transportable data from the second DVM system, and process that data thereby to publish a local object model event based on a second-system object model event based upon which the received DSA transportable data is defined.
  • 12. A method according to claim 11 wherein the credentials are identified based on the context of the request to display live video data received from the second-system client.
  • 13. A method according to claim 11 further comprising: in the case that the identified credentials match first-system stored pre-approved credentials, additionally making a reservation of the camera on behalf of the second-system client, wherein data indicative of the reservation propagates to the second DVM system by way of communications between a DVM database server of the first DVM system and a DVM database server of the second DVM system.
  • 14. A method according to claim 11 further comprising: in the case that the identified credentials match first-system stored pre-approved credentials, providing to the second-system client a token indicative of an access permission, wherein the second-system client is able to control the camera during a period defined by the token.
  • 15. A method according to claim 11 further comprising: in the case that the identified credentials match first-system stored pre-approved credentials, receiving, processing and implementing camera control commands from the second-system client.
  • 16. A non-transitory carrier medium for carrying computer executable code that, when executed on a processor, allows the processor to perform a method according to claim 6.
  • 17. A system configured for performing a method according to claim 6.
  • 18. A distributed Digital Video Management (DVM) system comprising: a first DVM system including one or more first-system cameras, one or more first-system camera servers, each having a respective one or more assigned first-system cameras, the first-system camera servers being configured to make available video data from their respective one or more assigned first-system cameras to DVM clients, a first-system DVM database server that maintains data indicative of the first-system cameras and first-system camera servers, and one or more first-system clients for displaying video data to users;a second DVM system including one or more second-system cameras, one or more second-system camera servers, each having a respective one or more assigned second-system cameras, the second-system camera servers being configured to make available video data from their respective one or more assigned second-system cameras to DVM clients, a second-system DVM database server that maintains data indicative of the second-system cameras and second-system camera servers, and one or more second-system clients for displaying video data to users; andwherein the first DVM system and second DVM system each execute a respective DSA event engine, wherein the first-system DSA event engine is configured to: monitor object model events in the first DVM system;for predefined categories of monitored object model events, define DSA transportable data indicative of those events, and communicate the DSA transportable data to the second DVM system; andreceive DSA transportable data from the second DVM system, and process that data thereby to publish a local object model event based on a second-system object model event based upon which the received DSA transportable data is defined.
