This document relates generally to medical systems and more particularly to systems, devices, and methods for robotic control of delivery, positioning, and manipulation of a perimodiolar electrode array.
The cochlea is the auditory portion of the inner ear. It comprises a spiraled, hollow, conical chamber of bone in which sound waves propagate from the base to the apex of the cochlea. The sound waves vibrate the perilymph that moves hair cells in the organ of Corti, converting the vibrations to electrical signals that are sent to the cochlear nerve. The hair cells and nerves in the basal or outer region of the spiraled cochlea are more sensitive to higher frequencies of sound and are frequently the first part of the cochlea to lose sensitivity. The apical or inner region of the spiraled cochlea is more sensitive to lower frequencies.
Moderate to profound hearing loss affects a large amount of people worldwide and may have a significant impact on a patient physical and mental health, education, employment, and overall quality of life. Hearing loss may be caused by partial damage to the cochlea. Many patients with various degrees of hearing loss have partial damage to the cochlea in the high-frequency regions (basal cochlea) from common causes such as noise exposure, drugs, genetic mutations, or aging, but may retain adequate low-frequency hearing.
Cochlear implants have been used to treat patients with hearing loss. A cochlear implant is a medical device that comprises an external sound processor, a subcutaneously implantable stimulator, and an electrode assembly sized and shaped for cochlear insertion. The sound processor can convert sound signals into electrical signals and transmit the electrical signals to the implantable stimulator. Based on the physical properties (e.g., frequencies) of the received electrical signals, the stimulator can generate electrical impulses to stimulate specific regions in the cochlea via an array of electrodes on the electrode assembly surgically inserted into the cochlea. The region for stimulation may be determined based on the frequencies of the received electrical signals. For example, higher frequencies may result in stimulation at the outer or basal cochlear region, and lower frequencies may result in stimulation at the inner or apical cochlear region.
For patients who have lost high-frequency hearing and consequently have significant difficulty with word understanding but who have substantial residual, low-frequency hearing function in apical cochlea, a short electrode assembly may be indicated to electrically stimulate the basal or outer cochlea to restore high-frequency hearing. A cochlear implant surgery may be performed by a surgeon to manually insert the electrode assembly into the damaged portion of a patient cochlea (e.g., basal cochlea), while avoiding or minimizing any trauma to the undamaged cochlear regions to preserve the low-frequency hearing function. The cochlear implant may be used together with a hearing aid that acoustically stimulates the undamaged low-frequency sensitive apical cochlea.
The electrode placement in cochlear implant surgery is a crucial step that plays a significant role in the success of the procedure. The following outlines a few key aspects of electrode placement, such as insertion technique, insertion depth, number of electrodes, preservation of residual hearing, intraoperative testing, and imaging and surgical guidance. The surgeon carefully inserts the electrode array into the cochlea, which is the part of the inner ear responsible for converting sound into electrical signals that can be transmitted to the brain. The array is designed to be gently threaded through the cochlea to ensure that the electrodes come into close contact with the auditory nerve fibers. The depth to which the electrode array is inserted into the cochlea is an essential consideration. The surgeon aims to achieve a balance between maximizing the coverage of the cochlea and avoiding damage to delicate structures. The exact insertion depth depends on factors such as the individual's anatomy, the size and shape of their cochlea, and the surgeon's expertise. Cochlear implant electrode arrays consist of multiple electrodes that are designed to stimulate different regions of the cochlea. The number of electrodes can vary depending on the specific device being used. The goal is to place a sufficient number of electrodes to cover the frequency range of speech and other important sounds. In some cases, individuals undergoing cochlear implant surgery may have some residual hearing in low-frequency regions of the cochlea. Whenever possible, the surgeon may try to preserve this residual hearing by avoiding damage to those areas during electrode insertion. This can be achieved through techniques such as electrode arrays with thin, flexible designs or by using specialized surgical approaches. During the surgery, intraoperative testing is often performed to assess the neural responses to electrical stimulation. These tests help the surgical team determine the optimal placement and functioning of the electrode array. Intraoperative testing may involve measures such as impedance testing, electrically evoked auditory brainstem response (EABR), or neural response telemetry (NRT). In recent years, advances in imaging techniques and surgical navigation technology have improved the accuracy of electrode placement. Preoperative imaging, such as high-resolution computed tomography (CT) scans or magnetic resonance imaging (MRI), can provide detailed information about the patient's cochlear anatomy. Surgical navigation systems may assist the surgeon in precisely positioning the electrode array based on this preoperative imaging. Ultimately, the goal of electrode placement in cochlear implant surgery is to achieve optimal contact between the electrodes and the auditory nerve fibers, ensuring effective electrical stimulation and subsequent transmission of sound signals to the brain. The expertise and experience of the surgical team, along with technological advancements, contribute to improving the accuracy and outcomes of electrode placement.
