The present invention relates to compact wearable devices for management and treatment of asthma or anaphylaxis and components to provide objective measures of allergic reactions.
Asthma is a common chronic condition affecting children and adults and is characterized by inflammation of the lower respiratory tract, cough, breathlessness, and recurrent episodes of polyphonic (musical) expiratory wheezing. The inherent defect in asthma is of airway smooth muscle or the inflammatory milieu which renders the lower airway smooth muscles hyper-reactive. Asthma exacerbation is defined as a sudden worsening of asthma symptoms that can last days to weeks. Patients with asthma are prone to acute exacerbations secondary to a variety of triggers, including viral or bacterial infections, pollens, smoke, aeroallergens, mold, chemicals, and fluctuations in air temperature. Although mortality from asthma is decreasing worldwide, it remains one of the most common causes of death in both children and adults, and morbidity remains a significant problem. Generally, deaths from asthma exacerbation occur prior to or shortly after patients are seen by emergency medical personnel suggesting that the timing of when asthmatics seek medical attention profoundly determines outcome.
Currently, there are no commercially available technologies to monitor and analyze breathing in asthma that could provide patients warning of impending respiratory failure. Commercially available peak flow meters provide snapshots of pulmonary function, but are quite unreliable. Patients and their families generally recognize they are “unwell”, and often initiate “sick” asthma care plans that include frequent inhalation of bronchodilator medicines, and occasionally initiation of enteral steroid therapy. Generally, these patients will contact their primary care physician in the acute phase, and seek advice as to whether and when they should be seen in the office, clinic, or emergency room. Commonly, patients receiving “sick” asthma care plan management improve at home and are not seen during the acute illness by a physician. However, it is not uncommon that patients who remain at home and who self-administer frequently inhaled bronchodilator therapy (more frequently than every 2-3 hours) for prolonged periods of time (>24 hours) abruptly (within minutes to hours) worsen prompting calls to 911 for emergency services in the home. A small percentage of these patients require resuscitation and die in the home or prior to arrival in the emergency room. An early warning signal instructing asthma patients to seek medical attention for advancing respiratory distress prior to them becoming critically ill would be of monumental importance in preventing asthma morbidity and mortality. In addition, detecting and treating asthma attacks early have important therapeutic value in that each asthma attack makes the underlying disease worse. Thus, a major challenge in pulmonary medicine is to design a technology enabling outpatient monitoring of asthma severity in real time. In addition to asthma, this technology is useful in diagnosing the progression of Chronic Obstructive Pulmonary Disease (“COPD”), which includes chronic bronchitis and emphysema.
Anaphylaxis, according to another example, is a severe and potentially life threatening allergic reaction to foods, insect venom, medications, and other allergens. The symptoms of anaphylaxis are numerous, complex and confusing. Many people do not recognize the early symptoms, including teachers and child caregivers, or choose to downplay or ignore the danger out of fear or denial. Denial is a common coping mechanism for stress, and may cause a person to delay or fail to react to the situation. Time is critical when experiencing anaphylaxis.
The only treatment for anaphylaxis is the injection of epinephrine. One in 50 Americans are at risk of experiencing anaphylaxis in their lifetime, with estimates of 500-1000 people dying from anaphylaxis every year.
After contact with an allergen, a person can have as little as 10 minutes (bee sting) to 30 minutes (food allergy) until cardiac arrest and death. Chances of survival increase the sooner they receive a dose of epinephrine, commonly applied using an EpiPen®, which can reverse life-threatening airway constriction. This is an especially difficult problem in children and their parents, and in many situations lives have been lost because epi-pens aren't available, can't be found, or have expired, or the sufferer has simply lost consciousness before they can inject themselves. Additionally, allergy testing is performed in physicians' offices by providing a small amount of allergen to the patient and asking the patient how they feel. There is no objective measure to provide the physician to either gauge the degree of allergic response or even its presence. Patients allergic to foods and drugs, such as penicillin and chemotherapy drugs, are treated by desensitizing them, giving the patients small amounts of allergen in increasing doses. Again, the only feedback to the physician is to ask the patient if they feel an allergic response. Thus, lives could be saved if it were possible to detect the early onset of anaphylaxis, and to initiate treatment automatically.
Several auto-injectors are available on the market for the injection of epinephrine in the event of anaphylaxis. Generally, these injectors are used by holding the device against the thigh and manually thrusting the device to cause a needle to protrude from the leading end of the device thereby penetrating into the user's tissue and deliver a dose of epinephrine therethrough. Because of the required depth of penetration needed and the use of small gauge hypodermic straight needles in these auto-injectors, the housings of these auto-injectors tend to be bulky and elongated, making them difficult to carry in a pocket or to be wearable under or over clothing. Further, most of these auto-injectors use hypodermic needles made of medical-grade stainless steel due to its desirable biocompatibility and mechanical properties. However, such medical-grade stainless steel hypodermic needles (having the typical gauge of, for example, 20 gauge needle) require excessive forces (approximately 512 N or 115 lbf) to be bent and/or to be pushed through a 90 degree bend having a three millimeter radius. As such, these medical-grade stainless steel hypodermic needles are not suitable for safe alternative injection designs, such as, for example, the ones described in the present disclosure. For example, medical-grade stainless steel, or any similar type(s) of metals, hypodermic needles are prone to kinking when bent, which would result in blocking of the medication delivery pathway and/or slowing down the delivery of the medication.
Accordingly, present embodiments are directed to solving the above and other needs, including providing technological components combined and configured into various different device embodiments for the treatment of acute conditions, such as anaphylaxis and asthma, as described herein.
According to some implementations of the present disclosure, a physiologic module (e.g., an auto-injector) is provided that is compact, portable, semi-wearable (e.g., over/attached to clothing worn by a user or attached directly to skin of the user), and/or wearable (e.g., over/attached to clothing worn by a user or attached directly to skin of the user). By semi-wearable it is meant that the physiologic module/auto-injector is generally carried by the user in, for example, a pocket of the user and/or a bag carried by the user, and when needed, the user attaches the physiologic module/auto-injector to the user's exposed skin or to the user's clothing. By wearable it is meant that the physiologic module/auto-injector is worn by the user (e.g., the user wears the physiologic module/auto-injector 24/7 or just during the night when sleeping, or just during the day when awake, etc.) and attached to the user's exposed skin or to the user's clothing such that the physiologic module/auto-injector is ready to inject as needed without first having to be attached to the user's skin or clothing. The physiologic module includes a moveable/drivable needle that is made of a superelastic metallic material, such as, for example, a nickel-titanium alloy (Ni—Ti), which is referred to herein as nitinol. The superelastic properties of the nitinol needle aid in permitting the physiologic module to have a low-profile, be lightweight, and to be ergonomic. In some implementations, by making the needle from nitinol material, the nitinol needle is able to be reshaped through about a 0 degree to about a 100 degree bend, where the bend has a radius of curvature between about 1 millimeter and about 10 millimeters. In some such implementations, the nitinol needle has a gauge size between about 18 and about 25. Further, in some such implementations, the nitinol needle is bent by applying a force that is manageable in a relatively small housing/design envelope, which makes the physiologic module portable and suitable for placement under and/or over clothing, etc. of the user/wearer. Because the nitinol needle can be bent to such a degree in such a housing/package, the nitinol needle can be stored in a flat or straight configuration in the housing prior to actuation without unnecessarily increasing the dimensions (e.g., height, length, width, etc.) of the physiologic module, while still inserting the nitinol needle into human tissue at the required intramuscular depth (e.g., between about 15 millimeters and about 35 millimeters) when triggered.
