Systems and methods for multi-mode adaptive noise cancellation for audio headsets

Information

  • Patent Grant
  • 10206032
  • Patent Number
    10,206,032
  • Date Filed
    Thursday, August 8, 2013
    10 years ago
  • Date Issued
    Tuesday, February 12, 2019
    5 years ago
Abstract
In accordance with the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output and a processing circuit. The output may provide an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implement an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to adaptive noise cancellation in connection with an acoustic transducer, and more particularly, multi-mode adaptive cancellation for audio headsets.


BACKGROUND

Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as mp3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.


Because the acoustic environment around personal audio devices, such as wireless telephones, can change dramatically, depending on the sources of noise that are present, the position of the device itself, and a mode of operation of the audio device (e.g., phone call, listening to music, in a noisy environment with no source audio content, as an earplug, as a hearing aid, etc.), it is desirable to adapt the noise canceling to take into account such environmental changes.


SUMMARY

In accordance with the teachings of the present disclosure, certain disadvantages and problems associated with detection and reduction of ambient noise associated with an acoustic transducer may be reduced or eliminated.


In accordance with embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output and a processing circuit. The output may be for providing an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implement an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal.


In accordance with these and other embodiments of the present disclosure, a method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device may comprise generating a source audio signal for playback to a listener. The method may also include adaptively generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of an adaptive noise cancellation system to minimize the ambient audio sounds at an acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal. The method may further include combining the anti-noise signal with a source audio signal to generate an audio signal provided to the transducer.


In accordance with these and other embodiments of the present disclosure, a personal audio device may include a transducer and a processing circuit. The transducer may be for reproducing an audio signal including both a source audio signal for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implements an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal.


In accordance with these and other embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output and a processing circuit. The output may provide an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implements an adaptive noise cancellation system that generates the anti-noise signal to reduce a presence of the ambient audio sounds heard by the listener by adapting, based on a listener-selected mode of operation, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and an absence of the source audio signal.


In accordance with these and other embodiments of the present disclosure, a method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device may include generating a source audio signal for playback to a listener. The method may also include adaptively generating an anti-noise signal to reduce a presence of the ambient audio sounds heard by the listener by adapting, based on a listener-selected mode of operation, a response of an adaptive noise cancellation system to minimize the ambient audio sounds at an acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and an absence of the source audio signal. The method may further include combining the anti-noise signal with a source audio signal to generate an audio signal provided to the transducer.


In accordance with these and other embodiments, a personal audio device may include a transducer and a processing circuit. The transducer may reproduce an audio signal including both a source audio signal for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The processing circuit may implement an adaptive noise cancellation system that generates the anti-noise signal to reduce a presence of the ambient audio sounds heard by the listener by adapting, based on a listener-selected mode of operation, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein the adaptive noise cancellation system is configured to adapt both in the presence and an absence of the source audio signal.


Technical advantages of the present disclosure may be readily apparent to one of ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is an illustration of an example wireless mobile telephone, in accordance with embodiments of the present disclosure;



FIG. 1B is an illustration of an example wireless mobile telephone with a headphone assembly coupled thereto, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the wireless telephone depicted in FIG. 1, in accordance with embodiments of the present disclosure;



FIG. 3 is a block diagram depicting selected signal processing circuits and functional blocks within an example adaptive noise canceling (ANC) circuit of a coder-decoder (CODEC) integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure; and



FIG. 4 is a flow chart of an example method for adapting in an adaptive noise cancellation system based on presence, persistence, and/or spectral density of a source audio signal, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone. The personal audio device includes an ANC circuit that may measure the ambient acoustic environment and generate a signal that is injected in the speaker (or other transducer) output to cancel ambient acoustic events. A reference microphone may be provided to measure the ambient acoustic environment and an error microphone may be included for controlling the adaptation of the anti-noise signal to cancel the ambient audio sounds and for correcting for the electro-acoustic path from the output of the processing circuit through the transducer.


Referring now to FIG. 1A, a wireless telephone 10 as illustrated in accordance with embodiments of the present disclosure is shown in proximity to a human ear 5. Wireless telephone 10 is an example of a device in which techniques in accordance with embodiments of this disclosure may be employed, but it is understood that not all of the elements or configurations embodied in illustrated wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required in order to practice the inventions recited in the claims. Wireless telephone 10 may include a transducer such as speaker SPKR that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of wireless telephone 10) to provide a balanced conversational perception, and other audio that requires reproduction by wireless telephone 10, such as sources from webpages or other network communications received by wireless telephone 10 and audio indications such as a low battery indication and other system event notifications. A near-speech microphone NS may be provided to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s).


Wireless telephone 10 may include ANC circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment, and may be positioned away from the typical position of a user's mouth, so that the near-end speech may be minimized in the signal produced by reference microphone R. Another microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when wireless telephone 10 is in close proximity to ear 5. In other embodiments additional reference and/or error microphones may be employed. Circuit 14 within wireless telephone 10 may include an audio CODEC integrated circuit (IC) 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E and interfaces with other integrated circuits such as a radio-frequency (RF) integrated circuit 12 having a wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In these and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller or other processing device.


In general, ANC techniques of the present disclosure measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, ANC processing circuits of wireless telephone 10 adapt an anti-noise signal generated from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E. Because acoustic path P(z) extends from reference microphone R to error microphone E, ANC circuits are effectively estimating acoustic path P(z) while removing effects of an electro-acoustic path S(z) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which may be affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. While the illustrated wireless telephone 10 includes a two-microphone ANC system with a third near-speech microphone NS, some aspects of the present invention may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone that uses near-speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below may be omitted, without changing the scope of the disclosure, other than to limit the options provided for input to the microphone covering detection schemes.


