Systems and methods for missed breath detection and indication

Abstract
This disclosure describes improved systems and methods for displaying respiratory data to a clinician in a ventilatory system. Respiratory data may be displayed by any number of suitable means, for example, via appropriate graphs, diagrams, charts, waveforms, and other graphic displays. The disclosure describes novel systems and methods for determining and displaying ineffective patient inspiratory or expiratory efforts or missed breaths in a manner easily deciphered by a clinician.
Description
INTRODUCTION

A ventilator is a device that mechanically helps patients breathe by replacing some or all of the muscular effort required to inflate and deflate the lungs. During respiration, the ventilator may be configured to present various graphs, charts, and other displays indicative of the physical condition of the patient and the respiratory treatment provided. The ventilatory displays may be further designed to present relevant clinical information to a practitioner in an efficient and orderly manner.


MISSED BREATH DETECTION AND INDICATION

This disclosure describes improved systems and methods for displaying respiratory data to a clinician in a ventilatory system. Respiratory data may be displayed by any number of suitable means, for example, via appropriate graphs, diagrams, charts, waveforms, and other graphic displays. The disclosure describes novel systems and methods for determining and displaying ineffective patient inspiratory or expiratory efforts or missed breaths in a manner easily deciphered by a clinician.


In part, this disclosure describes a method for determining missed breaths. The method includes:


a) monitoring respiratory data with at least one sensor;


b) analyzing the respiratory data with a first trigger detection application and a second trigger detection application;


c) detecting patient inspiratory efforts with the first trigger detection application and the second trigger detection application;


d) calculating a missed breaths metric based on detected patient inspiratory efforts by the first trigger detection application and detected patient inspiratory efforts by the second trigger detection application; and


e) displaying a missed breath indicator based on the missed breaths metric.


Yet another aspect of this disclosure describes a medical ventilator including:


a) at least one display device;


b) a missed breath module that determines missed breaths based on a first trigger detection application;


c) a ventilation module that determines ventilation of a patient based on a second trigger detection application; and


d) at least one memory, communicatively coupled to the at least one processor and containing instructions that, when executed by a processor of the ventilatory system, provide a graphical user interface on the at least one display, comprising a missed breath indicator.


The disclosure further describes a computer-readable medium having computer-executable instructions for performing a method implemented by a ventilator for determining missed breaths, the method includes:


a) repeatedly monitoring respiratory data with at least one sensor;


b) repeatedly analyzing the respiratory data with a first trigger detection application and a second trigger detection application;


c) repeatedly detecting patient inspiratory efforts with the first trigger detection application and the second trigger detection application;


d) repeatedly calculating a missed breaths metric based on the results of the detection operation; and


e) repeatedly displaying a missed breath indicator based on the missed breaths metric.


The disclosure also describes a medical ventilator system, including means for monitoring respiratory data with at least one sensor, means for analyzing the respiratory data with a first trigger detection application and a second trigger detection application, means for detecting patient inspiratory efforts with the first trigger detection application and the second trigger detection application, means for calculating a missed breaths metric based on the results of the detection operation, and means for displaying a missed breath indicator based on the missed breaths metric.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of embodiments, systems, and methods described below and are not meant to limit the scope of the invention in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator connected to a human patient.



FIG. 2 is a block diagram illustrating an embodiment of a ventilatory system having a graphical user interface for displaying respiratory data.



FIG. 3 is a flow diagram illustrating an embodiment of a method for ventilating a patient on a ventilator having a graphical user interface for displaying respiratory data.



FIG. 4 illustrates an embodiment of a graphical user interface for displaying a plurality of graphical representations of respiratory data, a delivered breath indicator, and a missed breath indicator.



FIG. 5 is a flow diagram illustrating an embodiment of a method for displaying and/or updating the display of a missed breath indicator.



FIG. 6 is a flow diagram illustrating an embodiment of a method for displaying and/or updating the display of a missed breath indicator.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator for use in providing ventilation support to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients, general gas transport systems, and other therapeutic equipment having graphical user interfaces for displaying data.


Medical ventilators are used to provide a breathing gas to a patient who may otherwise be unable to breathe sufficiently. In modern medical facilities, pressurized air and oxygen sources are often available from wall outlets. Accordingly, ventilators may provide pressure regulating valves (or regulators) connected to centralized sources of pressurized air and pressurized oxygen. The regulating valves function to regulate flow so that respiratory gas having a desired concentration of oxygen is supplied to the patient at desired pressures and rates. Ventilators capable of operating independently of external sources of pressurized air are also available.


In the medical device field, “patient effort” is a term that can be used to describe many different patient parameters. To be clear, for the purposes of this document, the term “patient effort” shall be used herein to mean a patient's spontaneous attempt to initiate an inspiration or an exhalation as determined by an analysis of pressure, flow, volume, etc. measured by the ventilator. For example, a drop in pressure of greater than a threshold amount may be detected and identified as a single effort of the patient to initiate an inspiration. At time, the phrase “patient inspiratory effort” or “patient expiratory effort” will be used instead of patient effort to remind the reader that what is meant is an attempt by the patient to change the phase of respiratory cycle.


A recent study suggests that clinicians are able to detect less than one-third of patient efforts that do not result in the delivery of a breath, or missed breaths.1 Further, this study has shown that the rate of correct detection decreases as the prevalence of missed breaths increases. Considering that missed breaths may occur in up to 80% of mechanically ventilated patients, systems and methods for displaying missed breaths are needed. While operating a ventilator on a spontaneously breathing patient, it is desirable to limit, or preferably eliminate, patient efforts that do not result in the delivery of a breath. Hereinafter, patient efforts that do not result in the delivery of a breath shall be referred to as “ineffective patient efforts” or “ineffective triggers”. In addition, patient inspiratory efforts that do not result in the delivery of a breath by the ventilator may also be referred to as “missed breaths”. 1 Colombo, D., Cammarota, G., Alemani, M., Carenzo, L., Barra, F., Vaschetto, R., et al. (2011). Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Critical Care Medicine, p. 3.


This disclosure describes systems and methods for displaying respiratory data to a clinician in a ventilatory system. Specifically, the systems and methods disclosed herein determine and/or display ineffective patient efforts.



FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator 100 connected to a human patient 150. The ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from the patient 150 via a ventilation tubing system 130, which couples the patient to the pneumatic system via an invasive patient interface.


The ventilation tubing system 130 may be a two-limb (shown) or a one-limb circuit for carrying gas to and from the patient 150. In a two-limb embodiment as shown, a fitting, typically referred to as a “wye-fitting” 170, may be provided to couple the patient interface to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.


The pneumatic system 102 may be configured in a variety of ways. In the present example, the system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. A compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with an inspiratory module 104 to provide a gas source for ventilatory support via the inspiratory limb 132. A missed breath module 109 is coupled with the inspiratory module 104 and the expiratory module 108 to detect when a missed breath occurs and is described in more detail in FIG. 2 below.


The pneumatic system 102 may include a variety of other components, including sources for pressurized air and/or oxygen, mixing modules, valves, sensors, tubing, accumulators, filters, etc. A controller 110 is operatively coupled with the pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). The controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices.


The memory 112 is computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator 100. The memory may be transitory or non-transitory. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 116. Computer-readable storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer-readable storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


As described in more detail below, the controller 110 may monitor the pneumatic system 102 in order to evaluate the condition of the patient and to ensure proper functioning of the ventilator. The specific monitoring may be based on inputs received from the pneumatic system 102 and sensors, operator interface 120, and/or other components of the ventilator. In the depicted example, operator interface includes a display 122 that is touch-sensitive, enabling the display to serve both as an input and output device.



FIG. 2 is a block diagram illustrating an embodiment of a ventilatory system 200 having a graphical user interface for displaying respiratory data.


A ventilator 202 includes a display module 204, memory 208, one or more processors 206, user interface 210, monitor modules 216-222, time monitor module 224, graphics module 226, and ventilation module 212. The ventilation module 212 further includes a missed breath module 211. The missed breath module 211 in system 200 is the same as the missed breath module 109 described in the system 100 above. The memory 208 is defined as described above for the memory 112 in FIG. 1. Similarly, the one or more processors 206 are defined as described above for the one or more processors 116. The processors 206 may further be configured with a clock whereby elapsed time may be monitored by the system 200. Alternatively, a time monitor module 224 may be provided for monitoring time and associating a temporal element with the various data collected by the monitoring modules 216-222.


The ventilation module 212 oversees ventilation delivered to a patient according to the ventilator settings prescribed for the patient. The ventilator settings are determined by a selected or predetermined ventilation mode and/or breath type. The ventilation module 212 delivers pressure and/or volume into a ventilatory circuit (depending on whether the ventilator is configured for pressure or volume controlled delivery), and thereby into a patient's lungs, based on the breath type and/or mode. Spontaneous breath types are referred to herein as “trigger detection applications,” since trigger detection applications require detection of patient effort in order to determine when to deliver a breath to the patient. The trigger detection applications include known spontaneous breath types, such as but are not limited to Proportional Assist Ventilation (PAV), Volume Ventilation Plus (VV+), I:E SYNC, Pressure Support (PS), Volume Support (VS), Assist Control (AC), Volume Control (VC), Pressure Control (PC), Airway Pressure Release Ventilation (APRV), Continuous Positive Airway Pressure (CPAP), and BiLevel Positive Airway Pressure (BPAP). As discussed above, the trigger detection applications trigger the delivery of a breath when a patient effort is detected. While the methods for determining patient effort vary based on the trigger detection application used, in some embodiments, the patient effort is determined based on calculations involving monitored pressure and/or monitored flow. The ventilation module 212, and therefore the trigger detection applications, is communicatively coupled to at least one of the monitoring modules 216-222, the display module 204, the memory 208, the processor 206, the user interface 210, the graphics module 226, the time monitor module 224, and any other suitable component and/or module. For example, the trigger detection application may determine when to trigger a breath based on monitored data received from the monitoring modules 216-222.


The ventilation module 212 further includes a missed breath module 211. The missed breath module 211 utilizes a trigger detection application that detects patient efforts to determine when a patient desires a delivered breath. However, this trigger detection application does not ever actually deliver any breath based on the detected patient efforts and is therefore referred to herein as running in the background or as a “background trigger detection application” (also referred to as a first trigger detection application). A trigger detection application utilized to determine when to deliver the breaths to the patient during ventilation by the ventilator is referred to herein as the “active trigger detection application” (also referred to as a second trigger detection application). Accordingly, the background trigger detection application and the active trigger detection application determine a patient effort by monitoring patient parameters from the monitoring modules 216-222. In some embodiments, the background trigger detection application determines patient efforts based on monitored intrapleural pressure received from the intrapleural pressure (IP) monitoring module 216.


The missed breath module 211 compares the detected patient efforts to the delivered breaths by the ventilation module 212. For any detected patient effort that does not correlate with a delivered breath, the missed breath module 211 determines that the detected patient effort is an ineffective trigger effort by the patient. The missed breath module 211 may store determined information or send determined information to the display module 204, the processor 206, the memory 208, the user interface 210, the time monitor module 224, the graphics module 226, and/or any other suitable component and/or module. The determined information may include a single instance of an ineffective trigger effort by the patient, a sequential history of ineffective trigger efforts over a period of time (either predetermined or input by the clinician), or a rate of ineffective trigger efforts (for example the number of ineffective trigger efforts per minute) that may be averaged over a period of time that is predetermined or input by the clinician.


Further, for any detected patient effort that does correlate with a delivered breath, the missed breath module 211 determines the detected patient effort to be an effective trigger effort by the patient. The missed breath module 211 may store determined information or send determined information to the display module 204, the processor 206, the memory 208, the user interface 210, the time monitor module 224, the graphics module 226, and/or any other suitable component and/or module. The determined information may include a single instance of an effective trigger effort by the patient, a sequential history of effective trigger efforts over a period of time (either predetermined or input by the clinician), or a rate of effective trigger efforts (for example the number of effective trigger efforts per minute) that may be averaged over a period of time that is predetermined or input by the clinician.


The use of intrapleural pressure is an effective way to determine patient effort. When a patient makes an effort to breath, the patient's diaphragm will contract, and decrease the intrapleural pressure in order to draw air (or another substance) into the lungs. Because the contraction of the diaphragm is the effect of patient effort the intrapleural pressure change is the first and most direct way to determine patient effort, as a pressure/flow change will happen subsequently. Therefore a trigger detection application that uses intrapleural pressure is more sensitive to patient efforts than a trigger detection application that only uses pressure or flow. A trigger detection application running in the background is a good way to determine when missed breaths occur due to its inherent sensitivity.


A patient effort may be used to trigger one or more actions on the part of the ventilator, such as but not limited to a transition from exhalation to inhalation (or from inhalation to exhalation). It should be noted that ventilators depending on their mode of operation, may trigger automatically and/or in response to a detected change in a monitored parameter such as but not limited to patient effort, pressure, and flow. In one embodiment a monitored flow signal is used to determine when patient effort occurs. A variety of signals, for example, can be used by a trigger detection application to determine when patient effort occurs such as but not limited to patient airway pressure, lung flow, and intrapleural pressure. In an exemplary embodiment, the ventilator utilizes multiple trigger detection applications simultaneously. A first trigger detection application is used to detect when patient effort occurs, but the ventilator does not actively use the detected patient effort to trigger one or more actions on the part of the ventilator. In this embodiment the first trigger detection application is used to determine when a missed breath occurs. As used herein, the term “missed breath” refers to a patient effort that does not trigger one or more actions on the part of the ventilator, such as the delivery of a breath, the transition from inhalation to exhalation, or the transition from exhalation to inhalation. The first trigger detection application uses intrapleural pressure to detect when a patient effort occurs. In this embodiment, a second trigger detection application is used to determine when to trigger the ventilator. The second trigger detection application may use any suitable current or future known triggering methods based on monitored respiratory parameters such as but not limited to pressure and flow.


The display module 204 presents various input screens to a clinician, including but not limited to one or more graphics display screens, as will be described further herein, for receiving clinician input and for displaying useful clinical data to the clinician. The display module 204 is further configured to communicate with the user interface 210. The display module 204 may provide various windows, controls, and display elements to the clinician via a graphical user interface (GUI) for input and interface command operations. Thus, the user interface 210 may accept commands and input through the display module 204. The display module 204 may also provide useful information in the form of various respiratory data regarding the physical condition of a patient and/or the prescribed respiratory treatment. The useful information may be derived by the ventilator 202, based on data gathered from the various monitoring modules 216-222, and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, symbols, prompts, graphics, lights, lines, indicators, or other suitable forms of graphic display. The display module 204 may further be an interactive display, whereby the clinician may both receive and communicate information to the ventilator 202, as by a touch-activated display screen. Alternatively, the user interface 210 may provide other suitable means of communication with the ventilator 202, for instance by a keyboard or other suitable interactive device.


One or more graphics display screens provided by the display module 204 may each display one or more graphic representations of respiratory data, for example, graphical representations may include, inter cilia, pressure waveforms, volume waveforms, flow waveforms, flow curves, pressure-volume loops, flow-volume loops, text, symbols, prompts, graphics, lights, lines, cursors, interactive elements, indicators, or any other current or future known graphical representation suitable for displaying respiratory data. For instance, a volume waveform may depict tidal volume, i.e., the total volume of air inhaled and exhaled for one respiratory cycle, over time. A pressure waveform may depict circuit pressure, as measured or derived, for each inspiration and expiration over time. A pressure-volume loop may be generated for each breath, inspiration represented as a positive curve and expiration represented as a negative curve completing a single loop. In some embodiments the graphical representation is a respiratory rate as illustrated in FIG. 4.


In other embodiments, an indicator is displayed by the one or more graphics display screens provided by the display module 204. The indicator may be a missed breath or a delivered breath indicator. The missed breath indicator displays data relating to a missed breath and the delivered breath indicator displays data relating to a delivered breath. The indicators include as measured or derived, for each instance of a delivered and/or missed breath, for total delivered and/or missed breaths over a period of time, for a rate of delivered and/or missed breaths, for a history of delivered and/or missed breaths, or for any combination thereof. In some embodiments, the indicator is displayed on top of or within the one or more graphical representations.


