The subject matter disclosed herein relates to an exhaust aftertreatment system for an internal combustion engine and, more specifically, to monitoring the health of a selective catalytic reduction (SCR) catalyst of the exhaust aftertreatment system.
Engines (e.g., internal combustion engines such as reciprocating engines or gas turbines) combust a mixture of fuel and air to generate combustion gases that apply a driving force to a component of the engine (e.g., to move a piston or drive a turbine). Subsequently, the combustion gases exit the engine as an exhaust, which may be subject to exhaust treatment (e.g., aftertreatment) systems that include one or more catalytic converters (e.g., three-way catalyst (TWC) assembly, SCR catalyst assembly, etc.) to reduce the emissions of nitrogen oxides (NOX), hydrocarbons (HC), carbon monoxide (CO), and other emissions. However, if the health (e.g., ammonia (NH3) storage state) is not closely monitored, over time the effectiveness of the catalysts at reducing emissions may decrease.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
In accordance with a first embodiment, a system includes an exhaust aftertreatment system configured to treat emissions from a combustion engine. The exhaust aftertreatment system includes a SCR catalyst assembly configured to receive a fluid from the combustion engine, wherein the SCR catalyst assembly has an inlet and an outlet. The exhaust aftertreatment system also includes a first sensor disposed upstream of the inlet of the SCR catalyst assembly, a second sensor disposed downstream of the outlet of the SCR catalyst assembly, and at least one radio frequency (RF) probe disposed within the SCR catalyst assembly and configured to measure NH3 storage of the SCR catalyst assembly. The system also includes a controller communicatively coupled to the exhaust aftertreatment system. The controller is configured to receive a first signal representative of NH3 concentration or NOX concentration in the fluid upstream of the SCR catalyst assembly from the first sensor, to receive a second signal representative of NH3 concentration or NOX concentration in the fluid downstream of the SCR catalyst assembly from the second sensor, to receive a third signal representative of the measured NH3 storage of the SCR catalyst assembly from the at least one RF probe, to utilize a model to generate an estimated NH3 storage of the SCR catalyst assembly based at least on the NH3 concentration or the NOX concentration in the fluid upstream of the SCR catalyst assembly and the NH3 concentration or the NOX concentration in the fluid downstream of the SCR catalyst assembly, to compare the estimated NH3 storage to the measured NH3 storage, and to output a control action for the exhaust aftertreatment system based at least on the comparison of the estimated NH3 storage to the measured NH3 storage.
In accordance with a second embodiment, a system includes a controller programmed to monitor an NH3 storage state of a SCR catalyst assembly coupled to a combustion engine. The controller is programmed to receive a first signal representative of NH3 concentration or NOX concentration in a fluid upstream of an inlet of the SCR catalyst assembly from a first sensor, to receive a second signal representative of NH3 concentration or NOX concentration in the fluid downstream of the outlet of the SCR catalyst assembly from a second sensor, to receive a third signal representative of a measured NH3 storage of the SCR catalyst assembly from at least one RF probe disposed within the SCR catalyst assembly, to utilize a model to generate an estimated NH3 storage of the SCR catalyst assembly based at least on the NH3 concentration or the NOX concentration in the fluid upstream of the SCR catalyst assembly and the NH3 concentration or the NOX concentration in the fluid downstream of the SCR catalyst assembly, to compare the estimated NH3 storage to the measured NH3 storage, and to output a control action for the SCR catalyst assembly based at least on the comparison of the estimated NH3 storage to the measured NH3 storage.