Referring now to FIG. 1B, wireless telephone 10 is depicted having a headphone assembly 13 coupled to it via audio port 15. Audio port 15 may be communicatively coupled to RF integrated circuit 12 and/or CODEC IC 20, thus permitting communication between components of headphone assembly 13 and one or more of RF integrated circuit 12 and/or CODEC IC 20. As shown in FIG. 1B, headphone assembly 13 may include a combox 16, a left headphone 18A, and a right headphone 18B. As used in this disclosure, the term “headphone” broadly includes any loudspeaker and structure associated therewith that is intended to be mechanically held in place proximate to a listener's ear canal, and includes without limitation earphones, earbuds, and other similar devices. As more specific examples, “headphone” may refer to intra-concha earphones, supra-concha earphones, and supra-aural earphones.


Combox 16 or another portion of headphone assembly 13 may have a near-speech microphone NS to capture near-end speech in addition to or in lieu of near-speech microphone NS of wireless telephone 10. In addition, each headphone 18A, 18B may include a transducer such as speaker SPKR that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of wireless telephone 10) to provide a balanced conversational perception, and other audio that requires reproduction by wireless telephone 10, such as sources from webpages or other network communications received by wireless telephone 10 and audio indications such as a low battery indication and other system event notifications. Each headphone 18A, 18B may include a reference microphone R for measuring the ambient acoustic environment and an error microphone E for measuring of the ambient audio combined with the audio reproduced by speaker SPKR close a listener's ear when such headphone 18A, 18B is engaged with the listener's ear. In some embodiments, CODEC IC 20 may receive the signals from reference microphone R, near-speech microphone NS, and error microphone E of each headphone and perform adaptive noise cancellation for each headphone as described herein. In other embodiments, a CODEC IC or another circuit may be present within headphone assembly 13, communicatively coupled to reference microphone R, near-speech microphone NS, and error microphone E, and configured to perform adaptive noise cancellation as described herein.


Referring now to FIG. 2, selected circuits within wireless telephone 10 are shown in a block diagram, which in other embodiments may be placed in whole or in part in other locations such as one or more headphones or earbuds. CODEC IC 20 may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal and generating a digital representation ref of the reference microphone signal, an ADC 21B for receiving the error microphone signal and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal and generating a digital representation ns of the near speech microphone signal. CODEC IC 20 may generate an output for driving speaker SPKR from an amplifier A1 , which may amplify the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 may combine audio signals is from internal audio sources 24, the anti-noise signal generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26, and a portion of near speech microphone signal ns so that the user of wireless telephone 10 may hear his or her own voice in proper relation to downlink speech ds, which may be received from radio frequency (RF) integrated circuit 22 and may also be combined by combiner 26. Near speech microphone signal ns may also be provided to RF integrated circuit 22 and may be transmitted as uplink speech to the service provider via antenna ANT.


Referring now to FIG. 3, details of ANC circuit 30 are shown in accordance with embodiments of the present disclosure. Feedforward adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to be P(z)/S(z) to generate a feedforward anti-noise signal component, which may be provided to an output combiner that combines the feedforward anti-noise signal component and the second feedforward anti-noise signal component described below with the audio to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of feedforward adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of feedforward adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by filter 34B and another signal that includes error microphone signal err (e.g., a playback corrected error, shown as “PBCE” in FIG. 3, equal to error microphone signal err minus the source audio signal and near-speech signal ns (which may be combined with the source audio signal at combiner 61) as transformed by the estimate of the response of path S(z), response SE (z)). By transforming reference microphone signal ref with a copy of the estimate of the response of path S(z), response SECOPY(z), and minimizing the difference between the resultant signal and error microphone signal err, feedforward adaptive filter 32 may adapt to the desired response of P(z)/S(z). In addition to error microphone signal err, the signal compared to the output of filter 34B by W coefficient control block 31 may include an inverted amount of source audio signal (e.g., downlink audio signal ds and/or internal audio signal ia) that has been processed by filter response SE(z), of which response SECOPY(z) is a copy. By injecting an inverted amount of the source audio signal, feedforward adaptive filter 32 may be prevented from adapting to the relatively large amount of source audio signal present in error microphone signal err. However, by transforming that inverted copy of the source audio signal with the estimate of the response of path S(z), the source audio signal that is removed from error microphone signal err should match the expected version of the source audio signal reproduced at error microphone signal err, because the electrical and acoustical path S(z) is the path taken by the source audio signal to arrive at error microphone E. Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of filter 34B tracks the adapting of adaptive filter 34A.


Adaptive filter 32A may receive a synthesized reference feedback signal synref and under ideal circumstances, may adapt its transfer function WSR(z) to be P(z)/S(z) to generate a second feedforward anti-noise signal component, which may be provided to an output combiner that combines the feedforward anti-noise signal component, the second feedforward anti-noise signal component, and a feedback anti-noise component (discussed in greater detail below) with the audio to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. Thus, feedforward anti-noise component, the second feedforward anti-noise component, and the feedback anti-noise component of the anti-noise signal may combine to generate the anti-noise for the overall ANC system. Synthesized reference feedback signal synref may be generated by combiner 39 based on a difference between a signal that includes the error microphone signal (e.g., the playback corrected error) and the second feedforward anti-noise signal component as shaped by a copy SECOPY(z) of an estimate of the response of path S(z) provided by filter 34C. The coefficients of adaptive filter 32A may be controlled by a WSR coefficient control block 31A that uses a correlation of signals to determine the response of adaptive filter 32A, which generally minimizes the error, in a least-mean squares sense, between those components of synthesized reference feedback signal synref present in error microphone signal err. The signals compared by WSR coefficient control block 31A may be the synthesized reference feedback signal synref and another signal that includes error microphone signal err. By minimizing the difference between the synthesized reference feedback signal synref and error microphone signal err, adaptive filter 32A may adapt to the desired response of P(z)/S(z).


To implement the above, adaptive filter 34A may have coefficients controlled by SE coefficient control block 33, which may compare the source audio signal (combined with near-speech signal ns by combiner 61) and error microphone signal err after removal of the above-described filtered source audio signal, that has been filtered by adaptive filter 34A to represent the expected source audio signal delivered to error microphone E, and which is removed from the output of adaptive filter 34A by a combiner 36 to generate the playback corrected error. SE coefficient control block 33 may correlate the source audio signal with the components of the source audio signal that are present in the playback corrected error. Adaptive filter 34A may thereby be adapted to generate a signal from source audio signal, that when subtracted from error microphone signal err, equals the playback corrected error, which is the content of error microphone signal err that is not due to the source audio signal.