  • 19. A system according to claim 18 wherein: the first-system DVM database server and second system DVM database server are in communication for sharing data indicative of the cameras and camera servers; anda first-system client is in communication with a second-system camera server for displaying via the first-system client live video data made available by the second-system camera server.
Priority Claims (1)
Number Date Country Kind
2009900943 Mar 2009 AU national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/AU2010/000247 3/4/2010 WO 00 11/18/2011
Publishing Document Publishing Date Country Kind
WO2010/099575 9/10/2010 WO A
US Referenced Citations (299)
Number Name Date Kind
3753232 Sporer Aug 1973 A
3806911 Pripusich Apr 1974 A
3857018 Stark et al. Dec 1974 A
3860911 Hinman et al. Jan 1975 A
3866173 Moorman et al. Feb 1975 A
3906447 Crafton Sep 1975 A
4095739 Fox et al. Jun 1978 A
4146085 Wills Mar 1979 A
4148012 Baump et al. Apr 1979 A
4161778 Getson, Jr. et al. Jul 1979 A
4213118 Genest et al. Jul 1980 A
4283710 Genest et al. Aug 1981 A
4298946 Hartsell et al. Nov 1981 A
4332852 Korklan et al. Jun 1982 A
4336902 Neal Jun 1982 A
4337893 Flanders et al. Jul 1982 A
4353064 Stamm Oct 1982 A
4373664 Barker et al. Feb 1983 A
4379483 Farley Apr 1983 A
4462028 Ryan et al. Jul 1984 A
4525777 Webster et al. Jun 1985 A
4538056 Young et al. Aug 1985 A
4556169 Zervos Dec 1985 A
4628201 Schmitt Dec 1986 A
4646964 Parker et al. Mar 1987 A
4685615 Hart Aug 1987 A
4821177 Koegel et al. Apr 1989 A
4847839 Hudson, Jr. et al. Jul 1989 A
5070468 Niinomi et al. Dec 1991 A
5071065 Aalto et al. Dec 1991 A
5099420 Barlow et al. Mar 1992 A
5172565 Wruck et al. Dec 1992 A
5204663 Lee Apr 1993 A
5227122 Scarola et al. Jul 1993 A
5259553 Shyu Nov 1993 A
5271453 Yoshida et al. Dec 1993 A
5361982 Liebl et al. Nov 1994 A
5404934 Carlson et al. Apr 1995 A
5420927 Micali May 1995 A
5449112 Heitman et al. Sep 1995 A
5465082 Chaco Nov 1995 A
5479154 Wolfram Dec 1995 A
5481481 Frey et al. Jan 1996 A
5521841 Arman et al. May 1996 A
5526871 Musser et al. Jun 1996 A
5541585 Duhame et al. Jul 1996 A
5591950 Imedio-Ocana Jan 1997 A
5596994 Bro Jan 1997 A
5604804 Micali Feb 1997 A
5610982 Micali Mar 1997 A
5631825 van Weele et al. May 1997 A
5634008 Gaffaney et al. May 1997 A
5640151 Reis et al. Jun 1997 A
5644302 Hana et al. Jul 1997 A
5663957 Dent Sep 1997 A
5666416 Micali Sep 1997 A
5708767 Yeo et al. Jan 1998 A
5717757 Micali Feb 1998 A
5717758 Micali Feb 1998 A
5717759 Micali Feb 1998 A
5732691 Maiello et al. Mar 1998 A
5751336 Aggarwal et al. May 1998 A
5778256 Darbee Jul 1998 A
5793868 Micali Aug 1998 A
5821945 Yeo et al. Oct 1998 A