According to some implementations of the present disclosure, a superelastic nitinol needle has a gauge between about 18 and about 25 and is designed to be driven through an anvil/channel/pre-shaped curve having a bend between 0 degrees and 100 degrees, where the bend in the curve/channel has a radius of curvature between about 1 millimeter and about 10 millimeters. In some such implementations, the nitinol needle is bent by applying an actuation force, via an actuator, in a longitudinal direction of the nitinol needle in its resting position (e.g., prior to being actuated and inserted into a user's tissue). The nitinol needle is bent without kinking despite its low gauge (e.g., 18-25 gauge needles) due to the superelastic property of the nitinol material. The nitinol needle is driven into tissue of the user to a penetration depth (i.e., relative to an outer skin surface) of at least about 15 millimeter and/or to a penetration depth between about 15 millimeters and about 35 millimeters. The actuator that drives the nitinol needle is an electromechanical and/or a mechanical actuator that is configured to provide between about 2 Newtons and about 200 Newtons of linear force.
According to some implementations of the present disclosure, an auto-injector includes an electromechanical actuator and/or a mechanical actuator that is configured to drive a nitinol needle through an anvil/channel/pre-shaped curve having a bend between 0 and 100 degrees, where the bend in the curve/channel has a radius of curvature between about 1 millimeter and about 10 millimeters. The nitinol needle is bent by applying an actuation force, via the actuator, in a longitudinal direction of the nitinol needle in its resting position (e.g., prior to being actuated and inserted into a user's tissue). The nitinol needle is bent without kinking despite its low gauge (e.g., 18-25 gauge needles) due to the superelastic property of the nitinol material. The nitinol needle is driven into tissue of the user to a penetration depth (i.e., relative to an outer skin surface) of at least about 15 millimeter and/or to a penetration depth between about 15 millimeters and about 35 millimeters. The actuator that drives the nitinol needle is an electromechanical and/or a mechanical actuator that is configured to provide between about 2 Newtons and about 200 Newtons of linear force. In some implementations, the nitinol needle is retracted back into the auto-injector (e.g., using the electromechanical actuator and/or the mechanical actuator and/or a different actuator(s)) from the tissue of the user. In some implementations, the nitinol needle is coated with a biocompatible material with a low coefficient of friction with human tissue (e.g., a biocompatible lubricant). Such a coating aids in reducing friction during administration/insertion of the nitinol needle into the tissue of the user. Further, in some such implementations, the coating includes a local anesthetic and/or pain killing medication to aid in reducing and/or minimizing pain to the user as compared to other auto-injectors of the thrusting type described above, resulting in a better, more efficient epinephrine delivery system. In some such implementations, the auto-injector has a relatively lower height, width, and/or length as compared to other auto-injectors of the thrusting type described above. In some such implementations, the auto-injector is portable, semi-wearable, and/or wearable.
According to some implementations of the present disclosure, an injector module includes a housing, a reservoir, a superelastic needle, and an actuator. The reservoir is positioned in the housing and stores epinephrine therein. The superelastic needle is positioned within the housing in a retracted position and is fluidly coupled with the reservoir. The superelastic needle has a gauge between eighteen and twenty-five. The actuator is configured to apply an actuator force on the superelastic needle such that the superelastic needle is moved from the retracted position to an injecting position where a tip of the superelastic needle protrudes from the housing between about fifteen millimeters and about thirty-five millimeters.
According to some implementations of the present disclosure, a physiologic module for detecting and treating symptoms of anaphylaxis includes a wearable sensor, an injector, and at least one controller. The wearable sensor is for measuring a biological signal. The injector includes a housing, a needle, a guide member, and an actuator. The needle is positioned within the housing in a retracted position and is fluidly coupled with a reservoir storing epinephrine therein. The guide member has a channel with a bend. The least one controller is communicatively coupled to the wearable sensor and to the injector. The at least one controller is configured to (a) receive the biological signal from the wearable sensor, (b) process the biological signal in real-time, (c) extract one or more clinical features from the biological signal, (d) based on the clinical features, determine if an anaphylaxis symptom is present, and (e) in response to a determination that the anaphylaxis symptom is present, automatically cause the actuator to apply an actuator force on the needle, thereby causing at least a portion of the needle to move through the bend of the channel of the guide member such that (i) the needle is at least partially reshaped, the at least partially reshaped needle having a bent portion, and (ii) the needle is moved from the retracted position to an injecting position where at least a portion of the needle protrudes outside the housing and is configured to intramuscularly deliver a bolus of the epinephrine to a human body part.
According to some implementations of the present disclosure, a physiologic module for detecting and treating symptoms of anaphylaxis includes a wearable sensor for measuring a biological signal, an injector, and at least one controller. The injector includes a housing, a needle, a guide member, and an actuator. The needle is positioned within the housing in a retracted position and is fluidly coupled with a reservoir storing epinephrine therein. The guide member has a set of rollers. The least one controller is communicatively coupled to the wearable sensor and to the injector. The at least one controller is configured to (a) receive the biological signal from the wearable sensor, (b) process the biological signal in real-time, (c) extract one or more clinical features from the biological signal, (d) based on the clinical features, determine if an anaphylaxis symptom is present, and (e) in response to a determination that the anaphylaxis symptom is present, automatically cause the actuator to apply an actuator force on the needle, thereby causing at least a portion of the needle to move through the set of rollers such that (i) the needle is at least partially reshaped, the at least partially reshaped needle having a bent portion, and (ii) the needle is moved from the retracted position to an injecting position where at least a portion of the needle protrudes outside the housing and is configured to deliver a bolus of the epinephrine to a human body part.
According to some implementations of the present disclosure, a physiologic module for detecting and treating symptoms of anaphylaxis includes a wearable sensor for measuring a biological signal, an injector, and at least one controller. The injector includes a housing, a needle, a deflectable guide member, a deflector actuator, and a needle actuator. The needle is positioned within the housing in a retracted position and is fluidly coupled with a reservoir storing epinephrine therein. The deflectable guide member has a channel and a deflector with an engaging surface. The engaging surface is configured to form a portion of the channel. The least one controller is communicatively coupled to the wearable sensor and to the injector. The at least one controller is configured to (a) receive the biological signal from the wearable sensor, (b) process the biological signal in real-time, (c) extract one or more clinical features from the biological signal, (d) based on the clinical features, determine if an anaphylaxis symptom is present, and (e) in response to a determination that the anaphylaxis symptom is present, (i) automatically cause the deflector actuator to apply a deflecting force on the deflector, thereby causing the engaging surface of the deflector to engage a portion of the needle and reshape the needle to include an initial bend in the retracted position, and (ii) automatically cause the needle actuator to apply an actuator force on the needle, thereby causing at least a portion of the needle to move through the channel such that the needle is moved from the retracted position to an injecting position where at least a portion of the needle protrudes outside the housing and is configured to intramuscularly deliver a bolus of the epinephrine to a human body part.
Additional aspects of the invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.