As noted above, one potential complication during electrode insertion is intracochlear trauma. Intracochlear trauma can occur from large pressure spikes generated during the insertion of cochlear implant electrodes. Cochlear implant surgery can also involve insertion of a guide sheath or tube near or partially into the cochlea. Insertion of any solid or flexible bodies, tubes, or sheaths into the cochlea could elicit similar fluid and force spikes. These pressures spikes may be of sufficient intensity to cause trauma similar to that of an acoustic blast injury and are one likely source for postoperative loss of residual hearing. Similar to the insertion trauma cause by electrode insertion, the manual insertion of a sheath or other solid body/tube manually into the cochlea may cause intracochlear fluid pressure spikes and result in intrachochlear damage.
A hearing-preservation cochlear implant surgery involves implanting an electrode assembly into the damaged cochlear region, while avoiding any trauma to the undamaged cochlear region to preserve any normal residual hearing. In current cochlear implant surgery, a surgeon manually inserts an electrode assembly into patient cochlea. However, a complete manual maneuvering of the electrode assembly may cause undesirable outcome in some patients. For example, manual insertion of electrode assembly may lack precision in implant position and motion control, such as the control of insertion rate, distance, or forces applied to the implant for advancing the electrode assembly to the target cochlear region. This may cause damage to fragile cochlear structures such as local trauma to cochlea wall and hair cells and result in residual hearing loss.
Complete manual maneuvering of the electrode assembly may also be subject to high inter-operator variability among surgeons. The inter-operator variability is demonstrated in dramatic differences in patient outcomes between institutions and surgeons of differing skill levels. Some patients undergoing hearing-preservation cochlear implant surgery may experience additional hearing decline weeks to years after surgery. Such a continual decline in hearing function may be attributed to an inflammatory response to the trauma inflicted during an initial cochlear implant surgery. Some clinical studies show that techniques aimed at reducing electrode-insertion forces during surgery have improved patient hearing preservation outcomes. For at least reasons, the present inventors have recognized that there remains a need to improve patient outcome following a hearing-preservation cochlear implant surgery, particularly systems, apparatus, and methods that enhance surgical precision in implant delivery and positioning as well as reducing the risk of perioperative trauma to undamaged cochlea region.
This document discusses, among other things, systems, devices, and methods for robotically assisted implantation of an implant in a patient, such as for delivering and positioning a cochlear implant for treating hearing loss in a hearing-preservation cochlear implant surgery. The systems and devices discussed are specifically designed and adapted for robotically controlling insertion of a perimodiolar electrode array. The modular system discussed herein includes an external positioning unit reversibly interfacing with and securely engaging an implant such as a cochlear implant having an elongate member, and a computerized control unit for robotically controlling the external positioning unit to regulate the motion of the implant. The computerized control unit may have a user interface that enables a user (e.g., a surgeon) to program various motion control parameters or to select an implantation protocol. The system may include sensors providing feedback on the position or the motion of the implant, or the force or friction applied to the implant during the implantation procedure. The sensors can include navigation markers to enable optical or electromagnetic navigation of the electrode and/or sheath. The computerized control unit may regulate the motion of the implant based on user input and the sensor feedback. The control systems may also interface with external systems providing electrophysiological measurements to enable closed loop feedback on electrode positioning in real-time during implantation.
The systems, devices, and methods discussed in this document may improve the technological field of robotic surgery, particularly robotically assisted implantation of an implant or prosthesis. For example, when the systems or methods discussed herein are used in hearing-preservation cochlear implant surgery, the robotic motion control of the cochlear implant (specifically a perimodiolar electrode array) may reduce the mechanical forces imposed on the delicate cochlear structure such as basilar membrane and organ of Corti, thereby minimizing the risk of trauma on the undamaged structure such as at the apical cochlea. This may ultimately better preserve patient residual natural hearing. Compared to manual insertion and steering of a cochlear implant, the robotically assisted cochlear implantation may allow more people with disabling hearing loss to hear better over their lifetimes.