As depicted in FIG. 3, ANC circuit 30 may also comprise feedback filter 44. Feedback filter 44 may receive the playback corrected error signal PBCE and may apply a response FB(z) to generate a feedback anti-noise component of the anti-noise signal, which may be provided to an output combiner that combines the feedforward anti-noise component, the second feedforward anti-noise component, and the feedback anti-noise component of the anti-noise signal with the source audio signal to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. Feedback filter 44 may comprise a loop filter in a classic feedback control loop topology. With high enough gain in a particular frequency band and without violating classic control loop stability criteria (as known to those of ordinary skill in the art and outside the scope of this disclosure) the control loop comprising feedback filter 44 may drive the playback corrected error to be as small as possible, thus achieving a certain amount of noise canceling.


Also as shown in FIG. 3, ANC circuit 30 may include a leakage estimate filter 48 with response LE(z) that models an acoustic leakage from speaker SPKR to reference microphone R which generates a leakage estimate from the output signal generated by combiner 26 of FIG. 2. Such output signal is labeled “output” on each of FIGS. 2 and 3. A combiner 45 may remove the leakage estimate from reference microphone signal ref, thus modifying reference microphone signal ref to account for acoustic leakage from speaker SPKR to reference microphone R. In the embodiments represented by FIG. 3, the response LE(z) may be adaptive, and ANC circuit 30 may include a leakage estimate coefficient control block 46 that shapes response LE(z) of the leakage estimate filter in conformity with the output signal and reference microphone signal ref after the estimated leakage has been removed to minimize acoustic leakage from speaker SPKR to reference microphone R.


In some embodiments, the amount or nature of anti-noise output to the output signal by the various elements of ANC circuit 30 may be a function of a listener-selectable setting. Although not explicitly shown in FIG. 3 for purposes of clarity and exposition, one or more control signals based on a listener-selectable setting (e.g., such setting made via a user interface of a touchscreen of wireless telephone 10 and/or combox 16) may cause one or more of filters 32, 32A, and 44 to reduce the amplitude of anti-noise generated by the respective filters (e.g., by modifying a gain of one or more of the respective filters). In addition, so that ANC circuit 30 does not attempt to adapt based on such reduced anti-noise (which may affect error microphone signal err and the playback corrected error), such one or more control signals may also cause one or more of the responses of filters 32, 32A, 34A, 34B, and 34C to cease adapting while the anti-noise is reduced.


Also as depicted in FIG. 3, ANC circuit 30 may include a noise source 58. Noise source 58 may be configured to, responsive to an absence or substantial absence of the source audio signal, inject (e.g., via combiner 60) a noise signal into one or more components of ANC circuit 30 (e.g., SE coefficient control block 33) and the output signal reproduced by speaker SPKR in place of the source audio signal such that the response of the ANC circuit 30, and in particular SE coefficient control block 33 and response SE(z) of filters 34A, 34B, and 34C, may adapt in the absence of the source audio signal


In operation, adaptation of ANC circuit 30 and the anti-noise signal output to output combiner 26 may be based on a listener-selected mode of operation. For example, a listener may select (e.g., via a user interface of a touchscreen of wireless telephone 10 and/or combox 16) an earplug mode of operation indicative of a listener desire to pass attenuated audio sounds to the listener's ear. Responsive to such selection, an equalizer filter 52 may amplify one or more frequency ranges within a set of frequency ranges and may have a response that generates an equalizer signal from the reference microphone signal and injects such equalizer signal (labeled in FIG. 3 as “EQUALIZER SIGNAL) into the output signal (e.g., at combiner 26) and/or into the source audio signal (e.g., at combiner 60), such that together with the anti-noise generated by filters 32, 32a, and/or 44, the equalizer filter causes the ambient audio sounds to be attenuated but still audibly perceptible by the listener at an acoustic output of speaker SPKR. In addition, filters 32, 32a, 44 and/or other components of ANC circuit 30 may attenuate one or more frequency ranges of the reference microphone signal not within the set of frequency ranges. The set of frequency ranges may correspond to frequencies of the ambient audio sounds which are attenuated by the occlusion of an earphone 18A, 18B. Thus, ANC circuit 30 may amplify those frequencies attenuated by the occlusion of an earphone 18A, 18B while attenuating those frequencies not otherwise attenuated by the occlusion, such that all frequencies are attenuated approximately equally across the audible frequency spectrum. In some embodiments, at least one of the set of frequency ranges (e.g., the limits of the frequency range and the attenuation or amplification therein) maybe customizable by the listener (e.g., via a user interface of a touchscreen of wireless telephone 10 and/or combox 16).


As another example, a listener may select a hearing aid mode of operation indicative of a listener desire to pass amplified audio sounds to the listener's ear. Responsive to such selection, a hearing aid filter 54 may amplify the ambient audio sounds at an acoustic output of speaker SPKR while still enabling ANC circuit 30 and its various elements (e.g., filters 32, 32A, 34A, 34B, 34C, and 44) to adaptively generate anti-noise. In the embodiments represented by FIG. 3, such ambient audio sounds may be input to hearing aid filter 54 by near-speech signal ns. In other embodiments, ambient audio sounds may be injected into the source audio signal via reference microphone signal ref or another suitable microphone or sensor. In such embodiments, hearing aid filter 54 may amplify the source audio signal in order to amplify the ambient audio sounds. In addition, hearing aid filter 54 may be configured to determine (e.g., via existing noise filtering or noise cancellation techniques) which components of the injected ambient audio sounds correspond to sounds which are to be amplified (e.g., speech, music, etc.) and which ambient audio sounds are to be cancelled (e.g., background noise).


