Systems and methods for monitoring and controlling remote devices

Abstract
Systems and methods for monitoring and controlling remote devices are provided. In an embodiment, a system can comprise one or more remotely controlled sensors and actuators. The remote sensors/actuators can interface with uniquely identified remote transceivers that transmit and/or receive data. The embodiment can also comprise a plurality of transceivers each having a unique address, and a controller adapted to communicate with at least one of the transceivers in a preformatted message. A sensor can be associated with at least one transceiver to detect a condition and output a data signal to the transceiver, and an actuator can be associated with a transceiver to receive a control signal and activate a device. Other embodiments are also claimed and described.
Description
TECHNICAL FIELD

The present invention generally relates to remotely operated systems, and more particularly to a system for monitoring, controlling and, reporting on remote systems utilizing radio frequency (RF) transmissions.


BACKGROUND

There are a variety of systems for monitoring and controlling manufacturing processes, inventory systems, and emergency control systems. Most automatic systems use remote sensors and controllers to monitor and automatically respond to system parameters to reach desired results. A number of control systems utilize computers to process sensor outputs, model system responses, and control actuators that implement process corrections within the system. For example, the electric power generation and metallurgical processing industries successfully control production processes by utilizing computer control systems.


Many environmental and safety systems require real-time monitoring. Heating, ventilation, and air-conditioning systems (HVAC), fire reporting and suppression systems, alarm systems, and access control systems utilize real-time monitoring, and often require immediate feedback and control.


A problem with expanding the use of control system technology is the cost of the sensor/actuator infrastructure required to monitor and control such systems. The typical approach to implementing control system technology includes installing a local network of hard sensor(s)/actuator(s) and a local controller. There are expenses associated with developing and installing the appropriate sensor(s)/actuator(s) and connecting functional sensor(s)/actuator(s) with the local controller. Another prohibitive cost of control systems is the installation and operational expenses associated with the local controller.



FIG. 1 sets forth a block diagram illustrating certain fundamental components of a prior art control system 100. The prior art control system 100 includes a plurality of sensor/actuators 111, 112, 113, 114, 115, 116, and 117 electrically and physically coupled to a local controller 110. Local controller 110 provides power, formats and applies data signals from each of the sensors to predetermined process control functions, and returns control signals as appropriate to the actuators. Often, prior art control systems are further integrated via the public switched telephone network (PSTN) 120 to a central controller 130. Central controller 130 can also serve as a technician monitoring station and/or forward alarm conditions via PSTN 120 to appropriate officials.


Prior art control systems similar to that of FIG. 1 require the development and installation of an application-specific local system controller. In addition, each local system requires the direct coupling of electrical conductors to each sensor and actuator to the local system controller. Such prior art control systems are typically augmented with a central controller 130 that may be networked to the local controller 110 via PSTN 120. As a result, prior art control systems often are susceptible to a single point of failure if the local controller 110 goes out of service. Also, appropriately wiring an existing industrial plant can be dangerous and expensive.


BRIEF SUMMARY OF THE INVENTION

The embodiments of present invention are directed to a system and method of monitoring and controlling remote devices. More specifically, the present system is directed to a system for monitoring and controlling remote devices by transmitting data between the remote systems and a gateway interface via a packet message protocol system.


A preferred embodiment can comprise one or more remote sensors to be read and one or more actuators to be remotely controlled. The remote sensor(s)/actuator(s) can interface with unique remote transceivers that transmit and/or receive data. If necessary in individual applications, signal repeaters may relay information between the transceiver(s) and the gateway interface. Communication links between the remote transceivers and the gateway interface are preferably wireless, but may also be implemented with a mixture of wireless and wired communication links.


To successfully communicate between the transceiver(s) and the gateway interface, a preferred embodiment of the present invention can receive a plurality of RF signal transmissions containing a packet protocol via a preferred embodiment of data structures that include sender and receiver identifiers, a description of the packet itself, a message number, commands, data, and an error detector. The data structure can be integrated with alternate data communication protocols for use with many other communication systems and networks. Also, a preferred embodiment of the present invention can be integrated into an existing control system using networked wireless transceivers. Distinct control signals from the pre-existing system can be mapped into the packet protocol enabling integration into a pre-existing control system easily and inexpensively.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a prior art control system.



FIG. 2 is a block diagram illustrating a monitoring/control system in accordance with a preferred embodiment of the present invention.



FIG. 3 is a block diagram illustrating a transceiver in accordance with a preferred embodiment of the present invention.



FIG. 4 is a block diagram illustrating a transmitter in accordance with a preferred embodiment of the present invention.



FIG. 5 is a block diagram illustrating a transceiver in accordance with a preferred embodiment of the present invention integrated with a sensor and an actuator.



FIG. 6 is a block diagram illustrating a local gateway in accordance with a preferred embodiment the present invention.



FIG. 7 is a table illustrating the message protocol in accordance with a preferred embodiment of the present invention.



FIG. 8 is a table illustrating various “to” addresses in accordance with a preferred embodiment of the present invention.



FIG. 9 illustrates three sample messages using a message protocol system in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS


FIG. 2 sets forth a block diagram illustrating a preferred embodiment of a control system 200 in accordance with the present invention. The control system 200 can consist of one or more transceivers. An exemplary transceiver 205 can be integrated with a sensor 224 to form a first combination. A second transceiver 207 can be integrated with an actuator 222 to form a second combination. The transceivers 205, 207 are preferably wireless RF transceivers that are small and transmit a low-power-RF signal. As a result, in some applications, the transmission range of a given transceiver 205, 207 may be limited. As will be appreciated from the description that follows, this limited transmission range of the transceivers 205, 207 can be a desirable characteristic of the control system 200. Although the transceivers 205, 207 are depicted without user interfaces such as a keypad (not shown), the transceivers 205, 207 may be configured with user selectable buttons or an alphanumeric keypad (not shown). Often, the transceivers 205, 207 can be electrically interfaced with a sensor/actuator 222 such as a smoke detector, a thermostat, or a security system, where external buttons are not needed.


One or more specific types of RF transceivers can be used with the various embodiments of the present invention. For example, one RF transceiver that may be used is the TR1000, manufactured by RF Monolithics, Inc. The TR1000 hybrid transceiver is well suited for short range, wireless data applications where robust operation, small size, low power consumption, and low-cost are desired. All critical RF functions may be performed within a single hybrid semi-conductor chip, simplifying circuit design and accelerating the design-in process. The receiver section of the TR1000 is sensitive and stable. A wide dynamic range log detector, in combination with digital automatic gain control (AGC) provides robust performance in the presence of channel noise or interference. Two stages of surface acoustic wave (SAW) filtering provide excellent receiver out-of-band rejection. The TR100 includes provisions for both on-off keyed (OOK) and amplitude-shift key (ASK) modulation. The TR100 employs SAW filtering to suppress output harmonies, for compliance with FCC and other regulations.


Additional details of the TR1000 transceiver need not be described herein, because the present invention is not limited by the particular choice of transceiver. Indeed, numerous RF transceivers may be implemented in accordance with the teachings of the present invention. Such other transceivers may include other 900 MHz transceivers, as well as transceivers at other frequencies. In addition, infrared, ultrasonic, and other types of wireless transceivers may be employed. Further details of the TR1000 transceiver may be obtained through data sheets, application notes, design guides (e.g., the “ASH Transceiver Designers Guide”), and other publications.


The control system 200 can also include a plurality of stand-alone transceivers 211, 213, 215, and 221. Each of the stand-alone transceivers 211, 213, 215, and 221, and each of the integrated transceivers 212, 214, 216, 222, and 224 can receive an incoming RF transmission and transmit an outgoing signal. This outgoing signal may be a low-power-RF transmission signal, a high-power-RF transmission signal, or may be electric signals transmitted over a conductive wire, a fiber optic cable, or other transmission media. It will be appreciated by those skilled in the art that the integrated transceivers 212, 214, 216, 222, and 224 can be replaced by RF transmitters for applications that require continuous data collection only.


The local gateways 210 and 220 can receive remote data transmissions from one or more of the stand-alone transceivers 211, 213, 215, and 221, or one or more of the integrated transceivers 212, 214, 216, 222, and 224. The local gateways 210 and 220 can analyze the transmissions received, convert the transmissions into TCP/IP format, and further communicate the remote data signal transmissions via the WAN 230. The local gateways 210 and 220 may communicate information, service requests, and/or control signals to the remote integrated transceivers 212, 214, 216, 222, and 224, from the server 260, the laptop computer 240, and/or the workstation 250 across the WAN 230. The server 260 can be further networked with the database server 270 to record client specific data. Further information regarding the integration of embodiments of the present invention into the WAN 230 can be found in U.S. Pat. No. 6,891,838 application entitled, “System and Method for Monitoring and Controlling Residential Devices.”


It will be appreciated by those skilled in the art that if an integrated transceiver (either of 212, 214, 216, 222, and 224) is located sufficiently close to one of the local gateways 210 or 220 such that the integrated transceiver's outgoing signal can be received by a gateway, the outgoing signal need not be processed and repeated through one of the stand-alone transceivers 211, 213, 215, or 221.


A monitoring system constructed in accordance with the teachings of the present invention may be used in a variety of environments. In accordance with a preferred embodiment, a monitoring system 200 such as that illustrated in FIG. 2 may be employed to monitor and record utility usage by residential and industrial customers, to transfer vehicle diagnostics from an automobile via a RF transceiver integrated with the vehicle diagnostics bus to a local transceiver that further transmits the vehicle information through a local gateway onto a WAN, to monitor and control an irrigation system, or to automate a parking facility. Further information regarding these individual applications can be found in U.S. Pat. No. 6,891,838 entitled, “System and Method for Monitoring and Controlling Residential Devices.”


The integrated transceivers 212, 214, 215, 222, and 224 can have substantially identical construction (particularly with regard to their internal electronics), which provides a cost-effective implementation at the system level. Alternatively, the transceivers (integrated or stand-alone) can differ as known to one of ordinary skill in the art as necessitated by individual design constraints. Furthermore, a plurality of stand alone transceivers 211, 213, 215, and 221, which may be identical, can be disposed in such a way that adequate RF coverage is provided. Preferably, the stand-alone transceivers 211, 213, 215, and 221 may be dispersed sufficient that only one stand-alone transceiver will pick up a transmission from a given integrated transceiver 212, 214, 216, 222, and 224 (due in part to the low power transmission typically emitted by each transmitter).


In certain instances, however, two or more, stand-alone transceivers may pick up a single transmission. Thus, the local gateways 210 and 220 may receive multiple versions of the same data transmission from an integrated transceiver, but from different stand-alone transceivers. The local gateways 210 and 220 may utilize this information to triangulate or otherwise more particularly assess a location from which the common data transmission is originating. Due to the transmitting device identifier incorporated within the preferred protocol in the transmitted signal, duplicative transmissions (e.g., transmissions duplicated to more than one gateway or to the same gateway) may be ignored or otherwise appropriately handled.


The advantage of integrating a transceiver, as opposed to a one-way transmitter, with the sensor is the transceiver's ability to receive incoming control signals and to transmit data signals upon demand. The local gateways 210 and 220 may communicate with all system transceivers. Since the local gateways 210 and 220 can be permanently integrated with the WAN 230, the server 260 coupled to the WAN 230 can host application specific software. Further, the data monitoring and control devices of the present invention can be movable as necessary given that they remain within signal range of a stand-alone transceiver 211, 213, 215, or 221 that subsequently is within signal range of a local gateway 210, 220 interconnected through one or more networks to server 260. As such, small application specific transmitters compatible with control system 200 can be worn or carried. It will be appreciated that a person so equipped may be in communication with any device communicatively coupled with the WAN 230.


In one embodiment, the server 260 collects, formats, and stores client specific data from each of the integrated transceivers 212, 214, 216, 222, and 224 for later retrieval or access from the workstation 250 or the laptop 240. The workstation 250 or the laptop 240 can be used to access the stored information through a Web browser. In another embodiment, the server 260 may perform the additional functions of hosting application specific control system functions and replacing the local controller by generating required control signals for appropriate distribution via the WAN 230 and the local gateways 210, 220 to the system actuators. In another embodiment, clients may elect for proprietary reasons to host any control applications on their own WAN connected workstation. The database 270 and the server 260 may act solely as a data collection and reporting device with the client workstation 250 generating control signals for the system.


Reference is now made to FIG. 3, which is a block diagram illustrating certain functional blocks of a transceiver 340 that may be integrated with sensor 310 in accordance with a preferred embodiment of the present invention. For example, sensor 310 in its simplest form can be a two-state device, such as a smoke alarm. Alternatively, the sensor 310 may output a continuous range of values to the data interface 321 such as a thermometer. If the signal output from the sensor 310 is an analog signal, the data interface 321 may include an analog-to-digital converter (not shown) to convert signals output to the transceiver 340. Alternatively, a digital interface (communicating digital signals) may exist between the data interface 321 and each sensor 310.


The sensor 310 can be communicatively coupled with the RF transceiver 340. The RF transceiver 340 may comprise a RF transceiver controller 328, a data interface 321, a data controller 324, a transceiver identifier 326, and an antenna 328. As shown in FIG. 3, a data signal forwarded from the sensor 310 may be received at an input port of the data interface 321. The data interface 321 may be configured to receive the data signal. In those situations where the data interface has received an analog data signal, the data interface 321 may be configured to convert the analog signal into a digital signal before forwarding a digital representation of the data signal to the data controller 324.


In accordance with a preferred embodiment, each transceiver 340 may be configured with a unique transceiver identification 326 that uniquely identifies the RF transceiver 340. The transceiver identification 326 may be programmable, and implemented an EPROM. Alternatively, the transceiver identification 326 may be set and/or configured through a series of dual inline package (DIP) switches. Additional implementations of the transceiver identification 326, whereby the number may also be set and/or configured as desired, may be implemented.


The unique transceiver identification 326 coupled with a function code for a sensor “on” condition can be formatted by data controller 324 for transformation into the RF signal 330 by RF transmitter 328 and transmission via antenna 323.


While the unique transceiver address can be varied, it is preferably a six-byte address. The length of the address can be varied as necessary given individual design constraints. This data packet 330 communicated from transceiver 340 will readily distinguish from similar signals generated by other transceivers in the system.


Of course, additional and/or alternative configurations may also be provided by a similarly configured transceiver. For example, a similar configuration may be provided for a transceiver that is integrated into, for example, a carbon monoxide detector, or a door position sensor. Alternatively, system parameters that vary across a range of values may be transmitted by transceiver 340 as long as data interface 321 and data controller 324 are configured to apply a specific code that is consistent with the input from sensor 310. As long as the code was understood by the server 260 or workstation 250, the target parameter can be monitored by the embodiments of the present invention.


Reference is now made to FIG. 4. FIG. 4 is a block diagram illustrating a transmitter in accordance with a preferred embodiment of the present invention. The sensor 400 may be coupled to the RF transmitter 410. The RF transmitter 410 may comprise a transmitter controller 405, a data interface 420, a data controller 425, a transmitter identification 430, and an antenna 440. The data signal forwarded from the sensor 400 may be received at an input port of the data interface 420. The data interface 420 may be configured to receive the data signal. In those situations where the data interface 420 has received an analog data signal, the data interface 420 may be configured to convert the analog signal into a digital signal before forwarding a digital representation of the data signal to the data controller 425.


Each transmitter/transceiver 410 may be configured with a unique transmitter identification 430 that uniquely identifies the RF transmitter 410. The transmitter identification number 430 may be programmable, and implemented with an EPROM. Alternatively, the transmitter identification 430 may be set and/or configured through a series of dual inline package (DIP) switches. Additional implementations of the transmitter identification 430, whereby the identification may be set and/or configured as desired, may also be implemented.


The data controller 425 may be configured to receive both a data signal from the data interface 420 and the transmitter identification 430. The data controller 425 may be configured to format (e.g., concatenate) both data portions into a composite information signal. The composite information signal may be forwarded to the transmitter controller 415 which can then transmit the encoded RF signal from the sensor 400 via a packet message protocol system. The transmitter controller 415 may convert information from digital electronic form into a format, frequency, and voltage level suitable for transmission from antenna 440. The transmitter identification 430 can be set for a given transmitter 410. When received by the application server 260 (FIG. 2), the transmitter identification 430 may be used to access a look-up table that identifies, for example, the location, the system, and the particular parameter assigned to that particular transmitter. Additional information about the related system may also be provided within the lookup table, with particular functional codes associated with a corresponding condition or parameter, such as but not limited to, an appliance operating cycle, a power status, a temperature, a position, and other information.



FIG. 5 sets forth a block diagram of the transceiver 500 integrated with a sensor 510 and an actuator 520 in accordance with a preferred embodiment of the present invention. Here, the data interface 525 is shown with a single input from the sensor 510. It is easy to envision a system that may include multiple sensor inputs. The RF transceiver 500 may comprise a transceiver controller 530, a data interface 525, a data controller 535, a transceiver identification 540, and an antenna 550. The data signal forwarded from the sensor 510 may be received at an input/output port of the data interface 525. The data interface 525 may be configured to receive the data signal and transmit a command signal. In those situations where the data interface 525 has received an analog data signal, the data interface 525 may be configured to convert the analog signal into a digital signal before forwarding a digital representation of the data signal to the data controller 525. Similarly, when the data controller 535 forwards a digital representation of a command signal, the data interface 525 may be configured to translate the digital command signal into an analog voltage suitable to drive the actuator 520.


In accordance with a preferred embodiment, each RF transceiver 500 may be configured with a unique transceiver identification 540 that uniquely identifies the RF transceiver 500. The transceiver identification 540 may be set or configured as described above.


The data controller 535 may be configured to receive both a data signal from the data interface 525 and the transceiver identification number 540. The data controller 535 may also receive one or more data signals from other RF communication devices. As previously described, the data controller 535 may be configured to format (e.g., concatenate) both data signal portions originating at the RF transceiver 500 into a composite information signal which may also include data information from other closely located RF communication devices. The composite information signal may be forwarded to a transceiver controller 530, which may be configured to transmit the encoded RF data signals via the packet messaging system. It will be appreciated that the transceiver controller 530 may convert information from digital electronic form into a format, frequency, and voltage level suitable for transmission from the antenna 550.


For example, a common home heating and cooling system might be integrated with an embodiment of the present invention. The home heating system may include multiple data interface inputs from multiple sensors. A home thermostat control connected with the home heating system could be integrated with a sensor that reports the position of a manually adjusted temperature control (i.e., temperature set value) and a sensor integrated with a thermister to report an ambient temperature. The condition of related parameters can be sent to the data interface 525 as well as including the condition of the system on/off switch, the climate control mode selected (i.e., heat, fan, or AC). In addition, depending upon the specific implementation, other system parameters may be provided to data interface 525 as well.


The addition of the actuator 520 to the integrated transceiver 500 permits the data interface 525 to apply signals to the manual temperature control for the temperature set point, the climate control mode switch, and the system on/off switch. This, a remote workstation 250 or a laptop 240 with WAN access (see FIG. 2) could control a home heating system from a remote location.


Again, each of these various input sources can be routed to the data interface 525, which provides the information to the data controller 535. The data controller 535 may utilize a look up table to access unique function codes that are communicated in the data packet 560, along with a transceiver identification code 540, to the local gateway and further onto the WAN. In general, the operation of RF transceiver 500 will be similar to that described above.


The various RF communication devices illustrated and described may be configured with a number of optional power supply configurations. For example, a personal mobile transceiver may be powered by a replaceable battery. Similarly, a stand-alone RF transceiver repeater may be powered by a replaceable battery that may be supplemented and/or periodically charged via a solar panel. These power supply circuits, therefore, may differ from RF communication device to RF communication device depending upon the remote system monitored, the related actuators to be controlled, the environment, and the quality of service level required. Those skilled in the art will appreciate and understand how to meet the power requirements of the various RF communication devices. As a result, it is not necessary to further describe a power supply suitable for each RF communication device and each application in order to appreciate the concepts and teachings of the present invention.


Having illustrated and described the operation of the various combinations of RF communication devices with the various sensors 114 and sensor actuators 112 consistent with the present invention, reference is now made to FIG. 6. FIG. 6 is a block diagram further illustrating a local gateway 600 in accordance with a preferred embodiment of the present invention. A local gateway 600 may comprise an antenna 610, an RF transceiver 615, a central processing unit (CPU) 620, a memory 625, a network card 630, a digital subscriber line (DSL) modem 635, and an integrated services digital network (ISDN) interface card 640. The local gateway 600 can also include many other components not illustrated in FIG. 6, capable of enabling a terminal control protocol Internet protocol (TCP/IP) connection to the WAN 130.


The RF transceiver 615 may be configured to receive incoming RF signal transmissions via an antenna 610. Each of the incoming RF signal transmissions can be consistently formatted in the convention previously described. The local gateway 600 may also be configured such that the memory 625 includes a look-up table 650 that may assist in identifying the various remote and intermediate RF communication devices used in generating and transmitting the received data transmission as illustrated in memory sectors 650 and 660 herein labeled, “Identify Remote Transceiver” and “Identify Intermediate Transceiver,” respectively. Programmed or recognized codes within the memory 625 may also be provided and configured for controlling the operation of a CPU 620 to carry out the various functions that are orchestrated and/or controlled by the local gateway 600. For example, the memory 625 may include program code for controlling the operation of the CPU 625 to evaluate an incoming data packet to determine what action needs to be taken. One or more look-up tables 650 may also be stored within the memory 625 to assist in this process. Furthermore, the memory 625 may be configured with program code to identify a remote RF transceiver 655 or identify an intermediate RF transceiver 660. Function codes, RF transmitter and/or RF transceiver identification numbers may all be stored with associated information in the look-up tables 650.


Thus, one look-up table 650 may be provided to associate transceiver identifications with a particular user. Another look-up table 650 may be used to associate function codes with the interpretation thereof. For example, a unique code may be associated by a look-up table 650 to identify functions such as test, temperature, smoke alarm active, or security system breach. In connection with the lookup table(s) 650, the memory 625 may also include a plurality of code segments that are executed by the CPU 620, which may control operation of the gateway 600. For example, a first data packet segment 665 may be provided to access a first lookup table to determine the identity of the RF transceiver 625, which transmitted the received message. A second code segment may be provided to access a second lookup table to determine the proximate location of the message generating RF transceiver 600, by identifying the RF transceiver 600 that relayed the message. A third code segment may be provided to identify the content of the message transmitted. Namely, is it a fire alarm, a security alarm, an emergency request by a person, or a temperature control setting. Additional, fewer, or different code segments may be provided to carry out different functional operations and data signal transfers.


The local gateway 600 may also include one or more mechanisms to facilitate network based communication with remote computing devices. For example, the gateway 600 may include a network card 630, which may allow the gateway 600 to communicate across a local area network to a network server, which in turn may contain a backup gateway 110 to the WAN 645. Alternatively, the local gateway 600 may contain a DSL modem 635, which may be configured to provide a link to a remote computing system, by way of the PSTN. In yet another alternative, the local gateway 600 may include an ISDN card 640 configured to communicate via an ISDN connection with a remote system. Other communication interfaces may be provided as well to serve as primary and or backup links to the WAN 645 or to local area networks that might serve to permit local monitoring of local gateway 600 health and data packet control.


For each of the remote devices to communicate, there needs to be a standard enabling each device to understand a message. FIG. 7 sets forth a format of a data packet protocol in accordance with a preferred embodiment of the present invention. All messages transmitted within the system consist of a “to” address 700, a “from” address 710, a packet number 720, a number of packets in a transmission 730, a packet length 740, a message number 750, a command number 760, any data 770, and a check sum error detector (CKH 780 and CKL 790).


The “to” address 700 can indicate the intended recipient of the packet. This address can be scalable from one to six bytes based upon the size and complexity of the system. By way of example, the “to” address 700 can indicate a general message to all transceivers, to only the stand-alone transceivers, or to an individual integrated transceiver. In a six byte “to” address, the first byte indicates the transceiver type to all transceivers, to some transceivers, or a specific transceiver. The second byte can be the identification base, and bytes three through six can be used for the unique transceiver address (either stand-alone or integrated). The “to” address 700 can be scalable from one byte to six bytes depending upon the intended recipient(s).


The “from” address 710 can be a the six-byte unique transceiver address of the transceiver originating the transmission. The “from” address 710 can be the address of the controller when the controller requests data, or this can be the address of the integrated transceiver when the integrated transceiver sends a response to a request for information to the controller.


The packet number 720, the packet maximum 730, and the packet length 740 can be used to concatenate messages that are greater than 128 bytes. The packet maximum 730 can indicate the number of packets in the message. The packet number 720 may be used to indicate a packet sequence number for a multiple-packet message.


The message number 750 can be originally assigned by the controller. Messages originating from the controller can be assigned an even number. Responses to the controller can be the original message number plus one, rendering the responding message number odd. The controller can then increment the message number 750 by two for each new originating message. This enables the controller to coordinate the incoming responses to the appropriate command message.