5828809 Chang et al. Oct 1998 A
5914875 Monta et al. Jun 1999 A
5915473 Ganesh et al. Jun 1999 A
5927398 Maciulewicz Jul 1999 A
5930773 Crooks et al. Jul 1999 A
5960083 Micali Sep 1999 A
5969755 Courtney Oct 1999 A
5973613 Reis et al. Oct 1999 A
5974235 Nunally et al. Oct 1999 A
6018359 Kermode et al. Jan 2000 A
6072402 Kniffin et al. Jun 2000 A
6091821 Buer Jul 2000 A
6097811 Micali Aug 2000 A
6104963 Cebasek et al. Aug 2000 A
6119125 Gloudeman et al. Sep 2000 A
6141595 Gloudeman et al. Oct 2000 A
6149065 White et al. Nov 2000 A
6154681 Drees et al. Nov 2000 A
6167316 Gloudeman et al. Dec 2000 A
6181867 Kenner et al. Jan 2001 B1
6222532 Ceccarelli Apr 2001 B1
6233954 Mehaffey et al. May 2001 B1
6241156 Kline et al. Jun 2001 B1
6249755 Yemini et al. Jun 2001 B1
6260765 Natale et al. Jul 2001 B1
6292893 Micali Sep 2001 B1
6301659 Micali Oct 2001 B1
6318137 Chaum Nov 2001 B1
6324854 Jayanth Dec 2001 B1
6334121 Primeaux et al. Dec 2001 B1
6347374 Drake et al. Feb 2002 B1
6359647 Sengupta et al. Mar 2002 B1
6366558 Howes et al. Apr 2002 B1
6369719 Tracy et al. Apr 2002 B1
6374356 Daigneault et al. Apr 2002 B1
6393848 Roh et al. May 2002 B2
6394359 Morgan May 2002 B1
6400890 Nagasaka et al. Jun 2002 B1
6424068 Nakagashi Jul 2002 B2
6424370 Courtney Jul 2002 B1
6445409 Ito et al. Sep 2002 B1
6453426 Gamache et al. Sep 2002 B1
6453687 Sharood et al. Sep 2002 B2
6483697 Jenks et al. Nov 2002 B1
6487658 Micali Nov 2002 B1
6490610 Rizvi et al. Dec 2002 B1
6496575 Vasell et al. Dec 2002 B1
6516357 Hamann et al. Feb 2003 B1
6518953 Armstrong Feb 2003 B1
6546419 Humpleman et al. Apr 2003 B1
6556899 Harvey et al. Apr 2003 B1
6570608 Tserng May 2003 B1
6574537 Kipersztok et al. Jun 2003 B2
6587637 Nagasaka et al. Jul 2003 B2
6604023 Brown et al. Aug 2003 B1
6615594 Jayanth et al. Sep 2003 B2
6628835 Brill et al. Sep 2003 B1
6628997 Fox et al. Sep 2003 B1
6643387 Sethuraman et al. Nov 2003 B1
6647317 Takai et al. Nov 2003 B2
6647400 Moran Nov 2003 B1
6658373 Rossi et al. Dec 2003 B2
6663010 Chene et al. Dec 2003 B2
6665669 Han et al. Dec 2003 B2
6667690 Durej et al. Dec 2003 B2
6721454 Qian et al. Apr 2004 B1
6724915 Toklu et al. Apr 2004 B1
6741915 Poth May 2004 B2
6744968 Imai et al. Jun 2004 B1
6754389 Dimitrova et al. Jun 2004 B1
6758051 Jayanth et al. Jul 2004 B2
6766450 Micali Jul 2004 B2
6779027 Schunicht et al. Aug 2004 B1
6789739 Rosen Sep 2004 B2
6796494 Gonzalo Sep 2004 B1
6801849 Szukala et al. Oct 2004 B2
6801907 Zagami Oct 2004 B1
6826454 Sulfstede Nov 2004 B2
6845357 Shetty et al. Jan 2005 B2
6851621 Wacker et al. Feb 2005 B1
6871193 Campbell et al. Mar 2005 B1
6879709 Tian et al. Apr 2005 B2
6886742 Stoutenburg et al. May 2005 B2
6895215 Uhlmann May 2005 B2
6910135 Grainger Jun 2005 B1
6940474 Weitbruch et al. Sep 2005 B2
6940998 Garoutte Sep 2005 B2
6948082 Gschwind et al. Sep 2005 B2
6967612 Gorman et al. Nov 2005 B1
6969542 Klasen-Memmer et al. Nov 2005 B2
6970070 Juels et al. Nov 2005 B2
6970640 Green et al. Nov 2005 B2
6973410 Seigel Dec 2005 B2
6983889 Alles Jan 2006 B2
6989742 Ueno et al. Jan 2006 B2
7004401 Kallestad Feb 2006 B2