In operation, and as further described with respect to FIG. 4 below, the one or more of the various adaptive elements of ANC circuit 30, for example W coefficient control block 31, WSR coefficient control block 31A, and SE coefficient control block 33, may be selectively enabled and disabled from adapting their respective responses based on a presence or an absence of the source audio signal, a persistence of the source audio signal, and/or a spectral density of the source audio signal. However, regardless of whether the one or more of the various adaptive elements of ANC circuit 30 are momentarily disabled from adapting, the various adaptive elements of ANC circuit 30 are able to adapt regardless of whether the source audio signal is present.



FIG. 4 is a flow chart of an example method 400 for adapting in an adaptive noise cancellation system (e.g., ANC circuit 30) based on presence, persistence, and/or spectral density of a source audio signal, in accordance with embodiments of the present disclosure. According to some embodiments, method 400 begins at step 402. As noted above, teachings of the present disclosure are implemented in a variety of configurations of wireless telephone 10. As such, the preferred initialization point for method 400 and the order of the steps comprising method 400 may depend on the implementation chosen.


At step 402, CODEC IC 20, ANC circuit 30, and/or any component thereof may determine whether a source audio signal (e.g., either downlink speech signal ds or internal audio signal ia) is present or absent. In this context, “present” or “presence” means that some substantially non-zero source audio signal content is present within a particular time interval (e.g., two seconds, ten seconds, etc.). If a source audio signal is present, method 400 may proceed to step 404. Otherwise, method 400 may proceed to step 412.


At step 404, CODEC IC 20, ANC circuit 30, and/or any component thereof may determine whether the source audio signal is persistent. In this context, “persistent” or “persistence” means that during a particular time interval (e.g., two seconds, ten seconds, etc.), the source audio signal is substantially non-zero for at least a minimum portion of such time interval. For example, downlink speech which comprises a telephone conversation is typically “bursty” in nature, and thus impersistent. As another example, internal audio comprising playback of music is typically persistent, while internal audio comprising playback of conversation (as would be the case in playback of dialogue in a film soundtrack) would typically be impersistent. If the source audio signal is persistent, method 400 may proceed to step 406. Otherwise, method 400 may proceed to step 410.


At step 406, in response to the persistence of the source audio signal, CODEC IC 20, ANC circuit 30, and/or any component thereof may enter a “playback mode” in which CODEC IC 20, ANC circuit 30, and/or any component thereof may determine whether the spectral density of the source audio signal is greater than a minimum spectral density. In this context, “spectral density” is an indication of a percentage, ratio, or similar measure of the frequencies of interest (e.g., frequencies within the range of human hearing) for which the source audio signal has substantially non-zero content at such frequencies. If the spectral density of the source audio signal is greater than a minimum spectral density, method 400 may proceed to step 410. Otherwise, method 400 may proceed to step 408.


At step 408, responsive to a determination that the source audio signal is persistent but with a spectral density lesser than the minimum spectral density, one or more of the various adaptive elements of ANC circuit 30 (e.g., W coefficient control block 31, WSR coefficient control block 31A, and SE coefficient control block 33) may be disabled from adapting their respective responses. After completion of step 408, method 400 may proceed again to step 402.


At step 410, responsive to a determination that the source audio signal is impersistent, CODEC IC 20, ANC circuit 30, and/or any component thereof may enter a “phone call mode” in which the various adaptive elements of ANC circuit 30 (e.g., W coefficient control block 31, WSR coefficient control block 31A, and SE coefficient control block 33) may be enabled to adapt their respective responses. Alternatively, responsive to a determination that the source audio signal is persistent (e.g., in a “playback mode”) but with a spectral density greater than the minimum spectral density, the various adaptive elements of ANC circuit 30 (e.g., W coefficient control block 31, WSR coefficient control block 31A, and SE coefficient control block 33) may be enabled to adapt their respective responses. After completion of step 410, method 400 may proceed again to step 402.


Thus, in accordance with steps 404 to 410, in the event of an impersistent source audio signal (e.g., the “phone call mode”), ANC circuit 30 may have few opportunities in which the source audio signal has content sufficient to allow for efficient adaptation, and accordingly, ANC circuit 30 may adapt, regardless of the spectral density of the source audio signal. However, in the event of a persistent source audio signal (e.g., the “playback mode”), ANC circuit 30 may have many opportunities in which the source audio signal has content sufficient to allow for efficient adaptation, and accordingly, ANC circuit 30 may adapt only if the source audio signal is of a minimum spectral density, thus “waiting” for moments when spectral density of the persistent source audio signal is greater than the minimum spectral density.


At step 412, responsive to a determination that the source audio signal is absent, CODEC IC 20, ANC circuit 30, and/or any component thereof may enter an “ANC-only mode” in which noise source 58 may inject a noise signal into one or more components of ANC circuit 30 (e.g., SE coefficient control block 33) and the output signal reproduced by speaker SPKR in place of the source audio signal such that the response of the ANC circuit 30, and in particular SE coefficient control block 33 and response SE(z) of filters 34A, 34B, and 34C, may adapt in the absence of the source audio signal. The injected noise signal may be of a spectral density (e.g., broadband white noise) sufficient to allow response SE(z) to adapt over a significant range of frequencies In some embodiments, noise source 58 may inject the noise signal at an amplitude significantly below that of ambient audio sounds (e.g., ambient audio sounds as sensed by reference microphone R) such that the noise signal is substantially imperceptible to the listener. In these and other embodiments, noise source 58 may provide the noise signal substantially contemporaneously with impulsive audio sounds such that the noise signal is substantially imperceptible to the listener. As used herein, an “impulsive audio sound” may include any substantially irregular, instantaneous, and momentary ambient audio sound having an amplitude significantly greater than other ambient audio sound which may be detected by reference microphone R, another microphone, and/or any other sensor associated with the personal audio device. In these and other embodiments, noise source 58 may provide the noise signal as an audible alert perceptible to the listener (e.g., a tone or chime indicating to the user that ANC circuit 30 has entered a mode in which it is providing noise cancellation in the absence of a source audio signal).