The next section is the command byte 760 that requests data from the receiving device as necessary. There can be two types of commands: device specific and not device specific. Device specific commands can control a specific device such as a data request or a change in current actuator settings. A number of commands are not device specific. Such commands are for example, but not limited to, a ping, an acknowledge, a non-acknowledgement, downstream repeat, upstream repeat, read status, emergency message, and a request for general data, among others. General data may include a software version number, the number of power failures, and/or the number of resets.


The data 770 section may contain data as requested by a specific command. The requested data can be many values. By way of example, test data can be encoded in ASCII (American Standard Code for Information Interchange) or many other encoding systems. The data section of a single packet can be scalable up to 109 bytes. When the requested data exceeds 109 bytes, the integrated transceiver can divide the data into appropriate number of sections and concatenates the series of packets for one message using the packet identifiers as discussed above.


The checksum sections 780, 790 can be used to detect errors in the transmissions. In one embodiment, any error can be detected via cyclic redundancy check sum methodology. This methodology divides the message as a large binary number by the generating polynomial (in this case, CRC-16). The remainder of this division is then sent with the message as the checksum. The receiver then calculates a checksum using the same methodology and compares the two checksums. If the checksums do not match, the packet or message will be ignored. While this error detection methodology is preferred, many other error detection systems can be used.


In one embodiment of this invention, this system can be implemented via an RF link at a basic rate of 4,800 bits per second (bps) with a data rate of 2,400 bps. All the data can be encoded in the Manchester format such that a high to low transition at the bit center point represents a logic zero and a low to high transition represents a logic one. Other RF formats can be used depending upon individual design constraints. For example, a quadrature phase shift encoding method could be used, enabling the control system to communicate via hexadecimal instead of binary.


While the message indicates specific byte length for each section, only the order of the specific information within the message is constant. The byte position number in individual transmissions can vary because of the scalability of the “to” address, the command byte, and the scalability of the data.


The message can further include a preface and a postscript (not shown). The preface and postscripts are not part of the message body, but rather serve to synchronize the control system and to frame each packet of the message. The packet begins with the preface and ends with a postscript. The preface can be a series of twenty-four logic ones followed by two bit times of high voltage with no transition. The first byte of the packet can then follow immediately. The postscript will be a transition of the transmit data line from a high voltage to a low voltage, if necessary. It is less desirable to not leave the transmit data line high after the message is sent.



FIG. 8 sets forth a preferred embodiment of the “to” address byte assignment in accordance with an embodiment of the present invention. As shown in FIG. 8, the “to” address consists of six bytes. The first byte (Byte 1) can indicate the device type. The second byte (Byte 2) can indicate the manufacturer or the owner. The third byte (Byte 3) can be a further indication of the manufacturer or owner. The fourth byte (Byte 4) can either indicate that the message is for all devices, or that the message is for a particular device. If the message is for all devices, the fourth byte can be a particular code. If the message is for a particular device, the fourth, fifth, and sixth bytes (Byte 5 and Byte 6) can be a unique identifier for the particular devices.


Having described a general message structure in accordance with an embodiment of the present invention, reference is made to FIG. 9. FIG. 9 illustrates three sample messages. The first message 910 illustrates the broadcast of an emergency message “FF” from a central server with an address “0012345678” to a integrated transceiver with an address of “FF.”


The second message 920 illustrates how the first message might be sent to a stand-alone transceiver. Emergency message “FF” from a central server with address “00123456578” can be first sent to stand-alone transceiver “FO.” The second message contains additional command data “A000123456” that may be used by the system to identify further transceivers to send the signal through on the way to the destination device.


The third message 930 illustrated in FIG. 9 illustrates how the message protocol of the present invention may be used to “ping” a remote transceiver to determine transceiver health. For example, source unit “E112345678” may originate a ping request by sending command “08” to a transceiver identified as “A012345678.” The response to the ping request can be as simple as reversing the “to address” and the “from address” of the command such that a healthy receiver will send a ping message back to the originating device. A system in accordance with a preferred embodiment of the present invention may be configured to expect a return ping within a specific time period. Operators of the present invention could use the delay between the ping request and the ping response to model system loads and to determine if specific system parameters might be adequately monitored and controlled with the expected feedback transmission delay of the system.


Returning to FIG. 2, the local gateway 210 can act as a local communications master in a system, such as system 200. With the exception of emergency messages, the local gateway 210 usually initiates communications with any remote transceivers (either stand-alone 211, 213, 215, 221 or integrated 212, 214, 216, 224). The remote transceivers then respond based upon the command received in the message. In general, the local gateway 210 expects a response to all messages sent to any of the remote transceivers 211, 212, 213, 214, 215, 216, 221, and 225.


To acknowledge a message, any of the remote transceivers 211, 212, 213, 214, 215, 216, 221, 224 can send one of two messages: a positive acknowledgement or a negative acknowledgement. The positive acknowledgement may have two forms. When the message is between the local gateway 210 or a stand-alone transceiver 211, 213, 215, 221 and another stand-alone transceiver 211, 213, 215, 221, the acknowledgement can be a re-send the original message with no changes. The second form is for a message sent from the local gateway 210 stand-alone transceiver 211, 213, 215, 221 to a integrated transceiver 212, 214, 216, 224. In this case, the positive acknowledgement can be a message containing the requested data.


Emergency messages are preferably the only messages initiated by the integrated transceivers 212, 214, 216, 224. To accommodate receiving any emergency messages, the local gateway 210 may dedicate one-half of every ten-second period to receive emergency messages. During these time periods, the local gateway 210 may not transmit messages other than acknowledgements to any emergency messages. The integrated transceivers 212, 214, 216, 224 may detect the period of silence, and in response, may then transmit the emergency message.


There are typically two forms of emergency messages: from personal safety/security transceiver(s) and from permanently installed safety/security transceiver(s). In the first case of the personal transceiver, the emergency message can consist of a predetermined “to” address and an odd, random number. In response to this emergency message, the local gateway 210 can acknowledge during a silent period. The personal transceiver can then repeat the same emergency message. The local gateway 210 can then forward the emergency message on to the WAN 230 in the normal manner.


Upon receipt of the local gateway 210 acknowledgement, the personal transceiver can reset itself. If no acknowledgement is received within a predetermined time period, the personal transceiver may continue to re-transmit the original emergency message until acknowledged by the local gateway 210 for a predetermined number of re-transmissions.


In the second case, the permanently installed safety/security transceiver (212) may send one message to the local gateway 210 during a time out period. The emergency message can be transmitted to a predetermined address other than the emergency address for personal transceivers.


The foregoing description has illustrated certain fundamental concepts of the invention, and other additions and/or modifications may be made consistent with the inventive concepts. For example, the one-way transmitters may be adapted to continuously monitor the current status of water, gas, and other utility meters. One-way transmitters might further be used to monitor and report actual operational hours on rental equipment or any other apparatus that must be serviced or monitored on an actual run-time schedule.


The transceivers of the current invention may be adapted to monitor and apply control signals in an unlimited number of applications. For example, two-way transceivers of the current invention can be adapted for use with pay-type-publicly-located telephones, cable television set converter boxes, and a host of residential appliances and devices enabling a remote controllable home automation and security system. For example, building automation systems, fire control systems, alarm systems, industrial trash compactors, and building elevators can be monitored and controlled with devices consistent with the present invention. In addition, courier drop boxes, time clock systems, automated teller machines, self-service copy machines, and other self-service devices can be monitored and controlled as appropriate. By way of further example, a number of environment variables that require monitoring can be integrated with the system of the present invention to permit remote monitoring and control. For instance, light levels in the area adjacent to automated teller machines must meet minimum federal standards. Also, the water volume transferred by water treatment plant pumps, smokestack emissions from a coal burning power plant or a coke fueled steel plant oven can be remotely monitored.


In a geographic area appropriately networked with permanently located stand-alone transceivers consistent with the embodiments of the invention, personal transceivers can be used to monitor and control personnel access and egress from specific rooms or portions within a controlled facility. Personal transceivers can also be configured to transfer personal information to public emergency response personnel, to transfer personal billing information to vending machines, or to monitor individuals within an assisted living community.


The transceivers using the packet message protocol of the present invention may be further integrated with a voice-band transceiver. As a result, when a person presses, for example, the emergency button on a transmitter, medical personnel, staff members, or others may respond by communicating via two-way radio with the person. Each transceiver may be equipped with a microphone and a speaker enabling a person to communication information such as their present emergency situation or their specific location.


The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the inventions to the precise embodiments disclosed. Obvious modifications or variations are possible in light of the above teachings. For example, the transceiver can be permanently integrated into an alarm sensor or other stationary device within a system, and the control system server and/or local gateway could be configured to identify the transceiver location by the transceiver identification number alone. It will be appreciated that, in embodiments that do not utilize stand-alone transceivers, the transceivers will be configured to transmit at a high RF power level to effectively communicate with the control system local gateway.


It will be appreciated by those skilled in the art that the information transmitted and received by the wireless transceivers of the present invention may be further integrated with other data transmission protocols for transmission across telecommunications and computer networks. In addition, it should be further appreciated that telecommunications and computer networks can function as a transmission path between the networked wireless transceivers, the local gateways, and the central server.


While the various embodiments of this invention have been described in detail with particular reference to exemplary embodiments, those skilled in the art will understand that variations and modifications can be effected within the scope of the invention as defined in the appended claims. Accordingly, the scope of the various embodiments of the present invention should not be limited to the above discussed embodiments, and should only be defined by the following claims and all applicable equivalents.

Claims
  • 1. A wireless communication device for use in a wireless communication system configured to communicate command and sensed data within the wireless communication systems, the wireless communication device comprising: a transceiver configured to send and receive wireless communications;and a controller configured to communicate with at least one other remote wireless device via the transceiver with a preformatted message, the controller further configured to format a message comprising a receiver address comprising an address of at least one remote wireless device; a command indicator comprising a command code; a data value comprising a message, wherein the controller is configured to receive a preformatted message from another wireless communication device, and based on a command code provided in the preformatted message, implement a certain function corresponding to the command code.
  • 2. The wireless communication device of claim 1, wherein the transceiver comprises a unique transceiver address to distinguish the transceiver from other transceivers in the wireless communication system.
  • 3. The wireless communication device of claim 2, wherein the unique transceiver address is an Internet Protocol address.
  • 4. The wireless communication device of claim 1, wherein the function code further comprises an Internet Protocol address.
  • 5. The wireless communication device of claim 1, wherein the command code of the preformatted message are concatenated to provide a receiving device with multiple command codes, the device configured to perform one or more functions corresponding to the command code in the preformatted message.
  • 6. The wireless communication device of claim 1, wherein the receiver address is scalable.
  • 7. The wireless communication device of claim 1, wherein the data value comprises a scalable message.
  • 8. The wireless communication device of claim 1, wherein the command code indicates a data request to the wireless communication device.
  • 9. The wireless communication device of claim 1, wherein the command code indicates a change in settings of an actuator associated with the wireless communication device.
  • 10. The wireless communication device of claim 1, wherein the command code indicates a request for a ping response by the wireless communication device.
  • 11. A method of communicating command and sensed data between remote wireless devices, the method comprising: providing a receiver to receive at least one message; wherein the message has a packet that comprises a receiver address, a command indicator comprising a command code, a variable data value comprising a message, and a redundancy check error detector; andproviding a controller to determine if at least one received message is a duplicate message and determining a location from which the duplicate message originated.
  • 12. The method of claim 11, further comprising providing one or more remote wireless communication devices, wherein the remote wireless devices comprise geographically remote transceivers adapted to transmit and receive the at least one message, and wherein transmission is accomplished by radio frequency or internet protocol.
  • 13. The method of claim 11, further comprising providing at least one remote wireless communication device, wherein at least one of the devices has a unique address and the packet further comprises at least one address field to contain the unique address for at least one device.
  • 14. The method of claim 13, wherein the unique address of at least one remote wireless communication device is an Internet Protocol address.
  • 15. The method of claim 11, further comprising determining if an error exists in a packet of the at least one message.
  • 16. In a communication system to communicate command and sensed data between remote devices, the system comprising: a receiver associated with a first wireless remote device, the receiver configured to receive a data packet transmitted by a second wireless remote device, the data packet comprising a receiver address of the first wireless remote device; a command indicator comprising a command code; a data value comprising a message; anda controller associated with the first wireless remote device comprising a transceiver configured to send and receive wireless signals, the first wireless remote device configured to send a preformatted message comprising the receiver address, a command indicator, and the data value via the transceiver to at least one other remote device,wherein the controller is configured to implement a certain function corresponding to the command code in the data packet.
  • 17. The system of claim 16, further comprising: a plurality of transceivers each having a unique address, the transceiver being one of the plurality of transceivers;a plurality of controllers associated with at least one of the transceivers, the controller being in communication with at least one other transceiver with a preformatted message; andat least one sensor associated with at least one of the transceivers to detect a condition and output a data signal to the transceiver and at least one actuator associated with at least one of the transceivers to activate a device.
  • 18. The system of claim 16, wherein the controller sends the preformatted message via an associated transceiver, and at least one transceiver sends the preformatted response message.
  • 19. The system of claim 16, wherein the preformatted message is concatenated with function codes to provide the receiving device with multiple function codes, the device configured to perform the functions in the preformatted message.
  • 20. The system of claim 16, wherein at least one transceiver receives the preformatted message requesting sensed data, confirms the receiver address as its own unique address, receives a sensed data signal, formats the sensed data signal into scalable byte segments, determines the number of segments required to contain the sensed data signal, and generates and transmits the preformatted response message comprising at least one packet.
  • 21. The system of claim 16, wherein the unique address of at least one receiver is an Internet Protocol address.
  • 22. A wireless communication device for use in a communication system to communicate commands and sensed data between remote wireless communication devices, the wireless communication device comprising: a transceiver configured to send and receive wireless communications; anda controller, operatively coupled to the transceiver, configured to communicate with at least one other remote wireless device via the transceiver with a preformatted message, the controller further configured to receive and format data messages, wherein data messages comprising a receiver address comprising an address of at least one remote wireless device; a command indicator comprising a command code; a data value comprising a scalable message; and a function code corresponding to function status of a device co-located with the transceiver.
  • 23. The wireless communication device of claim 22, wherein the device co-located with the transceiver is a sensor operatively coupled to the controller, and wherein the controller is configured to format the data value with data sensed by the sensor.
  • 24. The wireless communication device of claim 22, wherein the command code comprises at least one of a device-specific code or a non-device-specific code, wherein the device-specific code commands change of a setting of an actuator co-located with the transceiver and the non-device-specific code includes network status/diagnostic commands.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/159,768, filed Jun. 23, 2005, and entitled “System and Method for Monitoring and Controlling Remote Devices”, now U.S. Pat. No. 7,697,492, which is a continuation of U.S. patent application Ser. No. 09/812,044, filed Mar. 19, 2001, and entitled “System and Method for Monitoring and Controlling Remote Devices”, now U.S. Pat. No. 6,914,893. U.S. patent application Ser. No. 09/812,044 is a continuation-in-part of: U.S. patent application Ser. No. 09/704,150, filed Nov. 1, 2000, and entitled “System and Method for Monitoring and Controlling Residential Devices”, now U.S. Pat. No. 6,891,838; U.S. patent application Ser. No. 09/271,517, filed Mar. 18, 1999, and entitled, “System For Monitoring Conditions in a Residential Living Community”, now abandoned; U.S. patent application Ser. No. 09/439,059, filed Nov. 12, 1999, and entitled, “System and Method for Monitoring and Controlling Remote Devices”, now U.S. Pat. No. 6,437,692; U.S. patent application Ser. No. 09/102,178, filed Jun. 22, 1998, and entitled, “Multi-Function General Purpose Transceiver”, now U.S. Pat. No. 6,430,268; U.S. patent application Ser. No. 09/172,554, filed Oct. 14, 1998, and entitled, “System for Monitoring the Light Level Around an ATM”, now U.S. Pat. No. 6,028,522; and U.S. patent application Ser. No. 09/412,895, filed Oct. 5, 1999, and entitled, “System and Method for Monitoring the Light Level Around an ATM”, now U.S. Pat. No. 6,218,953. U.S. patent application Ser. No. 09/812,044 also claims the benefit of U.S. Provisional Application Ser. No. 60/224,043, filed Aug. 9, 2000, and entitled “SOS OEA Packet Message Protocol (RF)”. Each of the above-identified applications are hereby incorporated by reference in their entireties as if fully set forth below.