7019614 Lavelle et al. Mar 2006 B2
7020336 Cohen-Solal et al. Mar 2006 B2
7032114 Moran Apr 2006 B1
7046731 Wu et al. May 2006 B2
7055759 Wacker et al. Jun 2006 B2
7068842 Liang et al. Jun 2006 B2
7076102 Lin et al. Jul 2006 B2
7106885 Osterweil et al. Sep 2006 B2
7110569 Brodsky et al. Sep 2006 B2
7124943 Quan et al. Oct 2006 B2
7130719 Ehlers et al. Oct 2006 B2
7159234 Murphy et al. Jan 2007 B1
7183894 Yui et al. Feb 2007 B2
7194110 Qian Mar 2007 B2
7200266 Ozer et al. Apr 2007 B2
7203962 Moran Apr 2007 B1
7205882 Libin Apr 2007 B2
7216007 Johnson May 2007 B2
7216015 Poth May 2007 B2
7218243 Hayes et al. May 2007 B2
7222800 Wruck May 2007 B2
7227569 Maruya Jun 2007 B2
7228055 Murakami et al. Jun 2007 B2
7233243 Roche et al. Jun 2007 B2
7243001 Janert et al. Jul 2007 B2
7245223 Trela Jul 2007 B2
7250853 Flynn Jul 2007 B2
7274676 Cardei et al. Sep 2007 B2
7295673 Grab et al. Nov 2007 B2
7313819 Burnett et al. Dec 2007 B2
7321784 Serceki et al. Jan 2008 B2
7337315 Micali Feb 2008 B2
7343265 Andarawis et al. Mar 2008 B2
7346186 Sharoni et al. Mar 2008 B2
7352952 Herberger et al. Apr 2008 B2
7353396 Micali et al. Apr 2008 B2
7362210 Bazakos et al. Apr 2008 B2
7376839 Carta et al. May 2008 B2
7379997 Ehlers et al. May 2008 B2
7380125 Di Luoffo et al. May 2008 B2
7383158 Krocker et al. Jun 2008 B2
7397371 Martin et al. Jul 2008 B2
7469343 Ray et al. Dec 2008 B2
7469363 Meis et al. Dec 2008 B2
7505914 McCall Mar 2009 B2
7542867 Steger et al. Jun 2009 B2
7570867 Barrett et al. Aug 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7586398 Huang et al. Sep 2009 B2
7600679 Kshirsagar et al. Oct 2009 B2
7661603 Yoon et al. Feb 2010 B2
7735145 Kuehnel et al. Jun 2010 B2
7796536 Roy et al. Sep 2010 B2
7818026 Hartikainen et al. Oct 2010 B2
7853987 Balasubramanian et al. Dec 2010 B2
7907753 Wilson et al. Mar 2011 B2
7937669 Zhang et al. May 2011 B2
7983892 Anne et al. Jul 2011 B2
7995526 Liu et al. Aug 2011 B2
8045960 Orakkan Oct 2011 B2
8095889 DeBlaey et al. Jan 2012 B2
20010010541 Fernandez et al. Aug 2001 A1
20020011923 Cunningham et al. Jan 2002 A1
20020022991 Sharood et al. Feb 2002 A1
20020046337 Micali Apr 2002 A1
20020107949 Rawson, III Aug 2002 A1
20020118096 Hoyos et al. Aug 2002 A1
20020121961 Huff Sep 2002 A1
20020165824 Micali Nov 2002 A1
20030033230 McCall Feb 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030053659 Pavlidis et al. Mar 2003 A1
20030067387 Kwon et al. Apr 2003 A1
20030123703 Pavlidis et al. Jul 2003 A1
20030126293 Bushey Jul 2003 A1
20030133614 Robins et al. Jul 2003 A1
20030156824 Lu Aug 2003 A1
20030174049 Beigel et al. Sep 2003 A1
20030208689 Garza Nov 2003 A1
20030233432 Davis et al. Dec 2003 A1
20040062421 Jakubowski et al. Apr 2004 A1
20040062525 Hasegawa et al. Apr 2004 A1
20040064453 Ruiz et al. Apr 2004 A1
20040080615 Klein et al. Apr 2004 A1
20040087362 Beavers May 2004 A1
20040130620 Buehler et al. Jul 2004 A1
20040205350 Waterhouse et al. Oct 2004 A1
20040252193 Higgins Dec 2004 A1
20040263621 Guo et al. Dec 2004 A1
20050008198 Guo et al. Jan 2005 A1
20050046703 Gutler Mar 2005 A1