The external positioning unit is a non-implanted external device. Compared to a partially or completely implantable insertion device, the external positioning unit discussed herein may substantially reduce the risk of complications associated with surgical implantation, extraction, or replacement of otherwise partially or completely implantable insertion device. The external positioning unit also has the advantage of easy troubleshooting, maintenance, and replacement, thereby reducing cost of the system and the procedure. As to be discussed in the following, the external positioning unit may have a small size with limited mechanical and electrical parts, thus making it flexible for external fixation to a patient. The external position unit can be affixed to the patient, affixed to an adjacent piece of equipment, or be handheld, among other affixation options considered within the scope of this disclosure.
Although the discussion in this document focuses on a perimodiolar electrode array implant, this is meant only by way of example and not limitation. It is within the contemplation of the present inventors, and within the scope of this document, that the systems, devices, and methods discussed herein may be configured for robotically delivering, steering, positioning, or extracting various types of implants or prosthesis. By way of non-limiting examples, the implants may include leads, catheter, guidewire, or other mechanical or electrical devices. The implants may be designed for temporary or permanent implantation. The implants may be used for medical diagnosis of a disease or other conditions such as diagnostic catheters, or for therapeutic purposes of cure, mitigation, treatment, or prevention of disease, such as implantable electrodes for stimulating cardiac, neural, muscular, or other tissues. In addition to new implantation, the systems, devices, and methods discussed herein may also be used to surgically reposition or replace an existing implant.
This summary is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the disclosure. The detailed description is included to provide further information about the present patent application. Other aspects of the disclosure will be apparent to persons skilled in the art upon reading and understanding the following detailed description and viewing the drawings that form a part thereof, each of which are not to be taken in a limiting sense.
Various embodiments are illustrated by way of example in the figures of the accompanying drawings. Such embodiments are demonstrative and not intended to be exhaustive or exclusive embodiments of the present subject matter.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined, or that other embodiments may be utilized, and that structural, logical, and electrical changes may be made without departing from the spirit and scope of the present invention. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description provides examples, and the scope of the present invention is defined by the appended claims and their legal equivalents.
Disclosed herein are systems, devices, and methods for robotically assisted implantation of an implant in a patient. More specifically, disclosed are various embodiments of a robotically assisted device for implantation of a perimodiolar electrode array. Examples of the implants may include leads, catheter, guidewire, guide sheath, or other mechanical or electrical devices. The implants may be designed for temporary or permanent implantation. The implants may additionally be used for medical diagnosis of a disease or other conditions such as diagnostic catheters, or for therapeutic purposes of cure, mitigation, treatment, or prevention of disease, such as implantable electrodes for stimulating cardiac, neural, muscular, or other tissues. As noted above, the present inventions are discussed in view of manipulation of a cochlear electrode and associated delivery sheath. The present system may be implemented using a combination of hardware and software designed to provide precise control of implant movement, such as insertion of a cochlear implant during a hearing-preservation cochlear implant surgery or positioning or manipulation of a cochlear implant in a thyroplasty surgery. The system includes an implant-positioning unit a control console communicatively coupled to the implant-positioning unit. The implant-positioning unit includes a drive head configured to engage an elongate member of the implant and robotically deliver and position the implant into a target implantation site. The control console may have a user interface that enables a user to input motion control instructions. The control console may generate a motion control signal, according to a specific motion control instruction, to control the external positioning unit to propel the implant into a target implant site.
The included figures depict various embodiments of a robotically assisted implantation system optimized for use with perimodiolar electrode arrays. The robotically assisted implantation system consists of an enclosure housing, two or more motor assemblies providing torque independent of one another, two or more lead screws rotated by each motor, and two or more carriages actuated linearly by turning of the screws. Another example includes two or more motors coupled to a co-axial drive cable to transmit rotational movement to a drive head with multiple drive wheels. Yet another example, can utilize linear actuators to, directly or in-directly, manipulate the electrode and sheath independently.