US Referenced Citations (768)
Number Name Date Kind
3665475 Gram May 1972 A
3705385 Batz Dec 1972 A
3723876 Seaborn, Jr. Mar 1973 A
3742142 Martin Jun 1973 A
3848231 Wootton Nov 1974 A
3892948 Constable Jul 1975 A
3906460 Halpern Sep 1975 A
3914692 Seaborn, Jr. Oct 1975 A
3922492 Lumsden Nov 1975 A
3925763 Wadhwani et al. Dec 1975 A
4025315 Mazelli May 1977 A
4056684 Lindstrom Nov 1977 A
4058672 Crager et al. Nov 1977 A
4083003 Haemmig Apr 1978 A
4120452 Kimura et al. Oct 1978 A
4124839 Cohen Nov 1978 A
4135181 Bogacki et al. Jan 1979 A
4204195 Bogacki May 1980 A
4213119 Ward et al. Jul 1980 A
4277837 Stuckert Jul 1981 A
4278975 Kimura et al. Jul 1981 A
4284852 Szybicki et al. Aug 1981 A
4322842 Martinez Mar 1982 A
4345116 Ash et al. Aug 1982 A
4354181 Spletzer Oct 1982 A
4395780 Gohm et al. Jul 1983 A
4396910 Enemark et al. Aug 1983 A
4396915 Farnsworth et al. Aug 1983 A
4399531 Grande et al. Aug 1983 A
4406016 Abrams et al. Sep 1983 A
4417450 Morgan, Jr. et al. Nov 1983 A
4436957 Mazza et al. Mar 1984 A
4446454 Pyle May 1984 A
4446458 Cook May 1984 A
4454414 Benton Jun 1984 A
4468656 Clifford et al. Aug 1984 A
4488152 Arnason et al. Dec 1984 A
4495496 Miller, III Jan 1985 A
4551719 Carlin et al. Nov 1985 A
4611198 Levinson et al. Sep 1986 A
4621263 Takenaka et al. Nov 1986 A
4630035 Stahl et al. Dec 1986 A
4631357 Grunig Dec 1986 A
4665519 Kirchner et al. May 1987 A
4669113 Ash et al. May 1987 A
4670739 Kelly, Jr. Jun 1987 A
4692761 Robinton Sep 1987 A
4704724 Krishnan et al. Nov 1987 A
4707852 Jahr et al. Nov 1987 A
4731810 Watkins Mar 1988 A
4742296 Petr et al. May 1988 A
4757185 Onishi Jul 1988 A
4788721 Krishnan et al. Nov 1988 A
4792946 Mayo Dec 1988 A
4799059 Grindahl et al. Jan 1989 A
4800543 Lyndon-James et al. Jan 1989 A
4814763 Nelson et al. Mar 1989 A
4825457 Lebowitz Apr 1989 A
4829561 Matheny May 1989 A
4849815 Streck Jul 1989 A
4851654 Nitta Jul 1989 A
4856046 Streck et al. Aug 1989 A
4857912 Everett, Jr. et al. Aug 1989 A
4864559 Perlman Sep 1989 A
4875231 Hara et al. Oct 1989 A
4884123 Dixit et al. Nov 1989 A
4884132 Morris et al. Nov 1989 A
4897644 Hirano Jan 1990 A
4906828 Halpern Mar 1990 A
4908769 Vaughan et al. Mar 1990 A
4912656 Cain et al. Mar 1990 A
4918432 Pauley et al. Apr 1990 A
4918690 Markkula, Jr. et al. Apr 1990 A
4918995 Pearman et al. Apr 1990 A
4924462 Sojka May 1990 A
4928299 Tansky et al. May 1990 A
4939726 Flammer et al. Jul 1990 A
4940976 Gastouniotis et al. Jul 1990 A
4949077 Mbuthia Aug 1990 A
4952928 Carroll et al. Aug 1990 A
4962496 Vercellotti et al. Oct 1990 A
4967366 Kaehler Oct 1990 A
4968970 LaPorte Nov 1990 A
4968978 Stolarczyk Nov 1990 A
4972504 Daniel, Jr. et al. Nov 1990 A
4973957 Shimizu et al. Nov 1990 A
4973970 Reeser Nov 1990 A
4977612 Wilson Dec 1990 A
4980907 Raith et al. Dec 1990 A
4987536 Humblet Jan 1991 A
4989230 Gillig et al. Jan 1991 A
4991008 Nama Feb 1991 A
4993059 Smith et al. Feb 1991 A
4998095 Shields Mar 1991 A
4999607 Evans Mar 1991 A
5007052 Flammer Apr 1991 A
5032833 Laporte Jul 1991 A
5038372 Elms et al. Aug 1991 A
5055851 Sheffer Oct 1991 A
5057814 Onan et al. Oct 1991 A
5061997 Rea et al. Oct 1991 A
5079768 Flammer Jan 1992 A
5086391 Chambers Feb 1992 A
5088032 Bosack Feb 1992 A
5091713 Horne et al. Feb 1992 A
5111199 Tomoda et al. May 1992 A
5113183 Mizuno et al. May 1992 A
5113184 Katayama May 1992 A
5115224 Kostusiak et al. May 1992 A
5115433 Baran et al. May 1992 A
5117422 Hauptschein et al. May 1992 A
5124624 de Vries et al. Jun 1992 A
5128855 Hilber et al. Jul 1992 A
5130519 Bush et al. Jul 1992 A
5130987 Flammer Jul 1992 A
5131038 Puhl et al. Jul 1992 A
5134650 Blackmon Jul 1992 A
5136285 Okuyama Aug 1992 A
5138615 Lamport et al. Aug 1992 A
5155481 Brennan, Jr. et al. Oct 1992 A
5159317 Brav Oct 1992 A
5159592 Perkins Oct 1992 A
5162776 Bushnell et al. Nov 1992 A
5170393 Peterson et al. Dec 1992 A
5177342 Adams Jan 1993 A
5189287 Parienti Feb 1993 A
5191192 Takahira et al. Mar 1993 A
5191326 Montgomery Mar 1993 A
5193111 Matty et al. Mar 1993 A
5195018 Kwon et al. Mar 1993 A
5197095 Bonnet et al. Mar 1993 A
5200735 Hines Apr 1993 A
5204670 Stinton Apr 1993 A
5212645 Wildes et al. May 1993 A
5216502 Katz Jun 1993 A
5221838 Gutman et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5224648 Simon et al. Jul 1993 A
5231658 Eftechiou Jul 1993 A
5235630 Moody et al. Aug 1993 A
5239294 Flanders et al. Aug 1993 A
5239575 White et al. Aug 1993 A
5241410 Streck et al. Aug 1993 A
5243338 Brennan, Jr. et al. Sep 1993 A
5245633 Schwartz et al. Sep 1993 A
5251205 Callon et al. Oct 1993 A
5252967 Brennan et al. Oct 1993 A
5253167 Yoshida et al. Oct 1993 A
5265150 Helmkamp et al. Nov 1993 A
5265162 Bush et al. Nov 1993 A
5266782 Alanara et al. Nov 1993 A
5272747 Meads Dec 1993 A
5276680 Messenger Jan 1994 A
5282204 Shpancer et al. Jan 1994 A
5282250 Dent et al. Jan 1994 A
5289165 Belin Feb 1994 A
5289362 Liebl et al. Feb 1994 A
5291516 Dixon et al. Mar 1994 A
5295154 Meier et al. Mar 1994 A
5305370 Kearns et al. Apr 1994 A
5309501 Kozik et al. May 1994 A
5315645 Matheny May 1994 A
5317309 Vercellotti et al. May 1994 A
5319364 Waraksa et al. Jun 1994 A
5319698 Glidewell et al. Jun 1994 A
5319711 Servi Jun 1994 A
5323384 Norwood et al. Jun 1994 A
5325429 Kurgan Jun 1994 A
5329394 Calvani et al. Jul 1994 A
5331318 Montgomery Jul 1994 A
5334974 Simms et al. Aug 1994 A
5335265 Cooper et al. Aug 1994 A
5343493 Karimullah Aug 1994 A
5344068 Haessig Sep 1994 A
5345231 Koo et al. Sep 1994 A
5345595 Johnson et al. Sep 1994 A
5347263 Carroll et al. Sep 1994 A
5352278 Korver et al. Oct 1994 A
5354974 Eisenberg Oct 1994 A
5355278 Hosoi et al. Oct 1994 A
5355513 Clarke et al. Oct 1994 A
5365217 Toner Nov 1994 A
5371736 Evan Dec 1994 A
5382778 Takahira et al. Jan 1995 A
5383134 Wrzesinski Jan 1995 A
5383187 Vardakas et al. Jan 1995 A
5390206 Rein et al. Feb 1995 A
5406619 Akhteruzzaman et al. Apr 1995 A
5412192 Hoss May 1995 A
5412654 Perkins May 1995 A
5412760 Peitz May 1995 A
5416475 Tolbert et al. May 1995 A
5416725 Pacheco et al. May 1995 A
5418812 Reyes et al. May 1995 A
5420910 Rudokas et al. May 1995 A
5424708 Ballesty et al. Jun 1995 A
5430729 Rahnema Jul 1995 A
5432507 Mussino et al. Jul 1995 A
5438329 Gastouniotis et al. Aug 1995 A
5439414 Jacob Aug 1995 A
5440545 Buchholz et al. Aug 1995 A
5442553 Parrillo Aug 1995 A
5442633 Perkins et al. Aug 1995 A
5445287 Center et al. Aug 1995 A
5445347 Ng Aug 1995 A
5451929 Adelman et al. Sep 1995 A
5451938 Brennan, Jr. Sep 1995 A
5452344 Larson Sep 1995 A
5454024 Lebowitz Sep 1995 A
5455569 Sherman et al. Oct 1995 A
5465401 Thompson Nov 1995 A
5467074 Pedtke Nov 1995 A
5467082 Sanderson Nov 1995 A
5467345 Cutler, Jr. et al. Nov 1995 A
5468948 Koenck et al. Nov 1995 A
5471201 Cerami et al. Nov 1995 A
5473322 Carney Dec 1995 A
5475689 Kay et al. Dec 1995 A
5479400 Dilworth et al. Dec 1995 A
5481259 Bane Jan 1996 A
5481532 Hassan et al. Jan 1996 A
5484997 Haynes Jan 1996 A
5488608 Flammer, III Jan 1996 A
5493273 Smurlo et al. Feb 1996 A
5493287 Bane Feb 1996 A
5502726 Fischer Mar 1996 A
5504746 Meier Apr 1996 A
5506837 Sollner et al. Apr 1996 A
5508412 Kast et al. Apr 1996 A
5509073 Monnin Apr 1996 A
5513244 Joao et al. Apr 1996 A
5515419 Sheffer May 1996 A
5517188 Carroll et al. May 1996 A
5522089 Kikinis et al. May 1996 A
5528215 Siu et al. Jun 1996 A
5528507 McNamara et al. Jun 1996 A
5539825 Akiyama et al. Jul 1996 A
5541938 Di Zenzo et al. Jul 1996 A
5542100 Hatakeyama Jul 1996 A
5544036 Brown, Jr. et al. Aug 1996 A
5544164 Baran Aug 1996 A
5544322 Cheng et al. Aug 1996 A
5544784 Malaspina Aug 1996 A
5548632 Walsh et al. Aug 1996 A
5550358 Tait et al. Aug 1996 A
5550359 Bennett Aug 1996 A
5550535 Park Aug 1996 A
5553094 Johnson et al. Sep 1996 A
5555258 Snelling et al. Sep 1996 A
5555286 Tendler Sep 1996 A
5557320 Krebs Sep 1996 A
5557748 Norris Sep 1996 A
5562537 Zver et al. Oct 1996 A
5565857 Lee Oct 1996 A
5568535 Sheffer et al. Oct 1996 A
5570084 Ritter et al. Oct 1996 A
5572438 Ehlers et al. Nov 1996 A
5572528 Shuen Nov 1996 A
5573181 Ahmed Nov 1996 A
5574111 Brichta et al. Nov 1996 A
5583850 Snodgrass et al. Dec 1996 A
5583914 Chang et al. Dec 1996 A
5587705 Morris Dec 1996 A
5588005 Ali et al. Dec 1996 A
5589878 Cortjens et al. Dec 1996 A
5590038 Pitroda Dec 1996 A
5590179 Shincovich et al. Dec 1996 A
5592491 Dinkins Jan 1997 A
5594431 Sheppard et al. Jan 1997 A
5596719 Ramakrishnan et al. Jan 1997 A
5596722 Rahnema Jan 1997 A
5602843 Gray Feb 1997 A
5604414 Milligan et al. Feb 1997 A
5604869 Mincher et al. Feb 1997 A
5606361 Davidsohn et al. Feb 1997 A
5608721 Natarajan et al. Mar 1997 A
5608786 Gordon Mar 1997 A
5613620 Center et al. Mar 1997 A
5615227 Schumacher, Jr. et al. Mar 1997 A
5615277 Hoffman Mar 1997 A
5617084 Sears Apr 1997 A
5619192 Ayala Apr 1997 A
5623495 Eng et al. Apr 1997 A
5625410 Washino et al. Apr 1997 A
5628050 McGraw et al. May 1997 A
5629687 Sutton et al. May 1997 A
5629875 Adair, Jr. May 1997 A
5630209 Wizgall et al. May 1997 A
5631554 Briese et al. May 1997 A
5636216 Fox et al. Jun 1997 A
5640002 Ruppert et al. Jun 1997 A
5644294 Ness Jul 1997 A
5655219 Jusa et al. Aug 1997 A
5657389 Houvener Aug 1997 A
5659300 Dresselhuys et al. Aug 1997 A
5659303 Adair, Jr. Aug 1997 A
5668876 Falk et al. Sep 1997 A
5673252 Johnson et al. Sep 1997 A
5673259 Quick, Jr. Sep 1997 A
5673304 Connor et al. Sep 1997 A
5673305 Ross Sep 1997 A
5682139 Pradeep et al. Oct 1997 A
5682476 Tapperson et al. Oct 1997 A
5689229 Chaco et al. Nov 1997 A
5691980 Welles, II et al. Nov 1997 A
5696695 Ehlers et al. Dec 1997 A
5699328 Ishizaki et al. Dec 1997 A
5701002 Oishi et al. Dec 1997 A
5702059 Chu et al. Dec 1997 A
5704046 Hogan Dec 1997 A
5704517 Lancaster, Jr. Jan 1998 A
5706191 Bassett et al. Jan 1998 A
5706976 Purkey Jan 1998 A
5708223 Wyss Jan 1998 A
5708655 Toth et al. Jan 1998 A
5712619 Simkin Jan 1998 A
5712980 Beeler et al. Jan 1998 A
5714931 Petite et al. Feb 1998 A
5717718 Rowsell et al. Feb 1998 A
5719564 Sears Feb 1998 A
5722076 Sakabe et al. Feb 1998 A
5726534 Seo Mar 1998 A
5726544 Lee Mar 1998 A
5726634 Hess et al. Mar 1998 A
5726644 Jednacz et al. Mar 1998 A
5726984 Kubler et al. Mar 1998 A
5732074 Spaur et al. Mar 1998 A
5732078 Arango Mar 1998 A
5736965 Mosebrook et al. Apr 1998 A
5737318 Melnik Apr 1998 A
5740232 Pailles et al. Apr 1998 A
5740366 Mahany et al. Apr 1998 A
5742509 Goldberg et al. Apr 1998 A
5745849 Britton Apr 1998 A
5748104 Argyroudis et al. May 1998 A
5748619 Meier May 1998 A
5754111 Garcia May 1998 A
5754227 Fukuoka May 1998 A
5757783 Eng et al. May 1998 A
5757788 Tatsumi et al. May 1998 A
5760742 Branch et al. Jun 1998 A
5761083 Brown, Jr. et al. Jun 1998 A
5764742 Howard et al. Jun 1998 A
5767791 Stoop et al. Jun 1998 A
5771274 Harris Jun 1998 A
5774052 Hamm et al. Jun 1998 A
5781143 Rossin Jul 1998 A
5790644 Kikinis Aug 1998 A
5790662 Valerij et al. Aug 1998 A
5790938 Talarmo Aug 1998 A
5796727 Harrison et al. Aug 1998 A
5798964 Shimizu et al. Aug 1998 A
5801643 Williams et al. Sep 1998 A
5812531 Cheung et al. Sep 1998 A
5815505 Mills Sep 1998 A
5818822 Thomas et al. Oct 1998 A
5822273 Bary et al. Oct 1998 A
5822309 Ayanoglu et al. Oct 1998 A
5822544 Chaco et al. Oct 1998 A
5825772 Dobbins et al. Oct 1998 A
5826195 Westerlage et al. Oct 1998 A
5828044 Jun et al. Oct 1998 A
5832057 Furman Nov 1998 A
5838223 Gallant et al. Nov 1998 A
5838237 Revell et al. Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5841118 East et al. Nov 1998 A
5841764 Roderique et al. Nov 1998 A
5842976 Williamson Dec 1998 A
5844808 Konsmo et al. Dec 1998 A
5845230 Lamberson Dec 1998 A
5848054 Mosebrook et al. Dec 1998 A
5852658 Knight et al. Dec 1998 A
5854994 Canada et al. Dec 1998 A
5856974 Gervais et al. Jan 1999 A
5862201 Sands Jan 1999 A
5864772 Alvarado et al. Jan 1999 A
5870686 Monson Feb 1999 A
5872773 Katzela et al. Feb 1999 A
5873043 Comer Feb 1999 A
5874903 Shuey et al. Feb 1999 A
5875185 Wang et al. Feb 1999 A
5880677 Lestician Mar 1999 A
5883884 Atkinson Mar 1999 A
5883886 Eaton et al. Mar 1999 A
5884184 Sheffer Mar 1999 A
5884271 Pitroda Mar 1999 A
5886333 Miyake Mar 1999 A
5889468 Banga Mar 1999 A
5892441 Woolley et al. Apr 1999 A
5892690 Boatman et al. Apr 1999 A
5892758 Argyrouis Apr 1999 A
5892924 Lyon et al. Apr 1999 A
5896097 Cardozo Apr 1999 A
5897607 Jenney et al. Apr 1999 A
5898369 Godwin Apr 1999 A
5898733 Satyanarayana Apr 1999 A
5905438 Weiss et al. May 1999 A
5905442 Mosebrook et al. May 1999 A
5907291 Chen et al. May 1999 A
5907491 Canada et al. May 1999 A
5907540 Hayashi May 1999 A
5907807 Chavez, Jr. et al. May 1999 A
5909429 Satyanarayana et al. Jun 1999 A
5914656 Ojala et al. Jun 1999 A
5914672 Glorioso et al. Jun 1999 A
5914673 Jennings et al. Jun 1999 A
5917405 Joao Jun 1999 A
5917629 Hortensius et al. Jun 1999 A
5923269 Shuey et al. Jul 1999 A
5926101 Dasgupta Jul 1999 A
5926103 Petite Jul 1999 A
5926529 Hache et al. Jul 1999 A
5926531 Petite Jul 1999 A
5933073 Shuey Aug 1999 A
5937365 Friton et al. Aug 1999 A
5940771 Gollnick et al. Aug 1999 A
5941363 Partyka et al. Aug 1999 A
5941955 Wilby et al. Aug 1999 A
5946631 Melnik Aug 1999 A
5948040 DeLorme et al. Sep 1999 A
5949779 Mostafa et al. Sep 1999 A
5949799 Grivna et al. Sep 1999 A
5953319 Dutta et al. Sep 1999 A
5953371 Rowsell et al. Sep 1999 A
5953507 Cheung et al. Sep 1999 A
5955718 Levasseur et al. Sep 1999 A
5957718 Cheng et al. Sep 1999 A
5960074 Clark Sep 1999 A
5963146 Johnson et al. Oct 1999 A
5963452 Etoh et al. Oct 1999 A
5963650 Simionescu et al. Oct 1999 A
5966658 Kennedy, III et al. Oct 1999 A
5969608 Sojdehei et al. Oct 1999 A
5973756 Erlin Oct 1999 A
5974236 Sherman Oct 1999 A
5897421 Chuang Nov 1999 A
5978364 Melnik Nov 1999 A
5978371 Mason, Jr. et al. Nov 1999 A
5978578 Azarya et al. Nov 1999 A
5986574 Colton Nov 1999 A
5987011 Toh Nov 1999 A
5987331 Grube et al. Nov 1999 A
5987421 Chuang Nov 1999 A
5991625 Vanderpool Nov 1999 A
5991639 Rautiola et al. Nov 1999 A
5994892 Turino et al. Nov 1999 A
5995022 Plis et al. Nov 1999 A
5995592 Shirai et al. Nov 1999 A
5995593 Cho Nov 1999 A
5997170 Brodbeck Dec 1999 A
5999094 Nilssen Dec 1999 A
6005759 Hart et al. Dec 1999 A
6005884 Cook et al. Dec 1999 A
6005963 Bolle et al. Dec 1999 A
6018659 Ayyagari et al. Jan 2000 A
6021664 Granato et al. Feb 2000 A
6023223 Baxter, Jr. Feb 2000 A
6026095 Sherer et al. Feb 2000 A
6028522 Petite Feb 2000 A
6028857 Poor Feb 2000 A
6031455 Grube et al. Feb 2000 A
6032197 Birdwell et al. Feb 2000 A
6034623 Wandel Mar 2000 A
6035213 Tokuda et al. Mar 2000 A
6035266 Williams et al. Mar 2000 A
6036086 Sizer, II et al. Mar 2000 A
6038491 McGarry et al. Mar 2000 A
6044062 Brownrigg et al. Mar 2000 A
6046978 Melnik Apr 2000 A
6054920 Smith et al. Apr 2000 A
6055561 Feldman et al. Apr 2000 A
6060994 Chen May 2000 A
6061604 Russ et al. May 2000 A
6064318 Kirchner, III et al. May 2000 A
6067017 Stewart et al. May 2000 A
6067030 Burnett et al. May 2000 A
6069886 Ayerst et al. May 2000 A
6073169 Shuey et al. Jun 2000 A
6073266 Ahmed et al. Jun 2000 A
6073840 Marion Jun 2000 A
6075451 Lebowitz et al. Jun 2000 A
6078251 Landt et al. Jun 2000 A
6084867 Meier Jul 2000 A
6087957 Gray Jul 2000 A
6088659 Kelley et al. Jul 2000 A
6094587 Armanto et al. Jul 2000 A
6094622 Hubbard et al. Jul 2000 A
6097703 Larsen et al. Aug 2000 A
6100816 Moore Aug 2000 A
6100817 Mason, Jr. et al. Aug 2000 A
6101427 Yang Aug 2000 A
6101445 Alvarado et al. Aug 2000 A
6108614 Lincoln et al. Aug 2000 A
6112983 D'Anniballe et al. Sep 2000 A
6115393 Engel et al. Sep 2000 A
6115580 Chuprun et al. Sep 2000 A
6119076 Williams et al. Sep 2000 A
6121593 Mansbery et al. Sep 2000 A
6121885 Masone et al. Sep 2000 A
6122759 Ayanoglu et al. Sep 2000 A
6124806 Cunningham et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128551 Davis et al. Oct 2000 A
6130622 Hussey et al. Oct 2000 A
6133850 Moore Oct 2000 A
6137423 Glorioso et al. Oct 2000 A
6140975 Cohen Oct 2000 A
6141347 Shaughnessy et al. Oct 2000 A
6150936 Addy Nov 2000 A
6150955 Tracy et al. Nov 2000 A
6157464 Bloomfield et al. Dec 2000 A
6157824 Bailey Dec 2000 A
6163276 Irving et al. Dec 2000 A
6167239 Wright et al. Dec 2000 A
6172616 Johnson et al. Jan 2001 B1
6173159 Wright et al. Jan 2001 B1
6174205 Madsen et al. Jan 2001 B1
6175922 Wang Jan 2001 B1
6177883 Jennetti et al. Jan 2001 B1
6178173 Mundwiler et al. Jan 2001 B1
6181255 Crimmins et al. Jan 2001 B1
6181284 Madsen et al. Jan 2001 B1
6181981 Varga et al. Jan 2001 B1
6185197 Cheung Yeung et al. Feb 2001 B1
6185307 Johnson, Jr. Feb 2001 B1
6188354 Soliman et al. Feb 2001 B1
6188675 Casper et al. Feb 2001 B1
6192282 Smith et al. Feb 2001 B1
6192390 Berger et al. Feb 2001 B1
6195018 Ragle et al. Feb 2001 B1
6198390 Schlager et al. Mar 2001 B1
6199068 Carpenter Mar 2001 B1
6201962 Sturniolo et al. Mar 2001 B1
6205143 Lemieux Mar 2001 B1
6208247 Agre et al. Mar 2001 B1
6208266 Lyons et al. Mar 2001 B1
6212175 Harsch Apr 2001 B1
6215404 Morales Apr 2001 B1
6215440 Geldart et al. Apr 2001 B1
6218953 Petite Apr 2001 B1
6218958 Eichstaedt et al. Apr 2001 B1
6218983 Kerry et al. Apr 2001 B1
6219409 Smith et al. Apr 2001 B1
6229439 Tice May 2001 B1
6233327 Petite May 2001 B1
6234111 Ulman et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6243010 Addy et al. Jun 2001 B1
6246676 Chen et al. Jun 2001 B1
6246677 Nap et al. Jun 2001 B1
6246886 Oliva Jun 2001 B1
6249516 Brownrigg et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271752 Vaios Aug 2001 B1
6272190 Campana, Jr. Aug 2001 B1
6275166 del Castillo et al. Aug 2001 B1
6275707 Reed et al. Aug 2001 B1
6282183 Harris et al. Aug 2001 B1
6286050 Pullen et al. Sep 2001 B1
6286756 Stinson et al. Sep 2001 B1
6288634 Weiss et al. Sep 2001 B1
6288641 Casais Sep 2001 B1
6295291 Larkins Sep 2001 B1
6301514 Canada et al. Oct 2001 B1
6304556 Haas Oct 2001 B1
6305205 Derks et al. Oct 2001 B1
6305602 Grabowski et al. Oct 2001 B1
6307843 Okanoue Oct 2001 B1
6308111 Koga Oct 2001 B1
6311167 Davis et al. Oct 2001 B1
6314169 Schelberg, Jr. et al. Nov 2001 B1
6317029 Fleeter Nov 2001 B1
6327245 Satyanarayana et al. Dec 2001 B1
6329902 Lee et al. Dec 2001 B1
6334117 Covert et al. Dec 2001 B1
6351223 DeWeerd et al. Feb 2002 B1
6356205 Salvo et al. Mar 2002 B1
6357034 Muller et al. Mar 2002 B1
6362745 Davis Mar 2002 B1
6363057 Ardalan et al. Mar 2002 B1
6363422 Hunter et al. Mar 2002 B1
6366217 Cunningham et al. Apr 2002 B1
6366622 Brown et al. Apr 2002 B1
6369769 Nap et al. Apr 2002 B1
6370489 Williams et al. Apr 2002 B1
6373399 Johnson et al. Apr 2002 B1
6380851 Gilbert et al. Apr 2002 B1
6384722 Williams May 2002 B1
6392692 Monroe May 2002 B1
6393341 Lawrence et al. May 2002 B1
6393381 Williams et al. May 2002 B1
6393382 Williams et al. May 2002 B1
6396839 Ardalan et al. May 2002 B1
6400819 Nakano et al. Jun 2002 B1
6401081 Montgomery et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6411889 Mizunuma et al. Jun 2002 B1
6415155 Koshima et al. Jul 2002 B1
6415245 Williams et al. Jul 2002 B2
6416471 Kumar et al. Jul 2002 B1
6421354 Godlewski Jul 2002 B1
6421731 Ciotti, Jr. et al. Jul 2002 B1
6422464 Terranova Jul 2002 B1
6424270 Ali Jul 2002 B1
6424931 Sigmar et al. Jul 2002 B1
6430268 Petite Aug 2002 B1
6431439 Suer et al. Aug 2002 B1
6437692 Petite et al. Aug 2002 B1
6438575 Khan et al. Aug 2002 B1
6441723 Mansfield, Jr. et al. Aug 2002 B1
6445291 Addy et al. Sep 2002 B2
6456960 Williams et al. Sep 2002 B1
6457038 Defosse Sep 2002 B1
6462644 Howell et al. Oct 2002 B1
6462672 Besson Oct 2002 B1
6477558 Irving et al. Nov 2002 B1
6483290 Hemminger et al. Nov 2002 B1
6484939 Blaeuer Nov 2002 B1
6489884 Lamberson et al. Dec 2002 B1
6491828 Sivavec et al. Dec 2002 B1
6492910 Ragle et al. Dec 2002 B1
6496696 Melnik Dec 2002 B1
6504357 Hemminger et al. Jan 2003 B1
6504834 Fifield Jan 2003 B1
6507794 Hubbard et al. Jan 2003 B1
6509722 Lopata Jan 2003 B2
6513060 Nixon et al. Jan 2003 B1
6515586 Wymore Feb 2003 B1
6519568 Harvey et al. Feb 2003 B1
6532077 Arakawa Mar 2003 B1
6538577 Ehrke et al. Mar 2003 B1
6542076 Joao Apr 2003 B1
6542077 Joao Apr 2003 B2
6543690 Leydier et al. Apr 2003 B2
6560223 Egan et al. May 2003 B1
6574234 Myer et al. Jun 2003 B1
6574603 Dickson et al. Jun 2003 B1
6584080 Ganz et al. Jun 2003 B1
6600726 Nevo et al. Jul 2003 B1
6608551 Anderson et al. Aug 2003 B1
6611537 Edens et al. Aug 2003 B1
6618578 Petite Sep 2003 B1
6618709 Sneeringer Sep 2003 B1
6628764 Petite Sep 2003 B1
6628965 LaRosa et al. Sep 2003 B1
6653945 Johnson et al. Nov 2003 B2
6654357 Wiedeman Nov 2003 B1
6665278 Grayson Dec 2003 B2
6671586 Davis et al. Dec 2003 B2
6671819 Passman et al. Dec 2003 B1
6674403 Gray et al. Jan 2004 B2
6678255 Kuriyan Jan 2004 B1
6678285 Garg Jan 2004 B1
6691173 Morris et al. Feb 2004 B2
6731201 Bailey et al. May 2004 B1
6735630 Gelvin et al. May 2004 B1
6747557 Petite et al. Jun 2004 B1
6751196 Hulyalkar et al. Jun 2004 B1
6771981 Zalewski et al. Aug 2004 B1
6775258 van Valkenburg et al. Aug 2004 B1
6804532 Moon et al. Oct 2004 B1
6816088 Knoskat et al. Nov 2004 B1
6826607 Gelvin et al. Nov 2004 B1
6832251 Gelvin et al. Dec 2004 B1
6839356 Barany et al. Jan 2005 B2
6842430 Melnik Jan 2005 B1
6858876 Gordon et al. Feb 2005 B2
6859831 Gelvin et al. Feb 2005 B1
6888876 Mason, Jr. et al. May 2005 B1
6891838 Petite et al. May 2005 B1
6900737 Ardalan et al. May 2005 B1
6906636 Kraml Jun 2005 B1
6914533 Petite Jul 2005 B2
6914893 Petite Jul 2005 B2
6922558 Delp et al. Jul 2005 B2
6959550 Freeman et al. Nov 2005 B2
6970434 Mahany et al. Nov 2005 B1
6992991 Duske et al. Jan 2006 B2
7020701 Gelvin et al. Mar 2006 B1
7027416 Kriz Apr 2006 B1
7027568 Simpson et al. Apr 2006 B1
7027773 McMillin Apr 2006 B1
7053767 Petite et al. May 2006 B2
7054271 Brownrigg et al. May 2006 B2
7064679 Ehrke et al. Jun 2006 B2
7103511 Petite Sep 2006 B2
7117239 Hansen Oct 2006 B1
7181501 Defosse Feb 2007 B2
7254372 Janusz et al. Aug 2007 B2
7304587 Boaz Dec 2007 B2
7349682 Bennett, III et al. Mar 2008 B1
7424527 Petite Sep 2008 B2
7468661 Petite et al. Dec 2008 B2
7480501 Petite Jan 2009 B2
7484008 Gelvin et al. Jan 2009 B1
7573813 Melnik Aug 2009 B2
7653394 McMillin Jan 2010 B2
7739378 Petite Jun 2010 B2