20050138380 Fedronic et al. Jun 2005 A1
20060045185 Kiryati et al. Mar 2006 A1
20060059557 Markham et al. Mar 2006 A1
20060064731 Kahle et al. Mar 2006 A1
20060206748 Li Sep 2006 A1
20060215752 Lee et al. Sep 2006 A1
20060215753 Lee et al. Sep 2006 A1
20060238616 Curtner et al. Oct 2006 A1
20060239645 Curtner et al. Oct 2006 A1
20070109098 Siemon et al. May 2007 A1
20070132550 Avraham et al. Jun 2007 A1
20070171862 Tang et al. Jul 2007 A1
20070268145 Bazakos et al. Nov 2007 A1
20070272744 Bantwal et al. Nov 2007 A1
20080086758 Chowdhury et al. Apr 2008 A1
20080087663 Mansbery et al. Apr 2008 A1
20080173709 Ghosh Jul 2008 A1
20080272881 Goel Nov 2008 A1
20090018900 Waldron et al. Jan 2009 A1
20090080443 Dziadosz Mar 2009 A1
20090086692 Chen Apr 2009 A1
20090121830 Dziadosz May 2009 A1
20090167485 Birchbauer et al. Jul 2009 A1
20090168695 Johar et al. Jul 2009 A1
20090258643 McGuffin Oct 2009 A1
20090266885 Marcinowski et al. Oct 2009 A1
20090292524 Anne et al. Nov 2009 A1
20090292995 Anne et al. Nov 2009 A1
20090292996 Anne et al. Nov 2009 A1
20090328152 Thomas et al. Dec 2009 A1
20090328203 Haas Dec 2009 A1
20100036511 Dongare Feb 2010 A1
20100148918 Gerner et al. Jun 2010 A1
20100164720 Kore Jul 2010 A1
20100269173 Srinivasa et al. Oct 2010 A1
20110038278 Bhandari et al. Feb 2011 A1
20110071929 Morrison Mar 2011 A1
20110110643 Chandra May 2011 A1
20110115602 Bhandari et al. May 2011 A1
20110133884 Kumar et al. Jun 2011 A1
20110153791 Jones et al. Jun 2011 A1
20110167488 Roy et al. Jul 2011 A1
20110181414 G et al. Jul 2011 A1
20120096131 Bhandari et al. Apr 2012 A1
20120106915 Palmer May 2012 A1
20120121229 Lee May 2012 A1
20120133482 Bhandari et al. May 2012 A1
Foreign Referenced Citations (45)
Number Date Country
2240881 Dec 1999 CA
1265762 Sep 2000 CN
19945861 Mar 2001 DE
0043270 Jan 1982 EP
0122244 Oct 1984 EP
0152678 Aug 1985 EP
0629940 Dec 1994 EP
0858702 Apr 2002 EP
1259076 Nov 2002 EP
1339028 Aug 2003 EP
1403817 Mar 2004 EP
1630639 Mar 2006 EP
2251266 Jul 1992 GB
2390705 Jan 2004 GB
6019911 Jan 1994 JP
2000276577 Oct 2000 JP
2003074942 Mar 2003 JP
2003240318 Aug 2003 JP
2005295255 Oct 2005 JP
20040073069 Aug 2004 KR
WO 8402786 Jul 1984 WO
WO 9419912 Sep 1994 WO
WO 9627858 Sep 1996 WO
WO 0011592 Mar 2000 WO
WO 0076220 Dec 2000 WO
WO 0142598 Jun 2001 WO
WO 0157489 Aug 2001 WO
WO 0160024 Aug 2001 WO
WO 0163576 Aug 2001 WO
WO 0232045 Apr 2002 WO
WO 02091311 Nov 2002 WO
WO 03090000 Oct 2003 WO
WO 2004092514 Oct 2004 WO
WO 2005038727 Apr 2005 WO
WO 2006021047 Mar 2006 WO
WO 2006126974 Nov 2006 WO
2007000637 Jan 2007 WO
WO 2007043798 Apr 2007 WO
WO 2008045918 Apr 2008 WO
2008092202 Aug 2008 WO
WO 2008144803 Dec 2008 WO
2009158365 Dec 2009 WO
WO 2010039598 Apr 2010 WO
WO 2010106474 Sep 2010 WO
2011003131 Jan 2011 WO
Non-Patent Literature Citations (41)
Entry
Hampapur et al., “Smart Surveillance: Applications, Technologies and Implications”, Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia, Proceedings of the 2003 Joint Conference of the Fourth International Conference, Dec. 15-18, 2003, pp. 1133-1138.
