The invention relates to systems and methods for melting scrap metal. More particularly, the invention relates to systems and methods for melting scrap metal using a vessel comprising a directional flow member.
As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc, and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which may be released into molten metal.
A reverbatory furnace is used to melt metal and retain the molten metal while the metal is in a molten state. The molten metal in the furnace is sometimes called the molten metal bath. Reverbatory furnaces usually include a chamber for retaining a molten metal pump and that chamber is sometimes referred to as the pump well.
Known pumps for pumping molten metal (also called “molten-metal pumps”) include a pump base (also called a “base”, “housing” or “casing”) and a pump chamber (or “chamber” or “molten metal pump chamber”), which is an open area formed within the pump base. Such pumps also include one or more inlets in the pump base, an inlet being an opening to allow molten metal to enter the pump chamber.
A discharge is formed in the pump base and is a channel or conduit that communicates with the molten metal pump chamber, and leads from the pump chamber to the molten metal bath. A tangential discharge is a discharge formed at a tangent to the pump chamber. The discharge may also be axial, in which case the pump is called an axial pump. In an axial pump the pump chamber and discharge may be the essentially the same structure (or different areas of the same structure) since the molten metal entering the chamber is expelled directly through (usually directly above or below) the chamber.
A rotor, also called an impeller, is mounted in the pump chamber and is connected to a drive shaft. The drive shaft is typically a motor shaft coupled to a rotor shaft, wherein the motor shaft has two ends, one end being connected to a motor and the other end being coupled to the rotor shaft. The rotor shaft also has two ends, wherein one end is coupled to the motor shaft and the other end is connected to the rotor. Often, the rotor shaft is comprised of graphite, the motor shaft is comprised of steel, and the two are coupled by a coupling, which is usually comprised of steel.
As the motor turns the drive shaft, the drive shaft turns the rotor and the rotor pushes molten metal in a desired direction. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the rotor pushes molten metal out of the pump chamber.
Molten metal pump casings and rotors usually, but not necessarily, employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber such as rings at the inlet (which is usually the opening in the housing at the top of the pump chamber and/or bottom of the pump chamber) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump chamber wall, during pump operation. A known bearing system is described in U.S. Pat. No. 5,203,681 to Cooper, the disclosure of which is incorporated herein by reference. U.S. Pat. Nos. 5,951,243 and 6,093,000, each to Cooper, the disclosures of which are incorporated herein by reference, disclose, respectively, bearings that may be used with molten metal pumps and rigid coupling designs and a monolithic rotor. U.S. Pat. No. 2,948,524 to Sweeney et al., U.S. Pat. No. 4,169,584 to Mangalick, and U.S. Pat. No. 6,123,523 to Cooper (the disclosure of the afore-mentioned patent to Cooper is incorporated herein by reference) also disclose molten metal pump designs. U.S. Pat. No. 6,303,074 to Cooper discloses dual-flow rotors and is incorporated herein by reference.
Furthermore, U.S. Pat. No. 7,402,276 to Cooper entitled “Pump With Rotating Inlet” (also incorporated by reference) discloses, among other things, a pump having an inlet and rotor structure (or other displacement structure) that rotate together as the pump operates in order to alleviate jamming.
The materials forming the molten metal pump components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.
Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Generally circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Most often, circulation pumps are used in a reverbatory furnace having an external well. The well is usually an extension of a charging well where scrap metal is charged (i.e., added).
Transfer pumps are generally used to transfer molten metal from a vessel, such as the external well of a reverbatory furnace, to a different location such as a launder, ladle, or another furnace. Examples of transfer pumps are disclosed in U.S. Pat. No. 6,345,964 B1 to Cooper, the disclosure of which is incorporated herein by reference, and U.S. Pat. No. 5,203,681.
Gas-release pumps, such as gas-injection pumps, circulate molten metal while releasing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium, from the molten metal. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging”. Gas-release pumps may be used for either of these purposes or for any other application for which it is desirable to introduce gas into molten metal. Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second submerged in the molten metal bath. Gas is introduced into the first end of the gas-transfer conduit and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where it enters the pump chamber. A system for releasing gas into a pump chamber is disclosed in U.S. Pat. No. 6,123,523 to Cooper. Furthermore, gas may be released into a stream of molten metal passing through a discharge or metal-transfer conduit wherein the position of a gas-release opening in the metal-transfer conduit enables pressure from the molten metal stream to assist in drawing gas into the molten metal stream. Such a structure and method is disclosed in U.S. application Ser. No. 12/120,190 entitled “System for Releasing Gas into Molten Metal”, invented by Paul V. Cooper, and filed on Feb. 4, 2004, the disclosure of which is incorporated herein by reference.
Referring now to
Conventional scrap melting systems involve moving parts, so breakage and maintenance can be a problem. Also, when excess air is pulled from the surface as with a vortex of molten metal, dross (in the form of metal oxides) is formed. Dross can plug ports, cause breakage of pump parts and is difficult to remove. The present invention addresses these and other issues.
Embodiments of the present invention draw scrap metal down into a molten metal bath and assist in the melting of scrap metal without the use of a conventional scrap melter.
In accordance with the invention, a scrap submergence vessel (or “vessel”) for drawing scrap metal downward into a molten metal bath is disclosed. The vessel includes a front wall having an inlet, a back wall (opposite the front wall) having an outlet, and a flow direction member that causes molten metal flowing into the inlet to be directed at least partially upward against an upper portion of the back wall and towards the surface of the molten metal bath. The back wall directs the molten metal back towards the front wall, which directs it towards the outlet. A molten metal pump would typically be used to push or direct a stream of molten metal into the vessel.
This movement of molten metal through the scrap submergence vessel creates a downward draw and pulls metal scrap placed on the surface of the molten metal bath within the top of the vessel downward beneath the surface to melt it. The present invention has no moving parts and is unlikely to generate a vortex.
Both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate at least one embodiment of the invention and together with the description, serve to explain the principles of the invention.
Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
Referring now to the drawings where the purpose is to describe a preferred embodiment of the invention and not limit same, a vessel 200 is shown that alters a flow of molten metal, which is typically generated from a molten metal pump, in order to create a downward draw to submerge scrap metal.
The walls (210, 220, 230, and 240) of the vessel 200 may interface with each other in any suitable manner to create a sufficient downward draw. In the exemplary embodiment depicted in
Additionally, the walls (210, 220, 230, and 240) of the vessel 200 may be configured and oriented in any suitable manner. In the exemplary embodiment depicted in
The components of the present invention that are exposed to molten metal, including the walls (210, 220, 230, and 240) of vessel 200, are preferably formed of structural refractory materials, which are resistant to degradation in molten metal, such as graphite or ceramic. The components of the vessel 200 may include any desired combinations of different materials, and may be any size, shape, and configuration.