20010002210 Petite May 2001 A1
20010003479 Fujiwara Jun 2001 A1
20010021646 Antonucci et al. Sep 2001 A1
20010024163 Petite Sep 2001 A1
20010034223 Rieser et al. Oct 2001 A1
20010038343 Meyer et al. Nov 2001 A1
20010043577 Barany et al. Nov 2001 A1
20020002444 Williams et al. Jan 2002 A1
20020012323 Petite et al. Jan 2002 A1
20020013679 Petite Jan 2002 A1
20020016829 Defosse Feb 2002 A1
20020019725 Petite Feb 2002 A1
20020027504 Davis et al. Mar 2002 A1
20020031101 Petite et al. Mar 2002 A1
20020032746 Lazaridis Mar 2002 A1
20020061031 Sugar et al. May 2002 A1
20020072348 Wheeler et al. Jun 2002 A1
20020080784 Krumel Jun 2002 A1
20020089428 Walden et al. Jul 2002 A1
20020095399 Devine et al. Jul 2002 A1
20020098858 Struhsaker Jul 2002 A1
20020109607 Cumeralto et al. Aug 2002 A1
20020136233 Chen et al. Sep 2002 A1
20020158774 Johnson et al. Oct 2002 A1
20020163442 Fischer Nov 2002 A1
20020169643 Petite et al. Nov 2002 A1
20020193144 Belski et al. Dec 2002 A1
20030001754 Johnson et al. Jan 2003 A1
20030023146 Shusterman Jan 2003 A1
20030028632 Davis Feb 2003 A1
20030030926 Aguren et al. Feb 2003 A1
20030034900 Han Feb 2003 A1
20030035438 Larsson Feb 2003 A1
20030036822 Davis et al. Feb 2003 A1
20030046377 Daum et al. Mar 2003 A1
20030058818 Wilkes et al. Mar 2003 A1
20030069002 Hunter et al. Apr 2003 A1
20030073406 Benjamin et al. Apr 2003 A1
20030078006 Mahany Apr 2003 A1
20030078029 Petite Apr 2003 A1
20030093484 Petite May 2003 A1
20030133473 Manis et al. Jul 2003 A1
20030169710 Fan et al. Sep 2003 A1
20030185204 Murdock Oct 2003 A1
20030210638 Yoo et al. Nov 2003 A1
20040047324 Diener Mar 2004 A1
20040053639 Petite et al. Mar 2004 A1
20040090950 Lauber et al. May 2004 A1
20040113810 Mason, Jr. et al. Jun 2004 A1
20040131125 Sanderford, Jr. et al. Jul 2004 A1
20040133917 Schilling Jul 2004 A1
20040183687 Petite et al. Sep 2004 A1
20040228330 Kubler et al. Nov 2004 A1
20050017068 Zalewski et al. Jan 2005 A1
20050190055 Petite Sep 2005 A1
20050195768 Petite et al. Sep 2005 A1
20050195775 Petite et al. Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050243867 Petite Nov 2005 A1
20050270173 Boaz Dec 2005 A1
20060095876 Chandra May 2006 A1
20070112907 Defosse May 2007 A1
20080186898 Petite Aug 2008 A1
20090006617 Petite Jan 2009 A1
20090068947 Petite Mar 2009 A1
20090096605 Petite Apr 2009 A1
20090215424 Petite Aug 2009 A1
20090243840 Petite et al. Oct 2009 A1
20100250054 Petite Sep 2010 A1
Foreign Referenced Citations (58)
Number Date Country
0483547 May 1992 EP
0578041 Jan 1994 EP
0663746 Jul 1995 EP
0718954 Jun 1996 EP
0740873 Nov 1996 EP
0749259 Dec 1996 EP
0749260 Dec 1996 EP
0766489 Apr 1997 EP
0768777 Apr 1997 EP
0812502 Dec 1997 EP
0825577 Feb 1998 EP
0999717 May 2000 EP
1096454 May 2001 EP
2817110 May 2002 FR
2229302 Sep 1990 GB
2247761 Mar 1992 GB
2262683 Jun 1993 GB
2297663 Aug 1996 GB
2310779 Sep 1997 GB
2326002 Dec 1998 GB
2336272 Oct 1999 GB
2352004 Jan 2001 GB
2352590 Jan 2001 GB
60261288 Dec 1985 JP
1255100 Oct 1989 JP
11353573 Dec 1999 JP
2000113590 Apr 2000 JP
2001063425 Mar 2001 JP
2001088401 Apr 2001 JP
2001309069 Nov 2001 JP
2001319284 Nov 2001 JP
2001357483 Dec 2001 JP
2002007672 Jan 2002 JP
2002007826 Jan 2002 JP
2002085354 Mar 2002 JP
2002171354 Jun 2002 JP
2001025431 Apr 2001 KR
WO 9013197 Nov 1990 WO
WO 9512942 May 1995 WO
WO 9524177 Sep 1995 WO
WO 9534177 Dec 1995 WO
WO 9610307 Apr 1996 WO
WO 9800056 Jan 1998 WO
WO 9810393 Mar 1998 WO
WO 9837528 Aug 1998 WO
WO 9845717 Oct 1998 WO
WO 9913426 Mar 1999 WO
WO 0023956 Apr 2000 WO
WO 0036812 Jun 2000 WO
WO 0055825 Sep 2000 WO
WO 0115114 Mar 2001 WO
WO 0124109 Apr 2001 WO
WO 0208725 Jan 2002 WO
WO 0208866 Jan 2002 WO
WO 02052521 Jul 2002 WO
WO 03007264 Jan 2003 WO
WO 03021877 Mar 2003 WO
WO 2004002014 Dec 2003 WO
Non-Patent Literature Citations (802)
Entry
“1997 Project Summary, Held Untethered Nodes, University of California at Los Angeles,” available at http://web.archive.org/web/199812052324758/http://www.darpa.mil/leaving.asp?url=http://www.janet.ucla.edu/glomo, Jul. 25, 2008, pp. 1-5.
“1997 Project Summary, Mobile Versatile Radios (MoVeR), University of California at Los Angeles,” available at http://web.archive.org/web/19990222140122/http://www.darpa.mil/leaving.asp?url=http://www.janet.ucla.edu/, Jul. 25, 2008, pp. 1-4.
“1997 Project Summary, Towards a Wireless Overlay Internetworking Architecture, University of California at Berkeley,” available at http://web.archive.org/web/19990202065939/http://www.darpa.mil/leaving.asp?url=http://daedalus.cs.berkeley.edu, Jul. 25, 2008, pp. 1-8.
“3Com Invests in Coactive Networks,” Coactive (press release), Author: unknown, Dec. 14, 1999, pp. 1-4.
“5808 Photoelectric Smoke/Heat Detector with Built0in Wireless Transmitter Installation Instructions,” Ademco, 1998.
“ABB Kent-Taylor Interfacing,” Author: unknown, Engineering Report, No. 93-011, Jun. 18, 1996, pp. 1-9.
“AES Central Station Installation & Operation Manual, Document No. 40-0551e,” AES Intellinet, Nov. 1996.
“AlarmNet-C Service Shutdown,” Honeywell, Inc., Author: unknown, Date: unknown, pp. 1.
“Allen-Bradley Interfacing,” Author: unknown, Engineering Report, No. 90-023, Jul. 21, 1999, pp. 1-11.
AN/TSQ-129 Position Location Reporting System (PLRS), Author: unknown, available at http://www.fas.org/man/dod-101/sys/land/pIrs.htm on Feb. 22, 2010, pp. 1-3.
“AWAIRS Adaptive Wireless Arrays Interactive Recconaissance, Surveillance, and Target Acquisition in Small Unit Operations”.
“Barrington Interface,” Author: unknown, Engineering Report, No. 90-013, Revised: Oct. 1994, pp. 1.
Bell Canada launches public wireless Internet hotspot pilot, Dec. 10, 2002, http://www.bell.ca/3n/about/press/release/2002/pr—20021210.asp (3 pages).
“Bristol Babcock Interfacing,” Author: unknown, Engineering Report, No. 95-001, Revised: Apr. 17, 1996, pp. 1-4.
“Caddx Installation Instructions Package, document No. 466-1486,” Caddx Controls, Aug. 1998.
“Caddx Installation Instructions Package, document No. 466-1786,” Caddx Installation Controls, Inc., Caddx Controls; Author: unknown; Aug. 1998, pp. 1-58.
“Caddx Installation Instructions Package,” document No. 466-1786, Caddx Installation Controls, Inc., Caddx Controls; Author: unknown; Jul. 15, 1999, pp. 1-116.
“Caddx NetworX NX-8 Control/Communicator Installation Manual,” Caddx Controls, 1996.
“Case Study: Genentech Uses Coactive's Technology to Centralize Monitor and Control Functions in a Mixed Legacy and New Equipment Environment,” Coactive, Author: unknown, 1998, pp. 1-4.
“Case Study: Ingham Regional Medical Center Uses Coactive Technology to Monitor and Control Critical Power Generations in a Multi-Campus Environment,” Coactive, 1998, pp. 1-4.
“Central Station Manual Section 1 System Overview, document No. 40-0551,” AES Intellinet, Dec. 1996.
“Circon Systems Partners with Coactive Networks to Deliver Circon WebControl™,” Coactive (press release), Author: unknown; Feb. 7, 2000, pp. 1-4.
“Circon Technology Connects Building Management Systems to Internet Using Coactive Routers,” Coactive (press release), May 20, 1997.
“Cisco's John Chambers Discusses the Internet Consumer Revolution at CES Using Demo Based on Echelon's LonWorks Technology,” Home Toys (press release), Jan. 8, 1999.
Coactive Bridges Gap between Control Systems and Corporate Data Networks with New Off-the-Shelf Router Family, Coactive (press release), Jun. 8, 1998.
“Coactive Enhances Residential Gateway to Enable Multiple Home Networks,” Coactive (press release), Author: unknown; Jan. 6, 2000, pp. 1-4.
“Coactive Joins 3Com to Demonstrate Convergence of Control and Enterprise Networks at Retail Systems '98,” Coactive (press release), Author: unknown, Jun. 16, 1998, pp. 1-4.
“Coactive Launches First Architecture to Support the Convergence Between Contol and IP Networks,” Coactive (press release), Author: unknown, May 20, 1998, pp. 1-4.
“Coactive Leads Standardization Effort for Lon/Talk Routers,” Coactive (press release), Author: unknown, May 20, 1997. pp. 3.
“Coactive Networks and Diverse Networks Team to Deliver End-to-End Infrastructure for Enabling the Digital Home,” Coactive (press release), Author: unknown, Aug. 28, 2000, pp. 1-4.
“Coactive Networks and Innovex Technologies Deliver Internet Access to Home Security, Lighting and Climate Control,” Coactive (press release), Author: unknown, Feb. 29, 2000, pp. 1-4.
“Coactive Networks and Silicon Energy Partner to Deliever an End-to-End Solution for Internet-Based Energy Monitoring and Analysis,” Coactive (press release), Author: unknown, Sep. 19, 2000, pp. 1-4.
“Coactive Networks and Vicinium Systems team to Deliver a Complete Television-Based Interface to Digital Homes and Neighborhoods,” Coactive (press release), Author: unknown, Jun. 19, 2000, pp. 1-4.
“Coactive Networks Announces First Shipments of Internet Gateway to Home Control Systems,” Coactive (press release), Author: unknown, May 3, 1999, pp. 1-4.
“Coactive Networks Announces Formation of Technical Advisory Board,” Coactive (press release), Author: unknown, Oct. 5, 1998, pp. 1-4.
“Coactive Networks Announces System Provider Partner Program,” Coactive (press release), Author: unknown, Jan. 25, 1999, pp. 1-4.
“Coactive Networks Expands Support for Management and HMI Applications,” Coactive (press release), Author: unknown, Nov. 2, 1998, pp. 1-4.
“Coactive Networks Names Gus Ezcurra Vice President of Sales,” Coactive (press release), Author: unknown, Jul. 20, 1998, pp. 2.
“Coactive Networks Names Janice Roberts, 3Com Senior VP, to Board of Directors,” Coactive (press release), Author: unknown, Jun. 2, 1998, pp. 2.
“Coactive Networks Powers Innovative Energy Management Solution,” Coactive (press release), Author: unknown, Jan. 5, 2001, pp. 1-4.
“Coactive Networks President Named to LonMark Board of Directors,” Coactive (press release), Jun. 14, 1998.
“Coactive Networks Shatters Price Barriers with New IP Gateway to Home Control Systems,” Coactive (press release), Author: unknown, Oct. 26, 1998, pp. 1-4.
“Coactive Networks to Supply Internet-Based Home Gateways for up to 400,000 customers; First Phase of Deliveries Valued at US$2 Million,” Coactive (press release), Author: unknown, Oct. 25, 1999.
“Coactive Networks Unveils the First Full-Service Residential Gateway,” Coactive (press release), Author: unknown, May 3, 2000, pp. 1-4.
“Coactive Receives $2 Million in Funding,” Coactive (press release), Oct. 15, 1997.
“Coactive Receives First Round of Venture Funding Investors Embrace Control Network Connectivity Technology,” Coactive (press release), Author: unknown, Dec. 1, 1997, pp. 2.
“DSC-3500 Meeting the Control and Conservation Challenge,” Johnson Controls, 1984, pp. 1-6.
“DTE Energy Technologies Selects Coactive Networks Internet Gateways to Roll Out New Class of E-Services to Businesses,” Coactive (press release), Author: unknown, May 3, 2000, pp. 1-4.
“DTE Energy Technologies Selects Coactive Networks to Power Distributed Generation Solutions Worldwide,” Coactive (press release), Author: unknown, Aug. 1, 2001, pp. 1-4.
“Echelon Corporation Demonstrates Internet Connectivity in Digital Home Applications at 1999 International Consumer Electronics Show,” Home Toys (press release) , Dec. 15, 1998.
“Eight Leading Controls Companies Join Coactive Partner Program,” Coactive (press release), Author: unknown, Aug. 21, 2000, pp. 1-4.
“Enhanced Position Location Reporting System (EPLRS),” Author: unknown, available at http://www.globalsecurity.org/military/systems/ground/eplrs.htm on Feb. 22, 2010, pp. 1-3.
“ESTeem Engineering Report, Johnson Controls Interface No. 91-102,” Author: unknown, Publisher: unknown, Nov. 1994, pp. 1-14.
“ESTeem Model 96F,” Author: unknown, ESTeem Radios; Sep. 6, 1996, pp. 1-2.
“Foxboro Interfacing,” Author: unknown, Engineering Report, No. 91-023, Revised: Jun. 19, 1996, pp. 1-5.
“GE Fanuc Interfacing,” Author: unknown, Engineering Report, No. 91-010, Revised: Apr. 11, 1996, pp. 1-8.
“General PLC/RTU Interfacing,” Author: unknown, Engineering Report, No. 92-010, Revised: Jun. 18, 1996, pp. 1-5.
Elster's Initial Disclosure of Invalidity Contentions Pursuant to LPR 4.3; IPCO, LLC v. Elster Electricity, LLC, Northern District of Georgia Case No. 1:05-cv-1138 (183 pages).
Elster's First Supplement to its Initial Disclosure of Invalidity Contentions Pursuant to LPR 4.3; IPCO, LLC v. Elster Electricity, LLC, Northern District of Georgia Case No. 1:05-cv-1138 (154 pages).
Elster's Second Supplemental to its Initial Disclosure of Invalidity Contentions Pursuant to Lpr 4.3; IPCO, LLC v. Elster Electricity, LLC, Northern District of Georgia Case No. 1:05-cv-1138 (111 pages).
Defendant's Joint Preliminary Invalidity Contentions filed by Defendants Crestron Electronics, Inc. and Wayne-Dalton Corporation in SIPCO, LLC v. amazon.com, Inc. et al., District Court for the Eastern District of Texas Case No. 2:08-cv-359 (180 pages).
Trilliant Network, Inc.'s Invalidity Contentions Pursuant to Patent Rule 3-3, IP Co. LLC v. Oncor Electric Delivery Company LLC et al., District Court for the Eastern District of Texas Case No. 2:09-cv-37 (112 pages).
Sensus's Invalidity Contentions filed by Defendant Sensus USA Inc. in SIPCO, LLC v. Sensus USA Inc., District Court for the Eastern District of Texas Case No. 2:09-cv-37 (21 pages).
Defendant EKA Systems, Inc.'s Invalidity Contentions, IP Co. LLC v. Oncor Electric Delivery Company LLC et al., District Court for the Eastern District of Texas Case No. 2:09-cv-37 (110 pages).
EKA Systems, Inc.'s Invalidity Contentions Pursuant to Patent Rule 3-3, IP Co. LLC v. Oncor Electric Delivery Company LLC et al., District Court for the Eastern District of Texas Case No. 2:09-cv-37 (110 pages).
Sensus's Invalidity Contentions filed by Defendant Sensus USA Inc. in SIPCO, LLC v. Sensus USA Inc., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (22 pages).
Defendant Datamatic, LTD's Invalidity Contentions to Plaintiff, SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (2 pages with 7 claim chart exhibits).
Johnson Controls, Inc.'s Invalidity Contentions and Disclosures Pursuant to P.R. 3-3 and 3-4, SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (59 pages).
Trilliant Networks, Inc.'s Invalidity Contentions to Plaintiff, SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (418 pages).
Defendant Datamatic, LTD's Invalidity Contentions to Plaintiff Pursuant to P.R. 3-3(a), SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (2 pages with 7 claim chart exhibits).
Johnson Controls, Inc.'s Supplement Letter to the Invalidity Contentions, SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (5 pages and 99 page Addendum).
Defendant's Invalidity Contentions Pursuant to P.R. 3-3 and 3-4 filed by Control4 Corporation et al., SIPCO, LLC v. Control4Corporation, Eastern District of Texas Case No. 6:10-cv-249 (85 pages).
Johnson Controls, Inc.'s Supplemental Invalidity Contentions and Disclosures Pursuant to P.R. 3-3 and 3-4, SIPCO, LLC v. Datamatic LTD, et al., District Court for the Eastern District of Texas Case No. 6:09-cv-532 (89 pages).
Defendant Toro Company's Motion for Summary Judgment of Invalidity, Sipco, LLC v. The Toro Company, JLH Labs, LLC and Jason Hill, District Court for the Eastern District of Pensylvania Case No. 08-CV-00505-TJS.
“HAI Omni: Features & Specifications,” Home Automation, Inc. (archived web page), 1997.
“Home Telemetry Gateway Specifications Sheet: Connector 2000 Series,” Coactive 1998.
“How Does the New Power Company Deliver on the Promise of Energy Reconstructing?” NewPower (press release), Author: unknown, May 31, 2001, pp. 1-6.
“IEEE Standards Board: Project Authorization Request (PAR) Form;” http://grouper.ieee.org/groups/802/11/PARs/par80211bapp.html, Mar. 24, 1998.
“Important Dealer Notification—Honeywell AlarmNet-M Network Alert,” Source: unknown, Author: unknown, Apr. 2007, pp. 1.
“inCode Telecom Transforming Payphones into Wi-Fi Hot Spots,” Jan. 14, 2003, http://www.pocketpcmag.com/news/incode.asp (2 pages).
“Industrial Communications,” Author: unknown, available at http://web.archive.org/we b/19990222162354/www.metricom.com/industrial/ on May 10, 2010, pp. 1-3.
“Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Author: unknown, IEEE, Std. 802.11-1997, 1997, pp. 1-445.
“Integrated Communication Services” of Industrial Communications; pp. 1-3; available at web.archive.org/web/19990222162354/www.metricom.com/industrial.
“International Search Report and Written Opinion for International Application No. PCT/US2006/002342,” Search Authority European Patent Office, mailed May 31, 2006.
“IOConnect Architecture™,” Coactive, 2001, pp. 1-4.
“JC/83RF System: Cost-effective Multiple Facility Management by Radio Network,” Controls, Date: unknown, pp. 1-6.
“JC/83RF System: Multiple Facility Management by Radio Network,” Johnson Controls, Publication No. 2161, 1983, pp. 1-4.
“Keltron's Home Page with Frames, Index,” available at http://web.archive.org/web/19990831161957/http://www.keltroncorp.com, on Mar. 24, 2009, pp. 1.
“Local and Metropolitan Area Networks: Wireless Medium Access Control (MAC) and Physical (PHY) Specifications, Annex A: Protocol Implementation Conformance Statement (PICS) Proforma,” Author: unknown; IEEE, Nov. 1997, pp. 1-75.
“LonTalk Protocol, LonWorks™ Engineering Bulletin,” Echelon Corp.; Author: unknown; Apr. 1993, pp. 1-27.
“LonWorks® Products, 1998, Version A,” Echelon Corp.; Author: unknown; 1997, pp. 1-21.
“LonWorks® Router User's Guide,” Echelon Corp., Author: unknown; 1995, pp. 1-136.
“LonWorks® SMX™ Transceiver,” datasheet, Echelon Corp.; Author: unknown; 1997, pp. 1-18.
“M100 Series Motor Actuator,” Author: unknown, Johnson Controls, Inc., Apr. 1993, pp. 1-20.
“M100C Series Actuator with Digital Control Signal Input and R81CAA-2 Interface Board,” Installation Bulletin, Johnson Controls, 2000, pp. 1-12.
“Man-Portable Networked Sensor System (1997-),” Author: unknown, available at http://www.spawar.navy.mil/depts/d30/d37/d371/mpnss/mpnss.html on May 20, 2010, pp. 1-4.
“March of the Motes,” Author: unknown, New Scientist, vol. 179, issue 2409, Aug. 23, 2003, pp. 1-8.
“Metasys Compatible Products,” Author: unknown; Johnson Controls, Inc., 1997 (9 pages).
“Metasys Extended System Architecture, vol. II,” Author: unknown, Publisher: unknown, Sep. 1999.
“Metasys N2 System Protocol Specification for Vendors,” Author: unknown, Publisher: unknown, Jun. 1996.
“Modicon Interfacing,” Author: unknown, Engineering Report, No. 90-022, Revised: Apr. 12, 1996, pp. 1-9.
“Moore Products—Hart Protocol Interfacing,” Author: unknown, Engineering Report, No. 94-007, Revised: Mar. 1, 1996, pp. 1-3.
“MTC Teams with Coactive Networks to Deliver an Advanced Energy Communications and Management Solution,” Coactive (press release), Author: unknown, Feb. 5, 2001, pp. 1-4.
“Net77 Central Station Manual Section 3,” AES Intellinet, Dec. 1996.
“NewPower and Coactive Networks Announce Strategic Alliance to Deliver the Connected Home,” Coactive (press release), Author: unknown, Mar. 14, 2001, pp. 1-4.
“NX-480 Wireless Motion Sensor, document No. 466-1479 Rev. D,” Caddx Controls, May 1, 1998.
“Omni Automation System,” Author: unknown, Home Automation, Inc., Date: unknown, pp. 1-266.
“Omni Installation Manual,” Author: unknown; Home Automation, Inc., Oct. 1997, pp. 1-88.
“Omni Owner's Manual,” Author: unknown; Home Automation, Inc., Date: unknown, pp. 1-136.
“Omron Interfacing,” Author: unknown, Engineering Report, No. 95-003, Revised: Apr. 17, 1996, pp. 1-4.
“Opto-22 Protocol,” Author: unknown, Engineering Report, No. 93-010, Revised: May 31, 1996, pp. 1-8.
“Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networds (WPANS),” www.ieee802.org/15/Bluetooth/802-15-1—Clause—05.pdf, Jun. 14, 2002.
“Phoenix Contact Interfacing, Author: unknown,” Engineering Report, No. 94-001, Revised: Jun. 20, 1996, pp. 1-7.
“Phonelin / HPNA / HomePNA Networks,” http://www.homenethelp.com/web/howto/HomeNet-HPNA.asp (visited Jul. 29, 2003) (3 pages).
“PLC Direct (Koyo) Interfacing, Author: unknown,” Engineering Report, No. 96-001, Revised: Apr. 10, 1996, pp. 1-8.
“Power/Perfect Energy Management Systems,” Author: unknown, Johnson Controls, 1983, pp. 1-4.
“Selected Vendor Telecommunications Products,” available at http://eetd.lbl.gov/ea/ems/reports/39015a.pdf (describing public uses in 1995), pp. 1-83.
“Smart Home Technology Leader Intelli Selects Coactive Networks Internet Gateways,” Coactive (press release), Author: unknown, Sep. 11, 2000, pp. 1-4.
“Special Poll Feature,” Author: unknown, Engineering Report, No. 93-008, Sep. 1993, pp. 1-5.
“Square D Interfacing,” Author: unknown, Engineering Report, No. 88-010, Revised: Apr. 18, 1996, pp. 1-9.
“Technology Review, Metricom's Ricochet Packet Radio Network,” Ham Radio Online, 1996, Author: unknown, pp. 1-3.
“Texas Instruments Interface,” Author: unknown, Engineering Report, No. 91-021, Revised: Nov. 1994, pp. 1-3.
“The New Power Company Announces Revolutionary Energy-Saving Program the Gives Consumers Remote Control of the Their Thermostats via the Internet,” NewPower (press release), Author: unknown, Apr. 24, 2001.
“The SNVT Master List and Programmer's Guide,” Echelon Corp., Author: unknown, Mar. 1996, pp. 1-23.
To Starbucks and beyond: 802.11 wireless Internet access takes off, CommunicationsSolutions.com, vol. 4, Issue 1, Q1 2003, pp. 8-9.
“Toshiba Interfacing,” Author: unknown, Engineering Report, No. 91-011, Revised: Jun. 19, 1996, pp. 1-4.
“TranstexT® Advanced Energy Management System,” Article, Author: unknown, Publisher: unknown, Date: unknown, pp. 1-2.
“TranstexT® Advanced Energy Management System,” Brochure, Author: unknown, Integrated Communication Systems, Inc., 1990, pp. 1-8.
“Wayport's Value Proposition: To provide the industry's best high-speed Internet and business center experience for the airport passenger to stay productive,” http://www.wayport.net/airportsoverview (visited Jul. 29, 2003) (2 pages).
“Welcome to UtiliNet: A Wireless Data Communications Solution from Metricom, Inc.,” Author: unknown, available at http://web.archive.org/web/199806028045812/www.metricom.com/industrial/utilinet.html on May 10, 2010, pp. 1-10.