The robotically assisted implantation system also utilizes a flexible portion of the outside sheath positioning cable as well as a flexible portion of the inside electrode positioning cable. In an example, the positioning cable is a coaxial cable with the outside sheath positioning cable surrounding the inside electrode positioning cable to deliver either linear actuation to the electrode and/or sheath or torque from the motors to a drive head (see alternative embodiments discussed further below).
The housing includes an exit port for the positioning cables to travel concentrically out of the enclosure, through a flexible gooseneck tubing or adjustable semi-rigid arm, to the electrode/sheath assembly. More generally, the positioning cables or similar structures can extend out of a housing through an adjustable drive transmission conduit between the housing and a drive head. Gooseneck is used within the specification to describe an adjustable drive transmission conduit or similar structure.
The outside sheath positioning cable can include a flexible wound cable with a hollow lumen and rigid end, capable of transmitting rotation, pushing, and pulling through a flexible gooseneck or an adjustable semi-rigid arm. The outside sheath positioning cable can also be attached with a revolute joint on one end to a carriage and on the other end rigidly to the sheath. When linearly actuated by the carriage either forward or backward the outside sheath positioning cable can transmit linear movement advancing or retracting the sheath or other instrumentation independent of the other movement. In some examples, a third motor and gear may rotate the outside sheath positioning cable within the enclosure controlling the orientation of the sheath and therefore the orientation of the pre curved electrode insertion. In certain examples, a third motor and friction wheel assembly can be incorporated to enable rotational control over the electrode during insertion.
The inside electrode positioning cable can include a flexible wound cable with a rigid end, capable of transmitting rotation, pushing, and pulling through a flexible gooseneck or an adjustable semi-rigid arm and outside sheath positioning cable. The inside electrode positioning cable can be attached with a revolute joint on one end to a carriage and on the other end can push an electrode array or other instrumentation. When linearly actuated by the carriage either forward or backwards the inside electrode positioning cable can transmit linear movement advancing or retracting the electrode independent of the sheath movement.
The attachment between the outside sheath positioning cable and the sheath may be a friction-based press fit as depicted or may be an annular snap joint, or a cantilever snap joint, or graspers, or magnetic coupling. Alternatively, the sheath may be integrated into the rigid portion of the outside sheath positioning cable as once continuous piece eliminating the attachment to a 3rd party sheath.
The attachment between the inside electrode positioning cable and the electrode may be a friction-based press fit as depicted or may be an annular snap joint, or a cantilever snap joint, or graspers, or magnetic coupling.
The device is capable of advancing both the electrode and sheath together to or through the round window, into the cochlea, to the first turn. Then only the pre curved electrode is advanced forward out of the sheath around the turns of the cochlea while keeping the sheath stationary. And finally, the sheath is retracted while keeping the electrode stationary until the sheath and electrode disengage and the entire device is removed.
The device is securely mounted in a stage/base that is attached to the patient using bone screws, sutures, adhesives, or straps. In other examples, the stage/based of the system can be mounted or secured to a bed or any rigid structure within the adjacent surgical field. In still other examples, the stage/base is adapted to be handheld. The device (e.g., external positioning device) may be mounted directly to the stage base or to a gooseneck as an adjustable rigid arm that is connected or a part of the stage/base itself. The stage, device, and sheath may have fiduciary markers for 3D (three dimensional) position tracking feedback. The motors may have rotary encoders for position tracking feedback while the carriages may have linear encoders for position tracking feedback.
The motors used within the robotically assisted implantation system can be electro-magnetic motors, piezo-electric motors, or may be replaced with knobs/wheels turned manually by hand. In these examples, each motor may be controlled using one or more foot pedals, console controller, or other controller. Each motor may be integrated into a closed loop positioning feedback system using one or more of rotary encoders, linear encoders, pressure sensors, torque sensors, or physiological feedback. In yet further examples, the motors and additional mechanical mechanisms can be replaced with linear electric motors or linear actuators.
The semi-rigid support arm used within the robotically assisted implantation system can be made of segmented balls and cylinders with a tension cable running down the center lumen. In an example, to move the arm tension is released and when in position, tension is reapplied making the entire arm rigid. Tension control can be controlled through lever actuation, button actuation, wheel actuation, or motor actuation.