In accordance with a third embodiment, a method for monitoring an NH3 storage state of a SCR catalyst assembly coupled to a combustion engine is provided. The method includes receiving, at a controller, a first signal representative of NH3 concentration or NOX concentration in a fluid upstream of the SCR catalyst assembly from a first sensor. The method also includes receiving, at the controller, a second signal representative of NH3 concentration or NOX concentration in the fluid downstream of the SCR catalyst assembly from a second sensor. The method further includes receiving, at the controller, a third signal representative of a measured NH3 storage of the SCR catalyst assembly from at least one RF probe disposed within the SCR catalyst assembly. The method even further includes utilizing, via the controller, a model to generate an estimated NH3 storage of the SCR catalyst assembly based at least on the NH3 concentration or the NOX concentration in the fluid upstream of the SCR catalyst assembly and the NH3 concentration or the NOX concentration in the fluid downstream of the SCR catalyst assembly. The method still further includes comparing, via the controller, the estimated NH3 storage to the measured NH3 storage. The method even further includes outputting, via the controller, a control action for the SCR catalyst assembly based at least on the comparison of the estimated NH3 storage to the measured NH3 storage.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
The present disclosure is directed to systems and methods for monitoring the health (e.g., NH3 storage state) of a catalyst assembly or catalytic converter (e.g. SCR catalyst assembly) coupled to a combustion engine (e.g., reciprocating internal combustion engine or gas turbine engine). In particular, embodiments of the present disclosure include an aftertreatment (e.g., exhaust treatment) system configured to couple to the combustion engine and to treat emissions (e.g., in the engine exhaust) from the combustion engine (e.g., NOX, HC, CO, etc.). The aftertreatment system may include catalyst based systems, chemical injection systems, or other types. The disclosed embodiments include measuring or obtaining one or more operating parameters (e.g., actual or estimated operating parameters) of the combustion engine, measuring NH3 and NOX in the fluid (exhaust or treated exhaust) both upstream and downstream of the catalyst assembly via NH3 and NOX sensors, respectively, and measuring NH3 storage of the catalyst assembly via one or more RF probes or sensors. The disclosed embodiments include, via a controller (e.g., engine control unit (ECU)), utilizing a model to estimate NH3 storage of the catalyst assembly from the catalyst assembly based on the measured NH3 and/or NOX concentrations in the fluid both upstream and downstream of the catalyst assembly and/or the one or more operating parameters of the combustion engine. The controller may also utilize a model to estimate the emissions of certain species (e.g., NOX and NH3). The controller may compare the estimated NH3 storage of the SCR catalyst assembly to the measured NH3 storage of the SCR catalyst assembly. If either the estimated NH3 storage of the catalyst assembly or one or more of the measured or estimated emissions downstream of the catalyst assembly are not within desired limits, an output control action may be automatically triggered by the controller (e.g., performing a diagnostics module on the catalyst assembly). Monitoring the health (e.g., NH3 storage state) of the catalyst assembly, via the disclosed techniques, enables use of the combustion engine to remain within emissions compliance for an extended period of time. In addition, maintenance to the catalyst assembly may be minimized Further, the disclosed embodiments provide an on-board diagnostics capability.
Turning now to the drawings and referring to
During operation, the engine 12 generates combustion gases 16 used to apply a driving force to a component of the engine 12 (e.g., one or more pistons reciprocating in cylinders or one more turbines). The combustion gases 16 subsequently exit the engine 12 as an exhaust 16, which includes a variety of emissions (e.g., NOX, HC, CO, etc.). The exhaust treatment system 10 treats these emissions to generate milder emissions (carbon dioxide (CO2), water, etc). As depicted, the exhaust treatment system 10 includes the catalytic converter or catalyst assembly 14. The catalyst assembly 14 (e.g., SCR catalyst assembly) includes an inlet 18 to receive the fluid 16 (e.g., exhaust) from the engine 12 and an outlet 20 to discharge a fluid 22 (e.g., treated engine exhaust). In certain embodiments, the catalyst assembly 14 includes a SCR catalyst assembly. The SCR catalyst assembly, via its catalytic activity, reduces NOX within the fluid 16 via multiple reactions. The NOX may be reduced via NH3 to generate N2 and water. In certain embodiments, NOX may be reduced via urea to generate N2, water, and CO2. In embodiments that include the SCR catalyst assembly, the engine 12 may be operated as a lean-burn engine (e.g., equivalence ratio (i.e., ratio of actual AFR to stoichiometric AFR), or lambda (λ), value of greater than 1.0 such as approximately 1.001, 1.002, 1.003, 1.004, 1.005, 1.006, 1.007, 1.020, 1.030, 1.040, 1.050, or any other value greater than 1.0) to maximize the catalytic activity in the SCR catalyst assembly. The AFR is the mass ratio of air to fuel. In certain embodiments, the aftertreatment system 10 may include one or more additional catalyst assemblies disposed upstream and/or downstream of the catalyst assembly 14 (e.g., a TWC assembly disposed between the engine 12 and the catalyst assembly 14). In certain embodiments, the aftertreatment system 10 may include other components (e.g., reductant injection system that injects a reductant (e.g., NH3 or urea) into the fluid 16 downstream of the engine 12 and upstream of the catalyst assembly).