The vessel 200 includes an open top to allow scrap metal to be placed into the vessel 200 to be melted. In one embodiment of the present invention, the vessel 200 may include a top covering or lid (not shown). A lid operating in conjunction with the present invention may cover a portion of the vessel 200 or it can cover the entire vessel 200, as well as any structures or devices surrounding and/or attached to the vessel 200. The lid can be made from structural refractory materials and/or the same materials as the vessel 200. The lid may be permanently affixed to a portion of the vessel 200 (e.g., and opened and closed via hinges) or it may be removably coupled to the vessel 200 in any suitable manner. Among other things, the lid can allow the vessel 200 to be purged with gas for various reasons.
The inlet 250 may include any suitable structure (such as an opening or channel) that allows molten metal to be pumped into the vessel 200. The inlet 250 can be any suitable size, shape, and configuration to allow molten metal to enter the vessel 200. In the present exemplary embodiment, the inlet 250 is ovoid and has a width of about 8 inches and a height of about 6 inches. Preferably, the inlet 250 is offset from (i.e., not directly in-line with) the outlet 260. This allows the flow direction member 270 to direct the flow of the molten metal, and helps prevent molten metal from flowing directly from the inlet 250 to the outlet 260 without circulating within the vessel 200 and creating a downward draw to submerge scrap. The inlet 250 and outlet 260 can be offset from each other in any desired manner. In the present exemplary embodiment, the inlet 250 is located closer to the left sidewall 230 than the right sidewall 240, whereas the outlet 260 is located closer to the right sidewall 240 than the left sidewall 230. The inlet 250 in the present exemplary embodiment is sized and configured to interface with the metal discharge of a molten metal circulation pump, such as pump 415 depicted in
The outlet 260 allows molten metal to exit the vessel 200. The outlet 260 may be any suitable size, shape and configuration. In the present embodiment, for example, outlet 260 comprises a channel approximately 10 inches wide and running substantially the height of the back wall 220. As best seen in
The vessel 200 includes a flow direction member 270 for directing the flow of molten metal received through the inlet 250. As best seen in
The movement of molten metal through the vessel 200 described herein induces a downward draw that pulls metal scrap placed at the top surface within or above the vessel 200 beneath the surface of the molten metal.
In the exemplary vessels 200 and 300, depicted in
The flow direction member 270 may include, or operate in conjunction with, any desired structures (such as partition 280 discussed below) to direct the flow of molten metal 200 through the vessel. Portions of the flow direction member 270 may be concave, convex, angular, or have any other desired shape and configuration. The flow direction member 270 may include any number and type of structure(s), such as a groove, a notch, a channel, an opening, a trough, a wedge, a conduit, a chute, a platform, and/or a wall. Portions of the flow direction member 270 may include, extend from, or extend into, any desired portion of the vessel 200, such as one or more of the walls 210, 220, 230, 240.
Unlike many conventional systems, the present invention is unlikely to generate splashing or a swirling vortex of molten metal which can create dross as well as unwanted air pockets in metal ingots and finished parts. Furthermore, the present invention does not require the use of a scrap melter (such as scrap melter 92 shown in
As best seen in
In another exemplary embodiment, referring now to
An exemplary system employing an exemplary scrap submergence vessel 200 is depicted in
The preferred circulation pump 415 is configured to pump molten metal through the inlet 250 and into the vessel 200. The present invention may operate in conjunction with any device for pumping or otherwise conveying molten metal, such as one of the pumps disclosed in U.S. Pat. No. 5,203,681 to Cooper, which is incorporated by reference herein. The preferred circulation pump 415 includes a tangential discharge 417, which is coupled to the inlet 250. The discharge 417 in the exemplary system of
The outlet 260 of the vessel 200 opens into a skim well 430. The skim well 430 is in fluid communication with the molten metal bath 405 via an archway 432. Molten metal flows from the vessel 200 and into the skim well 430 through the outlet channel 260. Dross and oxide can be skimmed from the molten metal in the skim well 430. The molten metal flows to the molten metal bath 300 from the skim well 430 through archway 432.
Scrap metal can be delivered into the skim well 25 and/or charge well 20 through an open top in either compartment. In the present exemplary embodiment, the skim well 430 is substantially rectangular, though the skim well 430 can be any desired size, shape, and configuration. For example, the skim well 430 may be square, round, or any other geometric shape. In addition, rather than having an opening at the top of the vessel 200 or skim well 430 for receiving scrap metal, either the vessel 200 or skim well 430 could have a lid (as described above) and/or an opening on a sidewall of the vessel 200 or skim well 430 for introducing scrap metal.
The particular implementations shown and described above are illustrative of preferred embodiments of the invention and are not intended to limit the scope of the present invention in any way.
Having thus described different embodiments of the invention, other variations, and embodiments that do not depart from the spirit thereof will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product or result.
This application claims priority to and incorporates by reference the disclosures of: U.S. Provisional Application No. 61/232,392 filed Aug. 7, 2009.