“Westinghouse Numa Logic Interface,” Author: unknown, Engineering Report, No. 91-013, Date: unknown, pp. 1-7.
“What's Behind Ricochet: A Network Overview,” Author: unknown, available at http://web.archive.org/web/20000815090824/www.ricochet.com/ricochet—advantage/tech—overview.html, Aug. 15, 2000, pp. 1-4.
“Wireless Access List—Atlanta Hartsfield International Airport,” http://www.ezgoal.com/hotsports/wireless/f.asp?fid=63643 (visited Jul. 29, 2003) (1 page).
“Wireless Access List—ATL Admirals Club,” http://www.ezgoal.com/hotspots/wireless/f.asp?fid=60346 (visited Jul. 29, 2003) (1 page).
“Wireless Accessories, catalog pages,” Home Automation, Inc (archived web page), 1997.
“ESTeem Model 96C,” ESTeem Radios (describing a system that was for sale at least as early as 1994).
“Site Survey Report,” ESTeem Radios, Sep. 24, 1993.
“Technical Bulletin—Johnson Controls,” ESTeem Radios, Jan. 29, 1998.
Abbott et al., “Wireless Product Applications for Utilities,” Electric Power Research Institute, Feb. 1996, pp. 1-137.
About AES Corporation, AES IntelliNet, Author: unknown, available at http://web.archive.org/web/19990127093116/www/aes-intellinet.com/ae, on Mar. 5, 2009, pp. 1-2.
Ademco Group, 7720NX Network Extender,Ademco Group, Author: unknown, 1998; pp. 1-2.
Ademco Group, 4110DL Security System, Installation Instructions, Oct. 1996, Ademco Group, Author: unknown, pp. 1-15.
Ademco Group, 4110XM Security System, Installation Instructions, Jul. 1996, Ademco Group, Author: unknown, pp. 1-20.
Ademco Group, 4120EC Security System, Installation Instructions, Nov. 1990, Ademco Group, Author: unknown, pp. 1-17.
Ademco Group, 4120XM Security System, Installation Instructions, Oct. 1993, Ademco Group, Author: Unknown, pp. 1-80.
Ademco Group, 4140XMPT2 Partitioned Security System with Scheduling User's Manual, May 1993, Ademco Group, Author: unknown; pp. 1-54.
Ademco Group, 4281, 5881, and 5882 Series RF Receivers Installation Instructions, Oct. 1996, Ademco Group, Author: unknown; pp. 1-6.
Ademco Group, 5330 Alpha Console, Installation Instructions, May 90, Ademco Group, Author: unknown, pp. 1-24.
Ademco Group, 5706 Smoke Detector with Built-In Wireless Transmitter, Installation Instructions, Dec. 1991, Ademco Group, Author: unknown, pp. 18.
Ademco Group, 5707 Smoke Detector with Built-in Wireless transmitter, Installation Instructions, Aug. 1992, Ademco Group, Author: unknown, pp. 1-12.
Ademco Group, 5715 Universal Transmitter, Installation Instructions, Mar. 1989, Ademco Group; Author: unknown; pp. 1-4.
Ademco Group, 5775 Passive Infrared Motion Detector/Transmitter, Installation Instructions, Jul. 1991, Ademco Group, Author: unknown; pp. 1-4.
Ademco Group, 5808C Photoelectronic Smoke Detector with Built-In Wireless Transmitter Installation Instructions, 1998, Ademco Group, Author: unknown; pp. 1-4.
Ademco Group, 5800TM Transmitter Module Installation Instructions, Apr. 1994, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 5801 Remote Wireless Panic Transmitter Installation Instructions, Apr. 1994, Ademco Group, Author: unknown; pp. 2.
Ademco Group, 5802CP Belt Clip Transmitter Installation Instructions, Nov. 1994, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 5802MN, Supervised Miniature Transmitter Installation Instructions, Jan. 1995, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 5802MN2 Supervised Miniature Transmitter Installation Instructions, Jun. 1997, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 5803 Wireless Key Transmitter Installation Instructions, Nov. 1994, Ademco Group, Author: unknown, pp. 2.
Ademco Group, 5804 Wireless Key Transmitter Installation Instructions, Jul. 1995, Ademco Group, Author: unknown, pp. 3.
Ademco Group, 5804BD Bi-Directional Key Transmitter Installation Instructions, Apr. 1997, Ademco Group, Author: unknown, pp. 4.
Ademco Group, 5806 Smoke Detector with Built-In Wireless Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, 5807 Smoke Detector with Built-In Wireless Installation Instructions, May 1998, Ademco Group, Author: unknown, pp. 1-6.
Ademco Group, 5808 Photoelectronic Smoke/Heat Detector with Built-In Wireless Transmitter Installation Instructions, 1998, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, 5808 Wireless Smoke Detector, 1999, available at http://web.archive.org/web/20000118015507/www.ademco.com/ademco on Mar. 5, 2009 pp. 1-4.
Ademco Group, 5809 Rate-of Rise Heat Detector/Transmitter Installation Instructions, Nov. 1994, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5816 Door/Window Transmitter Installation Instructions, Nov. 1994, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5816TEMP Low Temperature Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5818 Recessed Transmitter Installation Instructions, Jan. 1994, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5819 Shock Processor Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5819WHS Wireless Shock Sensor and Processor, 1997, available at http://web.archive.org/web/19990428164624/www.ademco.com/ademco on Mar. 5, 2009, pp. 1.
Ademco Group, 5819WHS/5819BRS Shock Processor Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 5827 Remote Wireless Keypad/Transmitter Installation Instructions, Apr. 1994, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 5827BD and 5827BDE Wireless Bi-Directional Keypads Installation Instructions and Operating Guide, Mar. 1996, Ademco Group, Author: unknown; pp. 1-6.
Ademco Group, 5849 Glass Break Detector/Transmitter Installation Instructions, Oct. 1997, Ademco Group, Author: unknown; pp. 1-4.
Ademco Group, 5850 Glass Break Detector/Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown; pp. 1-4.
Ademco Group, 5890 Passive Infrared Motion Detector/Transmitter Installation Instructions, May 1998, Ademco Group, Author: unknown; pp. 1-8.
Ademco Group, 5890 Wireless PIR Motion Detector, 1997, available at http://web.archive.org/web/19990429054256/www.ademco.com/asc on Mar. 5, 2009, pp. 1-3.
Ademco Group, 5890PI Passive Infrared Motion Detector/Transmitter Installation Instructions, Mar. 1998, Ademco Group, Author: unknown; pp. 1-4.
Ademco Group, 6128RF Keypad/Receiver—full wireless capability, 1997, Ademco Group, Author: unknown; pp. 1-2.
Ademco Group, 6128RF Keypad/Transceiver Installation Instructions, Jul. 1998, Ademco Group, Author: unknown; pp. 1-8.
Ademco Group, 6128RF Keypad/Transceiver, User Guide, May 1998, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 6128WL Keypad/Receiver Installation Instructions, Oct. 1998, Ademco Group, Author: unknown; pp. 1-8.
Ademco Group, 6128WL Keypad/Receiver User Guide, Oct. 1998, Ademco Group, Author: unknown; pp. 1.
Ademco Group, 7715DF MicroFAST Installation Tool, User Manual, Feb. 1998, Ademco Group, Author: unknown; pp. 1-32.
Ademco Group, 7720 Subscriber Radio, Installation Instructions, Jan. 1992, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-18.
Ademco Group, 7720NX Network Extender, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990220035932/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-3.
Ademco Group, 7720P Programming Tool, User Guide, Mar. 1992, Ademco Group, Author: unknown, available at http://www.guardianalarms.net; pp. 1-8.
Ademco Group, 7720Plus Subscriber Radio Installation Instructions, Oct. 1996, Ademco Group, Author: unknown, available at http://www.guardianalarms.net; pp. 1-30.
Ademco Group, 7720ULF Combination Fire Control and Long Range Radio Transmitter, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990501 210612/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-3.
Ademco Group, 7720ULF Subscriber Radio, Installation Instructions, Mar. 1995, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-20.
Ademco Group, 7720V2 Self-Contained Long Range Radio Transmitter, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990501212349/www.ademco.com/ademco on Mar. 5, 2009 pp. 1-4.
Ademco Group, 7720V2 Subscriber Radio, Installation Instructions, Jun. 1996, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-24.
Ademco Group, 7810iR Internet Receiver, Installation and Setup Guide, May 2002, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-58.
Ademco Group, 7820 Appendicies, Mar. 1995, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-2.
Ademco Group, 7820 Integrated Radio Transmitter, Installation Instructions, Aug. 1995, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-52.
Ademco Group, 7825 Outdoor Antenna with Bracket, Installation Instructions, Feb. 1995, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-2.
Ademco Group, 7830R SafetyNet Subscriber Radio, Installation Instructions, Jun. 1996, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-32.
Ademco Group, 7830R Subscriber Transmitter, 1997, available at http://web.archive.org/web/19990501215427/www.ademco.com.ademco on Mar. 5, 2009, pp. 1-3.
Ademco Group, 7835C Cellular Control Channel Transceiver, Installation and Setup Guide, Sep. 1998, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-32.
Ademco Group, 7835C Cellular SafetyNet Subscriber Radio Transceiver, 1997ADEMCO Group, Author: unknown, available at http://web.archive.org/web/19990801221202/www.ademco.com/on Mar. 5, 2009, pp. 1-3.
Ademco Group, 7845C Cellular Control Channel Transceiver, Installation and Setup Guide, Sep. 1990, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-104.
Ademco Group, 7845CZ Seven Zone Cellular Control Channel Transceiver, Installation and Setup Guide, Sep. 2001, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-64.
Ademco Group, 7845i Internet Communications Module, Installation and Setup Guide, Mar. 2002, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-42.
Ademco Group, 7920SE 900MHz Fully Synthesized Transceiver, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990501222639/www.ademco.com/ on Mar. 5, 2009, pp. 1-3.
Ademco Group, 7920SE Transceiver, Installation Instructions, Apr. 1995, Ademco Group, Author: unknown, available at http://www.guardianalarms.net, pp. 1-80.
Ademco Group, Ademco World Leader in Home Security Products, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990428164624/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-2.
Ademco Group, AlarmNet Introduces Control Channel Cellular for Commercial Fire/Burglary Applications, Ademco Group (press release), Aug. 31, 1999, available at http://web.archive.org/web/19990420234120/www.ademco.com/pr0831 on Mar. 31, 2009.
Ademco Group, AlarmNet, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/199904240234130/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-3.
Ademco Group, Alpha Vista No. 5130XT Security System, Installation Instructions, Mar. 1989, Ademco Group, Author: unknown, pp. 96.
Ademco Group, Compass Network Downloader, Ademco Group, Author: unknown, Date: unknown, available at http://www.guardianalarms.net pp. 1-109.
Ademco Group, Compass, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990209094401/www.ademco.com/ademco on Mar. 5, 2009.
Ademco Group, Control/Communicator 5110XM User's Manual, Apr. 1996, Ademco Group, Author: unknown, pp. 1-30.
Ademco Group, Fire and Burglary System Model 5120XM User's Manual, Apr. 1996, Ademco Group, Author: unknown, pp. 1-40.
Ademco Group, Home Page, Ademco Group, Author: unknown, available at http://web.archive.org/web/19961023204954/http://ademco.com/ on Mar. 5, 2009, pp. 1.
Ademco Group, LYNX—Quick Install Security System, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990116225005 pp. 1-3.
Ademco Group, Lynx Quick Start Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Lynx Security System Installation and Setup Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-48.
Ademco Group, Lynx Security System Programming Form & Summary of Connections, Oct. 1998, Ademco Group, Author: unknown, pp. 1-16.
Ademco Group, Lynx Security System User Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-40.
Ademco Group, Powerline Carrier Device Modules, 1997 Ademco Group, Author: unknown, available at http://web.archive.org/web/19990218035115/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-2.
Ademco Group, Remote Keypads 6128, 6137, 6137R, 6138, 6139 & 6139R, Installation Guide, Aug. 1998, Ademco Group, Author: unknown, pp. 1-2.
Ademco Group, Security System Model 4110DL Programming Form, Oct. 1996, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, Security System Model 4110XM Programming Form, Jul. 1996, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 4120EC Programming Form, Sep. 1993, Ademco Group, Author: unknown, pp. 1-2.
Ademco Group, Security System Model 4120XM Programming Form, Sep. 1992, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 4130XM, 4140XM, 5130XM Programming Form, Date: unknown, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 4130XT/4140/5130XT Programming Form, Jul. 1989, Ademco Group, Author: unknown, pp. 1-2.
Ademco Group, Security System Model 4140XMP Programming Form, Jan. 1992, Ademco Group, Author: unknown, pp. 1-2.
Ademco Group, Security System Model 4140XMPT Programming Form, Ademco Group, Author: unknown, Date: unknown, pp. 1-2.
Ademco Group, Security System Model 4140XMPT2 Programming Form, Apr. 1996, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 5110XM Programming Form, Apr. 1996, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 5120XM Programming Form, Jun. 1996, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model 5140XM Programming Form, Jun. 1993, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model Vista-10 Programming Form, Sep. 1994, Ademco Group, Author: unknown, pp. 1-4.
Ademco Group, Security System Model Vista-10SE Programming Form, Apr. 1997, Ademco Group, Author: unknown, pp. 1-24.
Ademco Group, Security System Model Vista-128B Commercial Burglary Partitioned Security System with Scheduling, Quick Start Guide, Jun. 1998, Ademco Group, Author: unknown, pp. 1-39.
Ademco Group, Security System User's Manual, Sep. 1996, Ademco Group, Author: unknown, pp. 1-88.
Ademco Group, The Vista-100 Series, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web19970620010543/www.ademco.com/ademco on Mar. 5, 2009.
Ademco Group, The Vista-10SE, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990502214402/www.ademco/com/ademco on Mar. 5, 2009, pp. 1-4.
Ademco Group, via16 Programming Form, Jul. 1993, Ademco Group, Author: unknown, pp. 1-2.
Ademco Group, via 16 Security System, Installation Instructions, Jan. 1992, Ademco Group, Author: unknown, pp. 1-24.
Ademco Group, via-30+, Vista 10, 4111XM Security System User's Manual, Jul. 1994, Ademco Group, Author: unknown, pp. 1-44.
Ademco Group, via-30Pse Security System Programming Guide, Apr. 1997, Ademco Group, Author: unknown, pp. 1-24.
Ademco Group, via-30PSE, Vista-1SE Security System User's Manual, Jan. 1997, Ademco Group, Author: unknown, pp. 1-88.
Ademco Group, Vista 4120XM and 4140XMP Security System User's Manual, Jan. 1994, Ademco Group, Author: unknown, pp. 1-60.
AES IntelliNet Model 7050-E & 7750-E, RF Subscriber Unit, Version 1.71, Installation & Operation Manual, AES IntelliNet, Author: unknown, Feb. 24, 1997, available at www.guardianalarms.net, pp. 1-54.
AES IntelliNet Model 7050-E Radio Subscriber Unit Installation Manual, AES IntelliNet, Author: unknown, Jul. 17, 2000, available at www.guardianalarms.net, pp. 1-4.
AES IntelliNet Model 7440 & 7440-XL RF Subscriber Unit, Addendum, AES IntelliNet, Author: unknown, Aug. 29, 2002.
AES IntelliNet Net 77 Version 1.48.30, Installation & Operation Manual, Document 40-0551u, AES Corporation, Author: unknown, Jun. 1999, pp. 1-30.
AES IntelliNet Net 77 Version 1.48.4, Installation & Operation Manual, Document 40-0551u, AES Corporation, Author: unknown, Nov. 2000, pp. 1-36.
AES IntelliNet Net 7K Version 1.48.4, Installation & Operation Manual, Document 40-0551, AES Corporation, Nov. 2000, pp. 1-36.
AES IntelliNet Net7K Version 3, Installation & Operation Manual, Document 40-0551, AES Corporation, Jun. 1999, pp. 1-30.
AES IntelliNet Radio Communication Subscriber Unit 7050, Sep. 16, 1997, available at http://web.archive.org/web/19990203061203/www.aes-intellinet.com/sp on Mar. 5, 2009, pp. 1-2.
AES IntelliNet Theory of Operation, AES IntelliNet; Author: unknown, Dec. 1996, downloaded from http://www.guardianalarms.net, pp. 1-18.
AES IntelliNet Wireless Network Glossary of Terms, document 40-0551 u, AES IntelliNet, Author: unknown, Dec. 1996, pp. 1-15.
AES IntelliNotes Universal Serial data Interface/USDI, Bulletin No. 55, AES Corporation, Author: unknown, Apr. 5, 2001, pp. 1-12.
AES IntelliTAP Model 7068, Version 1.08, Installation Guide, AES IntelliNet, Author: unknown, Jun. 15, 2000, pp. 1-11.
AES IntelliTRAK 7555-RT GPS Based Vehicle Tracking Unit, Version 2.0a, AES IntelliNet, Author: unknown, Feb. 20, 2001, pp. 1-16.
AES IntelliTRAK 7555-RT GPS Based Vehicle Tracking Unit, Version 2.12, AES IntelliNet, Author: unknown, Nov. 6, 2002, pp. 1-16.
AES Net7000, Installation & Operation Manual, AES Intellinet, Author: unknown, Nov. 24, 1996, pp. 1-76.
AES Net77 Wireless Network Management Software Installation & Operation ManuCentral Station Manual, Section 3, AES IntelliNet, Author: unknown, Dec. 1996, pp. 1-87.
AES UL/ULC System Configuration, AES Corporation, Author: unknown, May 1, 2003, pp. 1.
Agre et al., “Autoconfigurable Distributed Control Systems,” ISADS, Apr. 27, 1995.
Agre et al., “Development Platform for Self-Organizing Wireless Sensor Networks,” Rockwell Science Center and UCLA, Date:unknown, pp. 1-25.
Agre et al., “Technical and Management Proposal for Adaptive Wireless Arrays for Interactive Reconnaissance, Surveillance and Target Acquisition in Small Unit Operations (AWAIRS),” Defense Advanced Research Projects Agency Broad Agency Announcement 96-26, UCLA, Date: unknown, pp. 1-50.
Airpath Wireless, Inc., “Hot Spot Hardware,” Copyright 2003, http://www.airpath.com/programs/hardward/hardware.htm (vistited Jul. 29, 2003) (2 pages).
Alarm Link, Inc. A Brief History available at http://www.alarmlink.com/Default.aspx?tabid=28, on Mar. 23, 2009, pp. 1.
Alarm Link, Inc. Alarm Over IP Products, available at http://www.alarmlink.com/Default.aspx?tabid=38 on Mar. 24, 2009, pp. 1.
AlarmLink, Inc. Central Stations, availabe at http://www.alarmlink.com/Default.aspx?tabid=35, on Mar. 24, 2009.
AlarmLink, Inc. Home Page, avaliable at http://www.alarmlink.com/ on Mar. 24, 2009, pp. 1.
Alarm Link, Inc., “MeshWorks of Los Angeles,” available at http://www.alarmlink.com/Default.aspx?tabid=39 on Mar. 24, 2009, pp. 1.
Alwan et al., “Adaptive Mobile Multimedia Networks,” IEEE Personal Communications, Apr. 1996, pp. 34-51.
Amir et al., “An Evaluation of the Metricom Ricochet Wireless Network,” CS 294-7 Class Project, Department of Electrical Engineering and Computer Science of the University of California at Berkeley, Publisher: unknown, May 7, 1996, pp. 1-20.
Amir, “The Ricochet System Architecture,” available at http://www.lariat.org/Berkeley/node2.html, on May 1996, pp. 1-5.
Asada et al., “Low Power Wireless Communication and Signal Processing Circuits Distributed Microsensors;” Proceedings of the International Circuits and Systems Symposium, ISCAS '97; UCLA, Rockwell Science Center; Jun. 1997, pp. 1-5.
Asada et al., “Wireless Integrated Network Sensors: Low Power Systems on a Chip,” UCLA, Rockwell Science Center; Date: unknown, pp. 1-24.
Asada et al., “Wireless Integrated Sensors Networks: Low Power Systems on a Chip,” Publisher: unknown, Date: unknown, pp. 1-8.
Asada, “Wireless Integrated Network Sensors (WINS),” UCLA, SPIE vol. 3673, Mar. 1999, pp. 11-18.
Baba et al., “Wireless Medium Access Control Protocol for CAN,” 4th Int'l CAN Conf., Berlin, Germany, available at http://www.can-cia.org/fileadmin/cia/files/icc/4/baba1.pdf (1997).
Bagby, “Calypso Ventures Inc.—WLAN background,” 2 pages.
Baker et al. “The Architectual Organization of a Mobile Radio Network via a Distributed Algorithm,” IEEE, Nov. 1981.
Ball et al., “Reliability of Packet Switching Broadcast Radio Networks,” IEEE Transactions on Circuits and Systems, vol. CAS-23, No. 12, Dec. 1976, pp. 806-813.
Bapna, et al., “Antenna Pointing for High Bandwidth Communications from Mobile Robots,” Paper, Field Robotics Center, The Robotics Institute, Carnegie Mellon University, date: unknown, pp. 1-6.
Beech et al., “AX.25 Link Access Protocol for Amateur Packet Radio, Version 2.2,” American Relay & Tucson Amateur Packet Radio Corporation, Jul. 1993, Revised Jul. 1998, pp. 1-143.
Bergstein, “US telco plans WiFi payphone,” May 12, 2003, http://www.news.com.au/common/story—page/0,4057,6420676%5E15306,00.html (2 pages).
BGE, 5743 Wireless Dual Switch™ Glass Break Detector, Installation and Operating Instructions, BGE, Author: unknown; Date: unknown, pp. 1-2.
BGE, 5742 Wirelss Audio Switch™ Glass Break Detector, Installation and Operating Instructions, BGE, Author: unknown, Date: unknown, pp. 1-10.
Bhatnagar et al., “Layer Net: A New Self-Organizing Network Protocol,” Department of Electrical Engineering, SUNY, IEEE, 1990.
Black, “Lutron RF Technology, Reliable, First, Forward Thinking,” Lutron Electronics Co. Inc., Aug. 2006, pp. 1-16.
Blaney, “HomeRF™ Working Group, 4th Liason Report,” IEEE, 802.11-98/360, Nov. 1998, Slides 1-12.
Brain, “How Motes Work,” available at http://computer.howstuffworks.com/mote.htm, on Feb. 25, 2010, pp. 1-2.
Brain, “How Motes Work: Ad hoc Networks,” available at http://computer.howstuffw orks.com/mote3.htm on Feb. 25, 2010, pp. 1-3.
Brain, “How Motes Work: The Basic Idea,” available at http://computer.howstuff works.com/mote1.htm, on Feb. 25, 2010, pp. 1-2.
Brain, “How Motes Work: Typical Applications,” available at http://computer.howstuff works.com/mote2.htm, on Feb. 25, 2010, pp. 1-2.
Brayer, “Implementation and Performance of Survivable Computer Communication with Autonomous Decentralized Control,” IEEE Communications Magazine, Jul. 1983, pp. 34-41.