In some embodiments, the ventilator stores a sequential history of the graphical representations and/or respiratory data, such as a missed breath indicator and a delivered breath indicator. As described above, the graphics module 226, or another suitable component or module, may archive graphical representations and indicators according to time. Some graphical representations and/or indicators may inherently include a time element, as with waveforms of respiratory data presented over time. Other graphical representations or indicators may be presented as a function of a single respiratory cycle, or breath, such as a flow-volume or a pressure-volume loop. The graphics module 226, or another suitable component or module, may associate the respiratory data of the graphical representation and/or indicators with a time element. In the alternative, the monitoring modules 216-222 may associate the respiratory data with a time element, or time stamp, before communicating data to the graphics module 226. In either case, graphical representations and/or indicators may be archived in sequential order based on time. In an embodiment, a cursor or indicator is displayed over a graphical representation of a respiratory signal such as, but not limited to, pressure and flow, at an appropriate temporal location based on when the delivered and/or missed breath occurred.


In an embodiment, a delivered and/or missed breath indicator is displayed as at least one of text, symbol, prompt, graphic, light, line or by another suitable form of graphic display. In another embodiment, the missed breath and delivered breath indicator include the display of a delivered and/or missed breath rate. The graphics module 226, or another suitable component or module, may archive historical data, such as indicators, which may be time-stamped, in sequential order over a particular time period. This rate can be the number or an average of the number of delivered and/or missed breaths per time period, where the time period can be predetermined, such as a minute, or input by the clinician. For example, the indicators may display the number of delivered and/or missed breaths in the last minute. The average can be taken from a predetermined or input number of values over a predetermined or input period of time. For example, the indicators may further display a rate based on an average of the last five values where each value represents the number of delivered and/or missed breaths for that minute. In an embodiment, the indicator may display a percentage or ratio at least partially representative of the delivered and/or missed breaths. For example, if the number of delivered breaths as well as the number of missed breaths are both known, then the indicator may display a percentage or ratio of delivered and/or missed breaths per total breaths, where total breaths is the addition of missed breaths and delivered breaths. In an embodiment, the indicators include a total breath indicator where the total breath indicator represents the addition of missed breaths and delivered breaths. Additionally, an indicator such as but not limited to text, symbol, prompt, graphic, light, line, cursor, interactive element, or indicator may be displayed to represent that missed breaths are being monitored. Further, an indicator such as but not limited to text, symbol, prompt, graphic, light, line, cursor, interactive element, or indicator may be displayed to represent settings for monitoring missed breaths. In some embodiments, a prompt is displayed with adjustable elements representative of turning on and/or off the missed breath module 211 as well as an inhalation and exhalation trigger values for missed breath monitoring. In some embodiments, these indicators are selectable and/or adjusted by a clinician via the user interface.


Data may be collected and displayed according to any suitable method. Thus, a plurality of various graphical representations and/or indicators may be provided, each graphical representation and/or indicator communicating different useful information to the clinician. However, sometimes it may be useful for the clinician to compare the respiratory data displayed if the respiratory data is displayed in a manner that is easier for the clinician to understand, which increases the chance that the clinician will discover a missed breath and can decrease patient-ventilator asynchrony by adjusting ventilator parameters.


The monitoring modules 216-222 operate to monitor the physical condition of the patient in conjunction with the proper operation of the ventilator 202. Although only a sampling of potential monitoring modules are shown and described, any number of suitable monitoring modules may be provided in keeping within the spirit of the present disclosure. The monitoring modules 216-222 may communicate with the display module 204, the user interface 210, the graphics module 226, the missed breath module 211, the ventilation module 212, and/or other suitable modules or processors of the ventilator 202. Specifically, the monitoring modules 216-222 may communicate with the graphics module 226 and/or the display module 204 such that collected data regarding the physical condition of the patient and/or the prescribed ventilation may be displayed to the clinician.


The monitoring modules 216-222 may utilize one or more sensors to detect changes in various physiological parameters. Specifically, the one or more sensors may be placed in any suitable internal location, within the ventilator itself, or in any suitable external location, within the ventilatory circuitry or other devices communicatively coupled to the ventilator 202. For example, sensors may be coupled to inspiratory and/or expiratory modules for detecting changes in, for example, circuit pressure and flow. Additionally, the one or more sensors may be affixed to the ventilatory tubing or may be imbedded in the tubing itself.


An intrapleural pressure monitor module 216 monitors or estimates intrapleural pressure. The term “intrapleural pressure,” as used herein, refers generally to the pressure exerted by the patient's diaphragm on the cavity in the thorax that contains the lungs, or the pleural cavity, and should further represent estimates of the pressure and/or any derivatives thereof. The intrapleural pressure monitor module 216 may measure intrapleural pressure according to any suitable method either known or discovered in the future. Alternatively, the intrapleural pressure monitor module 216 may derive intrapleural pressure readings from other data and measurements according to mathematical operations or otherwise. For example, an algorithm that estimates how the patient's intrapleural pressure is changing in real-time based on measured pressure and flow may be used. In one embodiment, the algorithm utilized measured pressure, inlet flow, and outlet flow to determine intrapleural pressure is the algorithm described in U.S. patent application Ser. No. 12/980,583 filed Dec. 29, 2010. U.S. patent application Ser. No. 12/980,583 filed Dec. 29, 2010 is incorporated herein by reference in its entirety.


A pressure monitor module 218 monitors pressure within a ventilatory circuit. The pressure monitor module 218 may measure pressure according to any suitable method either known or discovered in the future. For example, pressure transducers may be attached at various locations along the ventilatory circuit to detect changes in circuit pressure. Specifically, sensors may utilize optical or ultrasound techniques for measuring changes in circuit pressure. Alternatively, the pressure monitor module 218 may derive pressure readings from other data and measurements according to mathematical operations or otherwise.


A flow monitor module 220 monitors airflow within a ventilatory circuit, for example by utilizing sensors as described above for monitoring pressure. Inspiratory flow may be represented as a positive flow and expiratory flow may be represented as a negative flow. Flow may be measured or derived by any suitable method either currently known or disclosed in the future. Specifically, flow may be derived according to mathematical operations or measured at selected points along the ventilatory circuit.


A volume monitor module 222 monitors the volume of air exchanged during a respiratory cycle. The volume monitor module 222 may measure tidal volume by any suitable method, or may derive volume according to mathematical equations based on measurements of pressure and/or flow, for example.


The display module 204 may be further configured to communicate with the graphics module 226. The graphics module 226 may interact with the various monitoring modules 216-222 and may process data received from the monitoring modules 216-222 and the time module 224 to produce the various indicators and/or graphical representations displayed on the display module 204. In some embodiments, the display module 204 further interacts with the missed breath module 109. Alternatively, the graphics module 226 may be configured with a clock for monitoring time without need for an additional time module 224. The graphics module 226 may be configured to process data according to any suitable mathematical or graphical means. For instance, the graphics module 226 may plot raw data received from one monitoring module versus raw data received from another monitoring module. Alternatively, the graphics module 226 may transform raw data received from one or more monitoring modules by utilizing one or more mathematical operations, and may plot the mathematically transformed data versus other raw data, versus other transformed data, or versus a unit of time, for example. The graphics module 226 may transform raw data and may plot transformed or raw data to produce any number of useful graphical representations and/or indicators as may be desired by the clinician. The graphics module 226 may receive commands from the user interface 210 or may be preconfigured to perform certain default operations and manipulations of data for generating useful graphical representations and/or indicators. The graphics module 226 may further be configured to continuously accept data from the various monitoring modules 216-222, the missed breath module 109, and/or from the user interface 210 such that the graphical representations and/or indicators displayed on the display module 204 may be continuously updated and presented in real-time or quasi-real-time to the clinician.


Additionally, the graphics module 226 may be configured to store historical data associated with each graphical representation and/or indicator. The graphics module 226 may be in communication with the time monitor module 224, or other clock feature provided by the ventilator 202, such that data within each graphical representation and/or indicator is associated with a time stamp. Specifically, underlying respiratory data may be time-stamped as it is received from the monitoring modules 216-222. As graphical representations of the respiratory data are generated by the graphics module 226, a time element may be incorporated such that each position on a waveform or loop, for instance, is associated with a time element. The graphics module 226 may archive time-stamped or non-time-stamped historical data in sequential order over a particular time period. Thereafter, a clinician may utilize a scroll feature to scroll through a history of graphical representations and/or indicators stored over the time period. The time period may represent any temporal period of interest to the clinician, for instance, an hour, a day, a week, or an entire treatment period. Indeed, the ventilator may archive all data during a respiratory treatment period unless the clinician instructs otherwise. In the alternative, the ventilator may archive data over a most recent period, perhaps the last day, in order to free memory for other ventilatory functions.


In an embodiment, as a clinician utilizes the scroll feature, the graphics module 226 may drill into the underlying historical data to determine an associated time element, or may retrieve a time element associated with each stored graphical representation and/or indicator, in order to provide an appropriate graphical representation and/or indicators to the clinician based on a selected historical time. For example, the graphics module 226 may determine an appropriate historical pressure waveform, an appropriate historical indicator, and an appropriate position on the appropriate pressure waveform associated with a selected historical time. The graphics module 226 may display a cursor at the appropriate position on the appropriate pressure waveform and may display historical indicators, such as but not limited to missed breath indicators, delivered breath indicators, and total breath indicators, within an appropriate range of the cursor. The graphics module 226 may also be configured to simultaneously display cursors and historical indicators in corresponding locations on any other displayed graphical representations based on the selected historical time. As described above, reference lines intersecting the cursors and the axes of the various graphical representations may also be provided, along with a plurality of boxed fields for highlighting specific respiratory data associated with the selected historical time.



FIG. 3 is a flow diagram illustrating an embodiment of a method 300 for ventilating a patient on a ventilator. In some embodiments, the ventilator performing the method 300 is the ventilator 100 described in FIG. 1, having a graphical user interface for displaying respiratory data. The method 300 includes a respiratory data display operation 304, an effort detection operation 306, an effective trigger determination operation 308, an update delivered breath indicator operation 310, and an update missed breath indicator operation 312.


A patient is ventilated with a ventilator. As illustrated, the method 300 begins after the start of ventilation.


The method 300 includes the respiratory data display operation 304. The ventilator system during the respiratory data display operation 304 determines at least one graphical representation of respiratory data based on the ventilation of the patient and displays the graphical representations. In one embodiment, the ventilator uses the display 122 to perform the respiratory data display operation 304. The graphical representations may include a waveform, flow curve, pressure-volume loop, flow-volume loop, text symbol, prompt, graphic, light, line, cursor, interactive element, and indicator. The graphical representation may include collected data regarding the physical condition of the patient. The graphical representation may be displayed to the clinician in real-time, quasi-real-time, or historically. As described above, a ventilator may provide numerous graphical representations of respiratory data to a clinician during respiration of a patient. The graphical representation may be determined by the ventilator during the respiratory data display operation 304 based on monitored data. The ventilator may receive the monitored data from monitoring modules, such as the monitoring modules 216-222 discussed in FIG. 2 above. The ventilator may store a sequential history of the graphical representations provided. The graphics module 226, or another suitable component or module, may archive graphical representations according to time. Some graphical representations may inherently include a time element, as with waveforms of respiratory data presented over time. Other graphical representations may be presented as a function of a single respiratory cycle, or breath, such as a flow-volume or a pressure-volume loop. The graphics module 226, or another suitable component or module, may associate the respiratory data of the graphical representation with a time element. In the alternative, the monitoring modules 216-222 may associate the respiratory data with a time element, or time stamp, before communicating data to the graphics module 226. In either case, graphical representations may be archived in sequential order based on time.


It is understood by a person of skill in the art that the respiratory data display operation 304 may be performed at any time and/or simultaneously with any other operation in the method 300 that is performed after the start of ventilation but before the performance of the display delivered breath indicator operation 310 and the display missed breath indicator operation 312.


The method 300 further includes the effort detection operation 306. The ventilator system during the effort detection operation 306 monitors patient respiratory data and detects patient effort with an active and a background trigger detection application. As used herein, the term “patient effort” refers to an effort exerted by the patient to inspire and/or exhale gases. As discussed above, a trigger detection application is a hardware or software application that determines when a patient effort occurs based on a selected or predetermined spontaneous breath type. The active trigger detection application may include Proportional Assist Ventilation (PAV), Volume Ventilation Plus (VV+), I:E SYNC, Pressure Support (PS), Volume Support (VS), Assist Control (AC), Volume Control (VC), Pressure Control (PC), Airway Pressure Release Ventilation (APRV), Continuous Positive Airway Pressure (CPAP), and BiLevel Positive Airway Pressure (BPAP). The active trigger detection application may determine patient efforts based on monitoring respiratory parameters such as but not limited to pressure and flow. In one embodiment the background trigger detection application is I:E SYNC. In this embodiment, the background trigger detection application determines patient effort based on monitoring intrapleural pressure.


As illustrated, the method 300 includes the trigger determination operation 308. The ventilator during the trigger determination operation 308 determines whether a detected patient effort was effective or ineffective. The effective patient effort is determined based on detected patient effort by the second trigger detection application. In an embodiment, a patient effort detected by the second trigger detection application that results in the delivery of a breath is determined to be effective. In another embodiment, if a first patient effort detected by the first trigger detection application correlates to a second patient effort detected by the second trigger detection application, then the two detected patient efforts are considered to have been generated by the same patient effort and is therefore determined effective. The first patient effort and the second patient effort may correlate if recorded at the same time or within a reasonable and expected time delay, such as 3 seconds or less. This effective patient effort may result in the delivery of a breath.


The ineffective trigger effort is determined based on detected patient effort by the first trigger detection application not correlating with detected patient effort by the second trigger detection application. The first patient effort and the second patient effort may correlate if recorded at the same time or within a reasonable and expected time delay, such as 3 seconds or less. If there is not any correlation between the first detected patient effort and the second detected patient effort, then the patient effort that was not used to trigger the ventilator, in this case the first detected patient effort, is determined to be ineffective. Further, a missed breath is the direct result of an ineffective effort. In an embodiment, an equation or mathematical operation is used to determine if the first detected patient effort correlates with the second detected patient effort. In an embodiment, the first trigger detection application is running in the background, and not actively used to trigger the delivery of breaths to the patient. Further, the second trigger detection application is actively working and is used to trigger the delivery of breaths to the patient. In an embodiment, the first trigger detection application determines patient effort based at least in part on intrapleural pressure.


If the detected patient effort is determined to be effective, the method 300 will perform the update delivered breath indicator operation 310. If the detected patient effort is determined to be ineffective, the method 300 will perform the update missed breath indicator operation 312.


The method 300 further includes the update delivered breath indicator operation 310. The ventilator during the update delivered breath indicator operation 310 displays a delivered breath indicator for the effective trigger effort on the graphical representation. In an embodiment, the ventilator during the update delivered breath indicator operation 310 updates the display of a delivered breath indicator that was previously displayed. The ventilator may store a sequential history of the delivered breath indicators provided. As described above, the graphics module 226, or another suitable component and/or module, may archive delivered breath indicators according to time, and may associate a time element with the delivered breath indicators. In an alternative embodiment, the monitoring modules 216-222 associate the delivered breath indicators with a time element, or time stamp, before communicating data to the graphics module 226. In either case, delivered breath indicators may be archived in sequential order based on time, resulting in an archived effective indicator. In an embodiment, the delivered breath indicator is displayed on top of a graphical representation of a respiratory signal such as, but not limited to, pressure and flow, at an appropriate temporal location based on when the delivered breath occurred. In an embodiment, a delivered breath indicator is displayed as at least one of text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or by another suitable form of graphic display. In another embodiment the delivered breath indicator displays a delivered breath rate. This rate can be the number or an average of the number of delivered breaths per time period, where the time period can be predetermined, such as a minute, or input by the clinician. For example, a delivered breath indicator displays the number of delivered breaths in the last minute. The average can be taken from a predetermined or input number of values over a predetermined or input period of time. For example, a delivered breath indicator displays a rate based on an average of the last five values where each value represents the number of delivered breaths for that minute. In an embodiment, a delivered breath indicator displays a percentage or ratio at least partially representative of the delivered breaths. For example, if the number of delivered breaths as well as the number of missed breaths are both known then a delivered breath indicator representing a percentage or ratio of delivered breaths per total breaths may be displayed where total breaths is the addition of missed breaths and delivered breaths. Indeed, data may be collected and displayed according to any suitable method.