Number | Name | Date | Kind |
---|---|---|---|
35604 | Guild | Jun 1862 | A |
116797 | Barnhart | Jul 1871 | A |
209219 | Bookwalter | Oct 1878 | A |
251104 | Finch | Dec 1881 | A |
364804 | Cole | Jun 1887 | A |
390319 | Thomson | Oct 1888 | A |
495760 | Seitz | Apr 1893 | A |
506572 | Wagener | Oct 1893 | A |
585188 | Davis | Jun 1897 | A |
757932 | Jones | Apr 1904 | A |
882477 | Neumann | Mar 1908 | A |
882478 | Neumann | Mar 1908 | A |
890319 | Wells | Jun 1908 | A |
898499 | O'Donnell | Sep 1908 | A |
909774 | Flora | Jan 1909 | A |
919194 | Livingston | Apr 1909 | A |
1037659 | Rembert | Sep 1912 | A |
1100475 | Franckaerts | Jun 1914 | A |
1196758 | Blair | Sep 1916 | A |
1331997 | Neal | Feb 1920 | A |
1377101 | Sparling | May 1921 | A |
1380798 | Hansen et al. | Jun 1921 | A |
1439365 | Hazell | Dec 1922 | A |
1454967 | Gill | May 1923 | A |
1470607 | Hazell | Oct 1923 | A |
1513875 | Wilke | Nov 1924 | A |
1518501 | Gill | Dec 1924 | A |
1522765 | Wilke | Jan 1925 | A |
1526851 | Hall | Feb 1925 | A |
1669668 | Marshall | May 1928 | A |
1673594 | Schmidt | Jun 1928 | A |
1697202 | Nagle | Jan 1929 | A |
1717969 | Goodner | Jun 1929 | A |
1718396 | Wheeler | Jun 1929 | A |
1896201 | Sterner-Rainer | Feb 1933 | A |
1988875 | Saborio | Jan 1935 | A |
2013455 | Baxter | Sep 1935 | A |
2038221 | Kagi | Apr 1936 | A |
2090162 | Tighe | Aug 1937 | A |
2091677 | Fredericks | Aug 1937 | A |
2138814 | Bressler | Dec 1938 | A |
2173377 | Schultz, Jr. et al. | Sep 1939 | A |
2264740 | Brown | Dec 1941 | A |
2280979 | Rocke | Apr 1942 | A |
2290961 | Heuer | Jul 1942 | A |
2300688 | Nagle | Nov 1942 | A |
2304849 | Ruthman | Dec 1942 | A |
2368962 | Blom | Feb 1945 | A |
2383424 | Stepanoff | Aug 1945 | A |
2423655 | Mars et al. | Jul 1947 | A |
2488447 | Tangen et al. | Nov 1949 | A |
2493467 | Sunnen | Jan 1950 | A |
2515097 | Schryber | Jul 1950 | A |
2515478 | Tooley et al. | Jul 1950 | A |
2528208 | Bonsack et al. | Oct 1950 | A |
2528210 | Stewart | Oct 1950 | A |
2543633 | Lamphere | Feb 1951 | A |
2566892 | Jacobs | Sep 1951 | A |
2625720 | Ross | Jan 1953 | A |
2626086 | Forrest | Jan 1953 | A |
2676279 | Wilson | Apr 1954 | A |
2677609 | Moore et al. | May 1954 | A |
2698583 | House et al. | Jan 1955 | A |
2714354 | Farrand | Aug 1955 | A |
2762095 | Pemetzrieder | Sep 1956 | A |
2768587 | Corneil | Oct 1956 | A |
2775348 | Williams | Dec 1956 | A |
2779574 | Schneider | Jan 1957 | A |
2787873 | Hadley | Apr 1957 | A |
2808782 | Thompson et al. | Oct 1957 | A |
2809107 | Russell | Oct 1957 | A |
2821472 | Peterson et al. | Jan 1958 | A |
2824520 | Bartels | Feb 1958 | A |
2832292 | Edwards | Apr 1958 | A |
2853019 | Thorton | Sep 1958 | A |
2865618 | Abell | Dec 1958 | A |
2901677 | Chessman et al. | Aug 1959 | A |
2906632 | Nickerson | Sep 1959 | A |
2918876 | Howe | Dec 1959 | A |
2948524 | Sweeney et al. | Aug 1960 | A |
2958293 | Pray, Jr. | Nov 1960 | A |
2978885 | Davison | Apr 1961 | A |
2984524 | Franzen | May 1961 | A |
2987885 | Hodge | Jun 1961 | A |
3010402 | King | Nov 1961 | A |
3015190 | Arbeit | Jan 1962 | A |
3039864 | Hess | Jun 1962 | A |
3044408 | Mellott | Jul 1962 | A |
3048384 | Sweeney et al. | Aug 1962 | A |
3070393 | Silverberg et al. | Dec 1962 | A |
3092030 | Wunder | Jun 1963 | A |
3099870 | Seeler | Aug 1963 | A |
3130678 | Chenault | Apr 1964 | A |
3130679 | Sence | Apr 1964 | A |
3171357 | Egger | Mar 1965 | A |
3203182 | Pohl | Aug 1965 | A |
3227547 | Szekely | Jan 1966 | A |
3244109 | Barske | Apr 1966 | A |
3251676 | Johnson | May 1966 | A |
3255702 | Gehrm | Jun 1966 | A |
3258283 | Winberg et al. | Jun 1966 | A |
3272619 | Sweeney et al. | Sep 1966 | A |
3289473 | Louda | Dec 1966 | A |
3289743 | Louda | Dec 1966 | A |
3291473 | Sweeney et al. | Dec 1966 | A |
3374943 | Cervenka | Mar 1968 | A |
3400923 | Howie et al. | Sep 1968 | A |
3417929 | Secrest et al. | Dec 1968 | A |
3432336 | Langrod | Mar 1969 | A |
3459133 | Scheffler | Aug 1969 | A |
3459346 | Tinnes | Aug 1969 | A |
3477383 | Rawson et al. | Nov 1969 | A |
3487805 | Satterthwaite | Jan 1970 | A |
1185314 | London | Mar 1970 | A |
3512762 | Umbricht | May 1970 | A |
3512788 | Kilbane | May 1970 | A |
3561885 | Lake | Feb 1971 | A |
3575525 | Fox et al. | Apr 1971 | A |
3618917 | Fredrikson | Nov 1971 | A |
3620716 | Hess | Nov 1971 | A |
3650730 | Derham et al. | Mar 1972 | A |
3689048 | Foulard et al. | Sep 1972 | A |
3715112 | Carbonnel | Feb 1973 | A |
3732032 | Daneel | May 1973 | A |
3737304 | Blayden | Jun 1973 | A |
3737305 | Blayden et al. | Jun 1973 | A |
3743263 | Szekely | Jul 1973 | A |
3743500 | Foulard et al. | Jul 1973 | A |
3753690 | Emley et al. | Aug 1973 | A |
3759628 | Kempf | Sep 1973 | A |
3759635 | Carter et al. | Sep 1973 | A |
3767382 | Bruno et al. | Oct 1973 | A |
3776660 | Anderson et al. | Dec 1973 | A |
3785632 | Kraemer et al. | Jan 1974 | A |
3787143 | Carbonnel et al. | Jan 1974 | A |
3799522 | Brant et al. | Mar 1974 | A |
3799523 | Seki | Mar 1974 | A |
3807708 | Jones | Apr 1974 | A |
3814400 | Seki | Jun 1974 | A |
3824028 | Zenkner et al. | Jul 1974 | A |
3824042 | Barnes et al. | Jul 1974 | A |
3836280 | Koch | Sep 1974 | A |
3839019 | Bruno et al. | Oct 1974 | A |
3844972 | Tully, Jr. et al. | Oct 1974 | A |
3871872 | Downing et al. | Mar 1975 | A |
3873073 | Baum et al. | Mar 1975 | A |