Although FIG. 4 discloses a particular number of steps to be taken with respect to method 400, method 400 may be executed with greater or fewer steps than those depicted in FIG. 4. In addition, although FIG. 4 discloses a certain order of steps to be taken with respect to method 400, the steps comprising method 400 may be completed in any suitable order.


Method 400 may be implemented using wireless telephone 10 or any other system operable to implement method 400. In certain embodiments, method 400 may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller.


In accordance with embodiments disclosed herein, including but not limited to those of method 400, an ANC system may thus be capable of determining one or more characteristics of a source audio signal (e.g., presence, persistence, spectral density), and based on such one or more characteristics automatically select a mode of operation for the ANC system (e.g., playback mode, phone call mode, ANC-only mode) in which one or more components of the ANC system are enabled, disabled, or otherwise adjusted based on the mode of operation and/or the strategy or approach for performing adaptation of one or more adaptive components of the ANC system. In other embodiments, the mode selection may be based additionally, or alternatively, on one or more factors other than characteristics of a source audio signal. For example, in some embodiments, the characteristics of a user environment or the device itself may inform what ANC mode is most appropriate. Specifically, in one embodiment, one or more sensors may indicate that a user is running or cycling with his/her mobile device, and in response, an ANC mode be entered in which a significant portion of background noise is canceled, while still allowing the user to hear, for example, emergency vehicles or other key automobile noises (e.g., horns honking). This mode may correspond to an exercise or safety mode of ANC. It will be apparent to those having ordinary skill in the art, with the benefit of this disclosure, that a multitude of other ANC modes may be defined, which may be selected based at least in part on a predetermined criteria of characteristics sensed, predicted, or calculated by the ANC system or associated components. In some embodiments, a listener of a personal audio device including such an ANC system may be able to manually select a mode (e.g., playback mode, phone call mode, ANC-only mode) to override an otherwise automated selection of mode and/or select other modes of operation (e.g., the earplug mode or hearing aid mode described above).