Various unique and novel technologies are currently being developed at the Wyss Institute, in collaboration with Boston Children's Hospital and UMASS Medical School. These technologies are being developed and integrated into medical devices for the management and treatment of asthma and anaphylaxis. Each of the underlying technological components is described separately, based on respective unique and novel features. These technological components can be combined and configured into various different device embodiments for the treatment of acute conditions, such as anaphylaxis and/or asthma conditions.
Generally, the description below describes a sensor module that is configured to detect various acute conditions, including asthma and anaphylaxis. According to one example, the sensor module includes a portable, semi-wearable, and/or wearable device that monitors breathing, assesses asthma severity, and alerts to dangerous changes. According to another example, the sensor module includes a portable, semi-wearable, and/or wearable device that alerts upon early detection of anaphylaxis, auto-injects epinephrine, and calls emergency services (e.g., initiates 911 call) and/or family. According to yet another example, the sensor module includes one or more monitors for use in a hospital or a physician's office to provide objective measures of a patient's physiologic response to an allergen.
Symptom Detection, Alarming, and Auto-Injection Device
Generally, an auto-injection device is described below in reference to the detection of, but not limited to, asthma and anaphylaxis. The auto-injection device detects and/or provides an alarm when detecting symptoms of such acute conditions as asthma and/or anaphylaxis. For example, the device is a non-invasive, portable, semi-wearable, and/or wearable device that senses chest wall movement and analyses user breathing pattern and asthma severity in real time, and alerts the user (or guardian) of critical asthma severity.
According to one aspect of the present disclosure, a non-invasive portable, semi-wearable, and/or wearable device is directed to monitoring and alarming for changes in asthma severity. The system is comprised of a non-invasive breathing sensor that gathers physiologic signals from the user's body, and extracts a set of features relevant to the user's respiration. It then passes these variables into a novel algorithm in order to calculate a unique indicator of asthma severity, called the Airway Obstruction Severity Score (“AOS”). The software alarms when the calculated severity significantly deviates from historical or patient normal values. The device will be effective even in patients with rapid onset and worsening of bronchospasm who are alone or who lose consciousness before being able to call for help.
An algorithm is based on a machine learning framework and will consider different features from the respiration signals, such as the Inspiration Time (i) to Expiration time ratio (e) ratio, or i:e ratio, to assess the severity of bronchoconstriction, which is one of the most significant symptoms of anaphylaxis. This risk is the AOS, and the algorithm is referred to as the AOS algorithm (described in more detail below in the respective section of the disclosure). By way of example, the device operates to alert a user that their breathing has reached a certain severity threshold in accordance with the following exemplary device operation for detecting asthma severity:
The device may consist of a wearable breathing sensor placed on the subject's chest, and a processor attached to or embedded within it, or housed externally within a smartphone, smartwatch or other device. In other embodiments, the wearable device may perform all of the operations (sensing, data acquisition & algorithm execution) and use a smartphone or smartwatch only as a method to alert the user.
According to one example, a method of operating a device to detect asthma severity includes having a physiologic signal (e.g., chest wall movement) sensed using a respiration sensor. The physiologic signal provides surrogate information of respiration of the subject. Values of active exhalation time and total exhalation time for each subject breath are then calculated on the mobile device using the sensed physiologic signal, and fed into the AOS algorithm. An indication of asthma severity, or AOS, of the subject is generated according to the features extracted from the breathing data, including an awareness of historical trends and likelihood of getting worse or improving, possibly with machine learning approaches. If an AOS threshold is exceeded, an alert is sent to the user on the mobile device.
The dynamic features as well as statistical features are incorporated in a machine learning framework tailored specifically to an individual subject, which is then employed to assess the pathological fluctuations in the breathing signal related to the risk of bronchoconstriction. The assessed risk score from the algorithm is compared to the clinician rating risk score of asthma (such as the first study described below).
Onset of an anaphylactic event is marked by several physiologic signals. The present disclosure is directed to a wearable sensor providing these data points. By taking these variables into account, accurate prediction of an anaphylactic event is performed.
Furthermore, the present disclosure also describes an integrated portable, semi-wearable, and/or wearable device that detects the early onset of anaphylaxis and, then, automatically injects epinephrine. Using sensors on or inside the body, the portable, semi-wearable, and/or wearable device carefully monitors the biology and physiology of the wearer, in possible combination with location or environmental measurements, and activates an alarm when the early stages of anaphylaxis are detected. If required, the device automatically injects epinephrine and potentially notifies emergency services (e.g., dialing 911) or family members.
The present disclosure further describes a portable, semi-wearable, and/or wearable device and system that monitors the wearer's physiology and detects the early onset of anaphylaxis. In the event of detection, the system alerts the user and, if needed, auto-inject epinephrine. The system includes non-invasive and/or indwelling biosensors that stream data to a processor, which runs software that processes the data in real time and executes an anaphylaxis detection algorithm, as well as a portable, semi-wearable, and/or wearable auto-injector including a needle and syringe containing a dose of epinephrine.
Anaphylaxis causes a systemic reaction, which may present in a variety of symptoms. Because of this, other types of physiologic sensors are optionally incorporated into the system in addition to a breathing sensor. For example heart rate, blood pressure, galvanic skin response (GSR) and/or skin temperature sensors are optionally used. Based on their relevance to a diagnosis of anaphylaxis, these sensors allow the disclosed AOS algorithm to more accurately detect the onset of an anaphylactic event.
Accordingly, the AOS algorithm is based on a machine learning framework and considers these features, taking into account historical trends, to assess the severity of anaphylaxis. If a threshold is exceeded, an alert is sent to the user on their mobile device and epinephrine is automatically injected by the device. The device optionally alerts emergency services, family, or caregivers automatically upon injection of epinephrine.
According to a specific example, a method operates a device to detect anaphylaxis onset. The physiologic signals are measured using wearable sensors on the body, or using indwelling chemical biosensors within the body. The physiologic signals are related, for example, to one or more of breathing data, ECG data, BP data, skin temperature, microphone data, GSR data, and biosensor data. Specific features of the user's physiologic status are then extracted from these raw signals and fed into an anaphylaxis detection algorithm (e.g., the AOS algorithm). If detected, the user is alerted to the anaphylactic episode and epinephrine is auto-injected, if needed.
Wearable Physiologic Sensors
Wearable physiologic sensors are directed to the detection of, but are not limited to, asthma and anaphylaxis. Two exemplary sensory modes utilize one or more non-invasive physiologic sensors to generate the signals used for feeding into the detection algorithms. For an asthma detection sensory mode, reliance is optionally based solely on respiration signals. However, for an anaphylaxis sensory mode, additional sensors are used, such as:
These sensors are optionally off-the-shelf physiologic sensors. For respiration sensing, various sensing methods are used, such as
According to one benefit of the described devices, a capability of “two-step” authentication of anaphylaxis is provided, as follows: the first step is to confirm anaphylaxis using non-invasive physiologic sensors. If this test is passed, a biosensor will take a biological sample to confirm that anaphylaxis is occurring. This two-step authentication ensures that wearers are never injected with epinephrine based on a false alarm. Alternatively, the patient is monitored continuously for levels of biomarkers such as histamine.
According to another benefit, one or more of the described devices use Wyss Institute-developed “soft sensors” for respiration sensing and biosensors for histamine sensing.