Brownrigg et al., “Development of a Packet-Switching Network for Library Automation,” Proceedings of the National Online Meeting Apr. 12-14, 1983, pp. 67-74.
Brownrigg et al., “Distributions, Networks, and Networking: Options for Dissemination,” Workshop on Electronic Texts, Session III, available at http://palimpsest.standford.edu/byorg/lc/etextw/sess3.html, Jul. 17, 2007, pp. 1-10.
Brownrigg et al., “Electrons, Electronic Publishing, and Electronic Display,” Information Technology and Libraries (Sep. 1985), pp. 201-207.
Brownrigg et al., “Implementing Library Automation Plans in a University Computing Environment, Planning for Computing in Higher Education 5,” EDUCOM Series in Computing and Telecommunications in Higher Education, 1980, pp. 215-225.
Brownrigg et al., “Online Catalogues: Through a Glass Darkly,” Information Technology and Libraries, Mar. 1983, pp. 104-115.
Brownrigg et al., “Packet Radio for Library Automation,” Information Technology and Libraries 3 (Sep. 1984), pp. 229-244.
Brownrigg et al., “Packet Switching and Library Automation: A Management Perspective,” Proceedings of the 45th ASIS Annual Meeting Oct. 17-21, 1982, vol. 19, pp. 54-57.
Brownrigg et al., “Technical Services in the Age of Electronic Publishing,” Library Resource & Technical Services, Jan./Mar. 1984, pp. 59-67.
Brownrigg et al., “User Provided Access to the Internet,” available at http://web.simmons.edu/˜chen/nit/NIT'92/033-bro.htm, Jun. 9, 2005, pp. 1-6.
Brownrigg, “Continuing Development of California State Radio Packet Project,” Proceedings of the ASIS 1992 Mid-Year Meeting (Silver Spring, MD: American Society for Information Science, 1992), pp. 97-100.
Brunninga, “A Worldwide Packet Radio Network,” Signal, vol. 42, No. 10, Jun. 1988, pp. 221-230.
Bryan et al., “Man-Portable Networked Sensor System,” Publisher: unknown, Date: unknown, pp. 1-10.
Bult et al. Low Power Systems for Wireless Microsensors, UCLA Electrical Engineering Department, 1996 ISLPED, pp. 1-5.
Bult et al., “A Distributed, Wireless MEMS Technology for Condition Based Maintenance,” EED, Defense Technical Information Center, UCLA, Electrical Engineering Department, Rockwell Science Center; Apr. 22-26, 1996.
Bult et al., “A Distributed, Wireless MEMS Technology for Condition Based Maintenance,” Publisher: unknown; Nov. 1997, pp. 1-8.
Bult et al., “Low Power Systems for Wireless Microsensors,” EED, UCLA; ILSPED; 1996, pp. 1-15.
Bult et al., “Low Power Systems for Wireless Microsensors,” UCLA Electrical Engineering Department, Los Anegeles, CA and Rockwell Science Center, Thousand Oaks, CA; Aug. 14, 1996, pp. 25-29.
Bult et al., “Low Power Wireless Integrated Microsensors (LWIM),” EED, UCLA; ARPA—LPE PI Meeting, Apr. 27-28, 1995, pp. 1-30.
Bult et al., “Wireless Integrated Microsensors,” EED, UCLA Electrical Engineering Department, Rockwell Science Center, TRF; Jun. 6, 1996, pp. 205-210.
Caddx-Caddi Controls, Inc., Ranger 9000E, User's Manual, downloaded from http://www.guardianalarms.net, May 17, 1996, pp. 1-9.
Carlisle, “Edison's NetComm Project,” Proceedings of the 33rd Annual Rural Electric Power Conference, IEEE, Apr. 1989, pp. B5/1-B5/4.
Chen et al., “Route Optimization and Location Updates for Mobile Hosts,” 1996 IEEE, Proceedings of the 16th ICDCS, pp. 319-326.
Chen, Emerging Home Digital Networking Needs, Paper, DSP Solutions R & D Center, Texas Instruments, Inc., pp. 1-6.
Cisco Systems, Inc., Enhanced Interior Gateway Routing Protocol, Cisco Systems, Inc., Updated Sep. 9, 2005, pp. 1-44.
Cisco Systems, RFC1812—Requirements for IP Version 4 Routers, Fred Baker ed. (Jun. 1995), available at http://www.faqs.org/rfcs/rfc1812.html, Sep. 14, 2009, pp. 1-129.
Clement, “SCADA System Using Packet Radios Helps to Lower Cincinnati's Telemetry Costs,” Water/ Engineering & Management, Aug. 1996, pp. 18-20.
Cleveland, “Performance and Design Considerations for Mobile Mesh Networks,” Milcom '96 Conference Proceedings, vol. 1 of 3, Oct. 22-24, 1996, pp. 245-249.
Clever Solutions—Metricom offers wireless data networks—includes related articles on Metricom's technology and the SONeTech company—Company Profile, available at http://findarticles.com/p/articles/mi—m0REL/is—n 11—v93/ai—147 70465/?tag=content;col1, on Nov. 22, 1993 (3 pages).
Coactive Networks, Inc., A New Solution for Offering Multive Telemetry Services to the Home, Coactive, 1999, pp. 1-8.
Coactive Networks, Inc., Coactive Connector® 1000 Series, Coactive, 2000, pp. 1-4.
Coactive Networks, Inc., Coactive Connector® 2000 Series, Coactive, Date: unknown, pp. 1-8.
Coactive Networks, Inc., Connecting Networks to the Real World™, Coactive, Date: unknown, pp. 1-4.
Coactive Networks, Inc., Corporate Backgrounder, Coactive, 2001, pp. 1-6.
Coactive Networks, Inc., Corporate Fact Sheet, Coactive, 2001, pp. 2.
Coactive Networks, Inc., Router-LE: Remote Access to LonWorks Over Ethernet, Coactive, 1998, pp. 1-4.
Coactive Networks, Inc., Router-LL: Connect LonWorks Networks Across Internet Protocol, Coactive, 1998, pp. 1-4.
Cohen et al., “IP Addressing and Routing in a Local Wireless Network,” 1992 IEEE, 1992, pp. 626-632.
Cook et al., “Water Distribution and Control by Wireless Networking,” Electronic Systems Technology, Date: unknown, pp. 1-3.
Corbell et al., “Technical Implementation in Support of the IAEA's Remote Monitoring Field Trial at the Oak Ridge Y-12 Plant,” Dept. of Energy, Office of Scientific and Technical Information, Report No. SAND—096-1934C, available at http://www.osti.gov/bridge/product.biblio.jsp?qu ery—id=1&page=0&osti—id=270678 (1996).
Corbell et al., “Technical Results of Y-12/IAEA Field Trial of Remote Monitoring System,” Dept. of Energy, Office of Scientific and Technical Information, Report No. SAND—97-1781C, available at http://www.osti.gov/bridge/product.biblio.jsp?query—id=0&page=0&osti—id=505711 (1997).
Corcoran et al., “Browser-Style Interfaces to a Home Automation Network,” IEEE Transactions on Consumer Electronics, vol. 43, No. 4, Nov. 1997, pp. 1063-1069.
Corcoran et al., “CEBus Network Access via the World-Wide-Web,” available at http://ieeexplore.ieee.org/xpl/freeabs—all.jsp?arnu mber= 517285, on Mar. 29, 2009, Paper published on Consumer Electronics, 1996, Digest of Technical Papers, pp. 236-237.
Corcoran et al., “CEBus Network Access via the World-Wide-Web,” IEEE, 1996.
Corson et al., “Architectural Considerations for Mobile Mesh Networking,” Milcom '96 Conference Proceedings vol. 1 of 3, Oct. 22-24, 1996, pp. 225-229.
Corson et al., “Internet-Based Mobile Ad Hoc Networking,” IEEE Internet Computing, Jul.-Aug. 1999, pp. 63-70.
Court's claim construction Order dated Feb. 10, 2009, in SIPCO LLC et al. v. The Toro Co. et al., Case No. 2:08-cv-00505-TJS (E.D. Pa.).
Custom Solutions, Inc. Acessories, available at http://web.archive.org/web/19981206221844/www.csi3.com/hv—pv4.htm on Feb. 27, 2009, pp. 1-3.
Custom Solutions, Inc., HomAtion 2000 for HomeVision, Press Release, available at http://web.archive.org/web/19981207075734/www.csi3.com/HV—PR—0 on Feb. 27, 2009, pp. 1-2.
Custom Solutions, Inc., HomeVision 2.7 “How to” Information, Date: unknown; pp. 1-146.
Custom Solutions, Inc., HomeVision 2.7 Auto Report Feature, Date: unknown, pp. 1-10.
Custom Solutions, Inc., HomeVision 2.7 Interface Command Protocol, Date: unknown, pp. 1-40.
Custom Solutions, Inc., HomeVision 2.7 Interface Command Protocol, Date: unknown, pp. 1-80.
Custom Solutions, Inc. HomeVision 2.7, Date: unknown, pp. 1-42.
Custom Solutions, Inc. HomeVision 2.7, Document Purpose, Date: unknown, pp. 1-28.
Custom Solutions, Inc. HomeVision 2.7, Summary of Changes—2.7, Date: unknown, pp. 1-26.
Custom Solutions, Inc. HomeVision 2.7, Welcome to HomeVision, Date: unknown, pp. 1-18.
Custom Solutions, Inc. HomeVision 2.7e, Owner's Manual (1999); pp. 1-596.
Custom Solutions, Inc. HomeVision 2.7e, Version History Overview, Date: unknown, pp. 1-38.
Custom Solutions, Inc. HomeVision Description, available at http://web.archive.org/web/19981206004955/http://www.csi3.com/HV.htm on Mar. 2, 2009, pp. 1-14.
Custom Solutions, Inc. HomeVision PC 2.62 Interface Command Protocol, date: unknown, pp. 1-36.
Custom Solutions, Inc. HomeVision PC 2.62, Welcome to HomeVision PC, Date: unknown; pp. 1-16.
Custom Solutions, Inc. HomeVision PC 2.62, Document Purpose, Date: unknown, pp. 1-24.
Custom Solutions, Inc. HomeVision PC 2.62, Summary of Changes—2.62, date: unknown, pp. 1-8.
Custom Solutions, Inc. HomeVision PC 2.62, Version History Overview, Date:unknown, pp. 1-6.
Custom Solutions, Inc., HomeVision—PC Description, available at http://web.archive.org/web/19981205094024/http://www.csi3.com/hv—pc.htm on Mar. 2, 2009, pp. 1-6.
Custom Solutions, Inc., HomeVision—PC Software, available at http://web.archive.org/web/19990224053817/http://www.csi3.com/hvp3pc.htm on Feb. 27, 2009, pp. 1-2.
Ademco Group, Vista 4130XT Security System Installation Instructions, Oct. 1998, Ademco Group, Author: unknown, pp. 1-84.
Ademco Group, Vista 4140XMPT2 Partitioned Security System with Scheduling Installation Instructions, May 1993, Ademco Group, Author: unknown, pp. 1-68.
Ademco Group, Vista AT 4140 Security System Installation Instructions, Sep. 1998, Ademco Group, Author: unknown, pp. 1-68.
Ademco Group, Vista Series 4120EC Security System User's Manual, Sep. 1992, Ademco Group, Author: unknown, pp. 1-28.
Ademco Group, Vista Series 4130XM, 5130XM, 4140XMP Security System User's Manual, Feb. 1992, Ademco Group, Author: unknown, pp. 1-32.
Ademco Group, Vista Series 4140XMPT/4140XMPT-UL Partitioned Security System User's Manual, Jun. 1993, Ademco Group, Author: unknown, pp. 1-32.
Ademco Group, Vista Series 4140XMP, Installation Instructions, Jan. 1992, Ademco Group, Author: unknown, pp. 1-52.
Ademco Group, Vista Series 5140XM User's Manual, Aug. 1992, Ademco Group, Author: unknown, pp. 1-28.
Ademco Group, Vista XM Series 4140XM, 5130XM, 4130XM, Installation Instructions, Jul. 1990, Ademco Group, Author: unknown, pp. 1-26.
Ademco Group, Vista XM Series, Installation Instructions, Ademco Group, Author: unknown, Oct. 1991, pp. 1-16.
Ademco Group, Vista-10 Security System, Installation Instructions, Sep. 1994, Ademco Group, Author: unknown, pp. 1-56.
Ademco Group, Vista-100 Commercial Fire & Burglary Alarm Partitioned Security System with Scheduling, Installation Instructions and Programming Guide, Jan. 1998, Ademco Group, Author: unknown, pp. 1-233.
Ademco Group, Vista-100 Commercial Fire & Burglary Alarm System User's Manual, Nov. 1995, Ademco Group, Author: unknown, pp. 1-66.
Ademco Group, Vista-100 Commercial Fire & Burglary Alarm System with Scheduling Quick Start, Apr. 1996, Ademco Group, Author: unknown, pp. 1-24.
Ademco Group, Vista-10SE Security System, Installation Instructions, May 1997, Ademco Group, Author: unknown, pp. 1-88.
Ademco Group, Vista-128B Commercial Burglary Partitioned Security System with Scheduling, Installation and Setup Guide, Jul. 1998, Ademco Group, Author: unknown, pp. 1-252.
Ademco Group, Vista-128FB Commercial Fire and Burglary Partioned Security System with Scheduling, Installation, and Setup Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-220.
Ademco Group, Vista-128FB Commercial Fire and Burglary Partitioned Security System User Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-80.
Ademco Group, Vista-20 2-Partitioned Security System, Installation Instructions, Nov. 1995, Ademco Group, Author: unknown, pp. 1-120.
Ademco Group, Vista-20 2-Partitioned Security System, Programming Form, Apr. 1996, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, Vista-20 Security System User's Manual, Apr. 1995, Ademco Group, Author: unknown, pp. 1-52.
Ademco Group, Vista-20HW 2-Partitioned Security System, Installation Instructions, Apr. 1996, Ademco Group, Author: unknown, pp. 1-100.
Ademco Group, Vista-20HW 2-Partitioned Security System, Programming Form, Apr. 1996, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, Vista-20HWse 2-Partitioned Security System, Installation Instructions, Aug. 1997, Ademco Group, Author: unknown, pp. 1-84.
Ademco Group, Vista-20HWse 2-Partitioned Security System, Programming Form, Aug. 1997, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, Vista-20SE 2-Partitioned Security System, Installation Instructions, Aug. 1997, Ademco Group, Author: unknown, pp. 1-100.
Ademco Group, Vista-20SE 2-Partitioned Security System, Programming Guide, Aug. 1997, Ademco Group, Author: unknown, pp. 1-8.
Ademco Group, Vista-20SE/Vista-20HWse Security System User's Manual, Jun. 1997, Ademco Group, Author: unknown; pp. 1-52.
Ademco Group, Vista-30Pse Security System, Installation Instructions, Apr. 1997, Ademco Group, Author: unknown; pp. 1-104.
Ademco Group, Vista-40 2-Partition Security System, Installation and Setup Guide, Jul. 1998, Ademco Group, Author: unknown; pp. 1-380.
Ademco Group, Vista-40 2-Partition Security System, Programming Guide, Jul. 1998, Ademco Group, Author: unknown; pp. 1-24.
Ademco Group, Vista-40 Programming Guide, Jun. 1997, Ademco Group, Author: unknown; available at www.guardianalarms.net pp. 1-20.
Ademco Group, Vista-40 Security System User's Guide, Jul. 1998, Ademco Group, Author: unknown; pp. 1-60.
Ademco Group, Vista-50, Vista 5OUL Security System, Nov. 1994, Ademco Group, Author: unknown; pp. 1-66.
Ademco Group, Vista-50P, Vista-50PUL Partitioned Security System with Scheduling, Installation Instructions and Programming Guide, Oct. 1997, Ademco Group, Author: unknown; pp. 1-199.
Ademco Group, Vista-50P, Vista-50PUL Security System User's Manual, Jul. 1995, Ademco Group, Author: unknown; pp. 1-66.
Ademco Group, Vista-50P, Vista-50PUL, Partitioned Security System with Scheduling, Quick Start, Aug. 1995, Ademco Group, Author: unknown; pp. 1-28.
Ademco Group, Vista5140XM Commercial Fire and Burglary Alarm System Installation Instructions, Jun. 1993, Ademco Group, Author: unknown, pp. 1-74.
Ademco Group, Vista-AT Security System User's Manual, Sep. 1998, Ademco Group, Author: unknown; pp. 1-56.
Ademco Group, V-Link Downloading Software User's Guide, Jun. 1994, Ademco Group, Author: unknown; available at http://www.guardianalarms.net, pp. 1-126.
Ademco Group, V-Plex Security Technology, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990421110527/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-6.
Ademco Group, Wireless Transmitters/Receivers: 5700 Wireless Transmitters, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990127120423/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-2.
Ademco Group, Wireless Transmitters/Receivers: 5800 Wireless Transmitters, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990218181254/www.ademco/com/ademco on Mar. 5, 2009, pp. 1-2.
Ademco Group, Wirelss User Interface Devices, 1997, Ademco Group, Author: unknown, available at http://web.archive.org/web/19990421190353/www.ademco.com/ademco on Mar. 5, 2009, pp. 1-4.
Ademco Group,Vista Series Partitioned Security Systems Model 4140XMPT Installation Instructions, Feb. 1992, Ademco Group, Author: unknown, pp. 1-60.
AES—7700 Central Station, Installation & Operation Manual, Document 40-0551u, AES Corporation, Author: unknown, Nov. 2003, pp. 1-40.
AES—IntelliGuard 7470, AES IntelliNet, Author: unknown, Nov. 2003, pp. 1-15.
AES 7000 Smart Central Station InstaCentral Station Installation & Operation Manual, Document No. 40-551, AES IntelliNet, Author: unknown; Nov. 20, 1996, pp. 1-48.
AES 7067 IntelliTap-II Digital Dialer Interface: A Supplemental Alarm Supporting Device, AES IntelliNet, Author: unknown, Aug. 5, 2004, pp. 1-4.
AES 7099 Central Station Installation & Operation Manual, Document No. 40-0050, AES IntelliNet, Author: unknown; 1998, pp. 1-20.
AES 7450 RF Subscriber Unit Installation Manual, AES IntelliNet, Author: unknown, 1998, pp. 1-8.
AES 7750-F RF Smart Subscriber Unit Version 2, Including 7750-F-4x4 and 7750-F-8, Installation & Operation Manual, AES IntelliNet, Author: unknown, Apr. 2001 (Updated Nov. 2003), pp. 1-60.
AES 7750-F RF Smart Subscriber Unit Version 2, Installation & Operation Manual, AES IntelliNet, Author: unknown, Aug. 2000, pp. 1-30.
AES Central Alarm Monitoring, Author: unknown, available at http://web.archive.org/web/19990225163745/www.aes-intellinet.com/ae, on Mar. 5, 2009, pp. 1-3.
AES IntelliNet 7450 Addendum, AES Corporation, Author: unknown, Jul. 9, 2002, pp. 1-2.
AES IntelliNet Dealer's List by State, Author: unknown, available at http://web.archive.org/web/200102162324026/www.aes-intellinet.com/list on Mar. 5, 2009, pp. 1-13.
AES IntelliNet Model 7003 Central Station, Installation & Operation Manual, AES IntelliNet, Author: unknown, Jan. 9, 2001, available at http://www.guardianalarms.net, pp. 1-25.
AES IntelliNet Model 7050, 7750, Subscriber Unit, Version 1.62, Installation & Operation Manual, AES IntelliNet, Author: unknown, Dec. 1996, available at www.guardianalarms.net, pp. 1-110.
Custom Solutions, Inc., HomeVision—PC Version 2.62, Owner's Manual (1997), pp. 1-234.
Custom Solutions, Inc., Media Information, Feb. 16, 1999, available at http://web.archive.org/web/19990502073249/www.csi3.com/hv—media.htm on Feb. 27, 2009, pp. 1-2.
Custom Solutions, Inc., Using Enerzone StatNet Thermostats with HomeVision (1998) pp. 1-16.
Davies et al., “Internetworking in the Military Environment,” Proceedings of IEEE Infocom '82 (1982) pp. 19-29.
Davies et al., “The Application of Packet Switching Techniques to Combat Net Radio,” Proceedings of the IEEE, vol. 75, No. 1, Jan. 1987, pp. 43-55.
Davis et al., “Knowledge-Based Management of Cellular Clone Fraud,” IEEE (1992), pp. 230-234.
Deering et al., “Internet Protocol, Version 6 (IPv6),” RFC1883, Publisher: unknown, Dec. 1995, pp. 1-37.
Deering et al., “Internet Protocol, Version 6 (IPv6),” RFC2460, The Internet Society, Dec. 1998, pp. 1-39.
Diaz, “Intervehicular Information System (IVIS): the Basis for a Tactical Information System,” SAE International, Mar. 1994, pp. 1-14.
Dixon et al., “Addressing, Bridging and Source Routing,” IEEE Network, Jan. 1988, vol. 2, No. 1, pp. 25-32.
Dong et al., “Low Power Signal Processing Architectures for Network Microsensors,” ACM, 1997, pp. 173-177.
Echelon Corp., “LonTalk® Protocol Specification,” Doc. No. 19550, available at http://ww w.enerlon.com/JobAids/Lontalk%20Protocol%20Spec.pdf (1994).
Echelon Corp., “Series 90™-30 PLC LonWorks® Bus Interface Module User's Manual,” Doc. No. GFK-1322A, available at http://www.pdfsupply.com/pdfs/gfk1322a.pdf (1997).
Elson et al., “Fine-Grained Network Time Synchronization Using Reference Broadcasts,” UCLA Computer Science Department, May 17, 2002, pp. 1-14.
Eng et al., “BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network,” 1995 IEEE International Conference on Communications, Jun. 18-22, 1995, pp. 1216-1223.
Ephremides et al., “A Design Concept for Reliable Mobile Radio Networks with a Frequency Hopping Signaling,” IEEE 1987, pp. 1-18.
ESTeem Application Paper—AgriNorthwest Employee's Provide Wireless Control System (describing a system that was in use prior to March 1999).
ESTeem Application Paper—Allen-Bradley Goes Wireless on Alaska's North Slope (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Build Your Own Wireless Power Distribution System (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Lost Cabin Gas Plant Uses Wireless Control to Enhance Production & Safety (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Northwest Farm Applies Wireless Solution (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Wireless Control of Polluted Water (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Wireless Mobile Mapping System (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Wireless Networking for Kodiak's Coast Guard Station (describing a system that was in use prior to Mar. 1999).
ESTeem Application Paper—Wireless Networking for Natural Gas Extraction (describing a system that was in use prior to Mar. 1999).
ESTeem Models 85, 95, 96, & 98 User's Manual (describing the ESTeem 96C and 96F radios used prior to 1999).
Estrin et al., “Next Century Challenges: Scallable Coordination in Sensor Networks,” ACM, 1999, pp. 263-270.
Estrin et al., “RFC1940—Source Demand Routing: Packet Format and Forwarding Specification (Version 1),” Network Working Group, May 1996, available at http://www.faqs.org/rfcs/rfc1940.html, Sep. 14, 2009, pp. 1-20.
Estrin et al., “Source Demand Routing: Packet Format and Forwarding Specification (Version 1)”, Network Working Group, Internet Draft, Jan. 19, 1995, pp. 1-28.
Federal Communications Commission, “Notice of Proposed Rule Making and Order,” Adopted Dec. 17, 2003, Released Dec. 30, 2003 (54 pages).
Frank, “Transmission of IP Datagrams Over NET/ROM Networks, ARRL Amateur Radio 7th Computer Networking Conference,” Oct. 1988, pp. 65-70.
Frank, “Understanding Smart Sensors,” Artech House (1996).
Frankel, “Packet Radios Provide Link for Distributed Survivable Command Control Communications in Post-Attack Scenarios,” Microwave System News, Jun. 1983, Circle Reader Service No. 77, pp. 80-108.
Franz, “HiperLAN—Der ETSI-Standard fur locale Funknetze,” NTZ, Sep. 1995, 10 pages.
Fullmer, “Collision Avoidance Techniques for Packet-Radio Networks,” Dissertation, University of California at Santa Cruz , Jun. 1998, pp. 1-162.
Gale et al., “The Impact of Optical Media on Information Publishing,” Bulletin of the American Society for Information Science, vol. 12, No. 6, Aug./Sep. 1986, pp. 12-14.
Garbee, “Thoughts on the Issues of Address Resolution and Routing in Amateur Packet Radio TCP/IP Networks,” ARRL Amateur Radio 6th Computer Networking Conference, Aug. 1987, p. 56-58.
Garcia-Luna-Aceves, “A Fail-Safe Routing Algorithm for Multishop Packet-Radio Networks,” IEEE Infocom '86, Technical Sessions: Apr. 8-10, 1986, pp. 434-442.
Garcia-Luna-Aceves, “A Minimum-hop Routing Algorithm Based on Distributed Information,” Elsevier Science Publishers, B.V. (North Holland), 1989, pp. 367-382.
Garcia-Luna-Aceves, “Routing Management in Very Large Scale Networks,” Elsevier Science Publishers, B.V. (North Holland), 1988, pp. 81-93.