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. An integrated circuit for implementing at least a portion of a personal audio device, comprising: an output for providing an output signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer; anda processing circuit that implements an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein: the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal; andthe processing circuit selectively enables and disables adaptation of the response of the adaptive noise cancellation system in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal, wherein a persistence of the source audio signal is a measure of a portion of a time interval in which the source audio signal is substantially non-zero.
  • 2. The integrated circuit of claim 1, wherein responsive to a determination that the source audio signal is present and persistent, the processing circuit: enables the response of the adaptive noise cancellation system to adapt when the spectral density of the source audio signal is greater than a minimum spectral density; anddisables the response of the adaptive noise cancellation system from adapting when the spectral density of the source audio signal is lesser than the minimum spectral density.
  • 3. The integrated circuit of claim 1, wherein responsive to a determination that the source audio signal is present and impersistent, the processing circuit enables the response of the adaptive noise cancellation system to adapt regardless of the spectral density of the source audio signal.
  • 4. The integrated circuit of claim 1, wherein the processing circuit is configured to automatically detect the presence or the absence of the source audio signal.
  • 5. The integrated circuit of claim 1, wherein the processing circuit further comprises a noise source for injecting a noise signal into the adaptive noise cancellation system and the output signal reproduced by the transducer in place of the source audio signal to cause the adaptive noise cancellation system to adapt in the absence of the source audio signal.
  • 6. The integrated circuit of claim 5, wherein the noise source provides the noise signal at an amplitude below an amplitude of the ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 7. The integrated circuit of claim 5, wherein the noise source provides the noise signal substantially contemporaneously with impulsive ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 8. The integrated circuit of claim 5, wherein the noise source provides the noise signal as an audible alert perceptible to the listener.
  • 9. The integrated circuit of claim 1, wherein the processing circuit outputs an amount of the anti-noise signal to the output signal as a function of a listener-selectable setting.
  • 10. The integrated circuit of claim 9, wherein the processing circuit disables the response of the adaptive noise cancellation system from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
  • 11. The integrated circuit of claim 1, further comprising: a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds; andan error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer;wherein the processing circuit further implements: a feedforward filter having a response that generates a feedforward anti-noise signal component from the reference microphone signal, wherein the anti-noise signal comprises at least the feedforward anti-noise signal component;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal; andat least one of: a feedforward coefficient control block that shapes the response of the feedforward filter in conformity with the error microphone signal and the reference microphone signal by adapting, based on the presence or the absence of the source audio signal, the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal; anda secondary path estimate coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and a playback corrected error by adapting, based on the presence or the absence of the source audio signal, the response of the secondary path estimate filter to minimize the playback corrected error; wherein the playback corrected error is based on a difference between the error microphone signal and the secondary path estimate.
  • 12. The integrated circuit of claim 11, wherein the processing circuit adapts at least one of the response of the feedforward filter and the response of the secondary path estimate filter in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal.
  • 13. The integrated circuit of claim 11, wherein the processing circuit further implements a noise source for injecting a noise signal into the secondary path estimate filter and the output signal reproduced by the transducer in place of the source audio signal to cause the secondary path estimate filter to adapt in the absence of the source audio signal.
  • 14. The integrated circuit of claim 11, wherein: the processing circuit further implements a feedback filter having a response that generates a feedback anti-noise signal component from the playback corrected error; andthe anti-noise signal comprises at least the feedforward anti-noise signal component and the feedback anti-noise signal component.
  • 15. The integrated circuit of claim 11, wherein: the processing circuit further implements a second feedforward filter having a response that generates a second feedforward anti-noise component from a synthesized reference to reduce the presence of the ambient audio sounds heard by the listener, the synthesized reference based on a difference between the playback corrected error and at least a portion of the anti-noise signal; andthe anti-noise signal comprises at least the feedforward anti-noise signal component and the second feedforward anti-noise signal component.
  • 16. The integrated circuit of claim 15, wherein the portion of the anti-noise signal comprises the second feedforward anti-noise signal component.
  • 17. The integrated circuit of claim 15, wherein the processing circuit further implements a second feedforward coefficient control block that shapes the response of the second feedforward filter in conformity with the playback corrected error and the synthesized reference by adapting the response of the second feedforward adaptive filter to minimize the playback corrected error.
  • 18. The integrated circuit of claim 11, wherein the processing circuit further implements a leakage estimate filter for modeling an acoustic leakage from the transducer to the reference microphone that generates a leakage estimate from the output signal and modifies the reference microphone signal in accordance with the leakage estimate.
  • 19. The integrated circuit of claim 18, wherein the processing circuit further implements a leakage estimate coefficient control block that shapes the response of the leakage estimate filter in conformity with the output signal and the reference microphone signal to minimize acoustic leakage from the transducer to the reference microphone.
  • 20. The integrated circuit of claim 11, wherein the processing circuit outputs an amount of the anti-noise signal to the output signal as a function of a listener-selectable setting.
  • 21. The integrated circuit of claim 20, wherein the processing circuit disables at least one of the feedforward coefficient control block and the secondary path estimate coefficient control block from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
  • 22. A method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device, the method comprising: generating a source audio signal for playback to a listener;adaptively generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of an adaptive noise cancellation system to minimize the ambient audio sounds at an acoustic output of the transducer, wherein: the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal; andselectively enabling and disabling adaptation of the response of the adaptive noise cancellation system in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal, wherein a persistence of the source audio signal is a measure of a portion of a time interval in which the source audio signal is substantially non-zero; andcombining the anti-noise signal with a source audio signal to generate an audio signal provided to the transducer.
  • 23. The method of claim 22, further comprising, responsive to a determination that the source audio signal is present and persistent: enabling the response of the adaptive noise cancellation system to adapt when the spectral density of the source audio signal is greater than a minimum spectral density; anddisabling the response of the adaptive noise cancellation system from adapting when the spectral density of the source audio signal is lesser than the minimum spectral density.
  • 24. The method of claim 22, further comprising enabling the response of the adaptive noise cancellation system to adapt regardless of the spectral density of the source audio signal responsive to a determination that the source audio signal is present and impersistent.
  • 25. The method of claim 22, further comprising automatically detecting the presence or the absence of the source audio signal.
  • 26. The method of claim 22, further comprising injecting a noise signal into the adaptive noise cancellation system and an output signal reproduced by the transducer in place of the source audio signal to cause the adaptive noise cancellation system to adapt in the absence of the source audio signal.
  • 27. The method of claim 26, further comprising providing the noise signal at an amplitude below an amplitude of the ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 28. The method of claim 26, further comprising providing the noise signal substantially contemporaneously with impulsive ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 29. The method of claim 26, further comprising providing the noise signal as an audible alert perceptible to the listener.
  • 30. The method of claim 22, further comprising outputting an amount of the anti-noise signal to the acoustic output of the transducer as a function of a listener-selectable setting.
  • 31. The method of claim 30, further comprising disabling the response of the adaptive noise cancellation system from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
  • 32. The method of claim 22, further comprising: receiving a reference microphone signal indicative of the ambient audio sounds; andreceiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer;wherein adaptively generating the anti-noise signal comprises: generating a feedforward anti-noise signal component from the reference microphone signal with a feedforward filter, wherein the anti-noise signal comprises at least the feedforward anti-noise signal component;generating a secondary path estimate from the source audio signal with a secondary path estimate filter for modeling an electro-acoustic path of the source audio signal; andat least one of: adaptively generating the feedforward anti-noise signal component by shaping the response of the feedforward filter in conformity with the error microphone signal and the reference microphone signal by adapting, based on the presence or the absence of the source audio signal, the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal; andadaptively generating the secondary path estimate by shaping the response of the secondary path estimate filter in conformity with the source audio signal and a playback corrected error by adapting, based on the presence or the absence of the source audio signal, the response of the secondary path estimate filter to minimize the playback corrected error;wherein the playback corrected error is based on a difference between the error microphone signal and the secondary path estimate.