Airway Obstruction Severity Score (“AOS”) Algorithm
The AOS algorithm is directed to using an incoming continuous respiration waveform to calculate the severity of asthmatic breathing, i.e., on a percentage scale of 0 to 1 where 0=healthy and 1=severe asthma attack. The algorithm is based on a machine learning framework and considers different features from the respiration signals to assess the severity of bronchoconstriction, as well as historical data for the person wearing the device. The dynamic features, such as amplitude and frequency fluctuations, are derived from the breathing signal using a time-frequency decomposition either using wavelet based decomposition or empirical model decomposition. The statistical features, such as instantaneous mean and instantaneous variances, are derived from the breathing signal using a point process modeling approach. The dynamic features as well as statistical features are incorporated in a machine learning framework tailored specifically to an individual subject, which is then employed to assess the pathological fluctuations in the breathing signal related to the risk of bronchoconstriction. This risk is the AOS.
In reference to
Historically, the inspiratory to expiratory (I:E) time ratio (where the inspiratory and expiratory times refer to the periods during which a subject inhales (“B” in
However, during normal breathing at low resting rates, the i:e ratio may also appear equally short as to that seen in asthma (see dashed line). Physicians recognize worsening asthma clinically when a reduced i:e ratio is accompanied by difficulty exhaling and respiratory distress along with a history suggestive of asthma exacerbation. Therefore, technologies to measure i:e ratio alone cannot be reliably used to estimate asthma severity. Asthma severity is accurately and sensitively scored by measuring and calculating the ratio of the active component of exhalation (when airflow out of the lungs is above zero) as a function of the entire expiration phase of breathing.
According to one aspect of the AOS algorithm, a method is directed to calculating asthma severity in real-time, from breath-to-breath, and averaged over time. According to another aspect of the AOS algorithm, a method is directed to calculating i:e ratio (in contrast to current methods), which better reflects the real severity of breathing. According to another aspect of the AOS algorithm, a feature is directed to the ability to predict the onset of an asthmatic episode even before breathing severity worsens.
An anaphylaxis detection algorithm expands upon the AOS algorithm described above, to detect the early onset of anaphylaxis. Inputs to the algorithm include the respiration signal, and also a collection of other physiologic signals gathered from wearable non-invasive sensors, such as:
In addition, this algorithm optionally uses input from biosensors (described in the following section) that acquire signals from biological samples. These signals are fed into the machine learning algorithm. This algorithm considers different features from the input signals to assess the likelihood of an imminent anaphylactic attack. The dynamic features of the signals, as well as statistical features, are incorporated in a machine learning framework tailored specifically to an individual subject, which is then employed to assess the pathological fluctuations in the signals related to the risk of anaphylaxis.
According to one aspect of the anaphylaxis algorithm, a feature is directed to the ability to detect the early onset of anaphylaxis.
Biosensors for Symptom Detection
Biosensors are directed to detecting, but are not limited to, asthma and anaphylaxis. By way of example, a biosensor detects the early stages of anaphylaxis by measuring levels and rates of change of levels of physiological mediators of anaphylaxis, such as histamine, tryptase, and platelet activation factor, in interstitial fluids, blood, or other biological samples (e.g., saliva, tears).
An allergic reaction is often triggered by an uncontrolled production of IgE antibody followed by the release of histamine. Detecting sudden changes in histamine levels of blood are potentially good indicators of a life threatening allergic reaction. An electrochemical histamine biosensor for use in detecting the sudden changes in histamine levels is based on current glucose monitors used in diabetes monitoring. A proof of concept sensor based on the enzyme diamine oxidase has been demonstrated. The anaphylaxis detector leverages glucose monitor designs and utilizes an indwelling sensor or an injectable sensor that is inserted on demand or when non-invasive sensors (e.g., physiologic monitors described above) detect the potential for development of an allergic reaction.
Detection of a high level or a rapid rise in histamine serves as a measure of early anaphylaxis to warn a physician or patient of the existence of an allergic reaction, or to trigger actuation of an epinephrine auto-injector. Histamine sensors require access to blood or interstitial fluids. This is achieved in several ways, by way of example. For physician use, a sensor electrode is placed under the skin with a needle. For periodic measurements, blood is taken from the patient and applied to the sensor. Access to subcutaneous fluid is also obtained with micro-needle patches, e.g., small needles penetrate the skin. Each needle is connected to an electrode to gain sufficient signals.
Another subcutaneous access device is directed to burning small holes through the epidermis. In this device, interstitial fluid, then, leaks into small chambers in which detection electrodes are located. Numerous cells are optionally placed on a patch such that serial measurements are performed over time as each cell is energized.
Portable, Semi-Wearable, and/or Wearable Auto-Injector
In accordance with some aspects of the present disclosure, the sensor module includes a miniaturized portable, semi-wearable, and/or wearable auto-injector that is directed to the injection of, but not limited to, epinephrine. In contrast to present-use injectors, and according to some aspects of the present disclosure, compact and miniaturized portable, semi-wearable, and/or wearable injectors are stand-alone, manually activated, or configured to communicate with a central processor and wearable sensors. According to one exemplary aspect, the injectors of the present disclosure allow the user to attach the device to multiple sites on the body, such as the thigh, stomach, lower back, or upper arm under or over clothing by using different attachment methods, such as, for example, straps, belts and buckles, hook and loop fasteners, biocompatible adhesive patches (e.g., double sided tape, glue, etc.), etc., or any combination thereof.
In further contrast to some of the present-use injectors that are manually administered auto-injectors for injecting the drug intramuscularly, the injectors of the present disclosure are capable of injecting the drug either intramuscularly or subcutaneously depending on the physiology of the wearer, the need of the patient, and the drug being injected. Using a detection algorithm (such as one or more of the algorithms described above), a system in accordance with the present disclosure automatically injects epinephrine with varying dose options if the system detects the onset of anaphylaxis. If the onset of anaphylaxis continues, a second dose is injected automatically. The device may have disposable medication cartridges that are optionally replaceable, thereby making the device reusable. In addition, the device is capable of informing the users of battery status, and the expiration status of the medication, through a user interface or through communication with a smartphone.
According to some aspects of the present disclosure, a device is portable, semi-wearable, and/or wearable on the body of a person (e.g., either under or over the user's clothing) and includes one or more of the following features:
According to some aspects of the present disclosure, a device is portable, semi-wearable, and/or wearable on the body of a person and includes one or more of the following features:
Referring to
Referring to
More specifically, the copolymerization method is directed to a sensor modification process, in which the first step (
In a second step (
Referring to
More specifically, the plot of
According to one embodiment, the sensor is a physiology sensor that uses or modifies an off-the-shelf sensor to generate respiratory waveform capturing chest wall movement. The sensor, according to another embodiment, is an anaphylaxis continuous biosensor that detects one or more of tryptase, histamine, IgE, and a platelet activating factor (PAF).
Referring to
Referring generally to
More specifically, an electroactive polymer is prepared in situ, i.e., a mixture of monomers and enzyme are deposited together onto the electrode and exposed to a UV light to initiate polymerization. The electroactive polymer is optionally prepared prior to deposition, mixed with the enzyme, and finally deposited onto the electrodes. The electroactive polymer is then left to dry in controlled atmosphere to cure.
The electroactive polymer allows the wiring of the enzyme core directly to the electrode. In doing so, the detection potential required to test the enzyme is considerably lowered, which allows keeping background signals from potential interferents low. Known electrochemical interferents are, for example, ascorbic acid and uric acid, both typically found in large concentration in biological samples.