Garcia-Luna-Aceves, J.J et al., “Wireless Internet Gateways (WINGS)”, 1997 IEEE, pp. 1271-1276, 1997.
Ge Security, “NetworkX NX-4,” 2004, pp. 1-2.
Ge Security, “NetworkX NX-548E,” 2006, pp. 1-2.
Geier et al., “Networking Routing Techniques and their Relevance to Packet Radio Networks,” ARRL/CRRL Amateur Radio 6th Computer Networking Conference, London, Ontario, Canada, Sep. 1990, pp. 105-117.
Gerla et al., “Multicluster, Mobile, Multimedia Radio Network,” UCLA Computer Science Department; Baltzer Journals; Wireless Networks; Jul. 12, 1995, pp. 255-265.
Golden Power Manufacturing, “6030 PCT Programmable Communicating Thermostat,” Author: unknown, 2007, pp. 1-3.
Golden Power Manufacturing, “Ritetemp Universal Wireless Thermostat,” Author: unknown, 2007, pp. 1-2.
Goldman et al., “Impact of Information and Communications Technologies on Residential Customer Energy Services,” Paper, Berkeley: UCLA, Oct. 1996, pp. 1-89.
Gower et al., “Congestion Control Using Pacing in a Packet Radio Network”, Rockwell International, Collins Communications Systems Division, Richardson, TX, IEEE 1982, pp. 23.1-1-23.1-6, 1982.
Grady et al., “Telemetry Options for Small Water Systems,” Special Report SR14-1999, Publisher: unknown, Sep. 1999, pp. 1-23.
Guardian Alarms, Inc., “Home Security System—Model 7068 Digital Dialer Interface,” Author: unknown, available at www.guardianalarms.net, 2007, pp. 1.
Guardian Alarms, Inc., “Security Company—Home Alarm System Monitoring—AES 7067 IntelliTap-II Digital Dialer Interface,” Author: unknown, available at www.guardianalarms.net, 2007, pp. 1.
Guardian Alarms, Inc., “Security System—Alarm System Monitoring—7160 EZ Router,” Author: unknown, available at www.guardianalarms.net, 2007, pp. 1.
Guardian Alarms, Inc., “Security System—Alarm System Monitoring—NET 7000,” Author: unknown, available at www.guardianalarms.net, 2007, pp. 1.
Guardian Alarms, Inc., “Security System—Alarm System Monitoring—Radionics FDX,” Author: unknown, available at www.guardianalarms.net, 2007, pp. 1.
Haartsen et al., “Bluetooth: Vision, Goals, and Architecture;” Mobile Computing and Communications Review; vol. 1, No. 2; pp. 1-8.
Haartsen, “Bluetooth—The Universal Radio Interface for Ad Hoc, Wireless Connectivity;” Ericsson Review No. 3, 1998; pp. 110-117.
Hahn et al., “Packet Radio Network Routing Algorithms: A Survey,” IEEE Communications Magazine, vol. 22, No. 11, Nov. 1984, pp. 41-47.
HAI Omni, Features & Specifications, Home Automation, Inc., available at http://web.archive.org/web/19970216055832/www.homeauto.com/omni on Feb. 17, 2009, pp. 1-6.
Hall, “Tactical Internet System Architecture for Task Force XXI,” 1996 IEEE, pp. 219-230.
Hamilton et al., “Optimal Routing in Multihop Packet Radio Networks,” 1990 IEEE, pp. 389-396.
Harrington, “More Visible Vehicles,” ActionLINE, Jul. 2003 (4 pages).
Harrison, “Microwave Radio in the British Telecom Access Network,” Second IEE National Conference on Telecommunications, Conference Publication No. 300, Date: unknown, pp. 208-213.
Hedrick, “An Introduction to IGRP,” Rutgers, The State University of New Jersey, Center for Computers and Information Services, Laboratory for Computer Science Research, Aug. 22, 1991 (Updated Aug. 10, 2005), pp. 1-21.
Hedrick, “Routing Information Protocol” (Jun. 1988), RFC 1058, available at Http://Tools.Ietf.Org/Html/Rfc1058, Jun. 24, 2009, pp. 1-34.
Hinden et al., “The DARPA Internet Gateway,” RFC 823, Publisher: unknown, Sep. 1982, pp. 1-43.
Hogan, “Call of the Wi-Fi,” Entrepeneur Magazine, Sep. 2003, pp. 39-42.
Holtsville et al., “Symbol Technologies, Telxon and Aironet Commit to Future Interoperability of Their Wireless Local Area Networks Based on the IEEE 802.11 Specification,” Business Wire, Jun. 24, 1996, available at http://www.thefreelibrary.co m/—/print/PrintArticle.aspx?id=18414624, pp. 1-3.
Home Automation Inc., “HAI Company Background;” Publisher: Unknown, Date: unknown, pp. 1-2.
Home Toys, Inc., “HTINews Review,” available at http://www.hometoys.com/htinews/aug97/reviews/homevis/homevis1.htm on Mar. 2, 2009, pp. 1-26.
Honeywell, Inc., “Honeywell Home Control Version 2.0 Demonstratin,” available at http://web.archive.org/web/19980630195929/www.hbc.honeywell.com/ on Mar. 5, 2009 (7 pages).
Hong et al., “U.S. Lightning Market Characterization, vol. II.: Energy Efficient Lighting Technology Options,” Sep. 30, 2005, Reportprepared for Building Technologies Program, Office of Energy Efficiency and Renewable Energy, pp. 1-36.
Hotel Technology Next Generation, “A Guide for Understanding Wireless in Hospitality,” an HTNG White Paper, Jun. 2006 (Jayne O'Neill, ed.), pp. 1-77.
Hruschka et al., “Packet Radio, Drahtlose Datenubertragung im Amateurfunk,” Elektor, Jun. 1991, pp. 54-57 and 84.
Hsu et al., “Wireless Communications for Smart Dust,” Berkeley: UCLA, Jan. 30, 1998, pp. 1-20.
Hubner et al., “A Distributed Multihop Protocol for Mobile Stations to Contact a Stationary Infrastructure,” The Third IEE Conference on Telecommunications, Conference Publication No. 331, Date: unknown, pp. 204-207.
Internet Protocol, Version 4 (IPv4), RFC791 (Sep. 1981).
Internet Protocol, Version 6 (IPv6) Specification, RFC 2460 (Dec. 1998).
Internet Protocol; DARPA Internet Program Protocol Specification, John Postel Editor; Information Sciences Institute, University of Southern California, California; Sep. 1981; pp. 1-45.
Iwata et al., “Scalable Routing Strategies for Ad Hoc Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 17, No. 8, Aug. 1999, pp. 1369-1379.
Jacobsen, “The Building Blocks of a Smart Sensor for Distributed Control Networks,” IEEE Technical Applications Conference Northcon, Nov. 4-6, 1998, pp. 285-290.
JDS Technologies, “Infrafred Xpander, IR-XP2, User Manual,” Date: unknown, pp. 1-15.
JDS Technologies, “Model: 8R5PR, 8 Channel RS485 Relay Xpander, Installation Manual,” pp. 1-5.
JDS Technologies, “Stargate 8 Channel RS-485 HUB,” Publisher: unknown, Date: unknown, pp. 1.
JDS Technologies, “Stargate Interactive Automation System,” 1998, pp. 1-2.
JDS Technologies, “Stargate, Operation Manual,” Mar. 2000, pp. 1-114.
JDS Technologies, “Stargate-IP System Layout,” Publisher: unknown; Date: unknown, pp. 1.
JDS Technologies, “Support: Protocol Specifications,” available at http://jdstechnologies.com/protocol.htm, on Feb. 16, 2009, pp. 1-32.
JDS Technologies, “TimeCommander, TimeCommander Plus, User Guide,” Jun. 1998, pp. 1-95.
JDS Technologies, “Web Xpander, Installation and Operation Manual,” Feb. 2004, pp. 1-34.
Jimenez-Cedeno et al., “Centralized Packet Radio Network: A Communication Approach Suited for Data Collection in a Real-Time Flash Flood Prediction System,” ACM-SAC 1993, pp. 709-713.
Johnson Controls, Inc., LonWorks® Digital Controller, 1998, pp. 1-12.
Johnson et al., “Dynamic Source Routing in Ad Hoc Wireless Networks”, Computer Science Department, Carnegie Mellon University, A Chapter in Mobile Computing, vol. 353, pp. 1-18, 1996.
Johnson et al., “Dynamic Source Routing in Ad Hoc Wireless Networks,” reprinted in Mobile Computing; Tomasz Imielinski and Hank Korth eds., 1996; Kluwer Academic Publishers, pp. 153-181.
Johnson et al., “Protocols for Adaptive Wireless and Mobile Networking,” IEEE Personal Communications, 3(1), Feb. 1996, pp. 1-18.
Johnson et al., “Route Optimization in Mobile IP,” Internet Draft (Nov. 28, 1994), available at http://www.monarch.cs.rice.edu/internet-drafts/draft-ietf-mobileip-optim-00.txt., Sep. 26, 2009, pp. 1-29.
Johnson, “Mobile Host Internetworking Using IP Loose Source Routing,” Carnegie Mellon University CMU-CS-93-128, DARPA Order No. 7330, Feb. 1993, pp. 1-18.
Johnson, “Routing in Ad Hoc Networks of Mobile Hosts,” 1995 IEEE, pp. 158-163.
Johnson, “Scalable and Robust Internetwork Routing for Mobile Hosts,” 1994 IEEE, pp. 1-11.
Jubin et al., “The DARPA Packet Radio Network Protocols,” Proceedings of the IEEE, vol. 75, No. 1, Jan. 1987, pp. 21-32.
Jubin, “Current Packet Radio Network Protocols,” Proc. of the IEEE Infocom (Mar. 26-28, 1985), pp. 86-92.
Kaashoek et al., “FLIP: An Internetwork Protocol for Supporting Distributed Systems,” ACM Transactions on Computer Systems, vol. 11, No. 1, Feb. 1993, pp. 73-106.
Kaiser et al., “Detailed Progress Report—LWIM Applications, Systems Verification and Field Test,” UCLA.
Kaiser et al., “Low Power Wireless Integrated Microsensors (LWIM), BAA 94-15 Proposal Abstract,” UCLA Electrical Engineering Department, Rockwell Science Center, Date: unknown, 15 pages.
Kaiser et al., “Low Power Wireless Integrated Microsensors (LWIM), Request for Support to Project”, UCLA Electrical Engineering Department, Rockwell Science Center, Sep. 13, 1994, 71 pages.
Kaiser et al., “Low Power Wireless Integrated Microsensors (LWIM),” UCLA; Rockwell Science Center; LWIM Kickoff Meeting, Aug. 8, 1995, Presented to Dr. Ken Gabriel (ARPA), Dr. Elissa Sobolewski (ARPA), and Dr. Joseph Kielman (FBI), 62 pages.
Kaiser et al., “Program Mission: Low Power Wireless Integrated Microsensor (LWIM),” UCLA, Date: unknown.
Kaiser, “Circuits and Systems for Embedded Wireless Devices: Low Power Sensor, Interface, Signal Processing, Communication, and Network Systems,” École Polytechnique Fédérale de Lausanne, pp. 1-40.
Rehkter et al., “A Border Gateway Protocol 4 (BGP-4),” RFC 1771, (Mar. 1995), available at http://tools.ietf.org/html.rfc1771, Jun. 24, 2009, pp. 1-58.
Reuters, “Verizon Launches Wi-Fi Hot Spots,” May 18, 2003, http://www.wired.com/news/wireless/0,1382,58830,00.html (2 pages).
Ritter et al., The Architecture of Metricom's Microcellular Data Network™ (MCDN) and Details of its Implementation as the Second and Third Generation Ricochet™ Wide-Area Mobile Data Service, IEEE, 2001, pp. 143-152.
Ross et al., “PNC/DOE Remote Monitoring Project at Japan's Joyo Facility,” Office of Scientific and Technical Information, Report No. SAND—96-1937C, available at http://www.osti.gov/bridge/product.bib lio.jsp?query—id=0&pa ge=0&osti—id=270680 (1996).
Saffo, Paul, “Sensors: The Next Wave of Infotech Innovation,” Institute for the Future (1997).
Salkintzisa et al., “Design and implementation of a low-cost wireless network for remote control and monitoring applications,” Elservier, Microprocessors and Microsystems, 1997, pp. 79-88.
Saltzer et al., “Source Routing for Campus-wide Internet Transport (Sep. 15, 1980),” available at http://groups.csail.mit.edu/ana/publications/pubPDFs/Sourcerouting.html, Sep. 21, 2009, pp. 1-14.
Schneider et al., “International Remote Monitoring Project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System,” Dept. of Energy, Office of Scientific and Technical Information, Report No. SAND—97-1784C, available at http://www.osti.gov/bridge/product.bibli o.jsp?query—id=1&page=0&osti—id=505674 (1997).
Schulman et al., “SINCGARS Internet Controller-Heart of the Digitized Battlefield,” Proceedings of the 1996 Tactical Communications Conference, Apr. 30-May 2, 1996, pp. 417-421.
Shacham et al., “A Packet Radio Network for Library Automation,” 1987 IEEE Military Communications Conference, vol. 2, at 21.3.1 (Oct. 1987); pp. 456-462.
Shacham et al., “Dynamic Routing for Real-Time Data Transport in Packet Radio Networks,” IEEE Proceedings of INFOCOM '82, pp. 152-159.
Shacham et al., “Future Directions in Packet Radio Architectures and Protocols,” Proceedings of the IEEE, vol. 75, No. 1, Jan. 1987, pp. 83-99.
Shacham et al., “Future Directions in Packet Radio Technology,” Proceedings of IEEE Infocom 85, Mar. 26-28, 1985, pp, 93-98.
Shacham et al., “Packet Radio Networking,” Telecommunications vol. 20, No. 9, Sep. 1986, pp. 42,43,46,48,64 and 82.
Shoch, “Inter-Network Naming, Addressing and Routing, Internet Experiment Note # 19, Notebook section 2.3.3.5,” Xerox Palo Alto Research Center, Jan. 29, 1978, Publisher: unknown, pp. 1-9.
Sohrabi et al., Protocols for Self-Organization of a Wireless Sensor Network, IEEE Personal Communications, Oct. 2000, pp. 16-27.
Stern, “Verizon to Offer Wireless Web Link Via Pay Phones,” May 10, 2003, http://www.washingtonpopst.com/ac2/wp-dyn?pagename=article&node=&contentID=A367 . . . (3 pages).
Subramanian et al., An Architectural for Building Self-Configurable Systems, IEEE, 2000, pp. 63-73.
Sunshine, “Addressing Problems in Multi-Network Systems,” (Apr. 1981), available at ftp://ftp.isi.edu/in-notes/ien/ien178.txt, Sep. 14, 2009, pp. 1-26.
Sunshine, “Addressing Problems in Multi-Network Systems,” Proceedings INFOCOM '82, 1982 IEEE, pp. 12-19.
Sunshine, “Network Interconnection and Gateways,” IEEE Journal on Selected Areas in Communications, vol. 8, No. 1, Jan. 1990, pp. 4-11.
Sunshine, “Source Routing in Computer Networks,” Information Sciences Department of The Rand Corporation (1977), Publisher: unknown, pp. 29-33.
Sutherland, Ed, “Payphones: The Next Hotspot Wave?,” Jan. 28, 2003, http://www.isp-planet.com/fixed—wireless/news/2003/bellcanada—030128.html (3 pages).
Tanenbaum, “Computer Networks,” 4th Int'l CAN Conf., Berlin, Germany, 1997.
Thodorides, “Wireless Integrated Network Sensors,” Power Point Presentation, Publisher: unknown, Apr. 15, 2003, pp. 1-19.
Thomas, “Extending CAN Networks by Incorporating Remote Bridging,” ESTeem Radios, Nov. 1994.
Thomas, “Extending CAN Networks by Incorporating Remote Bridging,” 4th Int'l CAN Conf., Berlin, Germany, available at http://www.can-cia.org/fileadmin/cia/files/icc/4/thom as.pdf (1997).
Tobagi et al, “Packet Radio and Satellite Networks,” IEEE Communications Magazine, vol. 22, No. 11, Nov. 1984, pp. 24-40.
Toh, “A Novel Distributed Routing Protocol to Support Ad-Hoc Mobile Computing,” Conference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix Conference on Computers and Communications, Mar. 27-29, 1996, pp. 480-486.
Totolo, Home RF, A New Protocol on the Horizon, Feb. 1999, available at www.hometoys.com/htinews/feb99/articles/totolo/totolo.htm on Mar. 2, 2009.
Transmission Control Protocol; “DARPA Internet Program Protocol Specification,” John Postel Editor; Information Sciences Institute, University of Southern California, California; Sep. 1981; pp. 1-85.
Varadhan et al., “SDRP Route Construction,” Internet Draft, available at draft-ietf-sdr-route-construction-01.{ps,txt}, Feb. 27, 2005, pp. 1-12.
Vardhan, “Wireless Integrated Network Sensors (WINS): Distributed In Situ Sensing for Mission and Flight Systems,” 2000 IEEE Aerospace Conference Proceedings, (2000).
Verizon, “Verizon Broadband Anytime,” Copyright 2003, https://www33.verizon.com/wifi/login/loacations/locations-remote.jsp (2 pages).
Wang et al., “Energy-Scalable Protocols for Battery Operated MicroSensor Networks,” Department of Electrical Engineering Massachusetts Institute of Technology, 1999.
Warrock, “School Give Report on Radio-Based FMS,” Energy User News, Nov. 7, 1983, pp. 1.
Weiser, “Some Computer Science Issues in Ubiquitous Computing,” Communications of the ACM, Jul. 1993.
Weiser, “The Computer for the 21st Century,” Scientific American, Sep. 1991.
Westcott et al., “A Distributed Routing Design for a Broadcast Environment,” 1982 IEEE Military Communications Conference on Progress in Spread Spectrum Communications, vol. 3, Oct. 17-20, 1982, pp. 10.4.1-10.4.5.
Westcott et al., “Hierarchical Routing for Very Large Networks,” IEEE Military Communications Conference, Oct. 21-24, 1984, Conference Record vol. 2, pp. 214-218.
Westcott, “Issues in Distributed Routing for Mobile Packet Radio Networks,” Proceedings of Computer Networks Compcon '82, Sep. 20-23, 1982, pp. 233-238.
Wey, Jyhi-Kong et al., “Clone Terminator: An Authentication Service for Advanced Mobile Phone System”, 1995 IEEE 45th Vehicular Technology Conference, Chicago, IL, pp. 175-179 + Cover Page, Jun. 25-28, 1995.
Wikipedia, “Ad Hoc On-Demand Distance Vector Routing,” available at http://en.wikipedia.org/wiki/Ad—Hoc—On-Demand—Distance—Vector—Routing on Aug. 25, 2009, pp. 1-3.
Wikipedia, “Bellman-Ford Algorithm,” available at http://en.wikipedia.org/wiki/Bellman-Ford.
Wikipedia, “Border Gateway Protocol,” available at http://en.wikipedia.org/wiki/Border—Gateway—Protocol, Jun. 24, 2009, pp. 1-13.
Wikipedia, “Distance-Vector Routing Protocol,” available at http://en.wikipedia.org/wiki/Distance-Vector—Routing—Protocol, Jun. 24, 2009, pp. 1-4.
Wikipedia, “Enhanced Interior Gateway Routing Protocol,” available at http://en.wikipedia.org/wiki/EIGRP, Jun. 24, 2009, pp. 1-7.
Wikipedia, “Exterior Gateway Protocol,” available at http://en.wikipedia.org/wiki/Exterior—Gateway—Protocol, Jun. 24, 2009, pp. 1.
Wikipedia, “Interior Gateway Routing Protocol,” available at http://en.wikipedia.org/wiki/Interior—Gateway—Routing—Protocol, Jun. 24, 2009, pp. 1-2.
Wikipedia, “IS-IS,” available at http://en.wikipedia.org/wiki/IS-IS, Jun. 24, 2009, pp. 1-3.
Wikipedia, “L. R. Ford, Jr.,” available at http://en.wikipedia.org/wiki/L.—R.—Ford,—Jr, Jun. 24, 2009, pp. 1.
Wikipedia, “Open Shortest Path First,” available at http://en.wikipedia.org/wiki/open—shortest—path—first.
Wikipedia, “Richard E. Bellman,” available at http://en.wikipedia.org/wiki/Richard—Bellman, Jun. 24, 2009, pp. 1-3.
Wikipedia, “Routing Information Protocol,” available at http://en.wikipedia.org/wiki/Routing—Information—Protocol, Jun. 24, 2009, pp. 1-4.
Will et al., “Wireless Networking for Control and Automation of Off-road Equipment,” ASAE, Jul. 18-21, 1999, pp. 1-10.
Wilson, Lexicon 700t Touchscreen Remote, Jan. 1, 1999, available at http://avrev.com/home-theater-remotes-system-control/remotes-system on Mar. 2, 2009, pp. 1-3.
Wright (ed.), Home-automation networks mature with the PC industry a new home LAN, EDN Design Feature, Date: unknown, pp. 1-9.
Wu, Jie, “Distributed System Design”, Department of Computer Science and Engineering, Florida Atlantic University, CRC Press, pp. 177-180, 204 + Cover Pages, 1999.
Nunavut et al., Web Based Remote Security System (WRSS) Model Development, IEEE, Apr. 7-9, 2000, pp. 379-382.
X10, “CK11A ActiveHome, Home Automation System, Owner's Manual,” Oct. 23, 1997, pp. 1-56.
X10.com: The Supersite for Home Automation, “What's in the Kit,” available at http://web.archive.org/web/19991111133453/www.com/products/x, on Mar. 2, 2009, pp. 1-2.
X10.com: The Supersite for Home Automation, “Wireless Remote Control System (RC5000),” available at http://web.archive.org/web/1999111453227/www.x10.com/products/x1 on Mar. 2, 2009, pp. 1.
X10: The Supersite for Home Automation, “Transceiver Module,” available at http://web.archive.org/web/20000229141517/www.x10.com/products/x on Mar. 2, 2009, pp. 1.
Xecom Incorporated, “EX900S Smart Spread Spectrum Transceiver,” Nov. 2003 (13 pages).
Yadav, “Border Security Using Wireless Integrated Network Sensors (WINS)”; ECE 7th SEM, UE6551.
Young, “USAP: A Unifying Dynamic Distributed Mulitchannel TDMA Slot Assignment Protocol,” Rockwell International Communication Systems Division, IEEE (1996).
Yu, “Target Identification Processor for Wireless Sensor Network,” Dissertation, Los Angeles: University of California, 1999, pp. 1-110.
Zander et al., “The SOFTNET Project: A Retrospect,” 1988 IEEE, pp. 343-345.
Zich et al., “Distribution, Networks, and Networking: Options for Dissemination”, Workshop on Electronic Texts Session III, http://palimpsets.stanford.edu/byorg/lc/etextw/sess3.html, pp. 1-10, Accessed Jul. 17, 2007.
Zimmermann et al., “Daten Funken, Modacom-Telekom-Datenfunkdienst; Bates SENSUS15305-15309,” Publisher: unknown; Date: unknown, pp. 1-6.
Kahn et al., Advances in Packet Radio Technology, Proceedings of the IEEE, vol. 66, No. 11, pp. 1468-1496 (Nov. 1978).
Agre et al., “Development Platform for Self-Organizing Wireless Sensor Networks,” Rockwell Science Center and UCLA, Date:Apr. 1999, pp. 257-268.
Kahn, “The Organization of Computer Resources into a Packet Radio Network,” IEEE, Jan. 1977, vol. Com-25 No. 1, pp. 169-178.
Rosen, “Exterior Gateway Protocol (EGP),” Bolt Beranek and Newman Inc., Oct. 1982, pp. 1-48.
Ademco Group, Control/Communicator 5110XM Installation Instructions, Apr. 1996, Ademco Group, Author: unknown, pp. 1-76.
Ademco Group, Vista-128FB Commercial Fire and Burglary Partitioned Security System Quick Start Guide, Oct. 1998, Ademco Group, Author: unknown, pp. 1-68.
Brain, “How Motes Work: A Typical Mote,” available at http://computer.howstuffworks.com/mote4.htm, on Feb. 25, 2010, pp. 1-2.
Cook et al., Water Distribution and Control by Wireless Networking, Electronic Systems Technology; Date: unknown, pp. 1-3.
Kaiser, “Embedded Wireless Devices: Sensors,” Outline, École Polytechnique Fédérale de Lausanne, pp. 1-53.
Kaiser, “Embedded Wireless Devices: Signal Processing,” Outline, École Polytechnique Fédérale de Lausanne, pp. 1-19.
Kaiser, “Embedded Wireless Devices: Wireless Networking,” Outline, École Polytechnique Fédérale de Lausanne, pp. 1-16.
Kaiser, “Embedded Wireless Devices: Wireless Physical Layer,” Outline, École Polytechnique Fédérale de Lausanne, pp. 1-29.
Karn et al., “Packet Radio in the Amateur Service,” IEEE Journal on Selected Areas in Communications, vol. SAC-3, No. 3, May 1985, pp. 431-439.
Katz et al., “The Bay Area Research Wireless Access Network (BARWAN)” (Jun. 1996) (presentation paper), http://daedalus.cs.berkeley.edu/talks/retreat.6.97/BARWAN.597.ppt, pp. 1-66.
Katz et al., “The Bay Area Research Wireless Access Network (BARWAN),” University of California at Berkeley, available at http://www.cs.berkeley.edu/-randy/Daedalus/BARWAN/BARWAN—index.html, 6 pages.
Katz et al., “Towards a Wireless Overlay Internetworking Architecture”, DARPA ITO Sponsored Research, 1997 Project Summary, University of California, Berkeley, pp. 1-8, Including a Slide Show Presentation of 56 pages at http://daedalus.cs.berkeley.edu/talks/retreat.6.96/overview.pdf.
Kemp, “Home Automation Application Guide,” Applications for Home Automation in Any Home, vol. 1, 2000, pp. 1-106.
Kleinrock et al., “Hierarchical Routing for Large Networks, Performance Evaluation, and Optimization,” Computer Networks 1 (1977), pp. 155-174.
Kocom, “Digital Home Network, Kitchen TV Phone KTD-505, User's Manual,” pp. 1-7.