The engine 12 and the aftertreatment system 10 are coupled (e.g., communicatively) to a controller 24 (e.g., an engine control unit (ECU)) that controls and monitors the operations of the engine 12. For example, the controller 24 regulates or adjusts an oxidant-fuel ratio (e.g., air-fuel ratio) of the engine 12. The AFR is the mass ratio of air to fuel. The controller 24 also controls and monitors the operations of the aftertreatment system 10. For example, as described in greater detail below, the controller 24 may monitor the health (e.g., NH3 storage state) of the catalyst assembly 14 of the aftertreatment system 10 and, if needed, performs diagnostics on the catalyst assembly 14. In certain embodiments, the controller 24 may include multiple controllers in communication with each other (e.g., a respective controller for the engine 12 and the aftertreatment system 10). The controller 24 includes processing circuitry (e.g., processor 26) and memory circuitry (e.g., memory 28). The processor 26 may include multiple microprocessors, one or more “general-purpose” microprocessors, one or more special-purpose microprocessors, and/or one or more application specific integrated circuits (ASICS), system-on-chip (SoC) device, or some other processor configuration. For example, the processor 26 may include one or more reduced instruction set (RISC) processors or complex instruction set (CISC) processors. The processor 26 may execute instructions to carry out the operation of the engine 12 and/or aftertreatment system 10. These instructions may be encoded in programs or code stored in a tangible non-transitory computer-readable medium (e.g., an optical disc, solid state device, chip, firmware, etc.) such as the memory 28. In certain embodiments, the memory 28 may be wholly or partially removable from the controller 24.
The memory 28 may store various tables (e.g., look-up tables (LUT)). The memory 28 may store a LUT listing corresponding voltages (e.g., similar to voltage readings received from the RF probes 38) to NH3 storage values (e.g., θ, which represents NH3 storage ratio in SCR catalyst assembly). Also, the memory 28 may store a number of thresholds or ranges. For example, the memory 28 may store thresholds and/or ranges for various emissions (e.g., NOX, NH3, etc.) representing desired limits. The memory 28 may also store nominal or minimal differences (e.g., thresholds) for a difference between an estimated NH3 storage value for the catalyst assembly 14 (e.g., SCR catalyst assembly) and a measured NH3 storage value for the catalyst assembly 14 (e.g., measured by the RF probes 38). The memory 28 may also store models (e.g., software models representing and/or simulating various aspects of the engine 12, the aftertreatment system 10, and/or each of their components). For example, the memory 28 may store one or more models to estimate engine operating parameters. In other embodiments, the memory 28 may store one or more models to estimate the NH3 storage state of the catalyst assembly 14. The memory 28 may also store one or more models to estimate the concentration of various emissions (e.g., NOX, NH3, etc.). The one or models may utilize measurements of the NH3 and/or NOX concentrations (e.g., received from NH3 sensors 35, 36 and NOX sensors 34, 37, respectively) in the fluid 16, 22 upstream and downstream of the catalyst assembly 14 (e.g., SCR catalyst assembly) and/or one or more engine operating parameters (e.g., actual engine operating parameters and/or estimated engine operating parameters such as obtained via models) to estimate the NH3 storage state of the catalyst assembly 14 and/or the concentration of various emissions (e.g., NOX, NH3, etc.) exiting the catalyst assembly 14. The controller 22 receives one or more inputs signals (input1 . . . inputn) from sensors, actuators, and other components (e.g., user interface) of engine 12 and the aftertreatment system 10 and outputs one or more output signals (output1 . . . outputn) to the sensors, actuators, and other components of the engine 12 and/or the system 