This disclosure relates to maintaining print quality in electrophotographic marking devices. For example, teachings herein are directed to systems and methods for developing a photoreceptor in a developing system of a marking device.
Generally, the electrophotographic printing includes charging a photoconductive member such as a photoconductive belt or drum to a substantially uniform potential to sensitize the photoconductive surface thereof. The charged portion of the photoconductive surface is exposed to a light image from a scanning laser beam, a light emitting diode (LED) source, or other light source. This records an electrostatic latent image on the photoconductive surface. After the electrostatic latent image is recorded on the photoconductive surface, the latent image is developed in a developer system with charged toner. The toner powder image is subsequently transferred to a copy sheet and heated to permanently fuse it to the copy sheet.
The electrophotographic marking process given above can be used to produce color images. One type of electrographic marking process, called image-on-image (IOI) processing, superimposes toner powder images of different color toners onto a photoreceptor prior to the transfer on the composite toner powder image onto to a substrate such as paper. While the IOI process provides certain benefits, such as a compact architecture, there are several challenges to its successful implementation. For instance, in IOI processing, the developer system should not interact with previously toned images.
In the developer system, two-component or single-component developer materials are commonly used. A typical two-component developer material comprises magnetic carrier granules having toner particles adhering triboelectrically thereto. A single-component developer material typically comprises toner particles. Since several known developer systems such as conventional two-component magnetic brush development systems and single-component jumping development systems interact with the photoconductive surface, a previously toned image will be scavenged by subsequent developer stations if interacting developer systems are used. Thus, for the IOI process, there is a need for noninteractive developer systems, such as hybrid scavengeless development (HSD).
In scavengeless developer systems such as HSD systems, toner is conveyed onto the surface of the donor roll. Current embodiments of scavengeless developer systems transfer toner from the surface of the donor roll to a photoconductive surface in the following manner. The toner layer on the donor roll is disturbed by electric fields from a wire or set of wires to produce and sustain an agitated cloud of toner particles. The toner particles in the agitated cloud are attracted to the latent image to form a toner powder image on the photoconductive surface.
For image-on-image (IOI) electrophotographic imaging it is desirable to have scavengeless development subsystems that will not disturb existing images on the photoreceptor. Current embodiments of HSD systems used for non-interactive development in IOI color printers accomplish this by using wire-based development systems, in which a series of AC biased wires are closely spaced from a donor roll to detach toner and form a toner cloud in the development nip, the region between the donor roll and the photoreceptor.
There are shortfalls associated with this development method due to wire contamination, which can result in image quality defects. The wires become contaminated with particulate matter consisting of unmodified and modified toner (e.g., crushed and pressured-fused toner sometimes known as “corn flakes”) and related flow and charge-control agents. A present solution to this problem is to frequently replace the wires, which increases maintenance costs and downtime of the product.
There is a need for new scavengeless developer systems and methods of operating developer systems that work as well as HSD, but without the need for wires.
In embodiments disclosed herein, a developer system, such as jumping development systems, reduces or eliminates the “scavenging effect.” Scavenging is due to the aggressive bombardment of an existing developed (partial) image on a photoreceptor by undeveloped toner, generally from the “toner cloud” in the development nip. Existing developed images on the photoreceptor can be damaged and/or destroyed by the scavenging process.
In embodiments, the potential applied across the development nip of a development system is modulated to allow development to occur on the photoreceptor, driven by the latent charge image, without undue scavenging action.
In embodiments, latent charge image on a photoreceptor is developed by projecting toner from a surface of a donor roll toward the photoreceptor, slowing the speed at which the toner is projected toward the photoreceptor, and urging undeveloped toner to the surface of the donor roll.
In embodiments, the toner is held between the donor roll and the photoreceptor, prior to the urging step, to allow development of the latent image.
While specific embodiments are described, it will be understood that they are not intended to be limiting. For example, even though the example given is a color process employing Image-On-Image technology, the disclosure is applicable to any system having donor rolls that use voltages to develop toner to the photoreceptor.
In the following description, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate identical elements.
Referring now to the drawings, there is shown in
The electrostatic latent images are developed by developer units 30, which deposit toner particles of a selected color on the electrostatic latent images. After the toner image of a selected color has been developed on the exterior surface of the photoconductive belt 110, the photoconductive belt 110 continues to advance in the direction of arrow A to the next image recording station 16. In this way, a multi-color toner powder image is formed on the exterior surface of the photoconductive belt 110. Thereafter, the photoconductive belt 110 advances the multi-color toner powder image to a transfer station, indicated generally by the reference numeral 56.
