The present disclosure relates generally to systems and methods for monitoring components, and more particularly to systems and methods which align data acquisition devices with surface features for monitoring the components.
Throughout various industrial applications, apparatus components are subjected to numerous extreme conditions (e.g., high temperatures, high pressures, large stress loads, etc.). Over time, an apparatus's individual components may suffer creep and/or deformation that may reduce the component's usable life. Such concerns might apply, for instance, to some turbomachines.
Turbomachines are widely utilized in fields such as power generation and aircraft engines. For example, a conventional gas turbine system includes a compressor section, a combustor section, and at least one turbine section. The compressor section is configured to compress air as the air flows through the compressor section. The air is then flowed from the compressor section to the combustor section, where it is mixed with fuel and combusted, generating a hot gas flow. The hot gas flow is provided to the turbine section, which utilizes the hot gas flow by extracting energy from it to power the compressor, an electrical generator, and other various loads.
During operation of a turbomachine, various components (collectively known as turbine components) within the turbomachine and particularly within the turbine section of the turbomachine, such as turbine blades, may be subject to creep due to high temperatures and stresses. For turbine blades, creep may cause portions of or the entire blade to elongate so that the blade tips contact a stationary structure, for example a turbine casing, and potentially cause unwanted vibrations and/or reduced performance during operation.
Accordingly, components may be monitored for creep. One approach to monitoring components for creep is to configure strain sensors on the components, and analyze the strain sensors at various intervals to monitor for deformations associated with creep strain.
One concern when monitoring component deformation is the accuracy of strain sensor measurements taken during analysis of the strain sensors. As discussed, the strain sensors may be analyzed at various intervals. A data acquisition device may, for example, collect images of the strain sensors at various intervals for analysis. A particular concern is the accurate locating of the data acquisition device relative to the strain sensor when collecting images. It is generally desirable for the position of the data acquisition device to be consistently and repeatedly consistent relative to the strain sensors, such that measured changes in the strain sensors are accurate and not influenced by changes in the position of the data acquisition device.
The need for improved component monitoring is not limited to stain sensor applications. Such need exists in other component applications. For example, improved monitoring of cooling holes defined in the exterior surface of a component and/or other surface features configured on the exterior surface of a component may be useful.
Accordingly, alternative systems and methods for monitoring components are desired in the art. In particular, systems and methods which provide positioning consistency for data acquisition devices relative to surface features would be advantageous.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In accordance with one embodiment of the present disclosure, a system for monitoring a component is provided. The component has an exterior surface and a surface feature configured on the component. The system includes a data acquisition device for analyzing the surface feature. The system further includes an alignment assembly for aligning the data acquisition device and the surface feature. The alignment assembly includes a target feature configurable on the component and a guide feature configured with the data acquisition device. Alignment of the guide feature with the target feature aligns the data acquisition device and the surface feature.
In accordance with another embodiment of the present disclosure, a system for monitoring a component is provided. The component has an exterior surface and a surface feature configured on the component. The system includes a data acquisition device for analyzing the surface feature, the data acquisition device including a boroscope. The system further includes a physical alignment assembly for aligning the data acquisition device and the surface feature. The physical alignment assembly includes a target feature configurable on the component and a guide feature coupled to the boroscope. Alignment of the guide feature with the target feature aligns the data acquisition device and the surface feature along an X-axis, a Y-axis and a Z-axis.
In accordance with another embodiment of the present disclosure, a method for monitoring a component is provided. The method includes positioning a data acquisition device proximate a surface feature, the surface feature configured on the component. The method further includes aligning a guide feature of the data acquisition device with a target feature configured on the component. Alignment of the guide feature with the target feature aligns the data acquisition device and the surface feature.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to
The component 10 has an exterior surface 11 on or beneath which strain sensors 40 may be configured. Strain sensors 40 in accordance with the present disclosure may be configured on the exterior surface 11 using any suitable techniques, including deposition techniques; other suitable additive manufacturing techniques; subtractive techniques such as laser ablation, engraving, machining, etc.; appearance-change techniques such as annealing, direct surface discoloration, or techniques to cause local changes in reflectivity; mounting of previously formed strain sensors 40 using suitable mounting apparatus or techniques such as adhering, welding, brazing, etc.; or identifying pre-existing characteristics of the exterior surface 11 that can function as the components of a strain sensor 40. Additionally, in further alternative embodiments, strain sensors 40 can be configured beneath exterior surface 11 using suitable embedding techniques during or after manufacturing of the component 10.