International Search Report, PCT/AU2008/000107, Mar. 28, 2008.
“Certificate Validation Choices,” CoreStreet, Inc., 8 pages, 2002.
“CoreStreet Cuts the PKI Gordian Knot,” Digital ID World, pp. 22-25, Jun./Jul. 2004.
“Distributed Certificate Validation,” CoreStreet, Ltd. 17 pages, 2006.
“Identity Services Infrastructure,” CoreStreet Solutions—Whitepaper, 12 pages, 2006.
“Important FIPS 201 Deployment Considerations,” Corestreet Ltd.—Whitepaper, 11 pages, 2005.
“Introduction to Validation for Federated PKI,” Corestreet Ltd, 20 pages, 2006.
“Keyfast Technical Overview”, Corestreet Ltd., 21 pages, 2004.
“Manageable Secure Physical Access,” Corestreet Ltd, 3 pages, 2002.
“MiniCRL Corestreet Technology Datasheet,” CoreStreet, 1 page, 2006.
“Nonce Sense, Freshness and Security in OCSP Responses,” Corestreet Ltd, 2 pages, 2003.
“Real Time Credential Validation, Secure, Efficient Permissions Management,” Corestreet Ltd, 5 pages, 2002.
“The Role of Practical Validation for Homeland Security,” Corestreet Ltd, 3 pages, 2002.
“The Roles of Authentication, Authorization & Cryptography in Expanding Security Industry Technology,” Security Industry Association (SIA), Quarterly Technical Update, 32 pages, Dec. 2005.
“Vulnerability Analysis of Certificate Validation Systems,” Corestreet Ltd—Whitepaper, 14 pages, 2006.
U.S. Appl. No. 13/533,334, filed Jun. 26, 2012.
Goldman et al., “Information Modeling for Intrusion Report Aggregation,” IEEE, Proceedings DARPA Information Survivability Conference and Exposition II, pp. 329-342, 2001.
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995.
http://www.tcsbasys.com/products/superstats.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1009.asp, TCS/Basys Controls: Where Buildings Connect With Business 1 page, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1017a.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1017n.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1020nseries.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1020series.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1024.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1030series.asp, TCS/Basys Controls: Where Buildings Connect With Business 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1033.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1035.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1041.asp, TCS/Basys Controls: Where Buildings Connect With Business, 1 page, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1050series.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1051.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://www.tcsbasys.com/products/sz1053.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
http://wwww.tcsbasys.com/products/sz1031.asp, TCS/Basys Controls: Where Buildings Connect With Business, 2 pages, printed Aug. 26, 2003.
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002.
Lipton et al., “Critical Asset Protection, Perimeter Monitoring, and Threat Detection Using Automated Video Surveillance,” Article on Objectvideo.com, 11 pages, printed Sep. 2004.
Lipton, “ObjectVideo Forensics: Activity-Based Video Indexing and Retrieval for Physical Security Application,” Article on Objectvideo.com, 11 pages, printed Sep. 2004.
Medioni et al., “Event Detection and Analysis from Video Streams,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, No. 8, pp. 873-889, Aug. 2001.
Mills et al., “A Magnifier Tool for Video Data,” Proceedings of the Conference on Human Factors in Computing Systems, pp. 93-98, May 3, 1992.
Porikli et al., “Event Detection by Eigenvector Decomposition Using Object and Frame Features,” IEEE, 10 pages, 2004.
Smoliar et al., “Content-Based Video Indexing and Retrieval,” IEEE MultiMedia No. 2, pp. 62-72, 1994.
Related Publications (1)
Number Date Country
20120092510 A1 Apr 2012 US