The method 300 further includes the update missed breath indicator operation 312. The ventilator during the update missed breath indicator operation 312 displays a missed breath indicator for the ineffective trigger effort on the graphical representation. In an embodiment, the ventilator during the update missed breath indicator operation 312 updates the display of a missed breath indicator that was previously displayed. The ventilator may store a sequential history of the missed breath indicators provided. The missed breath module 211, or another suitable component and/or module, may archive missed breath indicators according to time, and may associate a time element with the missed breath indicators. In the alternative, the monitoring modules 216-222 may associate the missed breath indicators with a time element, or time stamp, before communicating data to the graphics module 226 and/or the missed breath module 211. In either case, missed breath indicators may be archived in sequential order based on time, resulting in an archived ineffective indicator. In an embodiment missed breath indicators as well as delivered breath indicators may be archived in sequential order based on time, resulting in an archived total indicator. In an embodiment, the missed breath indicator is displayed on top of a graphical representation of a respiratory signal such as, but not limited to, pressure and flow, at an appropriate temporal location based on when the missed breath occurred. In an embodiment, a missed breath is displayed as at least one of text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or by another suitable form of graphic display. In another embodiment the missed breath indicator displays a missed breath rate. This rate can be the number or an average of the number of missed breaths per time period, where the time period can be predetermined, such as a minute, or input by the clinician. For example, a missed breath indicator displays the number of missed breaths in the last minute. The average can be taken from a predetermined or input number of values over a predetermined or input period of time. For example, a missed breath indicator displays a rate based on an average of the last five values where each value represents the number of missed breaths for that minute. In an embodiment, a missed breath indicator displays a percentage or ratio at least partially representative of the missed breaths. For example, if the number of delivered breaths as well as the number of missed breaths are both known then a missed breath indicator representing a percentage or ratio of missed breaths per total breaths may be displayed where total breaths is the addition of missed breaths and delivered breaths. In an embodiment, the missed breath indicator displays a total breath indicator where the total breath indicator at least partially represents the total breaths, where the total breaths is the addition of missed breaths and delivered breaths. Additionally, a missed breath indicator may be displayed to represent that missed breaths are being monitored. Further, a missed breath indicator may be displayed to represent settings for monitoring missed breaths. For example, a missed breath indicator displays a prompt with adjustable elements representative of turning on and/or off the missed breath monitoring as well as inhalation and exhalation trigger values for missed breath monitoring using the first trigger detection application. Indeed, data may be collected and displayed according to any suitable method.


It is understood by a person of skill in the art that the update delivered breath indicator operation 310 and the update missed breath indicator operation 312 may be performed in any order and/or simultaneously. In one embodiment, the update delivered breath indicator operation 310 and/or the update missed breath indicator operation 312 are performed in real-time or quasi-real-time.


In an embodiment, the method 300 repeats and/or is performed at least once during each breath cycle.



FIG. 4 illustrates an embodiment of a graphical user interface (GUI) 400 for displaying a plurality of graphical representations of respiratory data, a delivered breath indicator, and a missed breath indicator. Specifically, FIG. 4 illustrates an embodiment of a missed breath display screen wherein a clinician may initiate a missed breath monitoring mode and thereafter may simultaneously view a plurality of graphical representations and missed breath indicators corresponding to missed breaths.


The disclosed embodiment of the graphical user interface 400 provides a plurality of graphical representations of respiratory data to a clinician. Graphical representations may include, inter cilia, pressure waveforms, volume waveforms, flow waveforms, flow curves, pressure-volume loops, flow-volume loops, text, symbols, prompts, graphics, lights, lines, cursors, interactive elements, indicators, or any other current or future known graphical representation suitable for the GUI 400. Specifically, the GUI 400 includes, for example, a pressure waveform (graphical representation 402), a flow waveform (graphical representation 404), a historical delivered breath indicator (delivered breath indicator 406), a delivered breath indicator (delivered breath indicator 408), a missed breath indicator (missed breath indicator 410), a historical missed breath indicator (missed breath indicator 412), a missed breath cursor (missed breath indicator 414), a delivered breath cursor (delivered breath indicator 416), and a monitoring mode settings box (missed breath indicator 418).


The pressure waveform 402 may display circuit pressure in cm H2O over time (for example, over seconds, s). As shown, the pressure waveform 402 illustrates two distinct peaks in circuit pressure, corresponding to the inspiratory phases of two respiratory cycles, or breaths. The flow waveform 404 may display flow in liters (L) over time (for example, over minutes, min). As shown, the flow waveform 404 illustrates inspiratory flow as a positive curve, and expiratory flow as a negative curve. Two distinct respiratory cycles or breaths, each including a positive inspiratory phase and a negative expiratory phase, are illustrated in the flow waveform 404.


As described previously, the delivered breath indicator 408 may be provided to display the rate of delivered breaths over time (for example, over minutes, min) for a period of time. As shown, the delivered breath indicator 408 is a floating indicator over an axis of breaths per minute. The delivered breath indicator 408 may be text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or any display element suitable to display a rate of delivered breaths over time. In an embodiment, the period of time is predetermined or input by a clinician. For example, if a clinician wants to see the effect of changing settings on patient-ventilator synchrony, the clinician can set the historical delivered breath indicator 406 as the current delivered breath indicator 408. Then the clinician can change ventilation settings and observe how the change in settings affects the delivered breath indicator 408. This observation may give the clinician insight as to how effective the change in ventilation settings was to reduce patient-ventilator asynchrony. In an embodiment, the delivered breath indicator 408 includes a numeric value and/or text used to display delivered breaths over time for a period of time. For example, at least one of a number of delivered breaths over a period of time, such as the last minute, and a percentage or ratio of how many of the total breaths over a period of time, such as the last minute, were delivered where total breaths is the addition of missed breaths and delivered breaths.


As described previously the missed breath indicator 410 may be provided to display the rate of missed breaths over time (for example, over minutes, min) for a period of time. As shown, the missed breath indicator 410 is a floating indicator over an axis of breaths per minute. The missed breath indicator 410 may be text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or any display element suitable to display a rate of missed breaths over time. In an embodiment, the period of time is predetermined or input by a clinician. For example, if a clinician wants to see the effect of changing settings on patient-ventilator synchrony, the clinician can set the historical missed breath indicator 412 as the current missed breath indicator 410. Then the clinician can change ventilation settings and observe how the change in settings affects the missed breath indicator 410. This observation may give the clinician insight as to how effective the change in ventilation settings was to reduce patient-ventilator asynchrony. In an embodiment, the missed breath indicator 410 includes a numeric value and/or text used to display missed breaths over time for a period of time. For example, at least one of a number of missed breaths over a period of time, such as the last minute, and a percentage or ratio of how many of the total breaths over a period of time, such as the last minute, were missed where total breaths is the addition of missed breaths and delivered breaths.


As previously described, the historical delivered breath indicator 406 may be provided to display the rate of delivered breaths over time (for example, over minutes, min) for a historical archived period of time. As shown, the historical delivered breath indicator 406 is a floating indicator over an axis of breaths per minute. In an embodiment, the historical archived period of time is predetermined or input by a clinician. For example, if a clinician wants to see the effect of changing settings on patient-ventilator synchrony, the clinician can set the historical delivered breath indicator 406 as the current delivered breath indicator 408. Then the clinician can change ventilation settings and observe how the change in settings affects the delivered breath indicator 408. This observation may give the clinician insight as to how effective the change in ventilation settings was to reduce patient-ventilator asynchrony. In an embodiment, the historical delivered breath indicator 406 includes a numeric value and/or text used to display delivered breaths over time for a historical archived period of time. For example, at least one of a number of delivered breaths over a period of time, such as a minute, and a percentage or ratio of how many of the total breaths over a period of time, such as a minute, were delivered where total breaths is the addition of missed breaths and delivered breaths.


As previously described, the historical missed breath indicator 412 displays the rate of total breaths over time (for example, over minutes, min) for a historical archived period of time, where total breaths is the addition of delivered breaths and missed breaths. In another embodiment, the historical missed breath indicator 412 displays the rate of missed breaths over time (for example, over minutes, min) for a historical archived period of time. As shown, the historical missed breath indicator 412 is a floating indicator over an axis of breaths per minute. Further, the historical missed breath indicator 412 is of a shape that will form a distinguishable shape, which may or may not be different, when representing the same value on the axis as the historical delivered breath indicator 406. In an embodiment, the historical archived period of time is predetermined or input by a clinician. For example, if a clinician wants to see the effect of changing settings on patient-ventilator synchrony, the clinician can set the historical missed breath indicator 412 as the current missed breath indicator 410. Then the clinician can change ventilation settings and observe how the change in settings affects the missed breath indicator 410. This observation may give the clinician insight as to how effective the change in ventilation settings was to reduce patient-ventilator asynchrony. In an embodiment, the historical missed breath indicator 412 includes a numeric value and/or text used to display missed breaths over time for a historical archived period of time. For example, at least one of a number of missed breaths over a period of time, such as a minute, and a percentage or ratio of how many of the total breaths over a period of time, such as a minute, were missed where total breaths is the addition of missed breaths and delivered breaths. It should be noted that in the depicted embodiment the axis label “Respiratory Rate Synchrony Indicator” represents a missed breath indicator used to display that a mode, such as the missed breath module 211 or trigger detection applications as described above, is running in the background to determine when missed breaths occur.


The GUI 400 further includes the missed breath cursor 414. The missed breath cursor 414 is a specific type of missed breath indicator 410 that is provided to display relative to another graphical representation, for example the pressure waveform 402 and/or the flow waveform 404, when a missed breath occurred. As described previously with reference to the graphics module 226, missed breath indicators may be time-stamped, or otherwise associated with a time element, when respiratory data is received by the monitoring modules 216-222 or the missed breath module 211. Alternatively, a time element may be associated with the respiratory data when a graphical representation and/or indicator is generated by the graphics module 226 or missed breath module 211, for example. In either case, when a clinician utilizes a cursor mode to scroll back into historical data, the graphics module 226, or other retrieval module (not shown), may determine appropriate respiratory data corresponding to the scroll time. The appropriate respiratory data may then be displayed as the missed breath cursor 414. As shown, the missed breath cursor 414 is a cursor displayed at the correct temporal location over the pressure waveform 402 and the flow waveform 404, and represents an occurrence of a missed breath. Further, the missed breath cursor 414 as shown is of a shape that will form a distinguishable shape, which may or may not be different, when located at the same or similar temporal location as the delivered breath cursor 416. In an embodiment, a patient effort detected using the missed breath module 211 or the trigger detection applications as described above while running in the background to detect missed breaths is displayed using the missed breath cursor 414. As shown, the most recent breath (the cursor furthest to the right of the pressure 402 and flow waveforms 404) was triggered by a patient effort that was detected by both a mode running in the background to detect missed breaths and a mode used to trigger the ventilator, and therefore the cursor forms a different shape, in this case a diamond as opposed to a triangle, which can be interpreted by a clinician as a synchronous patient effort, or a patient effort that directly resulted in the delivery of a breath from the ventilator.


The GUI 400 further includes the delivered breath cursor 416. The delivered breath cursor 416 is a specific type of missed breath indicator 410 that is provided to display relative to another graphical representation, for example the pressure waveform 402 and/or the flow waveform 404, when a delivered breath occurred. As described previously with reference to the graphics module 226, delivered breath indicators may be time-stamped, or otherwise associated with a time element, when respiratory data is received by the monitoring modules 216-222. Alternatively, a time element may be associated with the respiratory data when a graphical representation is generated by the graphics module 226, for example. In either case, when a clinician utilizes a cursor mode to scroll back into historical data, the graphics module 226, or other retrieval module (not shown), may determine appropriate respiratory data corresponding to the scroll time. The appropriate respiratory data may then be displayed as the delivered breath cursor 416. As shown, the delivered breath cursor 416 is a cursor displayed at the correct temporal location over the pressure waveform 402 and the flow waveform 404, and represents an occurrence of a delivered breath. Further, the delivered breath cursor 416 as shown is of a shape that will form a distinguishable shape, which may or may not be different, when located at the same or similar temporal location as the missed breath cursor 414. In an embodiment, a patient effort detected using the monitoring modules 216-222 or the trigger detection applications as described above while running in the foreground to detect patient effort or other respiratory data used to trigger the delivery of a breath is displayed using the delivered breath cursor 416.


The GUI 400 further includes the monitoring mode settings 418. The monitoring mode settings 418 may be provided to display and/or adjust one or more settings relating to the trigger detection application running in the background to detect missed breaths. As shown the monitoring mode settings 418 include an option for turning the missed breath monitoring on or off, a setting to adjust the inhalation trigger sensitivity level of the background trigger detection application, a setting to adjust the exhalation trigger sensitivity level of the background trigger detection application, and an option to close, or not display, the monitoring mode settings 418.


The disclosed windows and elements of the GUI 400 may be arranged in any suitable order or configuration such that information may be communicated to the clinician in an efficient and orderly manner. Windows disclosed in the illustrated embodiment of the GUI 400 may be configured with elements for accessing alternative graphical display screens as may be provided by the ventilator. Disclosed windows and elements are not to be understood as an exclusive array, as any number of similar suitable windows and elements may be displayed for the clinician within the spirit of the present disclosure. Further, the disclosed windows and elements are not to be understood as a necessary array, as any number of the disclosed windows and elements may be appropriately replaced by other suitable windows and elements without departing from the spirit of the present disclosure. The illustrated embodiment of the GUI 400 is provided as an example only, including potentially useful windows and elements that may be provided to the clinician to facilitate the input of selections and commands relevant to the display of respiratory data and to display such respiratory data in an orderly and informative way, as described herein.


The above-mentioned embodiments of one or more missed breath indicator display screens, illustrated in FIG. 4, are not meant to provide an exclusive array of potential or possible embodiments. Indeed, some of the features and characteristics of the above embodiments may be interchanged and combined to provide additional embodiments and configurations of the described graphical user interfaces. In addition, in keeping with the spirit of the present disclosure, features described may not be essential, but may be added or removed according to the desires and needs of a clinician, hospital, clinic, or other entity or individual.



FIG. 5 is a flow diagram illustrating an embodiment of a method 500 for displaying and/or updating the display of a missed breath indicator. In an embodiment, the method 500 is performed by the missed breath module 109 described in FIG. 1. As illustrated, the ventilator system during the method 500 starts ventilation as is described with respect to starting ventilation in the above method 300. The method 500 further includes a detect patient effort operation 506 and an effective trigger determination operation 508, which are the same as operations 306 and 308, respectively, and a update missed breath indicator operation 512. During the effective trigger determination operation 508 if the patient effort is determined to be effective the method 500 will return to the detect patient effort operation 506. During the effective trigger determination operation 508 if the patient effort is determined to be ineffective the method 500 will proceed to the update missed breath indicator operation 512.


The method 500 further includes the update missed breath indicator operation 512. The ventilator during the update missed breath indicator operation 512 displays a missed breath indicator for the ineffective trigger effort. In an embodiment, the ventilator during the update missed breath indicator operation 512 updates the display of a missed breath indicator previously displayed for the ineffective trigger effort. The ventilator may store a sequential history of the missed breath indicators provided. The missed breath module 211, or another suitable component and/or module, may archive missed breath indicators according to time, and may associate a time element with the missed breath indicators. In the alternative, the monitoring modules 216-222 may associate the missed breath indicators with a time element, or time stamp, before communicating data to the graphics module 226 and/or the missed breath module 211. In either case, missed breath indicators may be archived in sequential order based on time, resulting in an archived ineffective indicator. In an embodiment, a missed breath is displayed as at least one of text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or by another suitable form of graphic display. In another embodiment the missed breath indicator displays a missed breath rate. This rate can be the number or an average of the number of missed breaths per time period, where the time period can be predetermined, such as a minute, or input by the clinician. For example, a missed breath indicator displays the number of missed breaths in the last minute. The average can be taken from a predetermined or input number of values over a predetermined or input period of time. For example, a missed breath indicator displays a rate based on an average of the last five values where each value represents the number of missed breaths for that minute. In an embodiment, a missed breath indicator displays a percentage or ratio at least partially representative of the missed breaths. For example, if the number of delivered breaths as well as the number of missed breaths are both known then a missed breath indicator representing a percentage or ratio of missed breaths per total breaths may be displayed where total breaths is the addition of missed breaths and delivered breaths. In an embodiment, the missed breath indicator displays a total breath indicator where the total breath indicator at least partially represents the total breaths, where the total breaths are the addition of missed breaths and delivered breaths. Additionally, a missed breath indicator may be displayed to represent that missed breaths are being monitored. Further, a missed breath indicator may be displayed to represent settings for monitoring missed breaths. For example, a missed breath indicator displays a prompt with adjustable elements representative of turning on and/or off the missed breath monitoring as well as inhalation and exhalation trigger values for missed breath monitoring using the first trigger detection application. Indeed, data may be collected and displayed according to any suitable method.