Referring now to
The strain sensor 40 may comprise a variety of different configurations and cross-sections such as by incorporating a variety of differently shaped, sized, and positioned reference points 41 and 42. For example, as illustrated in
Furthermore, the values of various dimensions of the strain sensor 40 may depend on, for example, the component 10, the location of the strain sensor 40, the targeted precision of the measurement, application technique, and optical measurement technique. For example, in some embodiments, the strain sensor 40 may comprise a length and width ranging from less than 1 millimeter to greater than 300 millimeters. Moreover, the strain sensor 40 may comprise any thickness that is suitable for application and subsequent optical identification/measurement without significantly impacting the performance of the underlying component 10. Notably, this thickness may be a positive thickness away from the surface 11 (such as when additive techniques are utilized) or a negative thickness into the surface 11 (such as when subtractive techniques are utilized). For example, in some embodiments, the strain sensor 40 may comprise a thickness of less than from about 0.01 millimeters to greater than 1 millimeter. In some embodiments, the strain sensor 40 may have a substantially uniform thickness. Such embodiments may help facilitate more accurate measurements for subsequent strain calculations between the first and second reference points 41 and 42.
In some embodiments, the strain sensor 40 may comprise a positively applied square or rectangle wherein the first and second reference points 41 and 42 comprise two opposing sides of said square or rectangle. In other embodiments, the strain sensor 40 may comprise at least two applied reference points 41 and 42 separated by a negative space 45 (i.e., an area in which the strain sensor material is not applied). The negative space 45 may comprise, for example, an exposed portion of the exterior surface 11 of the component 10. Alternatively or additionally, the negative space 45 may comprise a subsequently applied contrasting (i.e. visually contrasting, contrasting in the ultraviolet or infrared spectrum, or contrasting in any other suitable range of wavelengths in the electromagnetic spectrum) material that is distinct from the material of the at least two reference points 41 and 42 (or vice versa).
As illustrated in
The strain sensor 40 may thereby be configured in one or more of a variety of locations of various components 10. For example, as discussed above, the strain sensor 40 may be configured on a blade, vane, nozzle, shroud, rotor, transition piece or casing. In such embodiments, the strain sensor 40 may be configured in one or more locations known to experience various forces during unit operation such as on or proximate airfoils, platforms, tips or any other suitable location. Moreover, the strain sensor 40 may be configured in one or more locations known to experience elevated temperatures. For example, the strain sensor 40 may be configured on a hot gas path or combustion turbine component 10.
As discussed herein and as shown in
It should be understood that the present disclosure is not limited to strain sensors 40 as illustrated herein. Rather, any suitable surface feature configured on a turbine component 10, such as on the exterior surface 11 thereof, is within the scope and spirit of the present disclosure. Examples of other suitable surface features include cooling holes defined in the exterior surface, coating layers applied to the exterior surface 11 (wherein the exterior surface 11 is defined as that of a base component of the turbine component 10), etc.
Referring now to
The casing 120 may include defined therein one or more access ports 126 to permit periodic inspection of components of the gas turbine 100 disposed internally of the casing 120 using a borescope 130 (see
Referring now to
Borescope 130 may be a component of a data acquisition device 140, which may generally be utilized to analyze surface features 40. A data acquisition device 140 may, for example, include borescope 130, an image capture device 142 and a computing device 144. The image capture device 142 may generally be in communication with the lens 132 and optical system for receiving and processing light from the lens 132 to generate images. In exemplary embodiments, for example, image capture device 142 may be a camera sensor which receives and processes light from a camera lens to generate images, such as digital images, as is generally understood.
Image capture device 142 may be in communication with computing device 144. Computing device 144 may generally include suitable hardware and/or software for storing and analyzing the images from the image capture device 142 and device 140 generally. Such hardware and/or software may, for example, generally analyze surface features. For example, strain sensors 40 may be analyzed to determine whether deformation and strain have occurred as discussed above.
Computing device 144 may include one or more processor(s) and associated memory device(s) configured to perform a variety of computer-implemented functions. As used herein, the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, a microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit, and other programmable circuits. Additionally, the memory device(s) may generally comprise memory element(s) including, but not limited to, computer readable medium (e.g., random access memory (RAM)), computer readable non-volatile medium (e.g., a flash memory), a floppy disk, a compact disc-read only memory (CD-ROM), a magneto-optical disk (MOD), a digital versatile disc (DVD) and/or other suitable memory elements. Such memory device(s) may generally be configured to store suitable computer-readable instructions that, when implemented by the processor(s), configure the computing device 144 to perform various functions.
