Some embodiments of the present invention relate to database tables and work areas. In particular, some embodiments may comprise systems and methods associated with mapping large object data content in a database table to a work area.
A database table may be arranged such that it includes multiple columns that store different types of content. Requests to the database table may then be received to read information from and/or write information into those columns. For example, different columns might store text information, numerical values, and/or other types of data. In some cases, portions of a database table will store “Large Object” (LOB) data content, such as in unlimited character string content (CLOB) and/or unlimited binary string content (BLOB) columns.
To efficiently access such LOB content, requests associated with “locators” and/or “streaming” may be provided in connection with a database server. A locator may be associated with a pointer to table column content and can accelerate access operations. However, these types of locators may require a considerable consumption of resources by the database server. In addition, streaming (e.g., as provided in JAVA documentation) may let data be accessed (including reading and writing) in a piecewise and/or sequential fashion.
An Open Structured Query Language (OpenSQL) environment may be associated with a set of Advanced Business Application Programming (ABAP) statements that perform operations on a central database, and the results of the operations (and any error messages) may be independent of the particular database system being used. In this way, OpenSQL may provide a uniform syntax and semantics that can be used in connection with multiple database implementations and/or vendors. Note, however, that OpenSQL does not provide a common syntax definition for locators and/or streaming requests.
Approaches that may improve access to LOB content in database tables could, therefore, be desirable. Moreover, it may advantageous to provide such access in an efficient and convenient manner—even when a number of different database server implementations can be associated with a system.
A database table may include multiple columns that store different types of information, including LOB data content (e.g., CLOB or BLOB data content). Requests to the database table may then be received to read information from and/or write information into those columns. To efficiently access LOB data content, requests associated with “locators” and/or “streaming” may be provided. For example, a locator may be associated with a pointer to table column content to accelerate access operations.
An Open Structured Query Language (OpenSQL) environment may be associated with a set of Advanced Business Application Programming (ABAP) statements that perform operations on a central database, and the results of the operations (and any error messages) may be independent of the particular database system being used. In this way, OpenSQL may provide a uniform syntax and semantics that can be used in connection with multiple database implementations and/or vendors. For example,
Also note that OpenSQL uses the concept of “work areas,” which may include a list of host variables and can be the target for a SELECT statement or the source for an INSERT, UPDATE or MODIFY statement. Such a work area may include “components” that are each associated with a component type. For example, the illustration 200 of
In some cases, the work area 220 might be defined manually by an operator. In other cases, the work area 220 may be typed based on types associated with columns 212 in the database table 210. A drawback of the first approach is that the type may need to be manually adapted to account for changes to the database table's existing columns 212 (or to an extension of the database table 210 when new columns 212 are added). That is, any assignment of a work area type to a particular component may need to be aware of changes or extensions of the database table 210 to adapt the type of the work area 220 as appropriate. Moreover, if a new LOB column 212 is added to a database table 210, it may be helpful to define in advance the usage of the new column 212 as a normal column (with a locator or with a stream).
Note that the typing of components in the work area 220 may be “generic” in the sense that a component might be prepared to take a stream or a locator, but at the same time it may be unknown in a static sense (e.g., at runtime a decision might need to be made as to whether the component should take a locator or a stream).
To alleviate problems inherent in the prior art, some embodiments of the present invention introduce systems, methods, computer program code, and means associated with mapping large object data content in a database table to a work area. Referring again to
Note that some or all of the devices illustrated in
The method of
At 302, a mapping associated with a database table may be defined. Consider, for example, the database table 210 of
At 304, it may be determined that a particular column 212 in the database table 210 is to store large object data content. For example, it might be determined that the column 212 illustrated with cross-hatching in
In response to the determination at 304, a new mapping to the work area 220 may be automatically defined at 306 such that the particular column 212 will map to a corresponding component having a component type other than the default component type. That is, the default component type might not be appropriate because that particular column has been identified as including LOB data content (and a special case mapping may be defined instead to provide locator and/or stream access).
As a result of the new mapping performed at 306, the programming language might be used to access a sub-portion of the large object data content. Consider
At 504, it is determined that a first column in the database table stores large object data content. In response to this determination, a new mapping to the work area is automatically defined at 506 such that the first column maps to a corresponding first component having a component type other than the default component type.