FIG. 6 is a flow diagram illustrating an embodiment of a method 600 for displaying and/or updating the display of a missed breath indicator. In an embodiment, the method 600 is performed by the missed breath module 109 described in FIG. 1. As illustrated, the ventilator system during the method 600 starts ventilation as is described with respect to starting ventilation in the above method 300. The method 600 further includes a monitor ventilation operation 602, a detect patient effort operation 604, a calculate missed breaths operation 608, and an update missed breath indicator operation 612. In an embodiment, the method further includes an update counter operation 606.


The method 600 includes the monitor ventilation operation 602. During the monitor ventilation operation 602 the ventilator monitors respiratory data with at least one sensor. In an embodiment, the at least one sensor is similar to the sensors utilized by the monitoring modules 216-222 as described above. In an embodiment, the respiratory data includes at least one of a pressure, flow, volume, intrapleural pressure, and/or any other data collected regarding the physical condition of the patient.


The method 600 further includes the detect patient effort operation 604. During the detect patient effort operation 604 the ventilator analyzes the respiratory data with a first trigger detection application and a second trigger detection application. Further, during the detect patient effort operation 604 the ventilator detects patient inspiratory and/or expiratory efforts with the first trigger detection application and the second trigger detection application. In an embodiment, the ventilator uses at least two trigger detection applications to analyze the monitored respiratory data. As discussed above, a trigger detection application is a hardware or software application that determines when a patient effort occurs based on a selected or predetermined spontaneous breath type. The second, or active trigger detection application may include Proportional Assist Ventilation (PAV), Volume Ventilation Plus (VV+), I:E SYNC, Pressure Support (PS), Volume Support (VS), Assist Control (AC), Volume Control (VC), Pressure Control (PC), Airway Pressure Release Ventilation (APRV), Continuous Positive Airway Pressure (CPAP), and BiLevel Positive Airway Pressure (BPAP). The active trigger detection application may determine patient efforts based on monitoring respiratory parameters such as but not limited to pressure and flow. In one embodiment the first, or background trigger detection application is I:E SYNC. In this embodiment, the background trigger detection application determines patient effort based on monitoring intrapleural pressure.


During the detect patient effort operation 604 if a patient effort is not detected by a trigger detection application, the method 600 will return to the monitor ventilation operation 602. During the detect patient effort operation 604 if a patient effort is detected by a trigger detection application, the method 600 will proceed to the calculate missed breaths operation 608. In an embodiment, during the detect patient effort operation 604 if a patient effort is detected by a trigger detection application, the method 600 will proceed to the update counter operation 606.


The method 600 includes the calculate missed breaths operation 608. In an embodiment, during the calculate missed breaths operation 608 the ventilator calculates a missed breaths metric based on detected patient inspiratory and/or expiratory efforts by the first trigger detection application and detected patient inspiratory and/or expiratory efforts by the second trigger detection application. A missed breaths metric is an equation, number, point in time, value, percentage, rate, ratio, relationship, or any other suitable representation of missed breaths. In an embodiment, if the first trigger detection application detects a patient inspiratory and/or expiratory effort that is not within an expected and reasonable time delay, such as 3 seconds or less, of a patient inspiratory and/or expiratory effort detected by the second trigger detection application, then a breath has been missed. The ventilator during the calculate missed breaths operation 608 may store a single instance of a missed breath or a sequential history of the missed breaths over a predetermined period of time or a period of time set by a clinician. In an embodiment, an equation or mathematical operation is used to determine if the first detected patient effort correlates with the second detected patient effort.


In an embodiment, the ventilator during the calculate missed breaths operation 608 calculates a missed breaths metric based on the at least one counter. In this embodiment, the method 600 further includes the update counter operation 606. During the update counter operation 606 the ventilator updates a counter with a sum of the detected patient inspiratory and/or expiratory efforts by the first trigger detection application and a sum of the detected patient inspiratory and/or expiratory efforts by the second trigger detection application. In an embodiment, at least two counters are used, where a first counter is updated with a sum of the detected patient inspiratory and/or expiratory efforts by the first trigger detection application and a second counter is updated with a sum of the detected patient inspiratory and/or expiratory efforts by the second trigger detection application. In an embodiment, a single counter is used where a count of patient inspiratory and/or expiratory efforts detected with the first trigger detection application is added to the counter and a count of patient inspiratory and/or expiratory efforts detected with the second trigger detection application is subtracted from the counter. In another embodiment a mathematical model, or algorithm is used to calculate how patient inspiratory and/or expiratory efforts detected with the first or second trigger detection applications update at least one counter. In an embodiment, the at least one counter is reset after a predetermined amount of time or breath cycles, or in response to clinician input.


In an embodiment, a first counter represents a sum of patient inspiratory and/or expiratory efforts detected with a first trigger detection application and a second counter represents a sum of patient inspiratory and/or expiratory efforts detected with a second trigger detection application. The ventilator during the calculate missed breaths operation 608 performs an algorithm or mathematical operation, such as subtracting the count of the second counter from the count of the first counter, with the two counters to calculate a missed breaths metric. In an embodiment, the value of a counter represents a missed breaths metric and no further algorithm or mathematical operation is needed to calculate the missed breaths metric. In another embodiment, a single counter is used and an algorithm or mathematical operation must be performed with the counter in order to calculate the missed breaths metric. Indeed, the missed breaths metric may be calculated according to any suitable method.


The method 600 further includes the update missed breath indicator operation 612. The ventilator during the update missed breath indicator operation 612 displays a missed breath indicator based on the missed breaths metric. In an embodiment, the ventilator during the update missed breath indicator operation 612 updates the display of a previously displayed missed breath indicator based on the missed breaths metric. The ventilator may store a sequential history of the missed breath indicators provided. The missed breath module 211, or another suitable component and/or module, may archive missed breath indicators according to time, and may associate a time element with the missed breath indicators. In the alternative, the monitoring modules 216-222 may associate the missed breath indicators with a time element, or time stamp, before communicating data to the graphics module 226 and/or the missed breath module 211. In either case, missed breath indicators may be archived in sequential order based on time, resulting in an archived ineffective indicator. In an embodiment, the missed breath indicator is displayed on top of a graphical representation of a respiratory signal such as, but not limited to, pressure and flow, at an appropriate temporal location based on when the missed breath occurred. In an embodiment, a missed breath is displayed as at least one of text, symbol, prompt, graphic, light, line, cursor, interactive element, indicator, or by another suitable form of graphic display.


In another embodiment the missed breath indicator displays a missed breath rate. This rate can be the number or an average of the number of missed breaths per time period, where the time period can be predetermined, such as a minute, or input by the clinician. For example, a missed breath indicator displays the number of missed breaths in the last minute. The average can be taken from a predetermined or input number of values over a predetermined or input period of time. For example, a missed breath indicator displays a rate based on an average of the last five values where each value represents the number of missed breaths for that minute. In an embodiment, a missed breath indicator displays a percentage or ratio at least partially representative of the missed breaths. For example, if the number of delivered breaths as well as the number of missed breaths are both known, then a missed breath indicator representing a percentage or ratio of missed breaths per total breaths may be displayed where total breaths is the addition of missed breaths and delivered breaths. In an embodiment, the missed breath indicator displays a total breath indicator where the total breath indicator at least partially represents the total breaths, where the total breaths is the addition of missed breaths and delivered breaths.


Additionally, a missed breath indicator may be displayed to represent that missed breaths are being monitored. Further, a missed breath indicator may be displayed to represent settings for monitoring missed breaths. For example, a missed breath indicator displays a prompt with adjustable elements representative of turning on and/or off the missed breath monitoring as well as inhalation and exhalation trigger values for missed breath monitoring using the first trigger detection application. Indeed, data may be collected and displayed according to any suitable method.


In an embodiment, the method 600 following the update missed breath indicator operation 612 returns to the monitor ventilation operation 602.


It will be clear that the systems and methods described herein are well adapted to attain the ends and advantages mentioned as well as those inherent therein. Those skilled in the art will recognize that the methods and systems within this specification may be implemented in many manners and as such is not to be limited by the foregoing exemplified embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software, and individual functions can be distributed among software applications at either the client or server level. In this regard, any number of the features of the different embodiments described herein may be combined into one single embodiment and alternative embodiments having fewer than or more than all of the features herein described are possible.