3873305 | Claxton et al. | Mar 1975 | A |
3881039 | Baldieri et al. | Apr 1975 | A |
3886992 | Maas et al. | Jun 1975 | A |
3915594 | Nesseth | Oct 1975 | A |
3915694 | Ando | Oct 1975 | A |
3941588 | Dremann | Mar 1976 | A |
3941589 | Norman et al. | Mar 1976 | A |
3954134 | Maas et al. | May 1976 | A |
3958979 | Valdo | May 1976 | A |
3958981 | Forberg et al. | May 1976 | A |
3961778 | Carbonnel et al. | Jun 1976 | A |
3966456 | Ellenbaum et al. | Jun 1976 | A |
3972709 | Chia et al. | Aug 1976 | A |
3976286 | Thompson et al. | Aug 1976 | A |
3984234 | Claxton et al. | Oct 1976 | A |
3985000 | Hartz | Oct 1976 | A |
3997336 | van Linden et al. | Dec 1976 | A |
4003560 | Carbonnel | Jan 1977 | A |
4008884 | Fitzpatrick et al. | Feb 1977 | A |
4018598 | Markus | Apr 1977 | A |
4052199 | Mangalick | Oct 1977 | A |
4055390 | Young | Oct 1977 | A |
4063849 | Modianos | Dec 1977 | A |
4068965 | Lichti | Jan 1978 | A |
4091970 | Kimiyama et al. | May 1978 | A |
4119141 | Thut et al. | Oct 1978 | A |
4126360 | Miller et al. | Nov 1978 | A |
4128415 | van Linden et al. | Dec 1978 | A |
4169584 | Mangalick | Oct 1979 | A |
4191486 | Pelton | Mar 1980 | A |
4213742 | Henshaw | Jul 1980 | A |
4242039 | Villard et al. | Dec 1980 | A |
4244423 | Thut et al. | Jan 1981 | A |
4286985 | van Linden et al. | Sep 1981 | A |
4305214 | Hurst | Dec 1981 | A |
4322245 | Claxton | Mar 1982 | A |
4338062 | Neal | Jul 1982 | A |
4347041 | Cooper | Aug 1982 | A |
4351514 | Koch | Sep 1982 | A |
4355789 | Dolzhenkov et al. | Oct 1982 | A |
4360314 | Pennell | Nov 1982 | A |
4370096 | Church | Jan 1983 | A |
4372541 | Bocourt et al. | Feb 1983 | A |
4375937 | Cooper | Mar 1983 | A |
4389159 | Sarvanne | Jun 1983 | A |
4392888 | Eckert et al. | Jul 1983 | A |
4410299 | Shimoyama | Oct 1983 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4456424 | Araoka | Jun 1984 | A |
4470846 | Dube | Sep 1984 | A |
4474315 | Gilbert et al. | Oct 1984 | A |
4496393 | Lustenberger | Jan 1985 | A |
4504392 | Groteke | Mar 1985 | A |
4537624 | Tenhover et al. | Aug 1985 | A |
4537625 | Tenhover et al. | Aug 1985 | A |
4556419 | Otsuka et al. | Dec 1985 | A |
4557766 | Tenhover et al. | Dec 1985 | A |
4586845 | Morris | May 1986 | A |
4592700 | Toguchi et al. | Jun 1986 | A |
4594052 | Niskanen | Jun 1986 | A |
4598899 | Cooper | Jul 1986 | A |
4600222 | Appling | Jul 1986 | A |
4607825 | Briolle et al. | Aug 1986 | A |
4609442 | Tenhover et al. | Sep 1986 | A |
4611790 | Otsuka et al. | Sep 1986 | A |
4617232 | Chandler et al. | Oct 1986 | A |
4634105 | Withers et al. | Jan 1987 | A |
4640666 | Sodergard | Feb 1987 | A |
4655610 | Al-Jaroudi | Apr 1987 | A |
4684281 | Patterson | Aug 1987 | A |
4685822 | Pelton | Aug 1987 | A |
4696703 | Henderson et al. | Sep 1987 | A |
4701226 | Henderson et al. | Oct 1987 | A |
4702768 | Areauz et al. | Oct 1987 | A |
4714371 | Cuse | Dec 1987 | A |
4717540 | McRae et al. | Jan 1988 | A |
4739974 | Mordue | Apr 1988 | A |
4743428 | McRae et al. | May 1988 | A |
4747583 | Gordon et al. | May 1988 | A |
4767230 | Leas, Jr. | Aug 1988 | A |
4770701 | Henderson et al. | Sep 1988 | A |
4786230 | Thut | Nov 1988 | A |
4802656 | Hudault et al. | Feb 1989 | A |
4804168 | Otsuka et al. | Feb 1989 | A |
4810314 | Henderson et al. | Mar 1989 | A |
4834573 | Asano et al. | May 1989 | A |
4842227 | Harrington et al. | Jun 1989 | A |
4844425 | Piras et al. | Jul 1989 | A |
4851296 | Tenhover et al. | Jul 1989 | A |
4859413 | Harris et al. | Aug 1989 | A |
4867638 | Handtmann et al. | Sep 1989 | A |
4884786 | Gillespie | Dec 1989 | A |
4898367 | Cooper | Feb 1990 | A |
4908060 | Duenkelmann | Mar 1990 | A |
4923770 | Grasselli et al. | May 1990 | A |
4930986 | Cooper | Jun 1990 | A |
4931091 | Waite et al. | Jun 1990 | A |
4940214 | Gillespie | Jul 1990 | A |
4940384 | Amra et al. | Jul 1990 | A |
4954167 | Cooper | Sep 1990 | A |
4973433 | Gilbert et al. | Nov 1990 | A |
4986736 | Kajiwara | Jan 1991 | A |
4989736 | Andersson et al. | Feb 1991 | A |
5015518 | Sasaki et al. | May 1991 | A |
5025198 | Mordue et al. | Jun 1991 | A |
5028211 | Mordue et al. | Jul 1991 | A |
5029821 | Bar-on et al. | Jul 1991 | A |
5078572 | Amra et al. | Jan 1992 | A |
5080715 | Provencher et al. | Jan 1992 | A |
5088893 | Gilbert et al. | Feb 1992 | A |
5092821 | Gilbert et al. | Mar 1992 | A |
5098134 | Monckton | Mar 1992 | A |
5114312 | Stanislao | May 1992 | A |
5126047 | Martin et al. | Jun 1992 | A |
5131632 | Olson | Jul 1992 | A |
5143357 | Gilbert et al. | Sep 1992 | A |
5145322 | Senior, Jr. et al. | Sep 1992 | A |
5152631 | Bauer | Oct 1992 | A |
5154652 | Ecklesdafer | Oct 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5162858 | Shoji et al. | Nov 1992 | A |
5165858 | Gilbert et al. | Nov 1992 | A |
5177304 | Nagel | Jan 1993 | A |
5191154 | Nagel | Mar 1993 | A |
5192193 | Cooper et al. | Mar 1993 | A |
5202100 | Nagel et al. | Apr 1993 | A |
5203681 | Cooper | Apr 1993 | A |
5209641 | Hoglund et al. | May 1993 | A |
5215448 | Cooper | Jun 1993 | A |
5268020 | Claxton | Dec 1993 | A |
5286163 | Amra et al. | Feb 1994 | A |
5298233 | Nagel | Mar 1994 | A |
5301620 | Nagel et al. | Apr 1994 | A |
5308045 | Cooper | May 1994 | A |
5310412 | Gilbert et al. | May 1994 | A |
5318360 | Langer et al. | Jun 1994 | A |
5322547 | Nagel et al. | Jun 1994 | A |