At 508, a change to a structure of the database table is determined. For example, a new column might have been added to the table (causing other columns in the table to be shifted to the right). Responsive to the change to the structure of the database table, an “automatic” adjustment of the mapping of the database table to the work area is performed at 510 such that the first column is still mapped to a component having a component type other than the default component type. As used herein, a mapping or a mapping adjustment may be “automatic” if it requires little or no manual intervention by an operator.
As there may be no common interface defined in OpenSQL to use locators or streams, according to some embodiments provided herein realize locators and streams in ABAP as classes. By way of example only, the classes might comprise:
(where “C” may represent character data and “X” may represent binary data). Given a work area compatible to a database table with CLOB or BLOB columns, a new work area may be defined that has reference variables of the appropriate locator or stream class, and as a result, a SELECT or an INSERT, UPDATE or MODIFY statement with locator or streams may be possible.
Consider, for example, a table “dbtab” with a key column KEY1 and a CLOB column CLOB1. Moreover, a work area “wa” is defined with a component KEY1 with type of the key column of dbtab. The second component CLOB1 has the type REF TO CL_ABAP_DB_C_LOCATOR. In this case, the statements:
will retrieve for every line in dbtab a locator object in wa-clob1 (and, similarly, you may retrieve a stream reader). That is, the statements define a loop to get every row of a database table in a work area (and inside that loop, additional statements would be provided to access portions of LOB data content). For modification operations such as INSERT, UPDATE or MODIFY, the modification statement may create a stream writer, if wa-clob1 has type REF TO CL_ABAP_DB_C_WRITER.
One aspect of some embodiments provided herein is how to define such work areas to get locator objects or stream objects. Although this might be done manually (or “by hand”), such an approach will not automatically adjust the mapping when changes are made to the database. According to some embodiments, an extension is provided to define a new type depending on the database table type that will be updated if the database table type is changed.
Note that as a result of the new mapping performed at 510, the programming language may be used to read a sub-portion of the LOB data content via the work area with a SELECT statement. For example, reading via the work area as a target might be associated with an interface IF_ABAP_DB_LOB_HANDLE implemented with at least one of: (i) CL_ABAP_DB_C_LOCATOR and CL_ABAP_DB_X_LOCATOR for a locator, or (ii) CL_ABAP_DB_C_READER, CL_ABAP_DB_X_READER for a stream reader.
Similarly, as a result of the new mapping performed at 510, the programming language might be used to write to a sub-portion of the LOB data content via the work area with at least one of an INSERT statement, an UPDATE statement, or a MODIFY statement. For example, writing via the work area as a source might be associated with at least one of: (i) CL_ABAP_DB_C_LOCATOR and CL_ABAP_DB_X_LOCATOR for a locator, or (ii) CL_ABAP_DB_C_WRITER, CL_ABAP_DB_X_WRITER for a stream writer.
According to some embodiments, a new type may be defined for work areas in accordance with one or more rules. For example, consider an interface IF_ABAP_DB_LOB_HANDLE that is implemented by CL_ABAP_DB_C_LOCATOR, CL_ABAP_DB_X_LOCATOR, CL_ABAP_DB_C_READER and CL_ABAP_DB_X_READER. In this case, the definition of the access will be done during runtime.
Note that there are two kinds of work areas that may need to be distinguished: (1) work areas for SELECTs and (2) work areas for INSERT, UPDATE and MODIFY. For SELECT work areas, each of LOCATOR, READER and LOB HANDLE may be allowed as types. For INSERT, UPDATE and MODIFY work areas, each of LOCATOR and WRITER may be allowed.
In some cases, an explicit enumeration of the corresponding LOB columns may be provided. By way of example, an enumeration might be provided as follows: TYPES wa TYPE db_tab LOCATOR FOR COLUMNS clob1. According to some embodiments, a global definition for all columns, for all CLOB columns, and/or for all BLOB columns may be provided, such as by: TYPES wa TYPE db_tab READER FOR ALL COLUMNS. According to still other embodiments, a global definition may be provided for all “other columns,” for all other CLOB columns, and/or all other BLOB columns, such as by: TYPES wa TYPE db_tab WRITER FOR COLUMNS blob1 LOCATOR FOR ALL OTHER BLOB COLUMNS.