While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A method implemented by a ventilator for determining missed breaths, the method comprising: ventilating a patient with the ventilator, wherein the ventilator includes a pneumatic system and at least one sensor;monitoring respiratory data of the patient with the at least one sensor;analyzing the respiratory data with a background trigger detection application and an active trigger detection application, wherein the background trigger detection application and the active trigger detection application are different and running at the same time;detecting a first patient inspiratory effort with the active trigger application;detecting a second patient inspiratory effort with the background trigger application;comparing a first timing of the first patient inspiratory effort to a second timing of the second patient inspiratory effort;determining a timing difference between the first patient inspiratory effort and the second inspiratory effort;comparing the timing difference to a time delay threshold;determining that the timing difference does not meet the time delay threshold to form a missed breath determination;calculating a missed breaths metric based on the missed breath determination;displaying a missed breath indicator based on the missed breaths metric; anddelivering inspiratory gas to the patient with the ventilator based on patient inspiratory efforts detected by the active trigger detection application and not based on patient inspiratory efforts detected by the background trigger detection application.
  • 2. The method according to claim 1, wherein the background trigger detection application monitors patient inspiratory efforts based on at least intrapleural pressure.
  • 3. The method according to claim 1, wherein the step of calculating the missed breaths metric comprises: updating a counter with a sum of detected patient inspiratory efforts by the background trigger detection application and a sum of detected patient inspiratory efforts by the active trigger detection application;determining a difference with the counter between the sum of the detected patient inspiratory efforts by the background trigger detection application and the sum of the detected patient inspiratory efforts by the active trigger detection application; andcalculating the missed breaths metric based on the difference.
  • 4. The method according to claim 1, wherein the step of calculating the missed breaths metric comprises: updating a first counter with a sum of detected patient inspiratory efforts by the background trigger detection application and a second counter with a sum of detected patient inspiratory efforts by the active trigger detection application;determining a difference between the first counter and the second counter; andcalculating the missed breaths metric based on the difference.
  • 5. The method according to claim 1, wherein the step of displaying the missed breath indicator comprises: determining a graphical representation of the respiratory data;displaying the graphical representation;determining an appropriate position for the missed breaths metric on the graphical representation based on time; anddisplaying the missed breath indicator based on the missed breaths metric at the appropriate position on the graphical representation.
  • 6. The method according to claim 1, wherein the step of displaying the missed breath indicator comprises: archiving a plurality of missed breaths metrics during a time period;determining an appropriate missed breath indicator based on the archived plurality of missed breaths metrics; anddisplaying the missed breath indicator.
  • 7. The method according to claim 6, wherein the step of displaying the missed breath indicator comprises: determining a graphical representation of the respiratory data;displaying the graphical representation;determining an appropriate position on the graphical representation based on time for the archived plurality of missed breaths metrics; anddisplaying the missed breath indicator at the appropriate position on the graphical representation.
  • 8. A ventilator system, the ventilator system comprising: a ventilator including a pneumatic system, at least one sensor, and a user interface;wherein the pneumatic system provides pressurized gas to a patient being ventilated by the ventilator system in response to patient inspiratory efforts detected by an active trigger detection application;wherein the ventilator determines additional patient efforts that are detected by a background trigger application;wherein the ventilator determines a missed breath based on a calculated timing difference between the additional patient inspiratory efforts detected by the background trigger detection application and the patient inspiratory efforts detected by the active trigger detection application, wherein the background trigger detection application and the active trigger detection application are different;wherein the user interface accepts commands and displays respiratory data, the user interface including: graphical representations of respiratory data; anda missed breath indicator.
  • 9. The ventilator system according to claim 8, wherein the user interface further comprises: a delivered breath indicator on the graphical representation.
  • 10. The ventilator system according to claim 8, wherein the missed breath indicator is based on detected patient inspiratory efforts from monitoring intrapleural pressure.
  • 11. The ventilator system according to claim 8, wherein the missed breath indicator is a cursor on the graphical representation representing a temporal location of a missed breath.
  • 12. The ventilator system according to claim 8, wherein the missed breath indicator is at least one of a rate and a percentage representing missed breaths per total breaths, wherein total breaths is the addition of missed breaths and delivered breaths.
  • 13. A ventilatory system for providing a graphical user interface for accepting commands and for displaying respiratory data, comprising: at least one display device;a missed breath module that determines missed breaths based on a calculated difference between a number of background patient inspiratory efforts detected by a background trigger detection application and a number of active patient inspiratory efforts detected by an active trigger detection application;a ventilation module that ventilates a patient based on the active patient inspiratory efforts detected by the active trigger detection application and not based on the background patient inspiratory efforts detected by the background trigger detection application; andat least one memory, communicatively coupled to the at least one processor and containing instructions that, when executed by the at least one processor of the ventilatory system, provide the graphical user interface on the at least one display, the graphical user interface comprising: a missed breath indicator.
  • 14. The ventilatory system of claim 13, wherein the background trigger detection application determines missed breaths based on monitored intrapleural pressure.
  • 15. The ventilatory system of claim 13, wherein the graphical user interface on the at least one display further comprises: graphical representations of respiratory data, wherein the missed breath indicator is located on the graphical representation.
  • 16. The ventilatory system of claim 13, wherein the missed breath indicator includes an archived ineffective indicator.
  • 17. A non-transitory computer-readable medium having computer-executable instructions implemented by a processor on a ventilator for determining missed breaths, the instructions-comprising: monitor respiratory data with at least one sensor;analyze the respiratory data with a background trigger detection application and an active trigger detection application;detect a first patient inspiratory effort with the active trigger application;detect a second patient inspiratory effort with the background trigger application;determine a timing difference between the first patient inspiratory effort and the second inspiratory effort;determine that the timing difference does not meet a time delay threshold to form a missed breath determination;trigger ventilation in a patient being ventilated by the ventilator system based on patient inspiratory efforts detected with the active trigger detection application and not the patient inspiratory efforts detected by the background trigger detection application;calculate a missed breaths metric based on the missed breath determination; anddisplay a missed breath indicator based on the missed breaths metric.
  • 18. A medical ventilator system, comprising: means for ventilating a patient with the medical ventilator, wherein the medical ventilator includes a pneumatic system and at least one sensor;means for monitoring respiratory data with the at least one sensor;means for analyzing the respiratory data with a background trigger detection application and an active trigger detection application;means for detecting a first patient inspiratory effort with the active trigger application;means for detecting a second patient inspiratory effort with the background trigger application;means for comparing a first timing of the first patient inspiratory effort to a second timing of the second patient inspiratory effort;means for determining a timing difference between the first patient inspiratory effort and the second inspiratory effort;means for comparing the timing difference to a time delay threshold;means for determining that the timing difference does not meet the time delay threshold to form a missed breath determination;means for calculating a missed breaths metric based on the missed breath determination;means for displaying a missed breath indicator based on the missed breaths metric; andwherein the means for ventilating the patient delivers inspiratory gases to the patient based on patient inspiratory efforts detected by the active trigger detection application and not the background trigger detection application.
US Referenced Citations (1564)
Number Name Date Kind
1202125 Tullar Oct 1916 A
1202126 Tullar Oct 1916 A
1241056 Tullar Sep 1917 A
2914067 Meidenbauer Nov 1959 A
3339545 Barnett Sep 1967 A
3575167 Michielsen Apr 1971 A
3577984 Levy et al. May 1971 A
3584618 Reinhard et al. Jun 1971 A
3628531 Harris Dec 1971 A
3643652 Beltran Feb 1972 A
3659590 Jones et al. May 1972 A
3677267 Richards Jul 1972 A
3722510 Parker Mar 1973 A
3739776 Bird et al. Jun 1973 A
3759249 Fletcher et al. Sep 1973 A
3871371 Weigl Mar 1975 A
3908704 Clement et al. Sep 1975 A
3911899 Hattes Oct 1975 A
3940742 Hudspeth et al. Feb 1976 A
3952739 Cibulka Apr 1976 A
3957044 Fletcher et al. May 1976 A
3961624 Weigl Jun 1976 A
3961627 Ernst et al. Jun 1976 A
3968794 O'Neill Jul 1976 A
3968795 O'Neill et al. Jul 1976 A
3977394 Jones et al. Aug 1976 A
3985131 Buck et al. Oct 1976 A
3991304 Hillsman Nov 1976 A
3996928 Marx Dec 1976 A
4034743 Greenwood et al. Jul 1977 A
4036217 Ito et al. Jul 1977 A
4053951 Hudspeth et al. Oct 1977 A
4090513 Togawa May 1978 A
4095592 Delphia Jun 1978 A
4112931 Burns Sep 1978 A
4187842 Schreiber Feb 1980 A
4215409 Strowe Jul 1980 A
4241739 Elson Dec 1980 A
4258718 Goldman Mar 1981 A
4281651 Cox Aug 1981 A
4284075 Krasberg Aug 1981 A
4294242 Cowans Oct 1981 A
4296756 Dunning et al. Oct 1981 A
4299236 Poirier Nov 1981 A
4308872 Watson et al. Jan 1982 A
4316182 Hodgson Feb 1982 A
4323064 Hoenig et al. Apr 1982 A
4326513 Schulz et al. Apr 1982 A
4366821 Wittmaier et al. Jan 1983 A
4391283 Sharpless et al. Jul 1983 A
4401115 Monnier Aug 1983 A
4401116 Fry et al. Aug 1983 A
4407295 Steuer et al. Oct 1983 A
4421113 Gedeon et al. Dec 1983 A
4433693 Hochstein Feb 1984 A
4440166 Winkler et al. Apr 1984 A
4440177 Anderson et al. Apr 1984 A
4442835 Carnegie Apr 1984 A
4444201 Itoh Apr 1984 A
4459982 Fry Jul 1984 A
4463764 Anderson et al. Aug 1984 A
4473081 Dioguardi et al. Sep 1984 A
4495944 Brisson et al. Jan 1985 A
4498471 Kranz et al. Feb 1985 A
4503850 Pasternak Mar 1985 A
4506667 Ansite Mar 1985 A
4522639 Ansite et al. Jun 1985 A
4537190 Caillot et al. Aug 1985 A
4550726 McEwen Nov 1985 A
4579115 Wallroth et al. Apr 1986 A
4606340 Ansite Aug 1986 A
4630605 Pasternack Dec 1986 A
4637385 Rusz Jan 1987 A
4648407 Sackner Mar 1987 A
4653493 Hoppough Mar 1987 A
4654029 D'Antonio Mar 1987 A
4702240 Chaoui Oct 1987 A
4721060 Cannon et al. Jan 1988 A
4736750 Valdespino et al. Apr 1988 A
4752089 Carter Jun 1988 A
4790327 Despotis Dec 1988 A
4790832 Lopez Dec 1988 A
4796639 Snow et al. Jan 1989 A
4813409 Ismach Mar 1989 A
4852582 Pell Aug 1989 A
4867152 Kou et al. Sep 1989 A
4870960 Hradek Oct 1989 A
4870961 Barnard Oct 1989 A
4876903 Budinger Oct 1989 A
4917108 Mault Apr 1990 A
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4984158 Hillsman Jan 1991 A
4990894 Loescher et al. Feb 1991 A
5003985 White et al. Apr 1991 A
5004472 Wallace Apr 1991 A
5009662 Wallace et al. Apr 1991 A
5016626 Jones May 1991 A
5020527 Dessertine Jun 1991 A
5021046 Wallace Jun 1991 A
5022393 McGrady et al. Jun 1991 A
5048515 Sanso Sep 1991 A
5057822 Hoffman Oct 1991 A
5058601 Riker Oct 1991 A
5072737 Goulding Dec 1991 A
5074297 Venegas Dec 1991 A
5080093 Raabe et al. Jan 1992 A
5086767 Legal Feb 1992 A
5107831 Halpern et al. Apr 1992 A
5117818 Palfy Jun 1992 A
5127398 Stone Jul 1992 A
5129390 Chopin et al. Jul 1992 A
5134994 Say Aug 1992 A
5137026 Waterson et al. Aug 1992 A
5148802 Sanders et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5156145 Flood et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5163423 Suzuki Nov 1992 A
5165397 Arp Nov 1992 A
5165398 Bird Nov 1992 A
5167506 Kilis et al. Dec 1992 A
5174284 Jackson Dec 1992 A
5195512 Rosso Mar 1993 A
5203343 Axe et al. Apr 1993 A
5211170 Press May 1993 A
5224487 Bellofatto et al. Jul 1993 A
5231981 Schreiber et al. Aug 1993 A
5235973 Levinson Aug 1993 A
5237987 Anderson et al. Aug 1993 A
5239995 Estes et al. Aug 1993 A
5246010 Gazzara et al. Sep 1993 A
5251632 Delpy Oct 1993 A
5259374 Miller et al. Nov 1993 A
5261397 Grunstein Nov 1993 A
5261415 Dussault Nov 1993 A
5271389 Isaza et al. Dec 1993 A
5273031 Olsson et al. Dec 1993 A
5273032 Borody Dec 1993 A
5277195 Williams Jan 1994 A
5279304 Einhorn et al. Jan 1994 A
5279549 Ranford Jan 1994 A
5293875 Stone Mar 1994 A
5299568 Forare et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303698 Tobia et al. Apr 1994 A
5303699 Bonassa et al. Apr 1994 A
5303700 Weismann et al. Apr 1994 A
5307794 Rauterkus et al. May 1994 A
5307795 Whitwam et al. May 1994 A
5316009 Yamada May 1994 A
5318017 Ellison Jun 1994 A
5319355 Russek Jun 1994 A
5319540 Isaza et al. Jun 1994 A
5320093 Raemer Jun 1994 A
5322057 Raabe et al. Jun 1994 A
5322059 Walther Jun 1994 A
5323772 Linden et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333106 Lanpher et al. Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5335650 Shaffer et al. Aug 1994 A
5339807 Carter Aug 1994 A
5339825 McNaughton et al. Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5355893 Mick et al. Oct 1994 A
5357946 Kee et al. Oct 1994 A
5357975 Kraemer et al. Oct 1994 A
5363842 Mishelevich et al. Nov 1994 A
5365922 Raemer Nov 1994 A
5368019 LaTorraca Nov 1994 A
5373842 Olsson et al. Dec 1994 A
5373851 Reinhold, Jr. et al. Dec 1994 A