5324341 | Nagel et al. | Jun 1994 | A |
5330328 | Cooper | Jul 1994 | A |
5354940 | Nagel | Oct 1994 | A |
5358549 | Nagel et al. | Oct 1994 | A |
5358697 | Nagel | Oct 1994 | A |
5364078 | Pelton | Nov 1994 | A |
5369063 | Gee et al. | Nov 1994 | A |
5388633 | Mercer, II et al. | Feb 1995 | A |
5395405 | Nagel et al. | Mar 1995 | A |
5399074 | Nose et al. | Mar 1995 | A |
5407294 | Giannini | Apr 1995 | A |
5411240 | Rapp et al. | May 1995 | A |
5425410 | Reynolds | Jun 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5435982 | Wilkinson | Jul 1995 | A |
5436210 | Wilkinson et al. | Jul 1995 | A |
5443572 | Wilkinson et al. | Aug 1995 | A |
5454423 | Tsuchida et al. | Oct 1995 | A |
5468280 | Areaux | Nov 1995 | A |
5470201 | Gilbert et al. | Nov 1995 | A |
5484265 | Horvath et al. | Jan 1996 | A |
5489734 | Nagel et al. | Feb 1996 | A |
5491279 | Robert et al. | Feb 1996 | A |
5495746 | Sigworth | Mar 1996 | A |
5505143 | Nagel | Apr 1996 | A |
5509791 | Turner | Apr 1996 | A |
5537940 | Nagel et al. | Jul 1996 | A |
5543558 | Nagel et al. | Aug 1996 | A |
5555822 | Loewen et al. | Sep 1996 | A |
5558501 | Wang et al. | Sep 1996 | A |
5558505 | Mordue et al. | Sep 1996 | A |
5571486 | Robert et al. | Nov 1996 | A |
5585532 | Nagel | Dec 1996 | A |
5586863 | Gilbert et al. | Dec 1996 | A |
5591243 | Colussi et al. | Jan 1997 | A |
5597289 | Thut | Jan 1997 | A |
5613245 | Robert | Mar 1997 | A |
5616167 | Eckert | Apr 1997 | A |
5622481 | Thut | Apr 1997 | A |
5629464 | Bach et al. | May 1997 | A |
5634770 | Gilbert et al. | Jun 1997 | A |
5640706 | Nagel et al. | Jun 1997 | A |
5640707 | Nagel et al. | Jun 1997 | A |
5640709 | Nagel et al. | Jun 1997 | A |
5655849 | McEwen et al. | Aug 1997 | A |
5662725 | Cooper | Sep 1997 | A |
5676520 | Thut | Oct 1997 | A |
5678244 | Shaw et al. | Oct 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5679132 | Rauenzahn et al. | Oct 1997 | A |
5685701 | Chandler et al. | Nov 1997 | A |
5690888 | Robert | Nov 1997 | A |
5695732 | Sparks et al. | Dec 1997 | A |
5716195 | Thut | Feb 1998 | A |
5717149 | Nagel et al. | Feb 1998 | A |
5718416 | Flisakowski et al. | Feb 1998 | A |
5735668 | Klein | Apr 1998 | A |
5735935 | Areaux | Apr 1998 | A |
5741422 | Eichenmiller et al. | Apr 1998 | A |
5744117 | Wilkinson et al. | Apr 1998 | A |
5745861 | Bell et al. | Apr 1998 | A |
5772324 | Falk | Jun 1998 | A |
5776420 | Nagel | Jul 1998 | A |
5785494 | Vild et al. | Jul 1998 | A |
5842832 | Thut | Dec 1998 | A |
5858059 | Abramovich et al. | Jan 1999 | A |
5863314 | Morando | Jan 1999 | A |
5866095 | McGeever et al. | Feb 1999 | A |
5875385 | Stephenson et al. | Feb 1999 | A |
5935528 | Stephenson et al. | Aug 1999 | A |
5944496 | Cooper | Aug 1999 | A |
5947705 | Mordue et al. | Sep 1999 | A |
5951243 | Cooper | Sep 1999 | A |
5963580 | Eckert | Oct 1999 | A |
5992230 | Scarpa et al. | Nov 1999 | A |
5993726 | Huang et al. | Nov 1999 | A |
5993728 | Vild | Nov 1999 | A |
6019576 | Thut | Feb 2000 | A |
6027685 | Cooper | Feb 2000 | A |
6036745 | Gilbert et al. | Mar 2000 | A |
6074455 | van Linden et al. | Jun 2000 | A |
6082965 | Morando | Jul 2000 | A |
6093000 | Cooper | Jul 2000 | A |
6096109 | Nagel et al. | Aug 2000 | A |
6113154 | Thut | Sep 2000 | A |
6123523 | Cooper | Sep 2000 | A |
6152691 | Thut | Nov 2000 | A |
6168753 | Morando | Jan 2001 | B1 |
6187096 | Thut | Feb 2001 | B1 |
6199836 | Rexford et al. | Mar 2001 | B1 |
6217823 | Vild et al. | Apr 2001 | B1 |
6231639 | Eichenmiller | May 2001 | B1 |
6250881 | Mordue et al. | Jun 2001 | B1 |
6254340 | Vild et al. | Jul 2001 | B1 |
6270717 | Tremblay et al. | Aug 2001 | B1 |
6280157 | Cooper | Aug 2001 | B1 |
6293759 | Thut | Sep 2001 | B1 |
6303074 | Cooper | Oct 2001 | B1 |
6345964 | Cooper | Feb 2002 | B1 |
6354796 | Morando | Mar 2002 | B1 |
6358467 | Mordue | Mar 2002 | B1 |
6371723 | Grant et al. | Apr 2002 | B1 |
6398525 | Cooper | Jun 2002 | B1 |
6439860 | Greer | Aug 2002 | B1 |
6451247 | Mordue et al. | Sep 2002 | B1 |
6457940 | Lehman | Oct 2002 | B1 |
6457950 | Cooper et al. | Oct 2002 | B1 |
6464458 | Vild et al. | Oct 2002 | B2 |
6497559 | Grant | Dec 2002 | B1 |
6500228 | Klingensmith | Dec 2002 | B1 |
6503292 | Klingensmith et al. | Jan 2003 | B2 |
6524066 | Thut | Feb 2003 | B2 |
6533535 | Thut | Mar 2003 | B2 |
6551060 | Mordue et al. | Apr 2003 | B2 |
6562286 | Lehman | May 2003 | B1 |
6679936 | Quackenbush | Jan 2004 | B2 |
6689310 | Cooper | Feb 2004 | B1 |
6709234 | Gilbert et al. | Mar 2004 | B2 |
6723276 | Cooper | Apr 2004 | B1 |
6805834 | Thut | Oct 2004 | B2 |
6843640 | Mordue et al. | Jan 2005 | B2 |
6848497 | Sale et al. | Feb 2005 | B2 |
6869271 | Gilbert et al. | Mar 2005 | B2 |
6869564 | Gilbert et al. | Mar 2005 | B2 |
6881030 | Thut | Apr 2005 | B2 |
6887424 | Ohno et al. | May 2005 | B2 |
6887425 | Mordue et al. | May 2005 | B2 |
6902696 | Klingensmith et al. | Jun 2005 | B2 |
7083758 | Tremblay | Aug 2006 | B2 |
7131482 | Vincent et al. | Nov 2006 | B2 |
7157043 | Neff | Jan 2007 | B2 |
7279128 | Kennedy et al. | Oct 2007 | B2 |
7326028 | Morando | Feb 2008 | B2 |
7402276 | Cooper | Jul 2008 | B2 |
7470392 | Cooper | Dec 2008 | B2 |
7476357 | Thut | Jan 2009 | B2 |
7497988 | Thut | Mar 2009 | B2 |
7507367 | Cooper | Mar 2009 | B2 |
8110141 | Cooper | Feb 2012 | B2 |
20010000465 | Thut | Apr 2001 | A1 |