The system 100 can include components such as device enclosure 105, stage base 110, and gooseneck 120. The stage base 110 can include mounting screws 112 (mounting screw 112A and mounting screw 112B, collectively referenced as mounting screws 112) to assist in securing the stage base 110 to the patient temporary for the procedure. The gooseneck 120 provides a semi-rigid conduit for transmission of linear actuation from the drive assembly within the device enclosure 105. In certain examples, the gooseneck 120 is adjustable to accommodate different orientations between the device enclosure 105/stage base 110 and the patient. In other words, the gooseneck 120 is an example of an adjustable drive transmission conduit. The stage base 110 can be adapted for fixation via a clamp to a bed (or other equipment within the surgical field), a microscope, surgical instruments such as a retractor, or a bone or other part of the patient. The stage base 110 can also be adapted to be handheld during a procedure. In certain procedures, navigation system can be used to assist in determining and/or maintaining an optimal insertion trajectory of the electrode 130. In this example, the system 100 includes multiple fiducial markers 150 (in the drawings, the references 150 point to example locations for fiducial markers, the fiducial markers are not specifically illustrated) that can be used by a navigation system to coordinate determining and/or maintaining a trajectory for the electrode 130. The fiducial markers 150 could be optical or electromagnetic markers, among other well-known options for surgical navigation.
In another example, a linear motor system can be substituted into system 100 for the motor, gears, lead screw, and carriage. In such an example, the sheath position control cable 214 and the electrode position control cable 228 are each connected to a linear motor, such as a linear electric motor or direct drive linear motor actuator. Linear actuation of the linear electric motor or linear actuator is transmitted to drive head 250 via the position control cables (as discussed herein).
The system 400 can also include other features, such as a rigid actuator 430 and fiducial markers 440. The rigid actuator 430 can be a rigid tube that transmits actuation components, such as those discussed above, to manipulate the electrode 130 and the sheath 140. While the fiducial markers 440 are included to allow for the use of surgical navigation systems in conjunction with this embodiment.
The drive head allows rotation from the inside torque cable to pass through the drive head gear and turn the first drive wheel (associated with the electrode or electrode actuator). The outside torque cable rotation is transferred to the left side of the drive head through two spur gears and rotates the second drive wheel associated with the sheath (or sheath actuator).
The outside sheath actuator can be a rigid half tube down the length of itself with one end a whole tube capable of attaching rigidly to a sheath. The inside electrode actuator sits within the outside sheath actuator and is exposed on one half.
The first drive wheel can turn and frictionally engage the inside electrode actuator advancing or retracting it independently. The second drive wheel can turn and frictionally engage the outside sheath actuator advancing or retracting it independently.
In this example, the attachment between the Outside Sheath Actuator and the Sheath may be a press fit as depicted or may be an annular snap joint or a cantilever snap joint. In another example, not depicted in any figure does not attach to a 3rd party sheath but rather the Outside Sheath Actuator and the Sheath are one continuous piece, eliminating the need for a connection between the two.
In the illustrated example, the device is capable of advancing both the electrode and sheath together through the round window, into the cochlea, to the first turn. Then only the pre curved electrode is advanced forward out of the sheath around the turns of the cochlea while keeping the sheath stationary. And finally, the sheath is retracted while keeping the electrode stationary until the sheath and electrode disengage and the entire device is removed.
In an example, the
A perimodiolar pre-curved electrode array may be placed into the opened sheath. Once the sheath is closed the electrode array may be retracted into the straight sheath. Once retracted the sheath acts as a straight introducer to the round window of the cochlea and the electrode may be pushed through the top of the closed sheath in order to perform the electrode insertion into the cochlea. Once completely inserted the sheath may be opened and removed leaving only the inserted pre curved electrode array in place.
In this example, the rigid opening sheath 1000 illustrated in
The
The system 800 allows for independent manipulation of the electrode 130 and the sheath 140 within the limits of the electrode actuator 810 and the sheath actuator 820. The system 800 maintains small footprint drive head 850 that operates the actuator 805 with only two internal gears (851, 852). The system 800 enables manipulation of the sheath 140 and electrode 130 including the ability to extend the electrode 130 out of the distal end 142 of the sheath 140.
Various embodiments are illustrated in the figures above. One or more features from one or more of these embodiments may be combined to form other embodiments.