5383448 Tkatchouk et al. Jan 1995 A
5383449 Forare et al. Jan 1995 A
5383470 Kolbly Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5395301 Russek Mar 1995 A
5398676 Press et al. Mar 1995 A
5398682 Lynn Mar 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5404871 Goodman et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5419314 Christopher May 1995 A
5429123 Shaffer et al. Jul 1995 A
5429124 Yoshida et al. Jul 1995 A
5433193 Sanders et al. Jul 1995 A
5435305 Rankin, Sr. Jul 1995 A
5438980 Phillips Aug 1995 A
5442940 Secker et al. Aug 1995 A
5443075 Holscher Aug 1995 A
5445160 Culver et al. Aug 1995 A
5446449 Lhomer et al. Aug 1995 A
5448996 Bellin et al. Sep 1995 A
5452714 Anderson et al. Sep 1995 A
5456264 Series et al. Oct 1995 A
5464410 Skeens et al. Nov 1995 A
5471977 Olsson et al. Dec 1995 A
5474062 DeVires et al. Dec 1995 A
5477860 Essen Moller Dec 1995 A
5479939 Ogino Jan 1996 A
5485833 Dietz Jan 1996 A
5487731 Denton Jan 1996 A
5494028 DeVries et al. Feb 1996 A
5495848 Aylsworth et al. Mar 1996 A
5497767 Olsson et al. Mar 1996 A
5501231 Kaish Mar 1996 A
5503146 Froehlich et al. Apr 1996 A
5507291 Stirbl et al. Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5517985 Kirk et al. May 1996 A
5518002 Wolf et al. May 1996 A
5520071 Jones May 1996 A
5522382 Sullivan et al. Jun 1996 A
5524615 Power Jun 1996 A
5524616 Smith et al. Jun 1996 A
5531221 Power Jul 1996 A
5534851 Russek Jul 1996 A
5537992 Bjoernstijerna et al. Jul 1996 A
5537999 Dearman et al. Jul 1996 A
5540218 Jones et al. Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542410 Goodman et al. Aug 1996 A
5542415 Brody Aug 1996 A
5542416 Chalvignac Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5549117 Tacklind et al. Aug 1996 A
5551418 Estes et al. Sep 1996 A
5551419 Froehlich et al. Sep 1996 A
5553620 Snider et al. Sep 1996 A
5558086 Smith et al. Sep 1996 A
5560353 Willemot et al. Oct 1996 A
5562918 Stimpson Oct 1996 A
5564414 Walker et al. Oct 1996 A
5564416 Jones Oct 1996 A
5564432 Thomson Oct 1996 A
5571142 Brown et al. Nov 1996 A
5575283 Sjoestrand Nov 1996 A
5582163 Bonassa Dec 1996 A
5582167 Joseph Dec 1996 A
5582182 Hillsman Dec 1996 A
5590648 Mitchell et al. Jan 1997 A
5590651 Shaffer et al. Jan 1997 A
5591130 Denton Jan 1997 A
5596983 Zander et al. Jan 1997 A
5596984 O'Mahony et al. Jan 1997 A
5603316 Coufal et al. Feb 1997 A
5606968 Mang Mar 1997 A
5606976 Marshall et al. Mar 1997 A
5608647 Rubsamen et al. Mar 1997 A
5611335 Makhoul et al. Mar 1997 A
5626144 Tacklind et al. May 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahoney et al. May 1997 A
5632281 Rayburn May 1997 A
5634461 Faithfull et al. Jun 1997 A
5634471 Fairfax et al. Jun 1997 A
5642726 Owens et al. Jul 1997 A
5642735 Kolbly Jul 1997 A
5645048 Brodsky et al. Jul 1997 A
5647346 Holscher Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5651264 Lo et al. Jul 1997 A
5651361 Dearman et al. Jul 1997 A
5655516 Goodman et al. Aug 1997 A
5655519 Alfery Aug 1997 A
5660168 Ottosson et al. Aug 1997 A
5660171 Kimm et al. Aug 1997 A
5662099 Tobia et al. Sep 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5669379 Somerson et al. Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5676129 Rocci, Jr. et al. Oct 1997 A
5676132 Tillotson et al. Oct 1997 A
5678539 Schubert et al. Oct 1997 A
5683424 Brown et al. Nov 1997 A
5685318 Elghazzawi Nov 1997 A
5687713 Bahr et al. Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5694924 Cewers Dec 1997 A
5704346 Inoue Jan 1998 A
5704366 Tacklind et al. Jan 1998 A
5704367 Ishikawa et al. Jan 1998 A
5706801 Remes et al. Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5720276 Kobatake et al. Feb 1998 A
5724962 Vidgren et al. Mar 1998 A
5724990 Ogino Mar 1998 A
5730121 Hawkins, Jr. et al. Mar 1998 A
5730140 Fitch Mar 1998 A
5730145 Defares et al. Mar 1998 A
5735267 Tobia Apr 1998 A
5735287 Thomson Apr 1998 A
5738092 Mock et al. Apr 1998 A
5740792 Ashley et al. Apr 1998 A
5740797 Dickson Apr 1998 A
5743267 Nikolic et al. Apr 1998 A
5752506 Richardson May 1998 A
5752509 Lachmann et al. May 1998 A
5755218 Johansson et al. May 1998 A
5758652 Nikolic Jun 1998 A
5762480 Adahan Jun 1998 A
5765558 Psaros et al. Jun 1998 A
5771884 Yarnell et al. Jun 1998 A
5778874 Maguire et al. Jul 1998 A
5791339 Winter Aug 1998 A
5794612 Wachter et al. Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5800361 Rayburn Sep 1998 A
5803065 Zdrojkowski et al. Sep 1998 A
5806512 Abramov et al. Sep 1998 A
5806514 Mock et al. Sep 1998 A
5807245 Aldestam et al. Sep 1998 A
5809997 Wolf Sep 1998 A
5810000 Stevens Sep 1998 A
5810741 Essen Moller Sep 1998 A
5813397 Goodman et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5813401 Radcliff et al. Sep 1998 A
5814086 Hirschberg et al. Sep 1998 A
5819723 Joseph Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5826570 Goodman et al. Oct 1998 A
5826575 Lall Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5832916 Lundberg Nov 1998 A
5832919 Kano et al. Nov 1998 A
5839430 Cama Nov 1998 A
5860418 Lundberg Jan 1999 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5865171 Cinquin Feb 1999 A
5865174 Kloeppel Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5875777 Eriksson Mar 1999 A
5876352 Weismann Mar 1999 A
5876353 Riff Mar 1999 A
5878744 Pfeiffer Mar 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5881725 Hoffman et al. Mar 1999 A
5884622 Younes Mar 1999 A
5884623 Winter Mar 1999 A
5891023 Lynn Apr 1999 A
5899203 Defares et al. May 1999 A
5906203 Klockseth et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5911218 DiMarco Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5921920 Marshall et al. Jul 1999 A
5924418 Lewis Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931162 Christian Aug 1999 A
5932812 Delsing Aug 1999 A
5934274 Merrick et al. Aug 1999 A
5937853 Strom Aug 1999 A
5937854 Stenzler Aug 1999 A
5944680 Christopherson Aug 1999 A
5956501 Brown Sep 1999 A
5957861 Combs et al. Sep 1999 A
5964218 Smith et al. Oct 1999 A
5970975 Estes et al. Oct 1999 A
5971937 Ekstrom Oct 1999 A
5975081 Hood et al. Nov 1999 A
5979440 Honkonen et al. Nov 1999 A
5980466 Thomson Nov 1999 A
5996580 Swann Dec 1999 A
6000396 Melker et al. Dec 1999 A
6012450 Rubsamen Jan 2000 A
6015388 Sackner et al. Jan 2000 A
6017315 Starr et al. Jan 2000 A
6019100 Alving et al. Feb 2000 A
6024089 Wallace et al. Feb 2000 A
6026323 Skladnev et al. Feb 2000 A
6029660 Calluaud et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6032119 Brown et al. Feb 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6055506 Frasca, Jr. Apr 2000 A
6055981 Laswick et al. May 2000 A
6068602 Tham et al. May 2000 A
6073110 Rhodes et al. Jun 2000 A
6076523 Jones et al. Jun 2000 A
6095140 Poon et al. Aug 2000 A
6099481 Daniels et al. Aug 2000 A
6106481 Cohen Aug 2000 A
6109259 Fitzgerald Aug 2000 A
6109260 Bathe Aug 2000 A
6112744 Hognelid Sep 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6118847 Hernandez-Guerra et al. Sep 2000 A
6119684 Nohl et al. Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6131572 Heinonen Oct 2000 A
6135105 Lampotang et al. Oct 2000 A
6135106 Dirks et al. Oct 2000 A
6139506 Heinonen Oct 2000 A
6142150 O'Mahony et al. Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6148815 Wolf Nov 2000 A
6152129 Berthon Jones Nov 2000 A
6152133 Psaros et al. Nov 2000 A
6152135 DeVries et al. Nov 2000 A
6155257 Lurie et al. Dec 2000 A
6158432 Biondi et al. Dec 2000 A
6158433 Ong et al. Dec 2000 A
6159147 Lichter et al. Dec 2000 A
6161539 Winter Dec 2000 A
6162183 Hoover Dec 2000 A
6167362 Brown et al. Dec 2000 A
6168568 Gavriely Jan 2001 B1
6171264 Bader Jan 2001 B1
6176833 Thomson Jan 2001 B1
6186956 McNamee Feb 2001 B1
6190326 McKinnon et al. Feb 2001 B1
6192876 Denyer et al. Feb 2001 B1
6192885 Jalde Feb 2001 B1
6196222 Heinonen et al. Mar 2001 B1
6198963 Haim et al. Mar 2001 B1
6199550 Wiesmann et al. Mar 2001 B1
6202642 McKinnon et al. Mar 2001 B1
6213119 Brydon et al. Apr 2001 B1
6213120 Block et al. Apr 2001 B1
6213955 Karakasoglu et al. Apr 2001 B1
6216690 Keitel et al. Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6223744 Garon May 2001 B1
6224553 Nevo May 2001 B1
6227197 Fitzgerald May 2001 B1
6230708 Radko May 2001 B1
6233539 Brown May 2001 B1
6234963 Blike et al. May 2001 B1
6240920 Ström Jun 2001 B1
6251082 Rayburn Jun 2001 B1
6257234 Sun Jul 2001 B1
6258039 Okamoto et al. Jul 2001 B1
6260549 Sosiak Jul 2001 B1
6261238 Gavriely Jul 2001 B1
6269810 Brooker et al. Aug 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273088 Hillsman Aug 2001 B1
6273444 Power Aug 2001 B1
6279569 Berthon Jones Aug 2001 B1
6279574 Richardson et al. Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6283923 Finkelstein et al. Sep 2001 B1
6287264 Hoffman Sep 2001 B1
6301497 Neustadter Oct 2001 B1
6302106 Lewis Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6308703 Alving et al. Oct 2001 B1
6308706 Lammers et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6322502 Schoenberg et al. Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6339410 Milner et al. Jan 2002 B1
6340348 Krishnan et al. Jan 2002 B1
6341604 Kellon Jan 2002 B1
6342040 Starr et al. Jan 2002 B1
6343603 Tuck et al. Feb 2002 B1
6345619 Finn Feb 2002 B1
6349722 Gradon et al. Feb 2002 B1
6349724 Burton et al. Feb 2002 B1
6355002 Faram et al. Mar 2002 B1
6357438 Hansen Mar 2002 B1
6360740 Ward et al. Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6362620 Debbins et al. Mar 2002 B1
6367475 Kofoed et al. Apr 2002 B1
6369838 Wallace et al. Apr 2002 B1
6370419 Lampotang et al. Apr 2002 B1
6377046 Debbins et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6390088 Nohl et al. May 2002 B1
6390091 Banner et al. May 2002 B1
6390092 Leenhoven May 2002 B1
6390977 Faithfull et al. May 2002 B1
6390988 Robinson May 2002 B1
6397838 Zimlich, Jr. et al. Jun 2002 B1
6402698 Mault Jun 2002 B1
6408043 Hu et al. Jun 2002 B1
6408847 Nuckols et al. Jun 2002 B1
6412482 Rowe Jul 2002 B1
6412483 Jones et al. Jul 2002 B1
6415792 Schoolman Jul 2002 B1
6416471 Kumar et al. Jul 2002 B1
6421650 Goetz et al. Jul 2002 B1
6425392 Sosiak Jul 2002 B1
6427687 Kirk Aug 2002 B1
6435175 Stenzler Aug 2002 B1
6436053 Knapp, II et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6446630 Todd, Jr. Sep 2002 B1
6450164 Banner et al. Sep 2002 B1
6450968 Wallen et al. Sep 2002 B1
6454708 Ferguson et al. Sep 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6459933 Lurie et al. Oct 2002 B1
6461315 Gattinoni Oct 2002 B1
6463930 Biondi et al. Oct 2002 B2
6467477 Frank et al. Oct 2002 B1
6467478 Merrick et al. Oct 2002 B1
6467479 Albert et al. Oct 2002 B1
6467481 Eswarappa Oct 2002 B1
6471658 Daniels et al. Oct 2002 B1
6484719 Berthon Jones Nov 2002 B1
6488029 Hood et al. Dec 2002 B1
6488629 Saetre et al. Dec 2002 B1
6494201 Welik Dec 2002 B1
RE37970 Costello, Jr. Jan 2003 E
6511426 Hossack et al. Jan 2003 B1
6512938 Claure et al. Jan 2003 B2
6515683 Wright Feb 2003 B1
6516800 Bowden Feb 2003 B1
6517497 Rymut et al. Feb 2003 B2
6523538 Wikfeldt Feb 2003 B1
6526970 DeVries et al. Mar 2003 B2
6532956 Hill Mar 2003 B2
6532957 Berthon Jones Mar 2003 B2
6532959 Berthon Jones Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533730 Strom Mar 2003 B2
6536433 Cewers Mar 2003 B1
6539938 Weinstein et al. Apr 2003 B2
6539940 Zdrojkowski et al. Apr 2003 B2
6543449 Woodring et al. Apr 2003 B1
6543701 Ho Apr 2003 B1
6544192 Starr et al. Apr 2003 B2
6546930 Emerson et al. Apr 2003 B1
6547728 Cornuejols Apr 2003 B1
6547743 Brydon Apr 2003 B2
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6557554 Sugiura May 2003 B1
6564798 Jalde May 2003 B1
6566875 Hasson et al. May 2003 B1
6571122 Schroeppel et al. May 2003 B2
6571795 Bourdon Jun 2003 B2
6571796 Banner et al. Jun 2003 B2
6575163 Berthon Jones Jun 2003 B1
6575164 Jaffe et al. Jun 2003 B1
6577884 Boas Jun 2003 B1
6578575 Jonson Jun 2003 B1
6581592 Bathe et al. Jun 2003 B1
6581599 Stenzler Jun 2003 B1
6584973 Biondi et al. Jul 2003 B1
6588423 Sinderby Jul 2003 B1
6595213 Bennarsten Jul 2003 B2
6597939 Lampotang et al. Jul 2003 B1
6599252 Starr Jul 2003 B2
6601583 Pessala et al. Aug 2003 B2
6603494 Banks et al. Aug 2003 B1
6606993 Wiesmann et al. Aug 2003 B1
6607481 Clawson Aug 2003 B1
6609517 Estes et al. Aug 2003 B1
6609518 Lamb Aug 2003 B2
6620106 Mault Sep 2003 B2
6621917 Vilser Sep 2003 B1
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629934 Mault et al. Oct 2003 B2
6630176 Li et al. Oct 2003 B2
6631716 Robinson et al. Oct 2003 B1
6631717 Rich et al. Oct 2003 B1
6644310 Delache et al. Nov 2003 B1
6644312 Berthon-Jones et al. Nov 2003 B2
6645158 Mault Nov 2003 B2
6650346 Jaeger et al. Nov 2003 B1
6651652 Ward Nov 2003 B1
6651653 Honkonen et al. Nov 2003 B1
6651657 Manigel et al. Nov 2003 B1
6655383 Lundberg Dec 2003 B1
6656129 Niles et al. Dec 2003 B2
6659101 Berthon Jones Dec 2003 B2
6659961 Robinson Dec 2003 B2
6668824 Isaza et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6671529 Claure et al. Dec 2003 B2
6673018 Friedman Jan 2004 B2
6675801 Wallace et al. Jan 2004 B2
6679258 Strom Jan 2004 B1
6681643 Heinonen Jan 2004 B2
6681764 Honkonen et al. Jan 2004 B1
6688307 Berthon Jones Feb 2004 B2
6689091 Bui et al. Feb 2004 B2
6694978 Bennarsten Feb 2004 B1
6698423 Honkonen et al. Mar 2004 B1
6707476 Hochstedler Mar 2004 B1
6708688 Rubin et al. Mar 2004 B1
6709405 Jonson Mar 2004 B2
6712762 Lichter et al. Mar 2004 B1
6718974 Moberg Apr 2004 B1
6718975 Blomberg Apr 2004 B2
6722360 Doshi Apr 2004 B2
6725077 Balloni et al. Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6725860 Wallroth et al. Apr 2004 B2
6726598 Jarvis et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6738079 Kellerman et al. May 2004 B1
6739337 Isaza May 2004 B2
6740046 Knapp, II et al. May 2004 B2
6743172 Blike Jun 2004 B1
6744374 Kuenzner Jun 2004 B1
6745764 Hickle Jun 2004 B2
6745771 Castor et al. Jun 2004 B2
6745773 Gobel Jun 2004 B1
6752766 Kowallik et al. Jun 2004 B2
6752772 Kahn Jun 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6755787 Hossack et al. Jun 2004 B2
6758216 Berthon Jones et al. Jul 2004 B1
6760610 Tschupp et al. Jul 2004 B2
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6763829 Jaffe et al. Jul 2004 B2
6776159 Pelerossi et al. Aug 2004 B2
6782888 Friberg et al. Aug 2004 B1
6786217 Stenzler Sep 2004 B2
6790178 Mault et al. Sep 2004 B1
6792066 Harder et al. Sep 2004 B1
6796305 Banner et al. Sep 2004 B1
6801227 Bocionek et al. Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6805118 Brooker et al. Oct 2004 B2
6807965 Hickle Oct 2004 B1
6810876 Berthon Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6814075 Boussignac Nov 2004 B2
6820613 Wenkebach et al. Nov 2004 B2
6820614 Bonutti Nov 2004 B2
6820618 Banner et al. Nov 2004 B2
6822223 Davis Nov 2004 B2
6823866 Jafari et al. Nov 2004 B2
6824520 Orr et al. Nov 2004 B2
6828910 VanRyzin et al. Dec 2004 B2
6830046 Blakley et al. Dec 2004 B2
6834647 Blair et al. Dec 2004 B2
6837241 Samzelius Jan 2005 B2
6837242 Younes Jan 2005 B2
6839753 Biondi et al. Jan 2005 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6845773 Berthon-Jones et al. Jan 2005 B2
6848444 Smith et al. Feb 2005 B2
6851427 Nashed Feb 2005 B1
6858006 MacCarter et al. Feb 2005 B2
6860264 Christopher Mar 2005 B2
6860265 Emerson Mar 2005 B1
6860266 Blike Mar 2005 B2
6860858 Green et al. Mar 2005 B2
6866040 Bourdon Mar 2005 B1
6866629 Bardy Mar 2005 B2
6877511 DeVries et al. Apr 2005 B2
6893397 Bardy May 2005 B2