Kohno et al., “An Adaptive Sensor Network System for Complex Environments in Intelligent Autonomous Systems (Kakazu et al., eds.),” IOS Press, 1998, pp. 21-28.
Kooser et al., “Testing 1-2-3,” Entrepreneur Magazine, Sep. 2003, pp. 27-30.
Krishnamachari, “Networking Wireless Sensors,” Cambridge University Press, Date: unknown, pp. 1-10.
Krishnamachari, “Wireless Sensor Networks: the Vision;” Cambridge University Press; pp. 1-10.
Lacoss, “Distributed Sensor Networks, Final Report,” Lincoln Laboratory at Massachusetts Institute of Technology, Sep. 30, 1986, pp. 1-225.
Lauer et al., “Survivable Protocols for Large Scale Packet Radio Networks,” IEEE Global Telecommunications Conference, Nov. 26-29, 1984, vol. 1 of 3, pp. 468-471.
Lauer, “Packet-Radio Routing, Routing in Communications Networks,” Ch. 11 (1995) pp. 351-396.
Lee et al., “Distributed Measurement and Control Based on the IEEE 1451 Smart Transducer Interface Standards,” Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, vol. 1, May 24-26, 1999, IEEE, pp. 608-613.
Leiner et al., “Goals and Challenges of the DARPA GloMo Program;” IEEE Personal Communications; Dec. 1996, vol. 3, No. 6; pp. 34-45.
Leviton Manufacturing Co., Inc., “The DECORA® Collection of Designer Devices,” 2006, pp. 1-85.
Lewis et al., “Packet-Switching Applique for Tactical VHF Radios,” 1987 IEEE Military Communications Conference, Oct. 19-22, 1987, Conference Record vol. 2 of 3, pp. 449-455.
Lin et al., “Adaptive Clustering for Mobile Wireless Networks;” Publisher: unknown; Date: unknown; pp. 1-21.
Lin et al., “CMOS Front End Components for Micropower RF Wireless Systems;” EED, UCLA Electrical Engineering Department; 1998, pp. 1-5.
Lin et al., “Wireless Integrated Network Sensors (WINS) for Tactical Information Systems,” UCLA, Rockwell Science Center; Date: unknown; pp. 1-5.
Linear Corporation, “Supervised Digital Security Transmitter t-90, Installation Instructions,” 2006, pp. 1-2.
Linear Corporation, “Supervised Digital Security Transmitters TX-91, TX-92, TX-94, Operation Instructions,” 1993, pp. 1.
Linear Corporation, “Supervised Wireless Receiver and Zone Expander SRX-64A, Installation Instructions,” 2003, pp. 1-2.
Local and Metropolitan Area Networks: Wireless Medium Access Control (MAC) and Physical (PHY) Specifications, Author: unknown; IEEE, Nov. 1997, pp. 1-98.
Clare et al., “Self-Organizing Distributed Sensor Networks,” UCLA, Rockwell Science Center.
Clare, “AWAIRS Progress Review: Planned Milestones,” UCLA Rockwell Science Center, Nov. 20, 1998.
Lougheed et al., “A Border Gateway Protocol 3 (BGP-3),” RFC 1267, (Oct. 1991), available at http://tools.ietf.org/html/rfc1267, Jun. 24, 2009, pp. 1-36.
Lowe et al., “Publishing Bibliographic Data on Optical Disks: A Prototypical Application and Its Implications,” Third International Conference on Optical Mass Data Storage, Proceedings of SPIE, vol. 529, pp. 227-236.
Lutron Electronics Co. Inc., Connecting to a RadioRA System via a Local Area Network, Application Note #127, Date: unknown, pp. 1-16.
Lutron Electronics Co. Inc., Homeowner's Guide for the RadioRA® Quick Start Package, 2004, pp. 1-8.
Lutron Electronics Co. Inc., How to Retrofit RadioRA® Wall-Mounted Master Control into an existing home, Application #41, 2004, pp. 1-2.
Lutron Electronics Co. Inc., Interfacing RadioRA® to Security and Fire Alarm Systems, Application Note #59, pp. 1-4.
Lutron Electronics Co. Inc., IR/RS232 Interface for Bang & Olufsen® Remote Control and RadioRA®, Application Note #119, 2004, pp. 1-3.
Lutron Electronics Co. Inc., Level Capture with a RadioRA® Master Control, Application Note #73, 2003, pp. 1-3.
Lutron Electronics Co. Inc., Modem Installation for HomeWorks®, Application Note #9, 1998, pp. 1-4.
Lutron Electronics Co. Inc., RadioRA® RA-IR-KIT Installation Instructions, Application Note #61, 2000, pp. 1-4.
Lutron Electronics Co. Inc., RadioRA® RF Signal Repeater, 1998, pp. 1-2.
Lutron Electronics Co. Inc., RadioRA® Single-Location Switch, Controls for Permanently Installed Lighting Loads, 1998, pp. 1-2.
Lutron Electronics Co. Inc., RadioRA® Table Lamp Controls, Dimming and Switching Controls for Table and Floor Lamps, 1999, pp. 1-2.
Lutron Electronics Co. Inc., Using a Photocell with the RadioRA® System, Application Note #45, 1998, pp. 1-4.
Lutron Electronics Co. Inc., Using an Astronomic Timeclock with the RadioRA® System, Application Note #42, 1998, pp. 1-2.
Lutron Electronics Co. Inc., Using the RadioRA® System to Activate Scenes 5-16 on a GRAFIK Eye® Control Unit, Application Note #48, 1998, pp. 1-4.
Lutron Electronics Co. Inc., Using the RadioRA® Telephone Interface, Application Note #46, 1998, pp. 1-2.
Lynch et al., “Application of Data Compression Techniques to a Large Bibliographic Database,” Proceeding of the Seventh International Conference on Very Large Databases, Cannes, France, Sep. 9-11, 1981 (Washington, DC: IEEE Computer Society Press, 1981), pp. 435-447.
Lynch et al., “Beyond the Integrated Library System Concept: Bibliographic Networking at the University of California,” Proceedings of the Second National Conference on Integrated Online Library Systems Proceedings, Sep. 1984, pp. 243-252.
Lynch et al., “Conservation, Preservation and Digitization, Energies for Transition,” Proceedings of the Fourth National Conference of the Association of College and Research Libraries, Baltimore, MD, Apr. 9-12, 1986 (Chicago, IL: Association of College and Research Libraries, 1986), pp. 225-228.
Lynch et al., “Document Delivery and Packet Facsimile,” Proceedings of the 48th ASIS Annual Meeting, vol. 22, Oct. 20-24, 1985, pp. 11-14.
Lynch et al., “Electronic Publishing, Electronic Imaging, and Document Delivery, Electronic Imaging '86,” (Boston, MA: Institute for Graphic Communication, Inc., 1986), pp. 662-667.
Lynch et al., “Library Applications of Electronic Imaging Technology,” Information Technology and Libraries, Jun. 1986, pp. 100-105.
Lynch et al., “Packet Radio Networks: Architectures, Protocols, Technologies and Applications,” Pergamon Press, 1 ed., 1987, pp. 1-275.
Lynch et al., “Public Access Bibliographic Databases in a Multicampus University Environment, Databases in the Humanities and Social Sciences—4,” Proceedings of the International Conference on Databases in the Humanities and Social Sciences, Jul. 1987, Learned Information, Inc., 1989, pp. 411-419.
Lynch et al., “The Telecommunications Landscape: 1986,” Library Journal, Oct. 1, 1986, pp. 40-46.
U.S. Appl. No. 12/477,329 Non-Final Office Action dated Aug. 19, 2010.
U.S. Appl. No. 12/477,329 Non-Final Office Action dated Dec. 28, 2009.
U.S. Appl. No. 12/356,358 Final Office Action dated Sep. 15, 2010.
U.S. Appl. No. 12/356,358 Non-Final Office Action dated Jan. 21, 2010.
U.S. Appl. No. 10/792,608 Non-Final Office Action dated Jan. 22, 2010.
U.S. Appl. No. 10/792,608 Final Office Action dated Sep. 2, 2009.
U.S. Appl. No. 10/792,608 Non-Final Office Action dated Feb. 3, 2009.
U.S. Appl. No. 10/792,608 Final Office Action dated Aug. 19, 2008.
U.S. Appl. No. 12/792,608 Restriction Requirement dated Dec. 21, 2007.
U.S. Appl. No. 10/792,608 Non-Final Office Action dated Mar. 21, 2007.
U.S. Appl. No. 12/816,266 Non-Final Office Action dated Oct. 12, 2010.
U.S. Appl. No. 11/814,632 Final Office Action dated Dec. 7, 2010.
U.S. Appl. No. 11/814,632 Non-Final Office Action dated Jul. 13, 2010.
U.S. Appl. No. 11/125,009 Non-Final Office Action dated Dec. 9, 2010.
U.S. Appl. No. 11/125,009 Non-Final Office Action dated Mar. 1, 2010.
U.S. Appl. No. 11/125,009 Non-Final Office Action dated Apr. 6, 2009.
U.S. Appl. No. 11/125,009 Non-Final Office Action dated Oct. 1, 2008.
U.S. Appl. No. 11/125,009 Notice of Allowance dated Sep. 21, 2009.
U.S. Appl. No. 12/169,536 Non-Final Office Action dated Oct. 20, 2010.
U.S. Appl. No. 12/689,220 Non-Final Office Action dated Dec. 15, 2010.
U.S. Appl. No. 11/300,902 Non-Final Office Action dated Aug. 6, 2010.
U.S. Appl. No. 11/300,902 Non-Final Office Action dated Nov. 17, 2009.
U.S. Appl. No. 11/300,902 Non-Final Office Action dated Oct. 7, 2008.
U.S. Appl. No. 11/300,902 Final Office Action dated Jun. 4, 2008.
U.S. Appl. No. 11/300,902 Non-Final Office Action dated Oct. 11, 2007.
U.S. Appl. No. 11/300,902 Advisory Action dated Aug. 11, 2008.
U.S. Appl. No. 12/482,892 Non-Final Office Action dated Dec. 13, 2010.
MacGregor et al., “Multiple Control Stations in Packet Radio Networks”, Bolt, Beranek and Newman, Inc., Cambridge, MA, IEEE 1982, pp. 10.3-1-10.3-5, 1982.
Mak et al., “Design Considerations for Implementation of Large Scale Automatic Meter Reading Systems,” IEEE Transactions on Power Delivery, vol. 10, No. 1, Jan. 1995, pp. 97-103.
Malkin, “RFC 2453, RIP Version 2 (Nov. 1998),” available at http://tools.ietf.org/html/rfc2453, Jun. 24, 2009, pp. 1-40.
Maltz et al., “Experiences Designing and Building a Multi-Hop Wireless Ad Hoc Network Testbed”, School of Computer Science, Carnegie Mellon University, pp. 1-22, Mar. 5, 1999.
Maltz, “On-Demand Routing in Multi-Hop Wireless Mobile Ad Hoc Networks,” Thesis, May 2001, pp. 1-192.
Marcy et al., “Wireless Sensor Networks for Area Monitoring and Iintegrated Vehicle Health Management Applications,” Rockwell Science Center, Thousand Oaks, CA, AIAA-99-4557; Date: unknown, pp. 1-11.
Markie et al., “LonWorks and PC/104: A winning combination,” PC/104 Embedded Solutions, Summer 1998, pp. 1-8.
Martel et al., “Home Automation Report: A Modular Minimum Complexity, High-Resolution and Low CostField Device Implementation for Home Automation and Healthcare,” MIT; Publisher: unknown; Mar. 31, 1998; pp. 1-29.
McQuillan et al., “The ARPA Network Design Decisions,” Computer Networks, vol. 1, No. 5, Aug. 1977 pp. 243-289.
McQuillan et al., “The New Routing Algorithm for the ARPANET,” IEEE Transactions on Communications, vol. COM-28, No. 5, May 1980, pp. 711-719.
Mills, “Exterior Gateway Protocol Formal Specification” (Apr. 1984), RFC 904, available at http://tools.ietf.org/html/rfc904, Jun. 24, 2009, pp. 1-32.
Moorman, “Packet Radio Used in a Cost-Effective Automated Weather Meso-Net,” available at http://www.wrh.noaa.gov/wrh/96TAs/TA963 1/ta96-31.html, Dec. 3, 1996 (5 pages).
Moy, “RFC 2328, OSPF Version 2 (Apr. 1998),” available at http://tools.ietf.org/html/rfc2328, Jun. 24, 2009, pp. 1-245.
Mozer et al., “The Neural Network House: An Overview,” in L. Niklasson & Boden (eds.), Current trends in connectionism (pp. 371-380); Hillsdale: Erlbaun, 1995; pp. 1-9.
Murthy et al., “An Efficient Routing Protocol for Wireless Networks, Mobile Networks and Applications 1,” (1996), pp. 183-197.
Natkunanathan et al. “WINS: Signal Search Engine for Signal Classification,” EED, UCLA; Date: unknown; pp. 1-6.
Natkunanathan et al., “A Signal Search Engine for Wireless Integrated Network Sensors,” EED, UCLA Electrical Engineering Department;; Date: unkown; pp. 1-4.
Negus et al., “HomeRF™ and SWAP: Wireless Networking for the Connected Home,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 2, Issue 4, Oct. 1998, available at http://portal.acm.org/citation.cfm?id=1321400.1321401 on Mar. 29, 2009, pp. 1-2.
Negus et al., “HomeRF™ and SWAP: Wireless Networking for the Connected Home,” Mobile Computing and Communications Review, vol. 2, No. 4, Date: unknown, pp. 28-37.
Nextgen Searches, “IPCO v. The Wireless Sensor Network Industry? Special Report on IPCO v. Oncor et al.,” Corporate Manager's Edition, 2009, pp. 1-16.
Nilsen et al., “Storage Monitoring Systems for the Year 2000,” Dept. of Energy, Office of Scientific and Technical Information, Report No. SAND—97-8532C, available at http://www.osti.gov/bridge/product.biblio.jsp?query—id=3&page=0&osti—id=303988 (1997).
Ondo, “PLRS/JTIDS Hybrid,” Filled Artillery Journal, Jan.-Feb. 1981, pp. 20-25.
Oran (ed.), “OSI IS-IS Intra-Domain Routing Protocol,” RFC 1142 (Feb. 1990), available at http://tools.ietf.org/html/rfc1142, Jun. 24, 2009, pp. 1-665.
Park et al., “SensorSim: A Simulation Framework for Sensor Networks,” ACM, 2000, pp. 104-111.
Perkins et al., “A Mobile Networking System Based on Internet Protocol,” Publisher: unknown, Date: unknown, pp. 1-17.
Perkins et al., “Ad-Hoc On-Demand Distance Vector Routing “AODV”,” http://moment.cs.ucsb.edu/AODV/aodv.html, Aug. 25, 2009, pp. 1-5.
Perkins et al., “Continuous, transparent network access for portable users, A Mobile Networking System Based on Internet Protocol,” IEEE Personal Communications, First Quarter 1994, pp. 32-41.
Perkins et al., “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” SIGCOM Conference on Communications Architectures, Protocols ans Applications, London England UK (Aug. 1994); pp. 234-244.
Perkins et al., “Mobility Support in IPv6,” Internet Draft (Sep. 22, 1994), available at http://www.monarch.cs.rice.edu/internet-draft/draft-perkins-ipv6-mobility-sup-oo.txt., Sep. 26, 2009, pp. 1-13.
Perkins et al., “RFC3561—Ad Hoc On-Demand Distance Vector (AODV) Routing (Jul. 2003),” available at http://tools.ietf.org/html?rfc 3561, Aug. 25, 2009, pp. 1-38.
Pittway Corporation, “Company History,” available at http://www.fundinguniverse.com/company-histories/Pittway-Corporation Mar. 6, 2009, pp. 1-5.
Plaintiffs' Opening Markman Brief in Support of Their Proposed Claim Constructions, filed by the patent owner and its co-plaintiff in SIPCO LLC et al. v. The Toro Co. et al., Case No. 2:08-cv-00505-TJS (E.D. Pa.) filed on Sep. 26, 2008.
Pleading—Defendant Digi International Inc.'S First Amended Answer and Defenses of SIPCO, LLC v. Control4 Corporation et al., Civil Action No. 6:10-cv-249, currently pending in the U.S. District Court for the Eastern District of Texas, Tyler Division, filed Nov. 22, 2010, pp. 1-27.
Pleading—Defendant Siemens Industry, Inc.'S First Amended Answer and Defenses of SIPCO, LLC v. Control4 Corporation et al., Civil Action No. 6:10-cv-249, currently pending in the U.S. District Court for the Eastern District of Texas, Tyler Division, filed Nov. 22, 2010, pp. 1-27.
Pleading—Defendant The Toro Company, The Toro Company's Second Supplemented Objections and Answers to Plaintiffs SIPCO LLC and Advanced Sensor Technology, Inc.'s Interrogatory No. 4 to Defendant The Toro Company of SIPCO LLC, et al. v. The Toro Company et al., Civil Action No. 08- CV-00505-TJS (pp. 1-9).
Pleading—Defendant The Toro Company, Third Supplemented Objections and Answers to Plaintiffs SIPCO LLC and Advanced Sensor Technology, Inc.'s Interrogatory No. 4 to Defendant The Toro Company of SIPCO LLC, et al. v. The Toro Company et al., Civil Action No. 08-CV-00505-TJS (pp. 1-9).
Pleading—Expert Report of Randy H. Katz, Ph. D, of SIPCO, LLC et al. v. The Toro Company et al., Case No. 2:08-cv-00505.
Poor, Robert D., “Hyphos: A Self-Organizing, Wireless Network,” Massachusetts Institute of Technology (Jun. 1997).
Postel (ed.), “Transmission Control Protocol, Version 4,” RFC793, available at http://www.faqs.org/rfcs/rfc793.html, Sep. 1981, pp. 1-85.
Postel (Editor), “Internet Protocol, DARPA Internet Program Protocol Specification,” RFC 791 (Sep. 1981), Information Sciences Institute, University of So. Cal., pp. 1-45.
Pottie et al., “Adaptive Wireless Arrays for Interactive RSTA in SUO (AWAIRS),” UCLA, Electrical Engineering Department; Date: unknown, pp. 1-20.
Pottie et al., “Adaptive Wireless Arrays Interactive Recconaissance, Surveillance, and Target Acquisition in Small Unit Operations (AWAIRS); Lower Power Wireless Integrated Microsensors (LWIM),” Presented to Dr. E. Carapezza, Dr. D. Lao and Lt. Col. J. Hernandez, UCLA, Rockwell Science Center; Mar. 21, 1997, pp. 1-110.
Pottie et al., “WINS: Principles and Practice,” EDD, UCLA; Date: unknown, pp. 1-10.
Pottie et al., “Wireless Integrated Network Sensors,” Communications of the ACM, vol. 43, No. 5, May 2000, pp. 51-58.
Pottie et al., “Wireless Integrated Network Sensors: Towards Low Cost and Robust Self-Organizing Security Networks;” EED, UCLA; Rockwell Science Center; SPIE vol. 3577, Nov. 1, 1998, pp. 86-95.
Pottie, “AWAIRS: Mini-Site Review, Project Status,” UCLA: Rockwell Science Center, Feb. 23, 1998, pp. 1-58.
Pottie, “Hierarchical Information Processing in Distributed Sensor Networks,” ISIT, Aug. 16-21, 1998, IEEE, 1998, pp. 163.
Pottie, “R&D Quarterly and Annual Status Report,” SPAWAR (contractor), Apr. 31, 1999.
Pottie, “Wireless Sensor Networks,” ITW 1998, Jun. 22-26, 1998, available at http://dantzig.ee.ucla.edu/oclab/Pottie.html, 2 pages.
Printout of 47 C.F.R. 15 (131 pages).
Rabaey et al., “PicoRadio Support Ad Hoc Ultra-Low Power Wireless Networking,” Computer, IEEE, Jul. 2000, pp. 42-48.
Radlherr, “Datentransfer Ohne Draht und Telefon,” Funkschau, Nov. 1991, pp. 49-52.
Raji, “Control Networks and the Internet, Rev. 2.0,” Echelon Corp., 1998, pp. 1-39.
Raji, “End-to-End Solutions with LonWorks® Control Technology: Any Point, Any Time, Any Where,” Echelon Corp.;, 1998, pp. 1-30.
Raji, “Control Networks and the Internet,” Echelon Corp., Rev. 2.0, available at http://www.echelon.com/solutions/opensystems/pape rs/Control—Internet.pdf (1998).
Rants and Ramblings, “Go Wireless . . . At a Payphone,” May 10, 2003, http://www.morethanthis.net/blog/archives/2003/05/10/000301.html (2 pages).
Reexamination Control No. 90-008011 Request for Ex Parte Reexamination of 6,044,062.
Reexamination Control No. 90-008011 Grant of Reexamination Request.
Reexamination Control No. 90-008011 Non-Final Office Action dated Nov. 19, 2007.
Reexamination Control No. 90-008011 Final Office Action dated Aug. 13, 2008.
Reexamination Control No. 90-010301 Request for Ex Parte Reexamination of 6,891,838.
Reexamination Control No. 90-010315 Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010301 Grant of Reexamination Request.
Reexamination Control No. 90-010315 Denial of Reexamination Request.
Reexamination Control No. 90-010315 Petition to Review Denial of Request for Reexamination.
Reexamination Control No. 90-010507 Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010509 Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010510 Request for Ex Parte Reexamination of 6,891,838.
Reexamination Control No. 90-010505 Substitute Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010507 Substitute Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010508 Substitute Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010509 Substitute Request for Ex Parte Reexamination of 7,103,511.
Reexamination Control No. 90-010510 Substitute Request for Ex Parte Reexamination of 6,891,838.
Reexamination Control No. 90-010511 Substitute Request for Ex Parte Reexamination of 6,891,838.
Reexamination Control No. 90-010512 Substitute Request for Ex Parte Reexamination of 6,891,838.
Reexamination Control No. 90-010505 Grant of Reexamination Request.
Reexamination Control No. 90-010507 Grant of Reexamination Request.
Reexamination Control No. 90-010508 Grant of Reexamination Request.
Reexamination Control No. 90-010509 Grant of Reexamination Request.
Reexamination Control No. 90-010510 Grant of Reexamination Request.
Reexamination Control No. 90-010511 Grant of Reexamination Request.
Reexamination Control No. 90-010512 Grant of Reexamination Request.
Reexamination Control No. 90-010301 Non-Final Office Action dated Dec. 2, 2009.
Reexamination Control No. 90-010315 Denial of Petition to Review Denial of Request for Reexamination.
Reexamination Control No. 90-010505 Non-Final Office Action dated Mar. 3, 2010.
Reexamination Control No. 90-010507 Non-Final Office Action dated Mar. 3, 2010.
Reexamination Control No. 90-010508 Non-Final Office Action dated Mar. 3, 2010.
Reexamination Control No. 90-010509 Non-Final Office Action dated Mar. 3, 2010.
Reexamination Control No. 90-008011 Examiner Answer to Appeal Brief.
Reexamination Control No. 90-010505 Final Office Action dated Aug. 2, 2010.
Reexamination Control No. 90-010507 Final Office Action dated Aug. 2, 2010.
Reexamination Control No. 90-010508 Final Office Action dated Aug. 2, 2010.
Reexamination Control No. 90-010509 Final Office Action dated Aug. 2, 2010.
Reexamination Control No. 90-010510 Final Office Action dated Aug. 20, 2010.
Reexamination Control No. 90-010511 Final Office Action dated Aug. 20, 2010.
Reexamination Control No. 90-010512 Final Office Action dated Aug. 20, 2010.
Reexamination Control No. 90-010301 Final Office Action dated Nov. 5, 2010.
Reexamination Control No. 90-010510 Final Office Action dated Nov. 5, 2010.
Reexamination Control No. 90-010511 Final Office Action dated Nov. 5, 2010.
Reexamination Control No. 90-010512 Final Office Action dated Nov. 5, 2010.
Reexamination Control No. 90-008011 BPAI Decision.
Reexamination Control No. 90-010510 Non-Final Office Action dated Dec. 2, 2009.
Reexamination Control No. 90-010511 Non-Final Office Action dated Dec. 2, 2009.
Reexamination Control No. 90-010512 Non-Final Office Action dated Dec. 2, 2009.
Reexamination Control No. 90-010301 Notice of Intent to Issue Reexam Certificate dated Dec. 13, 2010.
Prophet, Graham, Living in a Wireless Wonderland, available at http://www.ednmag.com/infoaccess.asp, Jun. 5, 2010, pp. 79-94.
U.S. Appl. No. 12/816,266 Non-Final Office Action dated Jun. 15, 2011.
U.S. Appl. No. 12/169,536 Non-Final Office Action dated Jun. 8, 2011.
U.S. Appl. No. 12/169,536 Non-Final Office Action dated Nov. 21, 2011.
U.S. Appl. No. 12/689,220 Final Office Action dated Oct. 5, 2011.
U.S. Appl. No. 12/482,892 Non-Final Office Action dated Jun. 28, 2011.
U.S. Appl. No. 12/482,892 Non-Final Office Action dated Nov. 25, 2011.
Related Publications (1)
Number Date Country
20100194582 A1 Aug 2010 US
Provisional Applications (1)
Number Date Country
60224043 Aug 2000 US
Continuations (2)
Number Date Country
Parent 11159768 Jun 2005 US
Child 12758590 US
Parent 09812044 Mar 2001 US
Child 11159768 US
Continuation in Parts (6)
Number Date Country
Parent 09704150 Nov 2000 US
Child 09812044 US
Parent 09271517 Mar 1999 US
Child 09704150 US
Parent 09439059 Nov 1999 US
Child 09271517 US
Parent 09102178 Jun 1998 US
Child 09439059 US
Parent 09172554 Oct 1998 US
Child 09102178 US
Parent 09412895 Oct 1999 US
Child 09172554 US