The method examples described herein can be machine or computer-implemented at least in part. Some examples may include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device or system to perform methods as described in the above examples. An implementation of such methods may include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code may include computer readable instructions for performing various methods. The code can form portions of computer program products. Further, the code can be tangibly stored on one or more volatile or non-volatile computer-readable media during execution or at other times.
The above detailed description is intended to be illustrative, and not restrictive. The scope of the disclosure should, therefore, be determined with references to the appended claims, along with the full scope of equivalents to which such claims are entitled.
The following are non-limiting examples of the inventive subject matter discussed herein.
Example 1 can include a system for robotically assisted manipulation of an elongate implant. In this example, the system can include a main enclosure coupled to a drive head. The main enclosure can include a first actuator to control linear movement of a sheath and second actuator to control linear movement of the elongate implant. The drive head can include a first drive structure to transmit actuation generated by the first actuator to the sheath and a second drive structure to transmit actuation generated by the second actuator to the elongate implant.
In Example 2, the subject matter of Example 1 can optionally include each of the first actuator and the second actuator having a motor rotationally coupled to a lead screw and a carriage coupled to the lead screw to translate rotation generated by the motor into linear movement.
In Example 3, the subject matter of Example 2 can optionally include each of the first actuator and the second actuator including a control cable coupled to the carriage to transmit linear movement of the carriage to the drive head.
In Example 4, the subject matter of Example 3 can optionally include the first drive structure coupling to the control cable from the first actuator to transmit linear movement to the sheath.
In Example 5, the subject matter of any one of Examples 3 and 4 can optionally include the second drive structure coupling to the control cable from the second actuator to transmit linear movement to the elongate implant.
In Example 6, the subject matter of any one of Examples 1 to 5 can optionally include the first drive structure including a rigid tube coupled to the sheath.
In Example 7, the subject matter of any one of Examples 1 to 6 can optionally include the second drive structure including a rigid tube to interface with the elongate implant.
In Example 8, the subject matter of any one of Examples 1 to 7 can optionally include the first actuator having a motor coupled to a transmission mechanism to transmit rotation to the first drive structure in the drive head.
In Example 9, the subject matter of Example 8 can optionally include the first drive structure being a friction wheel configured to transition the rotation delivered by the transmission mechanism into linear movement of the sheath.
In Example 10, the subject matter of Example 9 can optionally include the transmission mechanism including a set of gears and a torque cable.
In Example 11, the subject matter of Example 10 can optionally include the torque cable extending through a flexible gooseneck structure to the drive head.
In Example 12, the subject matter of any one of Examples 1 to 11 can optionally include the second actuator including a second motor coupled to a second transmission mechanism to transmit rotation to the second drive structure in the drive head.
In Example 13, the subject matter of Example 12 can optionally include the second drive structure being a friction wheel configured to transition the rotation delivered by the second transmission mechanism into linear movement of the elongate implant.
In Example 14, the subject matter of Example 13 can optionally include the second transmission mechanism including a central drive cable within a coaxial drive cable.
In Example 15, the subject matter of Example 14 can optionally include the coaxial drive cable including an outer drive cable coupled to the first actuator.
In Example 16, the subject matter of any one of Examples 1 to 15 can optionally include the first drive structure including a drive wheel to transmit rotation to a sheath actuator.
In Example 17, the subject matter of Example 16 can optionally include the sheath actuator including a cylindrical tube with a proximal half cylinder section and a distal end couplable to the sheath.
In Example 18, the subject matter of any one of Examples 1 to 17 can optionally include the second drive structure including a drive wheel to transmit rotation to an elongate implant actuator.
In Example 19, the subject matter of Example 18 can optionally include the elongate implant actuator being a cylindrical structure that extends through an open side wall of a cylindrical sheath actuator.
In Example 20, the subject matter of any one of Examples 1 to 19 can optionally include each of the first actuator and the second actuator including a linear electric motor or a linear actuator to generate the linear movement.
In Example 21, the subject matter of any one of Examples 1 to 20 can optionally include a gooseneck extending out of the enclosure to transmit actuation generated by the first actuator and the second actuator to the sheath and the elongate implant via the drive head.