To improve sensitivity, the electrode is nanostructured. Silver and gold are co-deposited during fabrication of the device. Upon immersion in nitric acid, the silver will dissolve, leaving nanometer-size cavities. The resulting nanostructured electrode possess a much higher surface area, as illustrated in
Gold-Silver alloy is electrochemically deposited onto a plain gold electrode or co-sputtered on a plain gold substrate. The surface area of the resulting electrode is, then, electrochemically assessed. According to one example, the area of a plain electrode is improved by a factor of 10, based on introducing nanoporous gold structures. In one experiment, cyclic voltamogram in dilute sulphuric acid has demonstrated the enhancement in surface area of a nanoporous gold electrodes (NPG) in comparison to a plain electrode. The electrode potential was scanned from negative to positive to induce the formation of an oxide layer (at approximately 1.2 Volts). The electrode potential is scanned back to the original negative potential. The reduction of the oxide formed at the electrode surface is seen as a sharp peak at approximately 0.9 Volts. A roughness factor was calculated by normalizing the area under the reduction peak against the geometric area of the electrode
The enhanced surface area allows reaching very low detection limits for the detection of histamine using a co-polymer consisting of polyethylenglycol diacrylate, vinylferrocene, diamine oxidase and horseradish peroxidase. The enzymes DAO and HRP are polymerized in situ together with the electrochemical mediator vinyl ferrocene in a matrix of poly(ethylene glyclol diacrylate). While first histamine sensitivity tests conducted in a model solution showed poor performances, the lower limit of detection achievable is considerably enhanced by increasing the surface area of the sensor through nanoporous gold (NPG) layer formation.
In one example, the preparation of the NPG layer includes a plating solution including 0.1M Na2S2O3/0.6M Ag/0.3M Au prepared in double distilled water fresh before each deposition round. A bare gold electrode is first electrochemically cleaned in 0.5M sulfuric acid, rinse in water, dried and immersed in the plating solution. A potential of 0.25 Volts with respect to Ag/AgCl reference electrode is applied for 60 minutes. Silver is removed from the resulting layer by immersing the electrode in 70% nitric acid for 60 minutes.
In a further example, the preparation of the sensing layer includes a 1% vinyl ferrocene solution containing 2% AIBN and 0.5% glutaraldehyde prepared in poly(ethylene glycol diacrylate), which is sonicated to dissolve vinyl ferrocene and vortexed to ensure proper mixing. The enzyme solution is prepared by mixing 22 milligrams (mg) of diamine oxidase (DAO) and 1 mg of horseradish peroxidase (HRP) in 50 microliters (IL) of PBS to result in a 22 U/milliliters (mL) DAO and 3000 U/mL HRP mixture. A stir bar is added and 200 μL of the polymerization solution is added dropwise to the DAO/HRP mixture to form a uniform paste. The mixture is then constantly mixed for 2 hours at 4° C. A drop of the polymerization solution is deposited onto a 3 millimeter (mm) in a diameter gold electrode that is modified with a self-assembled monolayer of allyl mercaptan, and which is spread evenly across the electrode surface with a fluorinated glass cover slip. The electrode is exposed to UV light for 5 minutes to initiate polymerization and to entrap the enzymes in a crosslinked ferrocene-modified PEG network. The electrode is rinsed in 40% DMSO prepared in water to remove any non-polymerized monomer and loosely trapped enzyme. The electrode is finally thoroughly rinsed in water and stored in PBS at 4° C.
The fabricated sensors show very good ferrocene-enzyme communication. Histamine is measured by following the ferrocene reduction current as DAO catalyzes histamine and produces hydrogen peroxide, which is further used by HRP. However, to increase sensitivity, the sensor surface area is increased, using NPG. The fabricated electrodes are optionally further modified with the enzymes polymerization mixture. According to an alternative embodiment, the electrodes are interdigitated for enhanced transduction.
One benefit of the above described biomolecular sensor, which is directed to the detection of early signs of allergic reaction and anaphylaxis, is related to the direct wiring of histamine oxidase onto nanoporous gold electrodes. The direct wiring results in the electrodes exhibiting great sensitivity that is relevant to the measurement of histamine in whole blood. Another benefit of the sensor is that one of its applications is in the food industry for measuring product freshness of, for example, meat and fish.
According to an alternative embodiment, the biosensor is integrated with an interstitial fluid-sampling device. For example, the sampling device is in the form of an array of plain and/or hollow micro-needles that collect interstitial fluid passively. Alternatively, the array of micro-needles generate and/or collect interstitial fluids actively via an electric field, such as in iontophoresis or by heat (to degrade biological tissue and extract the fluid).
In another alternative embodiment, the biosensor is a different entity than the micro-needle array. Hollow micro-needles are used to drive interstitial fluid to the biosensor, which is located at the back of the micro-needles. The micro-needles drive the interstitial fluid either passively, by diffusion, and/or actively, via an electric field, such as in iontophoresis or by heat (to degrade biological tissue and extract the fluid).
In yet another alternative embodiment, the biosensor is a part of the micro-needle array, with each micro-needle being an individually addressable self-contained biosensor. In the preparation of an electrochemical micro-needle biosensor, each needle includes an independently addressable working macro- or micro-electrode. All micro-needles optionally share a common counter and/or a common reference electrode to perform the measurement.
In a further alternative embodiment, the biosensor is inserted under the skin with an insertion device. The insertion device is, for example, a device similar or identical to those used for insertion of glucose sensors in continuous glucose monitoring devices.
In another further alternative embodiment, the biosensor is not part of a portable, semi-wearable, and/or wearable device. Instead, the biosensor is a different entity than the sampling device. Optionally, the biosensor is integrated in a portable device to enable point-of-care monitoring of the patient, for example, at home or in clinical settings.
For an exemplary sensor construction, the detection of histamine relies on the production of hydrogen peroxide by diamine oxidase in the presence of histamine, followed by subsequent oxidation of the enzyme HRP when reacting with the hydrogen peroxide produced. The redox state of HRP is measured using the mediator ferrocene. Enzymed horseradish peroxidase and diamine oxidase are copolymerized with poly(etyleneglycol) diacrylate, vinyldferrocene and photoinitiator at the electrode surface. The modified electrode is tested in the presence of the various concentration of histamine, and potential interferents, such as ascorbic acid. The sensitivity of the sensor is enhanced by increasing the surface area of the electrode, by forming a layer of nonoporous gold.
Referring to
Referring to
According to one exemplary embodiment, the sensor is optionally an automated breathing and bio-sensed auto-injector of epinephrine. To detect the asthma severity estimation, a two-step process includes the detection of artifacts in the recorded signals and the subsequent estimation of the HASS score is applied. The first step is the windowing of BCH, PPG, ECG, or RESP data, and the second step is the artifact detection, after which data is discarded and the HASS estimation is performed.
For processing pipelines, the detection of artifacts and the estimation of the HASS score are both implemented as machine learning pipelines. The performance is assessed by comparing the estimated HASS score to a ground truth HASS score given by a physician. Thus, initially a feature extraction is performed from the BCH, PPG, ECG, or RESP data, and, then, a feature selection is performed. From the selected features, a classification model is obtained, and a target score is compared to a ground truth score.