6899101 Haston et al. May 2005 B2
6899103 Hood et al. May 2005 B1
6899683 Mault et al. May 2005 B2
6899684 Mault et al. May 2005 B2
6910480 Berthon Jones Jun 2005 B1
6910481 Kimmel et al. Jun 2005 B2
6920875 Hill et al. Jul 2005 B1
6921369 Gehrke et al. Jul 2005 B1
6923079 Snibbe Aug 2005 B1
6931269 Terry Aug 2005 B2
6932083 Jones et al. Aug 2005 B2
6932767 Landry et al. Aug 2005 B2
6947780 Scharf Sep 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6949133 McCombs et al. Sep 2005 B2
6951217 Berthon Jones Oct 2005 B2
6951541 Desmarais Oct 2005 B2
6954702 Pierry et al. Oct 2005 B2
6956572 Zaleski Oct 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6970919 Doi et al. Nov 2005 B1
6976487 Melker et al. Dec 2005 B1
6976958 Quy Dec 2005 B2
6986347 Hickle Jan 2006 B2
6990977 Calluaud et al. Jan 2006 B1
6990980 Richey, II Jan 2006 B2
6997185 Han et al. Feb 2006 B2
6997880 Carlebach et al. Feb 2006 B2
6997881 Green et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7001339 Lin Feb 2006 B2
7001340 Lin Feb 2006 B2
7008380 Rees et al. Mar 2006 B1
7011091 Hill et al. Mar 2006 B2
7013892 Estes et al. Mar 2006 B2
7017574 Biondi et al. Mar 2006 B2
7019652 Richardson Mar 2006 B2
7033323 Botbol et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7039878 Auer et al. May 2006 B2
7040315 Strömberg May 2006 B1
7040318 Däscher et al. May 2006 B2
7040320 Fjeld et al. May 2006 B2
7040321 Gobel et al. May 2006 B2
7046254 Brown et al. May 2006 B2
7047092 Wimsatt May 2006 B2
7051736 Banner et al. May 2006 B2
7055522 Berthon Jones Jun 2006 B2
7062251 Birkett et al. Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7066176 Jaffe et al. Jun 2006 B2
7077125 Scheuch Jul 2006 B2
7077131 Hansen Jul 2006 B2
7077132 Berthon Jones Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
7081091 Merrett et al. Jul 2006 B2
7081095 Lynn et al. Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7083574 Kline Aug 2006 B2
7089927 John et al. Aug 2006 B2
7089930 Adams et al. Aug 2006 B2
7089937 Berthon Jones et al. Aug 2006 B2
7094208 Williams et al. Aug 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon Jones et al. Sep 2006 B2
7116810 Miller et al. Oct 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Ström Oct 2006 B2
7128069 Farrugia et al. Oct 2006 B2
7128578 Lampotang et al. Oct 2006 B2
7137389 Berthon Jones Nov 2006 B2
7147600 Bardy Dec 2006 B2
7156095 Melker et al. Jan 2007 B2
7156808 Quy Jan 2007 B2
7162296 Leonhardt et al. Jan 2007 B2
7164972 Imhof et al. Jan 2007 B2
7165221 Monteleone et al. Jan 2007 B2
7169112 Caldwell Jan 2007 B2
7172557 Parker Feb 2007 B1
7182083 Yanof et al. Feb 2007 B2
7187790 Sabol et al. Mar 2007 B2
7188621 DeVries et al. Mar 2007 B2
7191780 Faram Mar 2007 B2
7201734 Hickle Apr 2007 B2
7203353 Klotz et al. Apr 2007 B2
7210478 Banner et al. May 2007 B2
7211049 Bradley et al. May 2007 B2
7219666 Friberg et al. May 2007 B2
7220230 Roteliuk et al. May 2007 B2
7222054 Geva May 2007 B2
7223965 Davis May 2007 B2
7226427 Steen Jun 2007 B2
7228323 Angerer et al. Jun 2007 B2
7241269 McCawley et al. Jul 2007 B2
7246618 Habashi Jul 2007 B2
7247154 Hickle Jul 2007 B2
7252640 Ni et al. Aug 2007 B2
7255103 Bassin Aug 2007 B2
7261690 Teller et al. Aug 2007 B2
7264730 Connell et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7275540 Bolam et al. Oct 2007 B2
7278579 Loffredo et al. Oct 2007 B2
7282032 Miller Oct 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7294105 Islam Nov 2007 B1
7294112 Dunlop Nov 2007 B1
7298280 Voege et al. Nov 2007 B2
7300418 Zaleski Nov 2007 B2
7303680 Connell et al. Dec 2007 B2
7308550 Cornett Dec 2007 B2
7310551 Koh et al. Dec 2007 B1
7310720 Cornett Dec 2007 B2
7311665 Hawthorne et al. Dec 2007 B2
7314451 Halperin et al. Jan 2008 B2
7316231 Hickle Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7318892 Connell et al. Jan 2008 B2
7321802 Wasner et al. Jan 2008 B2
7322352 Minshull et al. Jan 2008 B2
7322937 Blomberg et al. Jan 2008 B2
7331340 Barney Feb 2008 B2
7333969 Lee et al. Feb 2008 B2
7334578 Biondi et al. Feb 2008 B2
7334581 Doshi Feb 2008 B2
7343916 Biondo et al. Mar 2008 B2
7343917 Jones Mar 2008 B2
7347200 Jones et al. Mar 2008 B2
7347204 Lindsey et al. Mar 2008 B1
7347205 Levi Mar 2008 B2
7347207 Ahlmen et al. Mar 2008 B2
7351340 Connell et al. Apr 2008 B2
7362341 McGuire et al. Apr 2008 B2
7363925 Pagan Apr 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7367955 Zhang et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7374535 Schoenberg et al. May 2008 B2
7377276 Roy et al. May 2008 B2
7380210 Lontka et al. May 2008 B2
RE40365 Kirchgeorg et al. Jun 2008 E
7383148 Ahmed Jun 2008 B2
7387610 Stahmann et al. Jun 2008 B2
7413546 Agutter et al. Aug 2008 B2
7422015 Delisle et al. Sep 2008 B2
7422562 Hatib et al. Sep 2008 B2
7425201 Euliano et al. Sep 2008 B2
7428902 Du et al. Sep 2008 B2
7435220 Ranucci Oct 2008 B2
7438072 Izuchukwu Oct 2008 B2
7438073 Delache et al. Oct 2008 B2
7445006 Dhuper et al. Nov 2008 B2
7448383 Delache et al. Nov 2008 B2
7452333 Roteliuk Nov 2008 B2
7455583 Taya Nov 2008 B2
7460959 Jafari Dec 2008 B2
7464339 Keenan, Jr. et al. Dec 2008 B2
7464711 Flodin Dec 2008 B2
7469698 Childers et al. Dec 2008 B1
7484508 Younes Feb 2009 B2
7487773 Li Feb 2009 B2
7487774 Acker Feb 2009 B2
7487775 Mashak Feb 2009 B2
7490085 Walker et al. Feb 2009 B2
7495546 Lintell et al. Feb 2009 B2
7496400 Hoskonen et al. Feb 2009 B2
7500481 Delache et al. Mar 2009 B2
7504954 Spaeder Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
7512450 Ahmed Mar 2009 B2
7512593 Karklins et al. Mar 2009 B2
7523752 Montgomery et al. Apr 2009 B2
7527053 DeVries et al. May 2009 B2
7527054 Misholi May 2009 B2
7530353 Choncholas et al. May 2009 B2
RE40806 Gradon et al. Jun 2009 E
7543582 Lu et al. Jun 2009 B2
7548833 Ahmed Jun 2009 B2
7549421 Levi et al. Jun 2009 B2
7552731 Jorczak et al. Jun 2009 B2
7556036 Bouillon et al. Jul 2009 B2
7556038 Kirby et al. Jul 2009 B2
7559326 Smith et al. Jul 2009 B2
7559903 Moussavi et al. Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7565905 Hickle Jul 2009 B2
7572225 Stahmann et al. Aug 2009 B2
7574246 Krebs et al. Aug 2009 B2
7584712 Lu Sep 2009 B2
7584752 Garber et al. Sep 2009 B2
7588033 Wondka Sep 2009 B2
7588543 Euliano et al. Sep 2009 B2
7590551 Auer Sep 2009 B2
7591830 Rutter Sep 2009 B2
7594508 Doyle Sep 2009 B2
7597099 Jones et al. Oct 2009 B2
7603170 Hatlestad et al. Oct 2009 B2
7603631 Bermudez et al. Oct 2009 B2
7606668 Pierry et al. Oct 2009 B2
7609138 Dietrich et al. Oct 2009 B2
7610914 Bolam et al. Nov 2009 B2
7610915 Dittmann Nov 2009 B2
7617821 Hughes Nov 2009 B2
7617824 Doyle Nov 2009 B2
7617825 Pedemonte Nov 2009 B2
7618378 Bingham et al. Nov 2009 B2
7624736 Borody Dec 2009 B2
7625345 Quinn Dec 2009 B2
7628151 Bassin Dec 2009 B2
7630755 Stahmann et al. Dec 2009 B2
7634998 Fenley Dec 2009 B1
7644713 Berthon Jones Jan 2010 B2
7650181 Freeman et al. Jan 2010 B2
7652571 Parkulo et al. Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7654966 Westinskow et al. Feb 2010 B2
7658188 Halpern et al. Feb 2010 B2
7662106 Daniels et al. Feb 2010 B2
7668579 Lynn Feb 2010 B2
7669594 Downie Mar 2010 B2
7669598 Rick et al. Mar 2010 B2
7671733 McNeal et al. Mar 2010 B2
7678061 Lee et al. Mar 2010 B2
7678063 Felmlee et al. Mar 2010 B2
7682312 Lurie Mar 2010 B2
7684931 Pierry et al. Mar 2010 B2
7693697 Westenskow et al. Apr 2010 B2
7694677 Tang Apr 2010 B2
7694682 Petersen et al. Apr 2010 B2
7698156 Martucci et al. Apr 2010 B2
7708015 Seeger et al. May 2010 B2
7717110 Kane et al. May 2010 B2
7717112 Sun et al. May 2010 B2
7717113 Andrieux May 2010 B2
7721736 Urias et al. May 2010 B2
7722546 Madaus et al. May 2010 B2
D618356 Ross Jun 2010 S
7727160 Green et al. Jun 2010 B2
7731663 Averina et al. Jun 2010 B2
7736132 Bliss et al. Jun 2010 B2
7740013 Ishizaki et al. Jun 2010 B2
7753049 Jorczak et al. Jul 2010 B2
7766012 Scheuch et al. Aug 2010 B2
7771364 Arbel et al. Aug 2010 B2
7772965 Farhan et al. Aug 2010 B2
7775207 Jaffe et al. Aug 2010 B2
7778709 Gollasch et al. Aug 2010 B2
7778851 Schoenberg et al. Aug 2010 B2
7779834 Calluaud et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7785263 Roteliuk et al. Aug 2010 B2
7785265 Schätzl Aug 2010 B2
7793659 Breen Sep 2010 B2
7793660 Kimmel et al. Sep 2010 B2
7798145 Weismann et al. Sep 2010 B2
7802571 Tehrani Sep 2010 B2
7809442 Bolea et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7814906 Moretti Oct 2010 B2
7819815 Younes Oct 2010 B2
7823588 Hansen Nov 2010 B2
7831450 Schoenberg et al. Nov 2010 B2
7832394 Schechter et al. Nov 2010 B2
7836882 Rumph et al. Nov 2010 B1
7837629 Bardy Nov 2010 B2
7841341 Dhuper et al. Nov 2010 B2
7850619 Gavish et al. Dec 2010 B2
7855656 Maschke Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7859401 Falck et al. Dec 2010 B2
7865244 Giftakis et al. Jan 2011 B2
7866317 Muellinger et al. Jan 2011 B2
7871394 Halbert et al. Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7881780 Flaherty Feb 2011 B2
7883480 Dunlop Feb 2011 B2
7885828 Glaser-Seidnitzer et al. Feb 2011 B2
7886231 Hopermann et al. Feb 2011 B2
7891353 Chalvignac Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7895527 Zaleski et al. Feb 2011 B2
7905231 Chalvignac Mar 2011 B2
7909033 Faram Mar 2011 B2
7912537 Lee et al. Mar 2011 B2
7927286 Ranucci Apr 2011 B2
7931601 Ranucci Apr 2011 B2
D638852 Skidmore et al. May 2011 S
7953419 Jost et al. May 2011 B2
7956719 Anderson, Jr. et al. Jun 2011 B2
7958892 Kwok et al. Jun 2011 B2
7970450 Kroecker et al. Jun 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
8002711 Wood et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
20010004893 Biondi et al. Jun 2001 A1
20010007255 Stumpf Jul 2001 A1
20010035186 Hill Nov 2001 A1
20010056358 Dulong et al. Dec 2001 A1
20020023640 Nightengale Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020044059 Reeder et al. Apr 2002 A1
20020046753 Lamb Apr 2002 A1
20020053345 Jafari et al. May 2002 A1
20020073993 Weinstein et al. Jun 2002 A1
20020077863 Rutledge et al. Jun 2002 A1
20020091548 Auer et al. Jul 2002 A1
20020153006 Zimlich et al. Oct 2002 A1
20020153009 Chornyj et al. Oct 2002 A1
20020174866 Orr et al. Nov 2002 A1
20020177758 Schoenberg et al. Nov 2002 A1
20020185126 Krebs Dec 2002 A1
20020195105 Blue et al. Dec 2002 A1
20030010339 Banner et al. Jan 2003 A1
20030034031 Lev et al. Feb 2003 A1
20030037786 Biondi et al. Feb 2003 A1
20030050568 Green et al. Mar 2003 A1
20030060723 Joo et al. Mar 2003 A1
20030062045 Woodring et al. Apr 2003 A1
20030106553 Vanderveen Jun 2003 A1
20030125662 Bui Jul 2003 A1
20030130567 Mault et al. Jul 2003 A1
20030130595 Mault Jul 2003 A1
20030131848 Stenzler Jul 2003 A1
20030136402 Jiang et al. Jul 2003 A1
20030140928 Bui et al. Jul 2003 A1
20030140929 Wilkes et al. Jul 2003 A1
20030141368 Pascual et al. Jul 2003 A1
20030141981 Bui et al. Jul 2003 A1
20030144878 Wilkes et al. Jul 2003 A1
20030144880 Talachian et al. Jul 2003 A1
20030144881 Talachian et al. Jul 2003 A1
20030144882 Talachian et al. Jul 2003 A1
20030145853 Muellner Aug 2003 A1
20030154979 Berthon Jones Aug 2003 A1
20030159695 Younes Aug 2003 A1
20030172929 Muellner Sep 2003 A1
20030176804 Melker Sep 2003 A1
20030178024 Allan et al. Sep 2003 A1
20030192542 Isaza Oct 2003 A1
20030192544 Berthon Jones et al. Oct 2003 A1
20030201697 Richardson Oct 2003 A1
20030204414 Wilkes et al. Oct 2003 A1
20030204416 Radpay et al. Oct 2003 A1
20030204419 Wilkes et al. Oct 2003 A1
20030204420 Wilkes et al. Oct 2003 A1
20030208152 Avrahami et al. Nov 2003 A1
20030208465 Yurko et al. Nov 2003 A1
20030222548 Richardson et al. Dec 2003 A1
20030230308 Linden Dec 2003 A1
20040003814 Banner et al. Jan 2004 A1
20040010425 Wilkes et al. Jan 2004 A1
20040016431 Preveyraud Jan 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040040560 Euliano et al. Mar 2004 A1
20040050387 Younes Mar 2004 A1
20040059604 Zaleski Mar 2004 A1
20040073453 Nenov et al. Apr 2004 A1
20040078231 Wilkes et al. Apr 2004 A1
20040103896 Jafari et al. Jun 2004 A1
20040121767 Simpson et al. Jun 2004 A1
20040122294 Hatlestad et al. Jun 2004 A1
20040149282 Hickle Aug 2004 A1
20040150525 Wilson et al. Aug 2004 A1
20040159323 Schmidt et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040167804 Simpson et al. Aug 2004 A1
20040172222 Simpson et al. Sep 2004 A1
20040172300 Mihai et al. Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040172302 Martucci et al. Sep 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040187864 Adams Sep 2004 A1
20040194779 Doshi Oct 2004 A1
20040194780 Doshi Oct 2004 A1
20040200477 Bleys et al. Oct 2004 A1
20040206355 Berthon Jones et al. Oct 2004 A1
20040221847 Berthon Jones et al. Nov 2004 A1
20040224293 Penning et al. Nov 2004 A1
20040231670 Bassin Nov 2004 A1
20040236240 Kraus et al. Nov 2004 A1
20040249673 Smith Dec 2004 A1
20050016534 Ost Jan 2005 A1
20050022809 Wondka Feb 2005 A1
20050027252 Boukas Feb 2005 A1
20050033198 Kehyayan et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050054910 Tremblay et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050061318 Faram Mar 2005 A1
20050065817 Mihai et al. Mar 2005 A1
20050075542 Goldreich Apr 2005 A1
20050075904 Wager et al. Apr 2005 A1
20050076907 Stenzler Apr 2005 A1
20050085869 Tehrani et al. Apr 2005 A1
20050098179 Burton et al. May 2005 A1
20050103331 Wedemeyer May 2005 A1
20050108057 Cohen et al. May 2005 A1
20050109339 Stahmann et al. May 2005 A1
20050109340 Tehrani May 2005 A1
20050112013 DeVries et al. May 2005 A1
20050112325 Hickle May 2005 A1
20050121035 Martin Jun 2005 A1
20050124866 Elaz et al. Jun 2005 A1
20050126565 Huang Jun 2005 A1
20050133027 Elaz et al. Jun 2005 A1
20050133028 Pagan Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050139212 Bourdon Jun 2005 A1
20050139213 Blike Jun 2005 A1
20050143632 Elaz et al. Jun 2005 A1
20050156933 Lee et al. Jul 2005 A1
20050171876 Golden Aug 2005 A1
20050177096 Bollish et al. Aug 2005 A1
20050188083 Biondi et al. Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050199237 Lurie Sep 2005 A1
20050204310 De Zwart et al. Sep 2005 A1
20050215904 Sumanaweera et al. Sep 2005 A1
20050217671 Fisher et al. Oct 2005 A1
20050217674 Burton et al. Oct 2005 A1
20050241639 Zilberg Nov 2005 A1
20050251040 Relkuntwar et al. Nov 2005 A1
20050263152 Fong Dec 2005 A1
20050279358 Richey, II Dec 2005 A1
20050284469 Tobia et al. Dec 2005 A1
20050288571 Perkins et al. Dec 2005 A1
20060009708 Rapoport et al. Jan 2006 A1
20060011195 Zarychta Jan 2006 A1
20060032497 Doshi Feb 2006 A1
20060037614 Madaus et al. Feb 2006 A1
20060047202 Elliott Mar 2006 A1
20060060198 Aylsworth et al. Mar 2006 A1
20060078867 Penny et al. Apr 2006 A1
20060079799 Green et al. Apr 2006 A1
20060080140 Buttner et al. Apr 2006 A1
20060080343 Carter et al. Apr 2006 A1
20060094972 Drew May 2006 A1
20060102171 Gavish May 2006 A1
20060102180 Berthon Jones May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060129055 Orr et al. Jun 2006 A1
20060142815 Tehrani et al. Jun 2006 A1
20060144396 DeVries et al. Jul 2006 A1
20060144397 Wallace et al. Jul 2006 A1
20060149144 Lynn et al. Jul 2006 A1
20060149589 Wager Jul 2006 A1
20060150974 Berthon-Jones Jul 2006 A1
20060150982 Wood Jul 2006 A1
20060155206 Lynn Jul 2006 A1
20060155207 Lynn et al. Jul 2006 A1
20060161071 Lynn et al. Jul 2006 A1
20060162727 Biondi et al. Jul 2006 A1
20060173257 Nagai et al. Aug 2006 A1
20060174884 Habashi Aug 2006 A1
20060178245 Schiller et al. Aug 2006 A1
20060178591 Hempfling Aug 2006 A1