At transfer station 56, a receiving medium, e.g., paper, is advanced from stack 58 by a sheet feeder and guided to transfer station 56. At transfer station 56, a corona generating device 60 sprays ions onto the backside of the paper. This attracts the developed multi-color toner image from the exterior surface of the photoconductive belt 110 to the sheet of paper. Stripping assist roller 66 contacts the interior surface of the photoconductive belt 110 and provides a bend whereat the sheet disengages from contact with the photoconductive belt 110. A vacuum transport then moves the sheet of paper in the direction of arrow 62 to fusing station 64, which includes a heated fuser roller 70 and a back-up roller 68 that form a nip through which the sheet of paper passes. In the fusing operation, the toner particles bond to the sheet in image configuration, forming a multi-color image thereon. After fusing, the finished sheet is discharged.
After the multi-color toner powder image has been transferred to the sheet of paper, residual toner particles typically remain adhering to the exterior surface of the photoconductive belt 110. The photoconductive belt 110 moves to a cleaning station 72, where residual toner particles are removed from the photoconductive belt 110. One skilled in the art will appreciate that while the multi-color developed image has been disclosed as being transferred to paper, it may be transferred to an intermediate member, such as a belt or drum, and then subsequently transferred and fused to the paper.
Referring now to
The developer apparatus has a single magnetic brush roll, referred to as a mag roll 114, that transports developer material from the reservoir 164 to loading nips 132 formed between the mag roll 114 and a pair of donor rolls 122 and 124.
The mag roll 114 may comprise a rotatable tubular housing within which is located a stationary magnetic cylinder having a plurality of magnetic poles arranged around its surface. Mag rolls are well known, so further details of the construction of the mag roll 114 need not be described here. The carrier granules of the developer material are magnetic, and as the tubular housing of the mag roll 114 rotates, the granules (with toner particles adhering triboelectrically thereto) are attracted to the mag roll 114 and are conveyed to the donor roll loading nips 132. A trim blade 126, also referred to as a metering blade or a trim, removes excess developer material from the mag roll 114 and ensures an even depth of coverage with developer material before arrival at the first donor roll loading nip 132 proximate the upper donor roll 124. At each of the donor roll loading nips 132, toner particles are transferred from the mag roll 114 to the respective donor rolls 122 and 124.
Each donor roll 122 and 124 transports the toner to a respective developer zone, also referred to as a developer nip 138, through which the photoconductive belt 110 passes. Transfer of toner from the mag roll 124 to the donor rolls 122 and 124 can be encouraged by, for example, the application of a suitable electrical bias to the mag roll 114 and/or donor rolls 122 and 124. The bias establishes an electrostatic field between the mag roll 114 and donor rolls 122 and 124, which causes toner to be attracted to the donor rolls 122 and 124 from the carrier granules on the mag roll 114.
The carrier granules and any toner particles that remain on the mag roll 114 are returned to the reservoir 164 as the mag roll 114 continues to rotate. The relative amounts of toner transferred from the mag roll 114 to the donor rolls 122 and 124 can be adjusted, for example by: applying different bias voltages, including AC voltages, to the donor rolls 122 and 124; adjusting the mag-roll-to-donor-roll spacing; adjusting the strength and shape of the magnetic field at the loading nips 132; and/or adjusting the rotational speeds of the mag roll 114 and/or donor rolls 122 and 124.
At each of the developer nips 138, toner is transferred from the respective donor rolls 122 and 124 to the latent image on the photoconductive belt 110 to form a toner powder image on the photoconductive belt 110.
In
The applied AC voltage to the wires 186 and 188 establishes an alternating electrostatic field between the electrode wires 186 and 188 and the respective donor rolls 122 and 124, which is effective in detaching toner from the surface of the donor rolls 122 and 124 and forming a toner cloud about the electrode wires 186 and 188, the height of the cloud being such as not to be substantially in contact with the photoconductive belt 110. A DC bias supply applied to each donor roll 122 and 124 establishes electrostatic fields between the photoconductive belt 110 and donor rolls 122 and 124 for attracting the detached toner from the toner clouds surrounding the electrode wires 186 and 188 to the latent image recorded on the photoconductive surface of the photoconductive belt 110.