In alternative embodiments, other suitable data acquisition devices, such as electrical field scanners or devices which include other suitable imaging apparatus, may be utilized.
Notably, analysis of a component 10 (such as a rotor blade 112, 116 or other suitable component as discussed herein) by a data acquisition device 140 may, in some embodiments, be performed when the component 10 is in situ. A component 10 is in situ when it disposed within an assembly such as a turbomachine, such as within a section 102, 104, 106 of the gas turbine 100. Notably, in some embodiments the entire casing 120 may surround the component 10 when such in situ analysis is occurring. In these embodiments, analysis may occur via extension of a portion of the data acquisition device 140, such as a portion of the boroscope 130 including the lens 132, through a port 126. In other embodiments, a portion of the casing 120, such as the first shell 122 or second shell 124, may be removed. Alternatively, the component 10 may be removed from the assembly, such as the turbomachine, for analysis, and may for example be positioned in a measurement jig for analysis.
Referring now to
Accordingly, system 200 may further include one or more alignment assemblies 210 for aligning the data acquisition device 140 and the surface feature 40. Alignment assemblies 210 may provide alignment repeatability, such as in at least one of the X-axis 202, Y-axis 204 or Z-axis 206, such as in at least two of the X-axis 202, Y-axis 204 or Z-axis 206, such as in the X-axis 202, Y-axis 204 and Z-axis 206. The alignment assemblies 210 may facilitate repeated, accurate alignment of the data acquisition device 140, such as the lens 132 thereof, with the surface feature 40 for image analysis thereof.
An alignment assembly 210 may include a target feature 212 and a guide feature 214. The target feature 212 may be configurable on the component 10, and may for example be proximate the surface feature 40. For example, in some embodiments, the target feature 212 may be separate and spaced from the surface feature 40. Alternatively, the target feature 212 may be included in the surface feature 40. The guide feature 214 may be configured with the data acquisition device 140. Alignment of the guide feature 214 with the target feature 212 may align the data acquisition device 140 (such as the lens 132 thereof) with the surface feature 40, such as along at least one of the X-axis 202, Y-axis 204 or Z-axis 206, such as along at least two of the X-axis 202, Y-axis 204 or Z-axis 206, such as along the X-axis 202, Y-axis 204 and Z-axis 206. An alignment assembly 210 may thus act as a poka-yoke for alignment of the data acquisition device 140 with the surface feature 40.
In some embodiments, as illustrated in
For example, in some embodiments as illustrated in
In other embodiments as illustrated in
As discussed, the outer surface of the protrusion 234 may have a size and shape that corresponds to the inner surface of the depression 232. For example, in some embodiments as shown, the depression 232 may have a taper and the protrusion 234 may have a mating taper. For example, the one of the depression 232 or protrusion 234 configured on the component 10 may taper away from the exterior surface 11, such as away from the component 10 or into the component 10. The other of the depression 232 or protrusion 234 may have a mating taper. The tapers may facilitate seating of the protrusion 234 within the depression 232 and the resulting alignment of the protrusion 234 and depression 232.
It should be understood that physical alignment assemblies 210 in accordance with the present disclosure are not limited to the above disclosed embodiments. Rather, any suitable physically mating components may be utilized as a target feature 212 and guide feature 214 in accordance with the present disclosure.
In alternative embodiments, an alignment assembly 210 may be an optical alignment assembly. In these embodiments, the guide feature 214 need not contact the target feature 212 to align the guide feature 214 and target feature. For example, the target feature 212 may be a fiducial 242 that provides a focal point for the data acquisition device 140. In the embodiment shown, the fiducial 242 is in the shape of a conventional target. The guide feature 214 may in some embodiments be a mating fiducial 244 which may comprise, for example, markings in or on the lens 232. The fiducial 242 may be visually overlayed with the fiducial 244 to align the fiducials 242, 244. Alternatively, the guide feature 214 may comprise a focusing function of the data acquisition device 140, such as of the computing device 144 thereof. Bringing the fiducial 242 into focus may align the guide feature 214 and target feature 212.
Referring now additionally to
In some embodiments, steps 310, 320 may occur with the component 10 in situ, as discussed herein. In other embodiments, steps 310, 320 may occur with the component 10 removed from an associated assembly, such an associated turbomachine, as discussed herein.
In some embodiments, step 320 may include physically aligning the guide feature 214 with the target feature 212, as discussed herein. In these embodiments, the target feature 212 may for example contact the guide feature 214 during and to cause alignment thereof. In other embodiments, step 320 may include optically aligning the guide feature 214 with the target feature 212, as discussed herein.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.