Example 22 is a system including a first motor, a second motor, a first transmission mechanism, a second transmission mechanism, a first actuation mechanism, and a second actuator mechanism. The first transmission mechanism is coupled to the first motor, and the second transmission mechanism is coupled to the second motor. The first actuation mechanism is coupled to the first transmission mechanism to transmit movement generated by the first motor to a sheath actuator. The second actuation mechanism is coupled to the second transmission mechanism to transmit movement generated by the second motor to an electrode actuator.
In Example 23, the subject matter of Example 22 can optionally include the first actuation mechanism having a first drive wheel driven by one or more gears, the one or more gears driven by a torque cable coupled to the first motor.
In Example 24, the subject matter of Example 23 can optionally include the drive wheel including a pinion gear configured to engage a sheath rack portion of the sheath actuator.
In Example 25, the subject matter of any one of Examples 22 to 24 can optionally include the second actuation mechanism includes a second drive wheel driven by a torque cable coupled to the second motor.
In Example 26, the subject matter of Example 25 can optionally include the second drive wheel including a pinion gear configured to engage an electrode rack portion of the electrode actuator.
In Example 27, the subject matter of any one of Examples 22 to 26 can optionally include the first actuation mechanism having a sheath gear including gear teeth adapted to engage a gear section of the sheath actuator.
In Example 28, the subject matter of any one of Examples 22 to 27 can optionally include the second actuation mechanism including an electrode gear including gear teeth adapted to engage a gear section of the electrode actuator.
In Example 29, the subject matter of any one of Examples 22 to 28 can optionally include the electrode actuator including a dovetail groove extending from a proximal end to a distal position adjacent a distal end of the electrode actuator.
In Example 30, the subject matter of Example 29 can optionally include the sheath actuator including a lateral extension arm including a dovetail shaped lateral end, the dovetailed shaped lateral end received within the dovetail groove.
In Example 31, the subject matter of Example 30 can optionally include the dovetail groove and the dovetailed shaped lateral end operable to enable restrained relative linear movement between the electrode actuator and the sheath actuator while maintaining parallel orientation between the electrode actuator and the sheath actuator.
In Example 32, the subject matter of any one of Examples 22 to 31 can optionally include the sheath actuator including an offset distal section extending into a distal end including a forceps flange slot adapted to receive a portion of the sheath.
In Example 33, the subject matter of any one of Examples 22 to 32 can optionally include the electrode actuator including distal fingers to engage an electrode.
In Example 34, the subject matter of Example 33 can optionally include the sheath actuator extending from a split shaft portion of the electrode actuator and includes a forceps flange slot on a distal end.
This patent application is a continuation in part of U.S. patent application Ser. No. 17/180,087, filed Feb. 19, 2021, which application is a continuation of U.S. patent application Ser. No. 16/926,335, filed Jul. 10, 2020, which application is a continuation in part of PCT Application No. PCT/US2019/020130, filed Feb. 28, 2019, which application claims the benefit of priority to U.S. Provisional Patent Application No. 62/640,964, filed Mar. 9, 2018. U.S. patent application Ser. No. 16/926,335 is also a continuation in part of U.S. patent application Ser. No. 16/486,030, filed Aug. 14, 2019, which application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Application No. PCT/US2018/018182, filed on Feb. 14, 2018, which application claims the benefit of priority to U.S. Provisional Patent Application No. 62/458,846, filed Feb. 14, 2017, and U.S. Provisional Patent Application No. 62/573,487, filed Oct. 17, 2017. U.S. patent application Ser. No. 16/926,335 also claims the benefit of priority to U.S. Provisional Patent Application No. 62/872,625, filed Jul. 10, 2019. This patent application also claims the benefit of priority to U.S. Provisional Patent Application No. 63/353,364, filed Jun. 17, 2022. Each of which are incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
63353364 | Jun 2022 | US | |
62872625 | Jul 2019 | US | |
62640964 | Mar 2018 | US | |
62573487 | Oct 2017 | US | |
62458846 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16926335 | Jul 2020 | US |
Child | 17180087 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17180087 | Feb 2021 | US |
Child | 18336448 | US | |
Parent | PCT/US2019/020130 | Feb 2019 | US |
Child | 16926335 | US | |
Parent | 16486030 | Aug 2019 | US |
Child | 16926335 | US |