For artifact detection and labeling of ECG and RESP signals, features are derived to identify corrupted signals. Those features are designed to represent, by way of example, signal characteristics indicative of clipping, high-frequency noise, baseline drift, periodicity, unusual shape, and missing segments.
For artifact detection ECG, artifacts in the ECG signal are detected with high reliability. For example, prediction outcomes show an accuracy of at least about 81%, a sensitivity of at least about 72%, and a specificity of at least about 83.8%.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
After filtering the signal, the first step in an AOS Calculation Pipeline is to extract features that can be expressed numerically and that correlate with obstructed breathing. The features are calculated on a segment of the physiologic input signals and plugged into a feature selection model. The goal of the feature selection model is to optimize the performance of the AOS algorithm to effectively predict the severity of airway obstruction. This is achieved by selecting a subset of features that are sufficient to accurately describe the intrinsic behavior of the observed breathing patterns. A supervised learning approach using the reduced feature set in conjunction with ground truth information about the presence and severity of obstructed breathing (e.g., derived from a clinical expert) allows the AOS algorithm to generate a predictive model which can be applied for the autonomous and objective evaluation of breathing obstruction severity.
Referring to
Another way of characterizing the structural changes of the respiratory waveforms associated with obstructed breathing is established by calculating statistical features like the mean, standard deviation, range, skewness, kurtosis and the entropy of each breath. These additional statistical features are not included in the table of
Through statistical analyses of the features seen in the table of
Referring to
Additional features from the respiration, ECG, and PLETH waveforms are calculated using a point-process method, which is a stochastic process that continuously characterizes the intrinsic probabilistic structure of discrete events and that has been successfully applied to study a wide range of phenomena, analyzing data such as earthquake occurrences, traffic modeling, and neural spiking activity. More recently, the utility of point process theory has been validated as a powerful tool to estimate heart beat and respiratory dynamics—including instantaneous measures of variability and stability—even in short recordings under nonstationary conditions.
In contrast, the commonly used standard methods are primarily applicable for stationary data or provide only approximate estimates of the dynamic signatures that are not corroborated by goodness-of-fit methods. Few methods are available for time-frequency analysis of nonstationary data (e.g., Hilbert-Huang and Wavelet transforms). However, these methods need to be applied to short batches of data, making them less suitable for tracking dynamics in real time. Finally, the point process framework allows for inclusion of any covariate at any sampling rate, and we will take advantage of this property to generate instantaneous indices as well as power spectrum indices.
To effectively characterize the variability in ECG R wave peak intervals (RR interval), the power spectrum is calculated at different frequency ranges.
Referring to
To obtain additional relevant features from the PLETH signal, a wavelet transform technique is further applied. The wavelet transform technique is a powerful tool for extracting amplitude or power instantaneously at multiple time scales from a nonstationary data. The power is estimated at multiple time scales based on a wavelet transform with the Morlet function as the mother wavelet. Using translational and scaling of the mother wavelet, the power is estimated at multiple time scales with a dyadic representation of scales.
Referring to
Referring to
Thus, a benefit of the AOS algorithm include calculating breathing obstruction severity in real-time using a combination of many breath-to-breath and heartbeat-to-heartbeat features that are averaged over time. Other benefits of the AOS algorithm include the abilities to continuously and immediately generate a breathing obstruction severity score (e.g., no calibration or “learning time” necessary). Yet other benefits of the AOS algorithm include providing a breathing obstruction severity score without a human (e.g., a clinician) and to calculate the I:E ratio, in contrast to flawed current methods. Another benefit of the AOS algorithm is the measurement of obstructed breathing, which is a symptom of many conditions, including asthma and anaphylaxis, as well as other ailments.
Referring to
As specifically illustrated in
Some benefits of the device 100 include that it is fully portable, semi-wearable, and/or wearable on the body, is discreetly hidden under clothing, has an adjustable size for different body shapes, and is suitable for multiple sites on the body. Optionally, the device 100 is configured to include hypoallergenic materials and is applicable for IM and/or subcutaneous injections. Optionally, yet, the device 100 is compatible with a smartphone for notifying emergency services, family members, and/or friends when the device 100 has made an injection.
Other benefits of the device 100 include having the needle 108 being driven through the pre-shaped curve 114 for being reshaped for IM or subcutaneous insertion at different angles. Another benefit of the needle 108 includes the super-elasticity and, potentially, the additional shape memory properties of the nitinol material for IM injections. Because one objective of this design is to minimize the height of the injector, using a super-elastic nitinol needle enables the use of a straight needle that bends 90 degrees to enter the body as it is advanced through the pre-shaped curve 114. Further, this design minimizes the height required of the injector 101, making it more likely to be worn under clothes. Optionally, the needle 108 is configured to provide a dual functionality as the needle and the medication reservoir. Additionally, the needle 108 is designed in a way that it drives itself for insertion and is retracted by an electromechanical or mechanical actuator.
According to further benefits of the device 100, a dual actuation feature is achieved by fully automating the needle insertion, the medication delivery, and the needle retraction. Additionally, the dual actuation is optionally triggered manually for the needle insertion and the medication delivery, and/or double-manually triggered for the needle insertion and medication delivery. Furthermore, the device 100 is beneficial for using hydrostatic forces for reshaping the needle through the pre-shaped curve 114 with different angles for the IM insertion.
Referring to
As specifically illustrated in
As specifically illustrated in
Referring to
In operation, the actuator 300 receives a signal from a sensing module and the motorized or manual action unlatches a spring mechanism as previously described above in reference to the Smart Auto-injector devices 100, 200. The spring mechanism, motor, or other electromechanical actuator engages the first CO2 cartridge 303a, which releases pressurized CO2 gas to actuate the internal mechanism and drive a nitinol needle through a pre-shaped curve (as described above). The pre-shaped curve reshapes and helps drive the needle for IM injection (as described above), and the CO2 cartridge 303a actuates the internal mechanism to deliver the predetermined dosage (e.g., 0.15 mg, 0.3 mg, or 0.5 mg) of medication when the needle insertion is completed. The second CO2 cartridge 303b is, then, engaged, to reverse the internal mechanism and retract the needle back into the device immediately after the medication delivery ends. A benefit of the CO2 cartridges 303a, 303b is that they act as actuators for driving one or more of the medication insertion, the needle insertion, and the needle retraction.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
As shown in
As shown in
In some implementations, the nitinol needle 1010 has a gauge between 18 and 25. For example, the gauge of the nitinol needle 1010 is 18, 19, 20, 21, 22, 23, 24, or 25.
The angle, θ, which is and/or corresponds to a bend 1008 in the channel 1005 of the guide member 1000 and similarly is and/or corresponds to a bent portion or curved portion in the reshaped needle 1010, can be between 0 degrees and 100 degrees, between 10 degrees and 100 degrees, between 20 degrees and 100 degrees, between 30 degrees and 100 degrees, between 40 degrees and 100 degrees, between 50 degrees and 100 degrees, between 60 degrees and 100 degrees, between 70 degrees and 100 degrees, between 80 degrees and 100 degrees, between 90 degrees and 100 degrees, etc.