20020185794 | Vincent | Dec 2002 | A1 |
20030047850 | Areaux | Mar 2003 | A1 |
20030201583 | Klingensmith | Oct 2003 | A1 |
20040050525 | Kennedy et al. | Mar 2004 | A1 |
20040076533 | Cooper | Apr 2004 | A1 |
20040115079 | Cooper | Jun 2004 | A1 |
20040262825 | Cooper | Dec 2004 | A1 |
20050013713 | Cooper | Jan 2005 | A1 |
20050013714 | Cooper | Jan 2005 | A1 |
20050013715 | Cooper | Jan 2005 | A1 |
20050053499 | Cooper | Mar 2005 | A1 |
20050077730 | Thut | Apr 2005 | A1 |
20050116398 | Tremblay | Jun 2005 | A1 |
20060180963 | Thut | Aug 2006 | A1 |
20070253807 | Cooper | Nov 2007 | A1 |
20080213111 | Cooper | Sep 2008 | A1 |
20080230966 | Cooper | Sep 2008 | A1 |
20110140319 | Cooper | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
683469 | Mar 1964 | CA |
2115929 | Aug 1992 | CA |
2176475 | May 1996 | CA |
2244251 | Dec 1996 | CA |
2305865 | Feb 2000 | CA |
392268 | Sep 1965 | CH |
1800446 | Dec 1969 | DE |
0168250 | Jan 1986 | EP |
0665378 | Feb 1995 | EP |
1019635 | Jun 2006 | EP |
942648 | Nov 1963 | GB |
1185314 | Mar 1970 | GB |
2217784 | Mar 1989 | GB |
58048796 | Mar 1983 | JP |
63104773 | May 1988 | JP |
227385 | Apr 2005 | MX |
90756 | Jan 1959 | NO |
416401 | Feb 1974 | RU |
773312 | Oct 1980 | RU |
WO9808990 | Mar 1998 | WO |
WO9825031 | Jun 1998 | WO |
0009889 | Feb 2000 | WO |
0212147 | Feb 2002 | WO |
Entry |
---|
US 5,961,265, 10/1999, Kato (withdrawn) |
USPTO; Office Action dated Nov. 28, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Notice of Allowance dated Nov. 1, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Nov. 4, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Dec. 16, 2011 in U.S. Appl. No. 13/047,719. |
USPTO; Office Action dated Feb. 23, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Office Action dated Aug. 15, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Advisory Action dated Nov. 18, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Advisory Action dated Dec. 9, 1996 in U.S. Appl. No. 08/439,739. |
USPTO; Notice of Allowance dated Jan. 17, 1997 in U.S. Appl. No. 08/439,739. |
USPTO; Office Action dated Jul. 22, 1996 in U.S. Appl. No. 08/489,962. |
USPTO; Office Action dated Jan. 6, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Interview Summary dated Mar. 4, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Notice of Allowance dated Mar. 27, 1997 in U.S. Appl. No. 08/489,962. |
USPTO; Office Action dated Sep. 23, 1998 in U.S. Appl. No. 08/759,780. |
USPTO; Interview Summary dated Dec. 30, 1998 in U.S. Appl. No. 08/789,780. |
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/789,780. |
USPTO; Office Action dated Jul. 23, 1998 in U.S. Appl. No. 08/889,882. |
USPTO; Office Action dated Jan. 21, 1999 in U.S. Appl. No. 08/889,882. |
USPTO; Notice of Allowance dated Mar. 17, 1999 in U.S. Appl. No. 08/889,882. |
USPTO; Office Action dated Feb. 26, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Interview Summary dated Mar. 15, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Office Action dated May 17, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Notice of Allowance dated Aug. 27, 1999 in U.S. Appl. No. 08/951,007. |
USPTO; Office Action dated Dec. 23, 1999 in U.S. Appl. No. 09/132,934. |
USPTO; Notice of Allowance dated Mar. 9, 2000 in U.S. Appl. No. 09/132,934. |
USPTO; Office Action dated Jan. 7, 2000 in U.S. Appl. No. 09/152,168. |
USPTO; Notice of Allowance dated Aug. 7, 2000 in U.S. Appl. No. 09/152,168. |
USPTO; Office Action dated Sep. 14, 1999 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated May 22, 2000 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated Nov. 14, 2000 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated May 21, 2001 in U.S. Appl. No. 09/275,627. |
USPTO; Notice of Allowance dated Aug. 31, 2001 in U.S. Appl. No. 09/275,627. |
USPTO; Office Action dated Jun. 15, 2000 in U.S. Appl. No. 09/312,361. |
USPTO; Notice of Allowance dated Jan. 29, 2001 in U.S. Appl. No. 09/312,361. |
USPTO; Office Action dated Jun. 22, 2001 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Oct. 12, 2001 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated May 3, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Advisory Action dated May 14, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Dec. 4, 2002 in U.S. Appl. No. 09/569,461. |
USPTO; Interview Summary dated Jan. 14, 2003 in U.S. Appl. No. 09/569,461. |
USPTO; Notice of Allowance dated Jun. 24, 2003 in U.S. Appl. No. 09/569,461. |
USPTO; Office Action dated Nov. 21, 2000 in U.S. Appl. No. 09/590,108. |
USPTO; Office Action dated May 22, 2001 in U.S. Appl. No. 09/590,108. |
USPTO; Notice of Allowance dated Sep. 10, 2001 in U.S. Appl. No. 09/590,108. |
USPTO; Office Action dated Jan. 30, 2002 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Oct. 4, 2002 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Apr. 18, 2003 in U.S. Appl. No. 09/649,190. |
USPTO; Notice of Allowance dated Nov. 21, 2003 in U.S. Appl. No. 09/649,190. |
USPTO; Office Action dated Jun. 7, 2006 in U.S. Appl. No. 10/619,405. |
USPTO; Final Office Action dated Feb. 20, 2007 in U.S. Appl. No. 10/619,405. |
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/619,405. |