In embodiments, according to this disclosure, methods are provided for operating scavengeless developer systems without the need for wires, such as the wires 186 and 188 shown in
In embodiments wherein the toner is negatively charged, the apparatus for developing a photoreceptor 122 utilizing the MC-SJD process is operated so that the first potential P1 and the third potential P3 are negative; and the second potential P2 and the fourth potential P4 are positive. In embodiments wherein the toner is positively charged, the apparatus for developing a photoreceptor 122 utilizing the MC-SJD process is operated so that the first potential P1 and the third potential P3 are positive; and the second potential P2 and the fourth potential P4 are negative. In some embodiments, each of the potentials P1, P2, P3, P4 are different and each of the pulse times T1, T2, T3, T4 are different. In some embodiments, the apparatus may be operated so that the total time period TT for the first pulse time T1, the second pulse time T2, the third pulse time T3, and the fourth pulse time T4 is in the range of from about 150 microseconds to about 600 microseconds, and preferably about 350 microseconds.
Assuming that the back of the photoreceptor 110 is grounded, and that negatively charged toner is used, the potentials P1, P2, P3, P4 applied to the donor roll 122 during each stage of the above method may be those sufficient to perform the recited steps. Likewise, the pulse times T1, T2, T3, T4 for these potentials may be those durations sufficient to perform the recited steps.
The four-stage MC-SJD waveform may have different potentials P1, P2, P3, P4 and different pulse times T1, T2, T3, T4 for different systems based on, for example, differences in the type of toner used, development gap spacing, and the level of DC bias in the development nip 138. The particular combination of voltages and pulse times typically should be selected empirically, based on testing a particular toner in a particular system.
As one example, it is assumed the back of the photoreceptor 110 is grounded. Further, a conventional negatively charged toner is used, such as for instance a conventional toner utilized in a conventional HSD marking device, which may include toner sized in the range of from about 3 μm to 10 μm having a negative triboelectrical charge in the range of about −10 μC/g to about −45 μC/g. Additionally, the development gap may be at a distance of approximately 300 μm with an image charge density of the photoreceptor 110 of −50 μC/m2, a background charge density of the photoreceptor 110 of −350 μC/m2. In this specific example, the potential P1 may be in the range of from about −2500 Volts to about −850 Volts, and preferably about −1200 Volts for a pulse time T1 that may be in the range of from about 5 microseconds to about 35 microseconds, and preferably about 20 microseconds. The potential P2 may be in the range of from about +500 Volts to about +1500 Volts, and preferably about +1000 Volts for a pulse time T2 that may be in the range of from about 25 microseconds to about 100 microseconds, and preferably about 60 microseconds. The potential P3 may be in the range of from about −300 Volts to about −100 Volts, and preferably about −200 Volts for a pulse time T3 that may be in the range of from about 35 microseconds to about 145 microseconds, and preferably about 85 microseconds. The potential P4 may be in the range of from about +100 Volts to about +300 Volts, and preferably about +200 Volts for a pulse time T4 that may be in the range of from about 80 microseconds to about 325 microseconds, and preferably about 190 microseconds, and with an additional potential applied to the donor roll that may be a DC bias of about −200 Volts. Of course, these values should be adjusted, and some degree of empirical determination will likely be appropriate, for a given machine and a given toner.
The example is provided for only one specific system, and the potentials P1, P2, P3 P4 applied to the donor roll 122 during each stage of the above method may be those sufficient to perform the recited steps the specific system in which MC-SJD is utilized. The particular combination of voltages and pulse times typically should be selected empirically, based on testing a particular toner in a particular system. For instance, if a system utilizes positively charged toner, the polarities of the applied potentials would be reversed.
In general, the four potentials P1-P4 are with respect to another “offset potential,” such as a DC potential, that establishes a bias between the photoreceptor and the donor roll. A typical offset potential which is provided only as an example is about −200 Volts, with respect to the back of the photoreceptor, which is usually grounded. Hence, the terms “positive” and “negative” may or may not be with respect to ground, as defined at the back-surface of the photoreceptor. Note that the “offset potential” could itself be negative, positive, or zero; depending on the mode of operation of the device, and the sign of the charged toner in use.
In embodiments, the MC-SJD process provides a first potential P1 applied for a relatively short period of time T1 to strip toner off of the donor's surface and inject it into a development nip. Plastic or other coatings on the donor surface can be used to reduce toner adhesion.
A positive second potential P2 may be applied for a time T2 to slow high-speed toner and prevent the toner from impacting (scavenging) the photoreceptor 110 and any developed toned images on the photoreceptor 110. The applied second potential field should not be so large as to disrupt toner already developed on the latent image of the photoreceptor 110. The applied second potential P2 is applied for a pulse time T2 to provide a “cloud” of near motionless toner hanging in the upper third of a development nip. In this manner, the momentum of the toner cloud is controlled so that energy is not imparted to the surface of the photoreceptor 110 to the detriment of predeveloped images.