The bend 1008 of the channel 1005 of the guide member 1000 and similarly the bent portion or curved portion of the reshaped needle 1010 has a radius of curvature, rC, which is between about one millimeter and about ten millimeters. In some implementations, the radius of curvature, rC, of the bend 1008 of the channel 1005 and/or the bent/curved portion of the reshaped needle 1010 is about one millimeter, about two millimeters, about three millimeters, about four millimeters, about five millimeters, about six millimeters, about seven millimeters, about eight millimeters, about nine millimeters, or about ten millimeters. In some implementations, the radius of curvature, rC, of the bend 1008 of the channel 1005 is identical to or similar to the radius of curvature, rC, of the bent portion or curved portion of the reshaped needle 1010.
By way of example in reference to
Referring to
The auto-injector device of
As such, the actuation force, F, required to push the nitinol needle 1020 through the channel 1005 of the guide member 1000, from the initial position of
As shown in
In some implementations, the nitinol needle 1020 has a gauge between 18 and 25. For example, the gauge of the nitinol needle 1020 is 18, 19, 20, 21, 22, 23, 24, or 25.
The angle, θ, which is and/or corresponds to a bend 1008 in the channel 1005 of the guide member 1000 and similarly is and/or corresponds to a bent portion or curved portion in the reshaped needle 1020, can be between 0 degrees and 100 degrees, between 10 degrees and 100 degrees, between 20 degrees and 100 degrees, between 30 degrees and 100 degrees, between 40 degrees and 100 degrees, between 50 degrees and 100 degrees, between 60 degrees and 100 degrees, between 70 degrees and 100 degrees, between 80 degrees and 100 degrees, between 90 degrees and 100 degrees, etc.
The bend 1008 of the channel 1005 of the guide member 1000 and similarly the bent portion or curved portion of the reshaped needle 1020 has a radius of curvature, rC, which is between about one millimeter and about ten millimeters. In some implementations, the radius of curvature, rC, of the bend 1008 of the channel 1005 and/or the bent/curved portion of the reshaped needle 1010 is about one millimeter, about two millimeters, about three millimeters, about four millimeters, about five millimeters, about six millimeters, about seven millimeters, about eight millimeters, about nine millimeters, or about ten millimeters. In some implementations, the radius of curvature, rC, of the bend 1008 of the channel 1005 is identical to or similar to the radius of curvature, rC, of the bent portion or curved portion of the reshaped needle 1020. Further, in some implementations, the radius of curvature, rC, of the bent portion or curved portion of the reshaped needle 1020 is the same as the radius of curvature, rC, of the initial bend 1022 formed in the nitinol needle 1020 during the initial assembly process of the auto-injector device.
Referring to
As shown in
The nitinol needle 1110 is driven by the actuator such that the forward tip 1114 of the nitinol needle 1110 extends a length, Linsert, which is sufficient for the medication to be delivered intramuscularly in tissue (not shown) of a user. In some implementations, the length, Linsert, is between about 15 millimeters and about 35 millimeters. After the medication delivery via the nitinol needle 1110, the nitinol needle 1110 is retracted back into a housing and/or the guide member 1100 of the auto-injector device from the user's tissue.
In some implementations, the nitinol needle 1110 has a gauge between 18 and 25. For example, the gauge of the nitinol needle 1110 is 18, 19, 20, 21, 22, 23, 24, or 25. Further, the nitinol needle 1110 is able to be pushed through the rollers 1102a,b,c without kinking and blocking the internal passageway for medication delivery via the nitinol needle 1110.
The initial bend 1112 of the nitinol needle 1110 has a radius of curvature, rC, which is between about one millimeter and about ten millimeters, which corresponds to the size, shape, and orientation(s) of one or more of the rollers 1102a,b,c. In some implementations, the radius of curvature, rC, of the initial bend 1112 of the nitinol needle 1110 is about one millimeter, about two millimeters, about three millimeters, about four millimeters, about five millimeters, about six millimeters, about seven millimeters, about eight millimeters, about nine millimeters, or about ten millimeters. Further, in some implementations, a radius of curvature of the bent portion or curved portion of the reshaped needle 1120 is the same as the radius of curvature, rC, of the initial bend 1112 formed in the nitinol needle 1110 during the initial assembly process of the auto-injector device.
Further, an angle of the initial bend 1112 is about 90 degrees. Alternatively, the angle of the initial bend 1112 can be between 0 degrees and 100 degrees, between 10 degrees and 100 degrees, between 20 degrees and 100 degrees, between 30 degrees and 100 degrees, between 40 degrees and 100 degrees, between 50 degrees and 100 degrees, between 60 degrees and 100 degrees, between 70 degrees and 100 degrees, between 80 degrees and 100 degrees, between 90 degrees and 100 degrees, etc.
Referring to
The nitinol needle 1210 is stored prior to being actuated in a flat or straight configuration (not shown). The nitinol needle 1210 is initially bent 1212 (as shown in
The initial bend 1212 of the nitinol needle 1210 has a radius of curvature, rC, which is between about one millimeter and about ten millimeters, which corresponds to the size, shape, and orientation(s) of one or more of the rollers 1202a,b,c. In some implementations, the radius of curvature, rC, of the initial bend 1212 of the nitinol needle 1210 is about one millimeter, about two millimeters, about three millimeters, about four millimeters, about five millimeters, about six millimeters, about seven millimeters, about eight millimeters, about nine millimeters, or about ten millimeters.
Further, an angle of the initial bend 1212 is about 90 degrees. Alternatively, the angle of the initial bend 1212 can be between 0 degrees and 100 degrees, between 10 degrees and 100 degrees, between 20 degrees and 100 degrees, between 30 degrees and 100 degrees, between 40 degrees and 100 degrees, between 50 degrees and 100 degrees, between 60 degrees and 100 degrees, between 70 degrees and 100 degrees, between 80 degrees and 100 degrees, between 90 degrees and 100 degrees, etc.
In some implementations, upon the occurrence of a triggering event (e.g., the user pressing an electronic or a mechanical button and/or the controller causing the anaphylaxis detection algorithm to determine a high likelihood of anaphylaxis), the actuator applies an actuator force, F, to the nitinol needle 1210 in a longitudinal direction of the nitinol needle 1210 as shown by arrow C. The stress induced in the nitinol needle 1210 by the actuation force, F, leads to the formation of martensitic crystals throughout the nitinol material, which facilitates the nitinol needle's further reshaping as it passes between the rollers 1202a,b,c. The reshaped nitinol needle 1210 is reshaped to include a bent portion or curved portion therein that corresponds with the initial bend 1212 (e.g., they are the same in size, shape, angle, curvature, etc.).
The nitinol needle 1210 is driven by the actuator such that the forward tip 1214 of the nitinol needle 1210 extends a length, Linsert, which is sufficient for the medication to be delivered intramuscularly in tissue (not shown) of a user. In some implementations, the length, Linsert, is between about 15 millimeters and about 35 millimeters. After the medication delivery via the nitinol needle 1210, the nitinol needle 1210 is retracted back into a housing and/or the guide member 1200 of the auto-injector device from the user's tissue.
In some implementations, the nitinol needle 1210 has a gauge between 18 and 25. For example, the gauge of the nitinol needle 1210 is 18, 19, 20, 21, 22, 23, 24, or 25. Further, the nitinol needle 1210 is able to be pushed through the rollers 1202a,b,c without kinking and blocking the internal passageway for medication delivery via the nitinol needle 1210.