  • 33. The method of claim 32, further comprising adapting at least one of the response of the feedforward filter and the response of the secondary path estimate filter in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal.
  • 34. The method of claim 32, further comprising injecting a noise signal into the secondary path estimate filter and the output signal reproduced by the transducer in place of the source audio signal to cause the secondary path estimate filter to adapt in the absence of the source audio signal.
  • 35. The method of claim 32, further comprising generating a feedback anti-noise signal component from the playback corrected error with a feedback filter, wherein the anti-noise signal comprises at least the feedforward anti-noise signal component and the feedback anti-noise signal component.
  • 36. The method of claim 32, further comprising generating a second feedforward anti-noise component from a synthesized reference with a second feedforward filter to reduce the presence of the ambient audio sounds heard by the listener, the synthesized reference based on a difference between the playback corrected error and at least a portion of the anti-noise signal, wherein the anti-noise signal comprises at least the feedforward anti-noise signal component and the second feedforward anti-noise signal component.
  • 37. The method of claim 36, wherein the portion of the anti-noise signal comprises the second feedforward anti-noise signal component.
  • 38. The method of claim 36, further comprising adaptively generating the second feedforward anti-noise signal component by shaping the response of the second feedforward filter in conformity with the playback corrected error and the synthesized reference by adapting the response of the second feedforward adaptive filter to minimize the playback corrected error.
  • 39. The method of claim 32, further comprising: generating a leakage estimate from an output signal of the transducer with a leakage estimate filter for modeling an acoustic leakage from the transducer to the reference microphone; andmodifying the reference microphone signal in accordance with the leakage estimate.
  • 40. The method of claim 38, further comprising adaptively generating the leakage estimate by shaping the response of the leakage estimate filter in conformity with the output signal and the reference microphone signal to minimize acoustic leakage from the transducer to the reference microphone.
  • 41. The method of claim 32, further comprising outputting an amount of the anti-noise signal to the output signal as a function of a listener-selectable setting.
  • 42. The method of claim 41, further comprising disabling the response of at least one of the response of the feedforward filter and the response of the secondary path estimate filter from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
  • 43. A personal audio device comprising: a transducer for reproducing an audio signal including both a source audio signal for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer; anda processing circuit that implements an adaptive noise cancellation system that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener by adapting, based on a presence of the source audio signal, a response of the adaptive noise cancellation system to minimize the ambient audio sounds at the acoustic output of the transducer, wherein: the adaptive noise cancellation system is configured to adapt both in the presence and the absence of the source audio signal; andthe processing circuit selectively enables and disables adaptation of the response of the adaptive noise cancellation system in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal, wherein a persistence of the source audio signal is a measure of a portion of a time interval in which the source audio signal is substantially non-zero.
  • 44. The personal audio device of claim 43, wherein responsive to a determination that the source audio signal is present and persistent, the processing circuit: enables the response of the adaptive noise cancellation system to adapt when the spectral density of the source audio signal is greater than a minimum spectral density; anddisables the response of the adaptive noise cancellation system from adapting when the spectral density of the source audio signal is lesser than the minimum spectral density.
  • 45. The personal audio device of claim 43, wherein responsive to a determination that the source audio signal is present and impersistent, the processing circuit enables the response of the adaptive noise cancellation system to adapt regardless of the spectral density of the source audio signal.
  • 46. The personal audio device of claim 43, wherein the processing circuit is configured to automatically detect the presence or the absence of the source audio signal.
  • 47. The personal audio device of claim 43, wherein the processing circuit further comprises a noise source for injecting a noise signal into the adaptive noise cancellation system and the output signal reproduced by the transducer in place of the source audio signal to cause the adaptive noise cancellation system to adapt in the absence of the source audio signal.
  • 48. The personal audio device of claim 47, wherein the noise source provides the noise signal at an amplitude below an amplitude of the ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 49. The personal audio device of claim 47, wherein the noise source provides the noise signal substantially contemporaneously with impulsive ambient audio sounds such that the noise signal is substantially imperceptible to the listener.
  • 50. The personal audio device of claim 47, wherein the noise source provides the noise signal as an audible alert perceptible to the listener.
  • 51. The personal audio device of claim 43, wherein the processing circuit outputs an amount of the anti-noise signal to the output signal as a function of a listener-selectable setting.
  • 52. The personal audio device of claim 51, wherein the processing circuit disables the response of the adaptive noise cancellation system from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
  • 53. The personal audio device of claim 43, further comprising: a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds; andan error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer;wherein the processing circuit further implements: a feedforward filter having a response that generates a feedforward anti-noise signal component from the reference microphone signal, wherein the anti-noise signal comprises at least the feedforward anti-noise signal component;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal; andat least one of: a feedforward coefficient control block that shapes the response of the feedforward filter in conformity with the error microphone signal and the reference microphone signal by adapting, based on the presence or the absence of the source audio signal, the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal; anda secondary path estimate coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and a playback corrected error by adapting, based on the presence or the absence of the source audio signal, the response of the secondary path estimate filter to minimize the playback corrected error; wherein the playback corrected error is based on a difference between the error microphone signal and the secondary path estimate.
  • 54. The personal audio device of claim 53, wherein the processing circuit adapts at least one of the response of the feedforward filter and the response of the secondary path estimate filter in the presence of the source audio signal based on at least one of a persistence of the source audio signal and a spectral density of the source audio signal.
  • 55. The personal audio device of claim 53, wherein the processing circuit further implements a noise source for injecting a noise signal into the secondary path estimate filter and the output signal reproduced by the transducer in place of the source audio signal to cause the secondary path estimate filter to adapt in the absence of the source audio signal.
  • 56. The personal audio device of claim 53, wherein: the processing circuit further implements a feedback filter having a response that generates a feedback anti-noise signal component from the playback corrected error; andthe anti-noise signal comprises at least the feedforward anti-noise signal component and the feedback anti-noise signal component.
  • 57. The personal audio device of claim 53, wherein: the processing circuit further implements a second feedforward filter having a response that generates a second feedforward anti-noise component from a synthesized reference to reduce the presence of the ambient audio sounds heard by the listener, the synthesized reference based on a difference between the playback corrected error and at least a portion of the anti-noise signal; andthe anti-noise signal comprises at least the feedforward anti-noise signal component and the second feedforward anti-noise signal component.
  • 58. The personal audio device of claim 57, wherein the portion of the anti-noise signal comprises the second feedforward anti-noise signal component.
  • 59. The personal audio device of claim 57, wherein the processing circuit further implements a second feedforward coefficient control block that shapes the response of the second feedforward filter in conformity with the playback corrected error and the synthesized reference by adapting the response of the second feedforward adaptive filter to minimize the playback corrected error.
  • 60. The personal audio device of claim 53, wherein the processing circuit further implements a leakage estimate filter for modeling an acoustic leakage from the transducer to the reference microphone that generates a leakage estimate from the output signal and modifies the reference microphone signal in accordance with the leakage estimate.
  • 61. The integrated circuit of claim 60, wherein the processing circuit further implements a leakage estimate coefficient control block that shapes the response of the leakage estimate filter in conformity with the output signal and the reference microphone signal to minimize acoustic leakage from the transducer to the reference microphone.
  • 62. The personal audio device of claim 53, wherein the processing circuit outputs an amount of the anti-noise signal to the output signal as a function of a listener-selectable setting.
  • 63. The personal audio device of claim 62, wherein the processing circuit disables at least one of the feedforward coefficient control block and the secondary path estimate coefficient control block from adapting responsive to a value of the listener-selectable setting being below a predetermined threshold.
RELATED APPLICATION