USPTO; Final Office Action dated May 29, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Interview Summary Aug. 22, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Ex Parte Quayle dated Sep. 12, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Notice of Allowance dated Nov. 14, 2008 in U.S. Appl. No. 10/619,405. |
USPTO; Office Action dated Mar. 20, 2006 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Nov. 16, 2006 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Jul. 25, 2007 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Feb. 12, 2008 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Oct. 16, 2008 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Feb. 25, 2009 in U.S. Appl. No. 10/620,318. |
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 10/620,318. |
USPTO; Notice of Allowance Jan. 26, 2010 in U.S. Appl. No. 10/620,318. |
USPTO; Office Action dated Nov. 15, 2007 in U.S. Appl. No. 10/773,101. |
USPTO; Office Action dated Jun. 27, 2006 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Mar. 6, 2007 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Oct. 11, 2007 in U.S. Appl. No. 10/773,102. |
USPTO; Interview Summary dated Mar. 18, 2008 in U.S. Appl. No. 10/773,102. |
USPTO; Notice of Allowance Apr. 18, 2008 in U.S. Appl. No. 10/773,102. |
USPTO; Office Action dated Jul. 24, 2006 in U.S. Appl. No. 10/773.105. |
USPTO; Final Office Action dated Jul. 21, 2007 in U.S. Appl. No. 10/773.105. |
USPTO; Office Action dated Oct. 9, 2007 in U.S. Appl. No. 10/773.105. |
USPTO; Interview Summary dated Jan. 25, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Office Action dated May 19, 2008 in U.S. Appl. No. 10/773.105. |
USPTO; Interview Summary dated Jul. 21, 2008 in U.S. Appl. No. 10/773.105. |
USPTO; Notice of Allowance dated Sep. 29, 2008 in U.S. Appl. No. 10/773,105. |
USPTO; Office Action dated Jan. 31, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated Aug. 18, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Interview Summary dated Oct. 16, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Dec. 15, 2008 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated May 1, 2009 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Jul. 27, 2009 in U.S. Appl. No. 10/773,118. |
USPTO; Final Office Action dated Feb. 2, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Interview Summary dated Jun. 4, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Ex Parte Quayle Action dated Aug. 25, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Notice of Allowance dated Nov. 5, 2010 in U.S. Appl. No. 10/773,118. |
USPTO; Office Action dated Mar. 16, 2005 in U.S. Appl. No. 10/827,941. |
USPTO; Final Office Action dated Nov. 7, 2005 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Jul. 12, 2006 in U.S. Appl. No. 10/827,941. |
USPTO; Final Office Action dated Mar. 8, 2007 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Oct. 29, 2007 in U.S. Appl. No. 10/827,941. |
USPTO; Office Action dated Sep. 26, 2008 in U.S. Appl. No. 11/413,982. |
USPTO; Final Office Action dated Oct. 14, 2008 in U.S. Appl. No. 12/111,835. |
USPTO; Office Action dated May 15, 2009 in U.S. Appl. No. 12/111,835. |
USPTO; Office Action dated Nov. 3, 2008 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated May 28, 2009 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Dec. 18, 2009 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated Jul. 9, 2010 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Jan. 21, 2011 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/120,200. |
USPTO; Office Action dated Mar. 31, 2009 in U.S. Appl. No. 12/120,190. |
USPTO; Final Office Action dated Dec. 4, 2009 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Jun. 28, 2010 in U.S. Appl. No. 12/120,190. |
USPTO; Final Office Action dated Jan. 6, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Jun. 27, 2011 in U.S. Appl. No. 12/120,190. |
USPTO; Office Action dated Apr. 13, 2009 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Oct. 8, 2009 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Feb. 1, 2010 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Jun. 30, 2010 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Mar. 17, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Final Office Action dated Jul. 7, 2011 in U.S. Appl. No. 12/264,416. |
USPTO; Office Action dated Apr. 27, 2009 in U.S. Appl. No. 12/146,788. |
USPTO; Final Office Action dated Oct. 15, 2009 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated Feb. 16, 2010 in U.S. Appl. No. 12/146,788. |
USPTO; Final Office Action dated Jul. 13, 2010 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated Apr. 19, 2011 in U.S. Appl. No. 12/146,788. |
USPTO; Notice of Allowance dated Aug. 19, 2011 in U.S. Appl. No. 12/146,788. |
USPTO; Office Action dated May 22, 2009 in U.S. Appl. No. 12/369,362. |
USPTO; Final Office Action dated Dec. 14, 2009 in U.S. Appl. No. 12/369,362. |
USPTO; Office Action dated Jun. 16, 2009 in U.S. Appl. No. 12/146,770. |
USPTO; Final Office Action dated Feb. 24, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Jun. 9, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Nov. 18, 2010 in U.S. Appl. No. 12/146,770. |
USPTO; Final Office Action dated Apr. 4, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Notice of Allowance dated Aug. 22, 2011 in U.S. Appl. No. 12/146,770. |