Referring to
As shown in
The initial bend 1312 of the nitinol needle 1310 has a radius of curvature, rC, which is between about one millimeter and about ten millimeters, which corresponds to the size, shape, and orientation of an engaging surface 1303 (
Further, an angle of the initial bend 1312 is about 90 degrees. Alternatively, the angle of the initial bend 1312 can be between 0 degrees and 100 degrees, between 10 degrees and 100 degrees, between 20 degrees and 100 degrees, between 30 degrees and 100 degrees, between 40 degrees and 100 degrees, between 50 degrees and 100 degrees, between 60 degrees and 100 degrees, between 70 degrees and 100 degrees, between 80 degrees and 100 degrees, between 90 degrees and 100 degrees, etc.
In some implementations, upon the occurrence of a triggering event (e.g., the user pressing an electronic or a mechanical button and/or the controller causing the anaphylaxis detection algorithm to determine a high likelihood of anaphylaxis), the actuator applies an actuator force, F, to the nitinol needle 1310 in a longitudinal direction of the nitinol needle 1310 as shown by arrow D. The stress induced in the nitinol needle 1310 by the actuation force, F, leads to the formation of martensitic crystals throughout the nitinol material, which facilitates the nitinol needle's further reshaping as it passes through the channel 1305 of the deflectable guide member 1301, which is formed in part when the deflector 1302 is moved into its final deflected position (
The nitinol needle 1310 is driven by the actuator such that the forward tip 1314 of the nitinol needle 1310 extends a length, Linsert, which is sufficient for the medication to be delivered intramuscularly in tissue (not shown) of a user. In some implementations, the length, Linsert, is between about 15 millimeters and about 35 millimeters. After the medication delivery via the nitinol needle 1310, the nitinol needle 1310 is retracted back into a housing and/or the deflectable guide member 1301 of the auto-injector device from the user's tissue.
In some implementations, the nitinol needle 1310 has a gauge between 18 and 25. For example, the gauge of the nitinol needle 1310 is 18, 19, 20, 21, 22, 23, 24, or 25. Further, the nitinol needle 1310 is able to be pushed through the channel 1305 without kinking and blocking the internal passageway for medication delivery via the nitinol needle 1310.
As shown, the actuation force, F, is applied in the longitudinal direction (arrow D) and the deflecting force, Fdeflector is applied in a second direction (arrow E) that is generally perpendicular to the longitudinal direction (e.g., vertical direction). Alternatively, the deflecting force, Fdeflector can be applied to the deflector 1302 of the deflectable guide member 1301 in a different direction (e.g., at a direction that is between 0 degrees and 180 degrees relative to the longitudinal direction (arrow D), preferably between 60 degrees and 120 degrees).
Consistent with the above disclosure, benefits of the described devices include retracting a needle with electromechanical components (e.g., motors, solenoids, piezoelectric actuators, linear motors, etc.) or with mechanical actuators (e.g., springs, pistons, jets, CO2 cartridges, etc.). By way of example, electromechanical drives include cables pulled by a motor that drives the needle for insertion and retraction through a pulley system that provides a lower profile and a mechanical advantage, as illustrated in
A further benefit of the described devices includes having an adjustable dosage for medication delivery (e.g., 0.15 mg, 0.30 mg, 0.5 mg), which is adjustable manually or via software. Yet another benefit includes having refillable, replaceable, or disposable cartridges and/or a needle assembly for epinephrine injection. A further benefit includes having reliable indicators (e.g., an electronic indicator or a visual check) for providing feedback to a patient on medication.
Other benefits of the described devices include a reservoir design that is collapsible, as illustrated in
Any of the implementations or embodiments described herein can include a nitinol needle having the properties described herein. Further, any of the reshaping/bending configurations of
Exemplary Device Embodiments for Sensor Module
According to one embodiment A of the sensor module described above, the sensor module is an all-in-one portable, semi-wearable, and/or wearable anaphylaxis device. The portable, semi-wearable, and/or wearable device is worn, for example, on the thigh, upper arm, or abdomen. The portable, semi-wearable, and/or wearable device detects the early onset of anaphylaxis using non-invasive physiological sensors, detection algorithms (e.g., the AOS algorithm), and a histamine biosensor. Optionally, upon detection, the portable, semi-wearable, and/or wearable device alerts the user, dials emergency services (e.g., dials “911”), and/or auto-injects epinephrine.
According to another embodiment B of the sensor module described above, the sensor module is a non-invasive, portable, semi-wearable, and/or wearable device directed to anaphylaxis detection and/or alarm, with no injection and no biosensor. The portable, semi-wearable, and/or wearable device is worn, for example, on the thigh, upper arm, or abdomen. The portable, semi-wearable, and/or wearable device detects the early onset of anaphylaxis using only non-invasive physiological sensors and detection algorithms (e.g., the AOS algorithm). Optionally, upon detection, the portable, semi-wearable, and/or wearable device alerts the user and/or emergency services.
According to an alternative embodiment C of the sensor module described above, the sensor module is a minimally-invasive, portable, semi-wearable, and/or wearable device for anaphylaxis detection and alarm, with no injection (including only a biosensor). The portable, semi-wearable, and/or wearable device is worn, for example, on the thigh, upper arm, or abdomen. The portable, semi-wearable, and/or wearable device detects the early onset of anaphylaxis using only a histamine sensor. Optionally, upon detection, the portable, semi-wearable, and/or wearable device alerts the user and/or emergency services.
According to another alternative embodiment D of the sensor module described above, the sensor module is a sensor device for continuous monitoring of allergic reactions in a clinical or hospital setting. The sensor device is a real-time histamine sensor that continuously monitors a histamine level in a person's blood or interstitial fluid. The sensor device provides alarms and/or alerts if an allergic reaction is detected.
According to a further alternative embodiment E of the sensor module described above, the sensor module is a portable, semi-wearable, and/or wearable, manual injector with no sensors. The portable, semi-wearable, and/or wearable, manual injector is an epinephrine auto-injector device that is worn on the thigh, upper arm, or abdomen (for example). The portable, semi-wearable, and/or wearable, manual injector is manually activated and, optionally, includes mobile device (e.g., smart phone) integration to notify emergency services (e.g., “911” services) and/or caregivers upon injection. Other options include notifications that the portable, semi-wearable, and/or wearable, manual injector has a depleted energy level (e.g., the device is in a low battery mode), that the epinephrine has expired or is depleted, etc.
According to a further alternative embodiment F of the sensor module described above, the sensor module is a non-invasive, portable, semi-wearable, and/or wearable device for continuous asthma monitoring and/or detection (with no injection and no biosensor). The portable, semi-wearable, and/or wearable device is worn, for example, on the chest, upper arm, or abdomen, and continuously monitors the breathing of a user. The portable, semi-wearable, and/or wearable device assesses the severity of airway obstruction and, upon the early detection of asthmatic conditions, alerts the user and/or others (e.g., caregivers, emergency services, hospital, clinician, family members, etc.). Optionally the portable, semi-wearable, and/or wearable device is configured to record airway obstruction severity over time, to detect trends in historical severity data, to alert the user to worsening conditions, and/or to upload the data to a server for analysis by a clinician or other trained personnel.
Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the invention. Moreover, the present concepts expressly include any and all combinations and sub-combinations of the preceding elements and aspects.
This application claims the benefit of and priority to U.S. Provisional Application No. 62/506,963, filed May 16, 2017, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62506963 | May 2017 | US |