The present disclosure claims priority to U.S. Provisional Patent Application Ser. No. 61/810,507, filed Apr. 10, 2013, which is incorporated by reference herein in its entirety.

US Referenced Citations (296)
Number Name Date Kind
5117401 Feintuch May 1992 A
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5377276 Terai et al. Dec 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5559893 Krokstad Sep 1996 A
5586190 Trantow et al. Dec 1996 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6185300 Romesburg Feb 2001 B1
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6317501 Matsuo Nov 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fujii et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7110864 Restrepo et al. Sep 2006 B2
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7368918 Henson et al. May 2008 B2
7406179 Ryan Jul 2008 B2
7441173 Restrepo et al. Oct 2008 B2
7466838 Moseley Dec 2008 B1
7555081 Keele, Jr. Jun 2009 B2
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8107637 Asada et al. Jan 2012 B2
8155334 Joho et al. Apr 2012 B2
8165313 Carreras Apr 2012 B2
8249262 Chua et al. Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8325934 Kuo Dec 2012 B2
8363856 Lesso Jan 2013 B2
8374358 Buck et al. Feb 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8539012 Clark Sep 2013 B2
8804974 Melanson Aug 2014 B1
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8909524 Stoltz et al. Dec 2014 B2
8942976 Li et al. Jan 2015 B2
8948407 Alderson et al. Feb 2015 B2
8948410 Van Leest Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
8977545 Zeng et al. Mar 2015 B2
9020160 Gauger, Jr. Apr 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9082391 Yermech et al. Jul 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9203366 Eastty Dec 2015 B2
9294836 Zhou et al. Mar 2016 B2
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030072439 Gupta Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040001450 He Jan 2004 A1
20040047464 Yu et al. Mar 2004 A1
20040120535 Woods Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040176955 Farinelli, Jr. Sep 2004 A1
20040196992 Ryan Oct 2004 A1
20040202333 Czermak et al. Oct 2004 A1
20040240677 Onishi et al. Dec 2004 A1
20040242160 Ichikawa et al. Dec 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060018460 McCree Jan 2006 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038447 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070208520 Zhang et al. Sep 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080166002 Amsel Jul 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240413 Mohammed et al. Oct 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Innoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090136057 Taenzer May 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124335 Shridhar et al. May 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100142715 Goldstein et al. Jun 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100166206 Macours Jul 2010 A1
20100183175 Chen et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100226210 Kordis et al. Sep 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Marcel et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100310087 Ishida Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110002468 Tanghe Jan 2011 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110091047 Konchitsky et al. Apr 2011 A1
20110096933 Eastty Apr 2011 A1
20110099010 Zhang Apr 2011 A1
20110106533 Yu May 2011 A1
20110116643 Tiscareno May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110142247 Fellers et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120179458 Oh et al. Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120281850 Hyatt Nov 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Kamath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20120316872 Stoltz et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130222516 Do et al. Aug 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140036127 Pong et al. Feb 2014 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140051483 Schoerkmaier Feb 2014 A1
20140072134 Po et al. Mar 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani et al. Aug 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140277022 Hendrix et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson et al. Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellmann Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein Nov 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Abdollahzadeh Milani et al. Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150365761 Alderson et al. Dec 2015 A1
20160180830 Lu et al. Jun 2016 A1
Foreign Referenced Citations (76)
Number Date Country
101354885 Jan 2009 CN
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
0898266 Feb 1999 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1947642 Jul 2008 EP
1947642 Jul 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2237573 Oct 2010 EP
2216774 Aug 2011 EP
239550 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2401744 Nov 2004 GB
2436657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
06006246 Jan 1994 JP
H06186985 Jul 1994 JP
H06232755 Aug 1994 JP
07098592 Apr 1995 JP
07325588 Dec 1995 JP
H11305783 Nov 1999 JP
2000089770 Mar 2000 JP
2002010355 Jan 2002 JP
2004007107 Jan 2004 JP
2006217542 Aug 2006 JP
2007060644 Mar 2007 JP
2008015046 Jan 2008 JP
2010277025 Dec 2010 JP
2011061449 Mar 2011 JP
1999011045 Mar 1999 WO
2003015074 Feb 2003 WO
2003015275 Feb 2003 WO
WO2004009007 Jan 2004 WO
2004017303 Feb 2004 WO
2006125061 Nov 2006 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2009041012 Apr 2009 WO
2009110087 Sep 2009 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012075343 Jun 2012 WO
2012107561 Aug 2012 WO
2012119808 Sep 2012 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2012166511 Dec 2012 WO
2013106370 Jul 2013 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015134225 Sep 2015 WO
2015191691 Dec 2015 WO
2016100602 Jun 2016 WO
Non-Patent Literature Citations (65)
Entry
Ray et al.,“Hybrid feedforward-feedhack active noise reduction for hearing protection and communication”, Jul. 8, 2006, J. Acoustic Society, Am. http://www.ncbi.nlm.nih.gov/pubmed/17069300.
Ray et al.,“Hybrid feedforward-feedback active noise reduction for hearing protection and communication”, Jul. 8, 2006, J. Acoustic Society, Am. http://www.ncbi.nlm.nih.gov/pubmed/17069300 (Year: 2006).
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, dated Aug. 8, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, dated Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, dated Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, dated Sep. 9, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, dated Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, dated Jun. 18, 2014, 13 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, Plos One, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, dated May 27, 2014, 11 pages.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al. “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMS Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 37, pp. 1215-1225, Dec. 1997, 13 pages.
P.J. Hurst and K.C. Dyer, “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166.
Kuo, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, dated May 8, 2015, 22 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, dated Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, dated Feb. 9, 2015, 8 pages.
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, dated Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, dated Mar. 9, 2015, 11 pages.
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, dated Oct. 18, 2014, 12 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, dated Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, dated Oct. 8, 2015, 11 pages.
Parkins, et al., Narrowband and broadband active control in an enclosure using the acoustic energy density, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, U.S.
International Patent Application No. PCT/US2015/022113, International Search Report and Written Opinion, dated Jul. 23, 2015, 13 pages.
Combined Search and Examination Report, Application No. GB1512832.5, dated Jan. 28, 2016, 7 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, dated Apr. 21, 2016, 13 pages.
English machine translation of JP 2006-217542 A (Okumura, Hiroshi; Howling Suppression Device and Loudspeaker, published Aug. 2006).
Combined Search and Examination Report, Application No. GB1519000.2, dated Apr. 21, 2016, 5 pages.
First Examination Opinion Notice, State Intellectual Property Office of the People's Republic of China, Application No. 201480033331.3, dated Aug. 24, 2018.
Related Publications (1)
Number Date Country
20140307888 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61810507 Apr 2013 US