USPTO; Office Action dated Dec. 11, 2009 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Mar. 8, 2010 in U.S. Appl. No. 11/766,617. |
USPTO; Final Office Action dated Sep. 20, 2010 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Mar. 1, 2011 in U.S. Appl. No. 11/766,617. |
USPTO; Office Action dated Sep. 22, 2011 in U.S. Appl. No. 11/766,617. |
USPTO; Final Office Action dated Jun. 11, 2010 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Nov. 24, 2010 in U.S. Appl. No. 12/395,430. |
USPTO; Final Office Action dated Apr. 6, 2011 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Aug. 18, 2011 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Sep. 29, 2010 in U.S. Appl. No. 12/758,509. |
USPTO; Final Office Action dated May 11, 2011 in U.S. Appl. No. 12/758,509. |
USPTO; Office Action dated Sep. 22, 2011 in U.S. Appl. No. 12/880,027. |
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,747. |
USPTO; Office Action dated Aug. 25, 2011 in U.S. Appl. No. 13/047,719. |
USPTO; Office Action dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910. |
CIPO; Office Action dated Dec. 04, 2001 in Application No. 2,115,929. |
CIPO; Office Action dated Apr. 22, 2002 in Application No. 2,115,929. |
CIPO; Notice of Allowance dated Jul. 18, 2003 in Application No. 2,115,929. |
CIPO; Office Action dated Jun. 30, 2003 in Application No. 2,176,475. |
CIPO; Notice of Allowance dated Sep. 15, 2004 in Application No. 2,176,475. |
CIPO; Office Action dated May 29, 2000 in Application No. 2,242,174. |
CIPO; Office Action dated Feb. 22, 2006 in Application No. 2,244,251. |
CIPO; Office Action dated Mar. 27, 2007 in Application No. 2,244,251. |
CIPO; Office Action dated Sep. 18, 2002 in Application No. 2,305,865. |
CIPO; Notice of Allowance dated May 2, 2003 in Application No. 2,305,865. |
EPO; Examination Report dated Oct. 6, 2008 in Application No. 08158682. |
EPO; Office Action dated Jan. 26, 2010 in Application No. 08158682. |
EPO; Office Action dated Feb. 15, 2011 in Application No. 08158682. |
EPO; Search Report dated Nov. 9, 1998 in Application No. 98112356. |
EPO; Office Action dated Feb. 6, 2003 in Application No. 99941032. |
EPO; Office Action dated Aug. 20, 2004 in Application No. 99941032. |
PCT; International Search Report or Declaration dated Nov. 15, 1999 in Application No. PCT/US1999/18178. |
PCT; International Search Report or Declaration dated Oct. 9, 1998 in Application No. PCT/US1999/22440. |
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” Including Declarations of Haynes and Johnson, Apr. 16, 2001. |
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Patent No. 7,402,276,” Oct. 2, 2009. |
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Patent No. 7,402,276,” Oct. 9, 2009. |
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3-4, 15, 17-20, 26 and 28-29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009. |
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010. |
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010. |
USPTO; Final Office Action dated Dec. 13, 2011 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Jan. 27, 2012 in U.S. Appl. No. 11/766,617. |
USPTO; Notice of Allowance dated May 15, 2012 in U.S. Appl. No. 11/766,617. |
USPTO; Supplemental Notice of Allowance dated Jul. 31, 2012 in U.S. Appl. No. 11/766,617. |
USPTO; Notice of Allowance dated Aug. 24, 2012 in U.S. Appl. No. 11/766,617. |
USPTO; Notice of Allowance dated Feb. 6, 2012 in U.S. Appl. No. 12/120,190. |
USPTO; Final Office Action dated Feb. 3, 2012 in U.S. Appl. No. 12/120,200. |
USPTO; Final Office Action dated Jun. 8, 2012 in U.S. Appl. No. 12/264,416. |
USPTO; Advisory Action dated Feb. 22, 2012 in U.S. Appl. No. 12/395,430. |
USPTO; Office Action dated Feb. 27, 2012 in U.S. Appl. No. 12/853,253. |
USPTO; Ex Parte Quayle Action dated Jun. 27, 2012 in U.S. Appl. No. 12/853,253. |
USPTO; Office Action dated Mar. 12, 2012 in U.S. Appl. No. 12/853,255. |
USPTO; Final Office Action dated Jul. 24, 2012 in U.S. Appl. No. 12/853,255. |
USPTO; Office Action dated Apr. 19, 2012 in U.S. Appl. No. 12/853,268. |
USPTO; Final Office Action dated Sep. 17, 2012 in U.S. Appl. No. 12/853,268. |
USPTO; Office Action dated May 29, 2012 in U.S. Appl. No. 12/878,984. |
USPTO; Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/880,027. |
USPTO; Office Action dated Sep. 11, 2012 in U.S. Appl. No. 13/047,719. |
USPTO; Final Office Action dated Feb. 7, 2012 in U.S. Appl. No. 13/047,747. |
USPTO; Notice of Allowance dated Apr. 18, 2012 in U.S. Appl. No. 13/047,747. |
USPTO; Office Action dated Apr. 18, 2012 in U.S. Appl. No. 13/252,145. |
USPTO; Final Office Action dated Sep. 17, 2012 in U.S. Appl. No. 13/252,145. |
CIPO; Notice of Allowance dated Jan. 15, 2008 in Application No. 2,244,251. |
USPTO; Notice of Allowance dated Sep. 20, 2012 in U.S. Appl. No. 12/395,430. |
USPTO; Notice of Allowance dated Oct. 2, 2012 in U.S. Appl. No. 12/853,253. |
USPTO; Office Action dated Oct. 3, 2012 in U.S. Appl. No. 12/878,984. |
USPTO; Notice of Allowance dated Nov. 21, 2012 in U.S. Appl. No. 12/853,268. |
USPTO; Office Action dated Nov. 28, 2012 in U.S. Appl. No. 12/264,416. |
USPTO; Notice of Allowance dated Nov. 30, 2012 in U.S. Appl. No. 13/252,145. |
Number | Date | Country | |
---|---|---|---|
20110133374 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61232392 | Aug 2009 | US |