Note that various embodiments described herein might be mixed, although the sets of columns defined by one may need to have an empty intersection and an explicit enumeration of LOB columns might be supported only at the end of the definition. By way of example, the following might define a type for work areas: TYPES wa TYPE db_tab LOB HANDLE FOR ALL BLOB COLUMNS LOCATOR FOR COLUMNS clob1 READER FOR ALL OTHER CLOB COLUMNS.
Further note that that in some embodiments, all sets that can be a union should be defined and/or described as a union. For example, the possible situation: READER FOR COLUMNS clob1 READER FOR ALL OTHER CLOB COLUMNS may preferably be: TYPES wa TYPE db_tab LOB HANDLE FOR ALL BLOB COLUMNS READER FOR ALL CLOB COLUMNS.
According to some embodiments, if the database table is extended (e.g., by adding new columns), then the extension FOR ALL [OTHER] [CLOBILOB] columns may guarantee the typing of new LOB columns for locator access, stream access, and/or a generic typing via LOB HANDLE.
In some cases, a work area for a SELECT will be “generic” in the sense that there exists a generic reference of type REF TO IF_ABAP_DB_LOB_HANDLE for a LOB column, then the locator or stream may need to be created during the SELECT with additional information. According to some embodiments, this additional information may be given via a CREATING extension. Some rules for a CREATING extension might include:
1. Only LOCATOR and READER might be allowed as types.
2. An explicit enumeration of the corresponding LOB columns may be provided, such as by the following statements:
3. A global definition for all columns, for all CLOB columns, and/or for all BLOB columns might be provided, such as by: TYPES wa TYPE db_tab LOB HANDLE FOR COLUMNS.
Note that some embodiments may provide a common interface for streams and locators. Moreover, at the interplay between streaming and locator classes, note that streaming classes might be divided into two types: reader and writer classes.
The processor 710 is also in communication with an input device 740. The input device 740 may comprise, for example, a keyboard, a mouse, or computer media reader. Such an input device 740 may be used, for example, provide mapping rules or other information associated with a database table or work area. The processor 710 is also in communication with an output device 750. The output device 750 may comprise, for example, a display screen or printer. Such an output device 750 may be used, for example, to provide reports and/or display information associated with database tables, mapping, and/or work areas.
The processor 710 is also in communication with a storage device 730. The storage device 730 may comprise any appropriate information storage device, including combinations of magnetic storage devices (e.g., hard disk drives), optical storage devices, and/or semiconductor memory devices such as Random Access Memory (RAM) devices and Read Only Memory (ROM) devices.
The storage device 730 stores a program 715 for controlling the processor 710. The processor 710 performs instructions of the program 715, and thereby operates in accordance any embodiments of the present invention described herein. For example, the processor 710 may map a database table, having columns to store content, each column being associated with a column type, to a work area such that, at a database server, each column in the database table is mapped to a corresponding component of the work area, the corresponding component having a default component type based on the column type of the associated column in the database table. Moreover, the processor 710 may determine that a particular column in the database table is to store large object data content. In response to the determination, the processor may automatically define a new mapping to a work area such that the particular column maps to a corresponding component having a component type other than the default component type.
As used herein, information may be “received” by or “transmitted” to, for example: (i) the apparatus 700 from other devices; or (ii) a software application or module within the apparatus 700 from another software application, module, or any other source. As shown in
The illustration and accompanying descriptions of devices and databases presented herein are exemplary, and any number of other arrangements could be employed besides those suggested by the figures. For example, multiple database tables and/or work areas associated with different types of business information or financial data might be associated with the apparatus 700.
Thus, embodiments may facilitate improved access to LOB content in database tables. Moreover, such access may be simplified and provided in an efficient and convenient manner—even when a number of different database server implementations are associated with a system.
The several embodiments described herein are solely for the purpose of illustration. Persons skilled in the art will recognize from this description other embodiments may be practiced with modifications and alterations limited only by the claims.