The third potential P3 provides for a “drift time” of the third pulse time P3 whereby a near-stationary toner cloud is repelled from regions of the photoreceptor 110 which have “cleaning fields” and attracted to regions with “development fields.” A third potential P3 is provided for a third pulse time duration T3 to counter the space-charge effect and hold the toner cloud in place.
A fourth potential P4 provides a bias for the duration T4, which is long enough to sweep unused toner from within a development nip back towards a donor's surface. This resets the process for the next set of pulses P1, P2, P3, P4. The fourth potential P4 should not be strong enough to dislodge toner that has been previously adhered to a photoreceptor in development areas, but should be strong enough to remove undeveloped toner from a development nip 138. This prevents airborne toner in a development nip from otherwise accelerating uncontrolled towards a photoreceptor during the next injection pulse P1. In embodiments, the toner clouds generated utilizing this method are comparable to those that generated by conventional HSD utilizing wires.
Although
The system controller 90 communicates with, controls and coordinates interactions between the various systems and subsystems within the machine to implement the operation of the marking device 104. That is, the system controller 90 has a system-wide view and can monitor and adjust the operation of each subsystem affected by changing conditions and changes in other subsystems. Although shown as a single block in
The input/output interface 154 may convey information from a user input device 156 and/or a data source 159. The controller 90 performs any necessary calculations and executes any necessary programs for implementing the marking device 104, and its individual components and controls the flow of data between other components of the marking device 104 as needed.
The memory 152 may serve as a buffer for information coming into or going out of the marking device 104, may store any necessary programs and/or data for implementing the functions of the marking system 104, and/or may store data at various stages of processing. The memory 152, while depicted as a single entity, may actually be distributed. Alterable portions of the memory 152 are, in various exemplary embodiments, implemented using static or dynamic RAM. However, the memory 152 can also be implemented using a floppy disk and disk drive, a writeable optical disk and disk drive, a hard drive, flash memory or the like. The links 158 may be any suitable wired, wireless or optical links.
The data source 159 can be a digital camera, a scanner, or a locally or remotely located computer, or any other known or later developed device that is capable of generating electronic image data. Similarly, the data source 159 can be any suitable device that stores and/or transmits electronic image data, such as a client or a server of a network. The image data source 159 can be integrated with the marking device 104, as in a digital copier having an integrated scanner. Alternatively, the data source 159 can be connected to the marking device 104 over a connection device, such as a modem, a local area network, a wide area network, an intranet, the Internet, any other distributed processing network, or any other known or later developed connection device.
As shown in
An exemplary method is provided for removing toner from a donor roll utilizing a pre-development station. Reference to a pre-development station will be made to elements of
In embodiments, the conductive receiver is cleaned. In embodiments, the cleaning step comprises scraping the scavenging roll with a cleaning blade, such as the cleaning blade 126 described above.
The distance between the donor roll and the receiver may be adjusted to vary the amount of toner removed from the donor roll. Additionally or alternatively, the strength of the first electric field may be adjusted to vary the amount of toner removed from the donor roll. These adjustments may be made by the manufacturer during manufacture of the device, or a suitable adjustment device and/or control input device that may be provided to enable a user or a technician to make the adjustment based on performance.
The strength of the electrical field and the gap distance between the scavenging roll and the donor roll may be chosen so that an “average” toner particle, i.e., one with median triboelectrical attraction just approaches the scavenging roll does not adhere to the donor roll. Toner particles having higher triboelectrical attraction hit the scavenging roll and adhere to its surface. The largest particles, even those with moderate triboelectrical attraction, will have sufficient momentum to collide with and adhere to the surface of the scavenging roll.
The method for removing toner illustrated in
The pre-developing station strips high triboelectrically attracted toner particles from the donor onto the scavenging roll. The resulting “toner cloud” subsequently produced in the development nip is thus controlled to provide scavengeless development of the latent image formed on the photoreceptor when a pre-development station is used in HSD systems. However, the pre-development station concept may be applied to other contexts as well, including conventional jumping development systems and momentum controlled scavengeless jumping development systems.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, and are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5453768 | Schmidlin | Sep 1995 | A |
5678130 | Enomoto et al. | Oct 1997 | A |
6026264 | Wong et al. | Feb 2000 | A |
6035170 | Snelling | Mar 2000 | A |
6223013 | Eklund et al. | Apr 2001 | B1 |
6360067 | Hays et al. | Mar 2002 | B1 |
6459862 | Sakemi et al. | Oct 2002 | B1 |
7079794 | Forbes, II et al. | Jul 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20080240758 A1 | Oct 2008 | US |