10. The controller 22 may utilize one or more types of models (e.g., software-based models executable by a processor). For the example, the models may include physics-based models such as low cycle fatigue (LCF) life prediction models, computational fluid dynamics (CFD) models, finite element analysis (FEA) models, solid models (e.g., parametric and non-parametric modeling), and/or 3-dimension to 2-dimension FEA mapping models that may be used to predict the risk of equipment malfunction or the need for equipment maintenance. The models may also include statistical models, such as regression analysis models, data mining models (e.g., clustering models, classification models, association models), and the like. For example, clustering techniques may discover groups or structures in the data that are in some way “similar”. Classification techniques may classify data points as members of certain groups, for example, field device having a higher probability of encountering an unplanned maintenance event. Regression analysis may be used to find functions capable of modeling future trends within a certain error range. Association techniques may be used to find relationship between variables. Also, fuzzy logic models may be utilized. Also, the data utilized with the models may include historical data, empirical data, knowledge-based data, and so forth.
The controller 24 may be coupled to sensors associated with the engine 12 and the exhaust treatment system 10. For example, the engine 12 may include one or more sensors 30 disposed on the engine 12, within the engine 12, and/or adjacent an outlet 32 of the engine 12 that measure one or more operating parameters (e.g., actual operating parameters) of the engine 12. The sensors 30 may include atmospheric and engine sensors, such as pressure sensors, temperature sensors, speed sensors, and so forth. In certain embodiments, the sensors 30 may measure the concentration of different species (e.g., emissions) in the fluid 16 exiting the engine 12. For example, the sensors 30 may include but are not limited to O2 or lambda sensors, engine air intake temperature sensor, engine air intake pressure sensor, jacket water temperature sensor, engine exhaust temperature sensor, and engine exhaust pressure sensor. In addition, one or more NH3 sensors 35 may be disposed upstream of the inlet 18 of the catalyst assembly 14 (e.g., between the engine 12 and the catalyst assembly 14) to measure a concentration or an amount of NH3 in the fluid 16. Further, one or more NH3 sensors 36 may be disposed downstream of the outlet 20 of the catalyst assembly 14 to measure a concentration or an amount of NH3 in the fluid 22. Yet further, one or more NOX sensors 34 may be disposed upstream of the inlet 18 of the catalyst assembly 14 (e.g., between the engine 12 and the catalyst assembly 14) to measure a concentration or an amount of NOX in the fluid 16. Still further, one or more NOX sensors 37 may be disposed downstream of the outlet 20 of the catalyst assembly 14 to measure a concentration or an amount of NOX in the fluid 22. In certain embodiments, only one or more NH3 sensors 35 may be disposed upstream of the catalyst assembly 14 (i.e., without NOX sensors 34 disposed upstream), while only one or more NOX sensors 37 may be disposed downstream of the catalyst assembly (i.e., without NH3 sensors 36 disposed downstream). In other embodiments, only one or more NOX sensors 34 may be disposed upstream of the catalyst assembly 14 (i.e., without NH3 sensors 35 disposed upstream), while only one or more NH3 sensors 36 may be disposed downstream of the catalyst assembly (i.e., without NOX sensors 37 disposed downstream). Even further, one or more RF probes or sensors 38 may be disposed within or coupled to the catalyst assembly 14 to measure NH3 storage of the catalyst assembly 14. In certain embodiments, the NH3 storage measurement from the RF probes 38 may take the form of a voltage reading. In certain embodiments, the voltage reading may be converted to an NH3 storage value, θ (e.g., utilizing a LUT).