20060178911 Syed et al. Aug 2006 A1
20060189880 Lynn et al. Aug 2006 A1
20060189900 Flaherty Aug 2006 A1
20060195041 Lynn et al. Aug 2006 A1
20060196507 Bradley Sep 2006 A1
20060200009 Wekell et al. Sep 2006 A1
20060201507 Breen Sep 2006 A1
20060213518 DeVries et al. Sep 2006 A1
20060229822 Theobald et al. Oct 2006 A1
20060235324 Lynn Oct 2006 A1
20060237015 Berthon-Jones et al. Oct 2006 A1
20060243275 Ruckdeschel et al. Nov 2006 A1
20060249148 Younes Nov 2006 A1
20060249151 Gambone Nov 2006 A1
20060249153 DeVries et al. Nov 2006 A1
20060249155 Gambone Nov 2006 A1
20060264762 Starr Nov 2006 A1
20060272642 Chalvignac Dec 2006 A1
20060272643 Aylsworth et al. Dec 2006 A1
20060276718 Madaus et al. Dec 2006 A1
20060278221 Schermeier et al. Dec 2006 A1
20060278222 Schermeier et al. Dec 2006 A1
20060278224 Shaffer et al. Dec 2006 A1
20060283450 Shissler et al. Dec 2006 A1
20060283451 Albertelli Dec 2006 A1
20060293609 Stahmann et al. Dec 2006 A1
20060294464 Tokimoto et al. Dec 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070000494 Banner et al. Jan 2007 A1
20070016441 Stroup Jan 2007 A1
20070017510 Riedo Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070017518 Farrugia et al. Jan 2007 A1
20070021673 Arbel et al. Jan 2007 A1
20070028920 Acker Feb 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070038081 Eck et al. Feb 2007 A1
20070044796 Zdrojkowski et al. Mar 2007 A1
20070044805 Wedler et al. Mar 2007 A1
20070060812 Harel et al. Mar 2007 A1
20070062529 Choncholas et al. Mar 2007 A1
20070062530 Weismann et al. Mar 2007 A1
20070062532 Choncholas Mar 2007 A1
20070062533 Choncholas et al. Mar 2007 A1
20070066961 Rutter Mar 2007 A1
20070073169 Averina et al. Mar 2007 A1
20070073181 Pu et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070089738 Soliman et al. Apr 2007 A1
20070113843 Hughes May 2007 A1
20070113849 Matthews et al. May 2007 A1
20070119453 Lu et al. May 2007 A1
20070123758 Miesel et al. May 2007 A1
20070123792 Kline May 2007 A1
20070129647 Lynn Jun 2007 A1
20070144521 DeVries et al. Jun 2007 A1
20070144523 Bolam et al. Jun 2007 A1
20070149860 Lynn et al. Jun 2007 A1
20070151563 Ozaki et al. Jul 2007 A1
20070156060 Cervantes Jul 2007 A1
20070156456 McGillin et al. Jul 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070163589 DeVries et al. Jul 2007 A1
20070163590 Bassin Jul 2007 A1
20070167853 Melker et al. Jul 2007 A1
20070179357 Bardy Aug 2007 A1
20070181122 Mulier Aug 2007 A1
20070185390 Perkins et al. Aug 2007 A1
20070186928 Be'Eri Aug 2007 A1
20070191697 Lynn et al. Aug 2007 A1
20070191787 Lim et al. Aug 2007 A1
20070193579 Duquette et al. Aug 2007 A1
20070199566 Be'eri Aug 2007 A1
20070203448 Melker et al. Aug 2007 A1
20070208267 Schmid et al. Sep 2007 A1
20070208438 El-Mankabady et al. Sep 2007 A1
20070215155 Marx et al. Sep 2007 A1
20070221222 Lurie Sep 2007 A1
20070225574 Ueda Sep 2007 A1
20070225623 Freeman Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070227538 Scholler et al. Oct 2007 A1
20070227539 Schwaibold et al. Oct 2007 A1
20070232951 Euliano et al. Oct 2007 A1
20070241884 Yamazaki et al. Oct 2007 A1
20070265510 Bardy Nov 2007 A1
20070265877 Rice et al. Nov 2007 A1
20070267015 Thoemmes et al. Nov 2007 A1
20070271122 Zaleski Nov 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070272242 Sanborn et al. Nov 2007 A1
20070272243 Sherman et al. Nov 2007 A1
20070273216 Farbarik Nov 2007 A1
20070276439 Miesel et al. Nov 2007 A1
20070277825 Bordewick et al. Dec 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20070293741 Bardy Dec 2007 A1
20080000471 Bolam et al. Jan 2008 A1
20080000475 Hill Jan 2008 A1
20080000477 Huster et al. Jan 2008 A1
20080000478 Matthiessen et al. Jan 2008 A1
20080000479 Elaz et al. Jan 2008 A1
20080011294 Heesch et al. Jan 2008 A1
20080011301 Qian Jan 2008 A1
20080017189 Ruckdeschel et al. Jan 2008 A1
20080017198 Ivri Jan 2008 A1
20080029096 Kollmeyer et al. Feb 2008 A1
20080029097 Schatzl Feb 2008 A1
20080033304 Dalal et al. Feb 2008 A1
20080033661 Syroid et al. Feb 2008 A1
20080035145 Adams et al. Feb 2008 A1
20080035146 Crabb Feb 2008 A1
20080039735 Hickerson Feb 2008 A1
20080041380 Wallace et al. Feb 2008 A1
20080041382 Matthews et al. Feb 2008 A1
20080045844 Arbel et al. Feb 2008 A1
20080047554 Roy et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080064963 Schwaibold et al. Mar 2008 A1
20080065420 Tirinato et al. Mar 2008 A1
20080066753 Martin et al. Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072900 Kenyon et al. Mar 2008 A1
20080072901 Habashi Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080076970 Foulis et al. Mar 2008 A1
20080077033 Figueiredo et al. Mar 2008 A1
20080077038 McDonough et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080092043 Trethewey Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080103368 Craine et al. May 2008 A1
20080110460 Elaz et al. May 2008 A1
20080110461 Mulqueeny et al. May 2008 A1
20080110462 Chekal et al. May 2008 A1
20080115786 Sinderby et al. May 2008 A1
20080125828 Ignagni et al. May 2008 A1
20080125873 Payne et al. May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080139956 Diong Jun 2008 A1
20080142019 Lewis et al. Jun 2008 A1
20080156330 Smith et al. Jul 2008 A1
20080161653 Lin et al. Jul 2008 A1
20080163872 Negele et al. Jul 2008 A1
20080178880 Christopher et al. Jul 2008 A1
20080178882 Christopher et al. Jul 2008 A1
20080183057 Taube Jul 2008 A1
20080183095 Austin et al. Jul 2008 A1
20080185009 Choncholas et al. Aug 2008 A1
20080208012 Ali Aug 2008 A1
20080214947 Hunt et al. Sep 2008 A1
20080216833 Pujol et al. Sep 2008 A1
20080216835 McGinnis et al. Sep 2008 A1
20080230057 Sutherland Sep 2008 A1
20080230065 Heinonen Sep 2008 A1
20080236582 Tehrani Oct 2008 A1
20080236585 Parker et al. Oct 2008 A1
20080243016 Liao et al. Oct 2008 A1
20080251070 Pinskiy et al. Oct 2008 A1
20080251078 Buckley et al. Oct 2008 A1
20080255880 Beller et al. Oct 2008 A1
20080257337 Denyer et al. Oct 2008 A1
20080270912 Booth Oct 2008 A1
20080275513 Lattner et al. Nov 2008 A1
20080276939 Tiedje Nov 2008 A1
20080276940 Fuhrman et al. Nov 2008 A1
20080281219 Glickman et al. Nov 2008 A1
20080283060 Bassin Nov 2008 A1
20080283061 Tiedje Nov 2008 A1
20080293025 Zamierowsi et al. Nov 2008 A1
20080294060 Haro et al. Nov 2008 A1
20080295830 Martonen et al. Dec 2008 A1
20080295839 Habashi Dec 2008 A1
20080295840 Glaw Dec 2008 A1
20080306351 Izumi Dec 2008 A1
20080308105 Alder et al. Dec 2008 A1
20080308109 Brain Dec 2008 A1
20080312954 Ullrich et al. Dec 2008 A1
20080314385 Brunner et al. Dec 2008 A1
20080319513 Pu et al. Dec 2008 A1
20090005651 Ward et al. Jan 2009 A1
20090007909 Carrico Jan 2009 A1
20090013999 Bassin Jan 2009 A1
20090038921 Kaps et al. Feb 2009 A1
20090054743 Stewart Feb 2009 A1
20090056709 Worsoff Mar 2009 A1
20090062725 Goebel Mar 2009 A1
20090063181 Nho et al. Mar 2009 A1
20090065004 Childers et al. Mar 2009 A1
20090076342 Amurthur et al. Mar 2009 A1
20090078258 Bowman et al. Mar 2009 A1
20090107502 Younes Apr 2009 A1
20090120439 Goebel May 2009 A1
20090124917 Hatlestad et al. May 2009 A1
20090125333 Heywood et al. May 2009 A1
20090126734 Dunsmore et al. May 2009 A1
20090131758 Heywood et al. May 2009 A1
20090133701 Brain May 2009 A1
20090139522 Thomson et al. Jun 2009 A1
20090143694 Krauss et al. Jun 2009 A1
20090145438 Brain Jun 2009 A1
20090149200 Jayasinghe et al. Jun 2009 A1
20090149723 Krauss et al. Jun 2009 A1
20090149927 Kneuer et al. Jun 2009 A1
20090150184 Spahn Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171167 Baker, Jr. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090188502 Tiedje Jul 2009 A1
20090192421 Huster et al. Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090209828 Musin Aug 2009 A1
20090209849 Rowe et al. Aug 2009 A1
20090216145 Skerl et al. Aug 2009 A1
20090221926 Younes Sep 2009 A1
20090240523 Friedlander et al. Sep 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090244003 Bonnat Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090250054 Loncar et al. Oct 2009 A1
20090259135 Stasz Oct 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20090308394 Levi Dec 2009 A1
20100004517 Bryenton et al. Jan 2010 A1
20100008466 Balakin Jan 2010 A1
20100011307 Desfossez et al. Jan 2010 A1
20100022904 Centen Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100030092 Kristensen et al. Feb 2010 A1
20100048985 Henke et al. Feb 2010 A1
20100048986 Henke et al. Feb 2010 A1
20100049034 Eck et al. Feb 2010 A1
20100049264 Henke et al. Feb 2010 A1
20100049265 Henke et al. Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100056852 Henke et al. Mar 2010 A1
20100056853 Henke et al. Mar 2010 A1
20100056855 Henke et al. Mar 2010 A1
20100056929 Stahmann et al. Mar 2010 A1
20100056941 Henke et al. Mar 2010 A1
20100056942 Henke et al. Mar 2010 A1
20100057148 Henke et al. Mar 2010 A1
20100059061 Brain Mar 2010 A1
20100063348 Henke et al. Mar 2010 A1
20100063350 Henke et al. Mar 2010 A1
20100063365 Pisani et al. Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100069774 Bingham et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100072055 Tanaka et al. Mar 2010 A1
20100076278 van der Zande et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078019 Rittner et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081890 Li et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100083968 Wondka et al. Apr 2010 A1
20100095961 Tornesel et al. Apr 2010 A1
20100116270 Edwards et al. May 2010 A1
20100125227 Bird May 2010 A1
20100130873 Yuen et al. May 2010 A1
20100139660 Adahan Jun 2010 A1
20100145165 Merry Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100160839 Freeman et al. Jun 2010 A1
20100186744 Andrieux Jul 2010 A1
20100198289 Kameli et al. Aug 2010 A1
20100212675 Walling et al. Aug 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100222693 Eriksen et al. Sep 2010 A1
20100229863 Enk Sep 2010 A1
20100236551 Enk Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100262035 Subramanian Oct 2010 A1
20100263669 Bowsher Oct 2010 A1
20100274100 Behar et al. Oct 2010 A1
20100282251 Calluaud et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100298718 Gilham et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100312132 Wood et al. Dec 2010 A1
20100317980 Guglielmino Dec 2010 A1
20100324438 Ni et al. Dec 2010 A1
20100331715 Addison et al. Dec 2010 A1
20110004489 Schoenberg et al. Jan 2011 A1
20110009746 Tran et al. Jan 2011 A1
20110009763 Levitsky et al. Jan 2011 A1
20110011400 Gentner et al. Jan 2011 A1
20110011403 Hannah et al. Jan 2011 A1
20110015493 Koschek Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110041847 Cosic Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110054289 Derchak et al. Mar 2011 A1
20110067698 Zheng et al. Mar 2011 A1
20110092839 Alshaer et al. Apr 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110197884 Duff et al. Aug 2011 A1
20110208082 Madaus et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110265793 Haveri Nov 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20110288431 Alshaer et al. Nov 2011 A1
20110313263 Wood et al. Dec 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120016252 Melker et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120029362 Patangay et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120037159 Mulqueeny et al. Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120101399 Henderson Apr 2012 A1
20120123219 Georgiev et al. May 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120136270 Leuthardt et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
Foreign Referenced Citations (110)
Number Date Country
0414777 Mar 1991 EP
521515 Jan 1993 EP
1005829 Jun 2000 EP
1005830 Jun 2000 EP
1103279 May 2001 EP
996358 Jan 2002 EP
1277435 Jan 2003 EP
1421966 May 2004 EP
1464357 Oct 2004 EP
2319967 Jun 1998 GB
WO 9014852 Dec 1990 WO
WO 9308534 Apr 1993 WO
WO 9312823 Jul 1993 WO
WO 9314696 Aug 1993 WO
WO 9414374 Jul 1994 WO
WO 9508471 Mar 1995 WO
WO 9532480 Nov 1995 WO
WO 9624285 Aug 1996 WO
WO 9706844 Feb 1997 WO
WO 9720592 Jun 1997 WO
WO 9811840 Mar 1998 WO
WO 9814116 Apr 1998 WO
WO 9829790 Jul 1998 WO
WO 9833554 Aug 1998 WO
WO 9840014 Sep 1998 WO
WO 9841267 Sep 1998 WO
WO 9841269 Sep 1998 WO
WO 9841270 Sep 1998 WO
WO 9841271 Sep 1998 WO
WO 9858219 Dec 1998 WO
WO 9903524 Jan 1999 WO
WO 9952431 Oct 1999 WO
WO 9952437 Oct 1999 WO
WO 9959460 Nov 1999 WO
WO 9962403 Dec 1999 WO
WO 0018293 Apr 2000 WO
WO 0019886 Apr 2000 WO
WO 0062664 Oct 2000 WO
WO 0100264 Jan 2001 WO
WO 0100265 Jan 2001 WO
WO 0128416 Apr 2001 WO
WO 0134022 May 2001 WO
WO 0245566 Jun 2002 WO
WO 02082967 Oct 2002 WO
WO 03015005 Feb 2003 WO
WO 03024317 Mar 2003 WO
WO 03045493 Jun 2003 WO
WO 03053503 Jul 2003 WO
WO 03060650 Jul 2003 WO
WO 03060651 Jul 2003 WO
WO 03075989 Sep 2003 WO
WO 03075990 Sep 2003 WO
WO 03075991 Sep 2003 WO
WO 03084405 Oct 2003 WO
WO 04014216 Feb 2004 WO
WO 04014226 Feb 2004 WO
WO 04019766 Mar 2004 WO
WO 04032719 Apr 2004 WO
WO 04043254 May 2004 WO
WO 2005010796 Feb 2005 WO
WO 05024729 Mar 2005 WO
WO 05055825 Jun 2005 WO
WO 05056087 Jun 2005 WO
WO 05069740 Aug 2005 WO
WO 05077260 Aug 2005 WO
WO 05112739 Dec 2005 WO
WO 06008745 Jan 2006 WO
WO 06009830 Jan 2006 WO
WO 06037184 Apr 2006 WO
WO 06050388 May 2006 WO
WO 06051466 May 2006 WO
WO 06078432 Jul 2006 WO
WO 06079152 Aug 2006 WO
WO 06094055 Sep 2006 WO
WO 06096080 Sep 2006 WO
WO 06109072 Oct 2006 WO
WO 06123956 Nov 2006 WO
WO 06125986 Nov 2006 WO
WO 06125987 Nov 2006 WO
WO 06125989 Nov 2006 WO
WO 06125990 Nov 2006 WO
WO 06137067 Dec 2006 WO
WO 2007033050 Mar 2007 WO
WO 2007106804 Sep 2007 WO
WO 07145948 Dec 2007 WO
WO 2008008659 Jan 2008 WO
WO 2008021222 Feb 2008 WO
WO 2008030091 Mar 2008 WO
WO 2008042699 Apr 2008 WO
WO 2008058997 May 2008 WO
WO 2008062554 May 2008 WO
WO 2008113410 Sep 2008 WO
WO 2008113752 Sep 2008 WO
WO 2008118951 Oct 2008 WO
WO 2008140528 Nov 2008 WO
WO 2008146264 Dec 2008 WO
WO 2008148134 Dec 2008 WO
WO 2009024967 Feb 2009 WO
WO 2009027864 Mar 2009 WO
WO 2009036334 Mar 2009 WO
WO 2009060330 May 2009 WO
WO 2009124297 Oct 2009 WO
WO 2010009531 Jan 2010 WO
WO 2010020980 Feb 2010 WO
WO 2010021730 Feb 2010 WO
WO 2010039989 Apr 2010 WO
WO 2010126916 Nov 2010 WO
WO 2010141415 Dec 2010 WO
WO 2011005953 Jan 2011 WO
WO 2011022242 Feb 2011 WO
Non-Patent Literature Citations (11)
Entry
US 7,284,551 B2, 10/2007, Jones et al. (withdrawn)
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1988, pp. 1-32.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Boitano, Louis J., “An Evaluation of Home Volume Ventilators That Support OpenCircuit Mouthpiece Ventilation”, Respiratory Care, Nov. 2005, vol. 50, No. 11, pp. 1457-1461.
Colombo, Davide et al., “Efficacy of Ventilator Waveforms Observation in Detecting Patient-Ventilator Asychrony”, Crit. Care Med., 2011, vol. 39, No. 11, pp. 1-6.
De Wit, M. et al., “Ineffective triggering predicts increased duration of mechanical ventilation”, Covidien Clinical Summary of article in Crit. Care Med. 2009;37(10): 2740-2745, 2 pgs.
De Wit, Marjolein et al., “Ineffective triggering predicts increased duration of mechanical ventilation”, Crit. Care Med., 2009 vol. 37, No. 10, pp. 2740-2745.
International Search Report re: PCT/US09/046409 dated Sep. 29, 2009, 5 pgs.
U.S. Appl. No. 12/980,583, filed Dec. 19, 2010, entitled “Systems and Methods for Ventilation to Obtain a Predetermined Patient Effort”, 48 pgs.
Related Publications (1)
Number Date Country
20140012150 A1 Jan 2014 US