The present application is a continuation of U.S. patent application Ser. No. 12/331,799 entitled “SYSTEMS AND METHODS FOR MAPPING LARGE OBJECT DATA CONTENT IN A DATABASE TABLE TO A WORK AREA” and filed Dec. 10, 2008. The entire content of that application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4833597 | Wakayama et al. | May 1989 | A |
4888698 | Driessen et al. | Dec 1989 | A |
4967341 | Yamamoto et al. | Oct 1990 | A |
5027350 | Marshall | Jun 1991 | A |
5257185 | Farley et al. | Oct 1993 | A |
5307266 | Hayashi et al. | Apr 1994 | A |
5363507 | Nakayama et al. | Nov 1994 | A |
5369573 | Holloran et al. | Nov 1994 | A |
5390335 | Stephan et al. | Feb 1995 | A |
5426781 | Kaplan et al. | Jun 1995 | A |
5432931 | Woess et al. | Jul 1995 | A |
5459866 | Akiba et al. | Oct 1995 | A |
5513356 | Takahashi et al. | Apr 1996 | A |
5515513 | Metzger et al. | May 1996 | A |
5519858 | Walton et al. | May 1996 | A |
5524254 | Morgan et al. | Jun 1996 | A |
5539903 | Kaplan et al. | Jul 1996 | A |
5551027 | Choy et al. | Aug 1996 | A |
5630122 | Kaplan et al. | May 1997 | A |
5655080 | Dias et al. | Aug 1997 | A |
5764978 | Masumoto | Jun 1998 | A |
5920900 | Poole et al. | Jul 1999 | A |
5960194 | Choy et al. | Sep 1999 | A |
6012087 | Freivald et al. | Jan 2000 | A |
6247018 | Rheaume | Jun 2001 | B1 |
6708189 | Fitzsimons et al. | Mar 2004 | B1 |
6763352 | Cochrane et al. | Jul 2004 | B2 |
6826563 | Chong et al. | Nov 2004 | B1 |
6920443 | Cesare et al. | Jul 2005 | B1 |
6938043 | Nakano et al. | Aug 2005 | B2 |
7047253 | Murthy et al. | May 2006 | B1 |
7092955 | Mah et al. | Aug 2006 | B2 |
7136866 | Springer et al. | Nov 2006 | B2 |
7218318 | Shimazu | May 2007 | B2 |
7246115 | Zhang et al. | Jul 2007 | B2 |
7260585 | Krishnaprasad et al. | Aug 2007 | B2 |
7305414 | Manikutty et al. | Dec 2007 | B2 |
7308455 | Nguyen et al. | Dec 2007 | B2 |
7328212 | Voss et al. | Feb 2008 | B2 |
7333103 | Shimazu | Feb 2008 | B2 |
7395258 | Altinel et al. | Jul 2008 | B2 |
7562067 | Chaudhuri et al. | Jul 2009 | B2 |
7702694 | Perkins et al. | Apr 2010 | B1 |
7716255 | Stuhec | May 2010 | B2 |
7730056 | Kaiser et al. | Jun 2010 | B2 |
7774319 | Schweigkoffer et al. | Aug 2010 | B2 |
7774744 | Moore et al. | Aug 2010 | B2 |
7831634 | Petev et al. | Nov 2010 | B2 |
7865519 | Stuhec | Jan 2011 | B2 |
7930318 | Becker | Apr 2011 | B2 |
7953767 | Shaburov | May 2011 | B2 |
7970729 | Cozzi | Jun 2011 | B2 |
8135716 | Stork et al. | Mar 2012 | B2 |
20050055358 | Krishnaprasad et al. | Mar 2005 | A1 |
20050055605 | Blumenthal et al. | Mar 2005 | A1 |
20060026154 | Altinel et al. | Feb 2006 | A1 |
20060036574 | Schweigkoffer et al. | Feb 2006 | A1 |
20060143223 | Ivanova | Jun 2006 | A1 |
20060282436 | Chaudhuri et al. | Dec 2006 | A1 |
20070033196 | Moore | Feb 2007 | A1 |
20070233648 | Zuzarte | Oct 2007 | A1 |
20080208855 | Lingenfelder et al. | Aug 2008 | A1 |
20100145942 | Stork et al. | Jun 2010 | A1 |
20110023017 | Calvin | Jan 2011 | A1 |
20110029879 | Calvin | Feb 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120096050 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12331799 | Dec 2008 | US |
Child | 13295314 | US |