Based at least on feedback from the sensors 30, the NH3 sensors 35, 36 and/or the NOX sensors 34, 37, and the one or more RF probes 38, the controller 24 monitors the health (e.g., NH3 storage state) of the catalyst assembly 14 of the aftertreatment system 10 and, if needed, performs diagnostics on the catalyst assembly 14. For example, the controller 22 utilizes one or more engine operating parameters (e.g. actual operating parameters measured by the sensors 30 and/or estimated operating parameters) and the measured NH3 and/or NOX concentrations (e.g., received from the NH3 sensors 35, 36 and the NOX sensors 34, 37, respectively) upstream and downstream of the catalyst assembly 14 in a model (e.g., software-based model) to generate an estimate of the NH3 storage state of the catalyst assembly 14 and/or estimates of emissions (e.g., NOX, NH3, etc.) exiting the catalyst assembly 14. In certain embodiments, the measured NH3 concentration upstream of the catalyst assembly 14 and the measured NOX concentration downstream of the catalyst assembly 14 may be utilized in the model to generate the estimated NH3 storage state of the catalyst assembly 14 and/or the estimated NH3 emissions exiting the catalyst assembly 14. In other embodiments, the measured NOX concentration upstream of the catalyst assembly 14 and the measured NH3 concentration downstream of the catalyst assembly 14 may be utilized in the model to generate the estimated NH3 storage state of the catalyst assembly 14 and/or the estimated NOX emissions exiting the catalyst assembly 14. In yet other embodiments, the measured NH3 concentrations both upstream and downstream of the catalyst assembly 14 may be utilized in the model to generate the estimated NH3 storage state of the catalyst assembly 14 and/or the estimated NOX emissions exiting the catalyst assembly 14. In still other embodiments, the measured NOX concentrations both upstream and downstream of the catalyst assembly 14 may be utilized in the model to generate the estimated NH3 storage state of the catalyst assembly 14 and/or the estimated NH3 emissions exiting the catalyst assembly 14. The controller 24 may compare an estimated NH3 storage to a measured NH3 storage (e.g., based on feedback from the RF probes 38) for the catalyst assembly 14. If the difference between the estimated NH3 storage and the measured NH3 storage of the catalyst assembly 14 is significant (e.g., greater than a desired threshold such as 2 percent, 5 percent, 10 percent, or any other desired percentage), the controller 24 may perform a diagnostics module (e.g., SCR catalyst assembly diagnostics module) on the catalyst assembly 14. In certain embodiments, the controller 24 may also provide a user perceptible indication (e.g., audible, visual, textual, etc.) of the detected difference in NH3 storage and the performance of the diagnostics module. If the difference between the estimated NH3 storage and the measured NH3 storage of the catalyst assembly 14 is equal to or less than the desired threshold, the controller 24 may compare the emissions (e.g., measured and/or estimated) exiting the catalyst assembly 14 (e.g., NH3, NOX, etc.) to respective thresholds and/or ranges to determine if the emissions are within acceptable or desired limits. If either the NH3 or NOX are not within the acceptable or desired limits (i.e., out of the range or above the threshold), the controller 24 may still perform a diagnostics module (e.g., SCR catalyst assembly diagnostics module) on the catalyst assembly 14. Monitoring the health (e.g., NH3 storage state) of the catalyst assembly 14, via the disclosed techniques, enables use of the combustion engine 12 to remain within emissions compliance for an extended period of time. In addition, maintenance to the catalyst assembly 14 may be minimized Further, the disclosed techniques provide an on-board diagnostics capability.
The method 40 includes receiving a measurement or signal representative of the measurement of NH3 storage loading 60 (e.g., from RF probes 38) of the catalyst assembly 14 (block 62). In certain embodiments, a LUT 64 that includes voltages (e.g., similar to the voltage readings received from the RF probes 38) corresponding to NH3 storage values (e.g., θ, which represents NH3 storage ratio in SCR catalyst assembly) may be utilized to convert the measurement from the RF probes 38 to the NH3 storage value. The method 40 also includes comparing the estimated NH3 storage 54 value to the measured NH3 storage value 60. In certain embodiments, the comparison may include initially determining if the estimated NH3 storage value 54 is approximately equal to the measured NH3 storage value 60 (block 66). If the estimated NH3 storage value 54 is not approximately equal (e.g., having a difference greater than 1 percent) to the measured NH3 storage value 60, the method 40 includes utilizing a difference 68, Δθ, between the estimated NH3 storage 54 and the measured NH3 storage value 60 and comparing it to a nominal or threshold difference 70, ΔθNOM (block 72). The ΔθNOM may be 2 percent, 5 percent, 10 percent, or any other desired percentage difference between the estimated NH3 storage 54 and the measured NH3 storage 60. If the Δθ is greater than ΔθNOM, the method 40 includes outputting a control action (block 74). The control action may include performing a diagnostics module (e.g., measuring a pressure drop across the catalyst assembly 14) on the catalyst assembly 14 (e.g., SCR catalyst assembly diagnostics module). The control action may also include providing a user perceptible indication (e.g., audible, visual, textual, etc.) of the detected Δθ being greater than ΔθNOM and/or the performance of the diagnostics module. In certain embodiments, block 66 may be skipped and the method 40 may automatically proceed to block 72.
If either the estimated NH3 storage 54 value is approximately equal (e.g., equal to or less than 1 percent) to the measured NH3 storage value 60 or the Δθ is less than ΔθNOM, the method 40 includes determining if NOX POST-CAT 47 or NOX, EST 57 and/or NH3 POST-CAT 48 or NH3, EST 59 are within desired limits (block 76). Specifically, the method 40 includes determining if NOX POST-CAT 47 or NOX, EST 57 is less than a desired NOX threshold or within a desired NOX range 78. The method 40 also includes determining if NH3 POST-CAT 48 or NH3, EST 59 is less than a desired NH3 threshold or within a desired NH3 range 80. If both NOX POST-CAT 47 or NOX, EST 57 and NH3 POST-CAT 48 or NH3, EST 59 fall within their respective desired ranges 78, 80 or below their respective desired thresholds 78, 80, the method 40 includes looping thru the method 40 from the beginning (block 82). If either NOX POST-CAT 47/NOX, EST 57 or NH3 POST-CAT 48/NH3, EST 59 fall out of their respective desired ranges 78, 80 or are equal or greater than their respective desired thresholds 78, 80, the method 40 includes outputting a control action (block 74) as described above.
Technical effects of the disclosed embodiments include providing (e.g., computer implemented) systems and methods for monitoring the health (e.g., NH3 storage state) of the catalyst assembly 14 (e.g. SCR catalyst assembly) coupled to the combustion engine 12. In particular, embodiments include utilizing engine operating parameters 42 and NH3 and/or NOX concentration measurements in the fluid 16, 22 upstream and downstream of the catalyst assembly 14 as inputs in a model to generate estimates of NH3 storage in the catalyst assembly 14. Embodiments also include comparing the estimated NH3 storage to a measured NH3 storage (e.g., based on measurements from RF probes 38 within the catalyst assembly 14) to determine the health of the catalyst assembly 14. Embodiments further include comparing the estimated or measured emissions to respective ranges and/or thresholds to determine if the estimated or measured emissions are within limits to determine the health of the catalyst assembly 14. Monitoring the health (e.g., NH3 storage state) of the catalyst assembly 14, via the disclosed embodiments, enables use of the combustion engine 12 to remain within emissions compliance for an extended period of time. In addition, maintenance to the catalyst assembly 14 may be minimized Further, the disclosed embodiments provide an on-board diagnostics capability.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.