The present disclosure generally relates to systems and methods for multi-stage refrigeration. More particularly, the present disclosure relates to multi-stage refrigeration in mixed refrigerant and cascade refrigeration cycles using one or more liquid motive eductors also referred to as jet pumps and ejectors.
Multi-stage refrigeration processes are typically classified as either a mixed refrigerant cycle or a cascade refrigeration cycle. In the mixed refrigerant cycle, a refrigerant of specialized composition is employed to chill the fluid from ambient conditions to a state where it can be liquefied using an expansion valve.
In the typical cascade refrigeration cycle, successive expansion valves are used to gradually liquefy the fluid. The partially liquefied fluid is then distributed to a flash drum. The liquid from the flash drum is distributed for further chilling to subsequent flash drum stages. Vapors from the flash drums are compressed and condensed with a refrigerant.
In
The remaining portion of dehydrated ethylene stream 111 is chilled through three separate heat exchangers 112, 113, 114. Each heat exchanger cools the dehydrated ethylene stream 111 using a conventional propylene refrigerant system shown with dotted lines. The chilled dehydrated ethylene stream 115 is let-down to its condensation pressure at ambient conditions using let down valve 117 to produce flashed ethylene stream 118. The flashed ethylene stream 118 enters a flash drum 120, which is also referred to as an economizer, where it is mixed with a recycled ethylene stream 135 and flashed. The flashed ethylene vapor stream 122 mixes with a lower pressure compressed ethylene stream 124, which is then compressed in a compressor 125 to produce a higher pressure vapor ethylene stream 126. The vapor ethylene stream 126 is subsequently chilled through the propylene refrigerant system using three separate heat exchangers 128, 130, 132. The chilled condensed liquid ethylene stream 133 enters an accumulator 134 where any inert substances are vented in the accumulator 134 as they build up in the process and the recycled ethylene stream 135 is produced.
A liquid ethylene stream 136 from the flash drum 120 is expanded through an expansion valve 138 to produce a chilled two-phase fluid ethylene stream 140. The chilled two-phase fluid ethylene stream 140 enters another flash drum 142 where it is flashed. The flashed vapor ethylene stream 144 is mixed with a compressed ethylene stream 157 and then compressed in a compressor 145 to produce the compressed ethylene stream 124. The compressed ethylene stream 124 is then mixed with the higher pressure flashed ethylene vapor stream 122. The liquid ethylene stream 146 from flash drum 142 is expanded through another expansion valve 148 to produce a chilled two-phase fluid ethylene stream 150. The chilled two-phase fluid ethylene stream 150 enters another flash drum 152 where it is flashed. The flashed vapor ethylene stream 154 is mixed with a compressed ethylene boil-off-gas stream 163 and then compressed in a compressor 155 to produce the compressed ethylene stream 157. The liquid ethylene stream 156 is either distributed to a cryogenic tank 158 for storage or transported to another site. The ethylene boil-off-gas stream 160 from the cryogenic tank 158 is compressed in a compressor 162 to produce the compressed ethylene boil-off-gas stream 163.
While a cascade refrigeration cycle is the easiest to operate because of its reliance on a single refrigerant, it can be less energy efficient than a mixed refrigerant process. This is because a cascade refrigeration system employs staged flashes to primarily recover energy, whereas a mixed refrigerant system can be closely matched to the cooling curve of the commodity to be chilled. Traditionally, energy recovery involving the expansion valves in both processes has focused on hydraulic expanders or turbines, which add complexity and capital cost because they require mechanical equipment, hydraulic seals and a sink to utilize the recovered energy. The recovered energy is thus, not typically redeployed in the process itself. Liquid motive eductors have also been employed in refrigeration processes, but have either been used as a replacement for refrigerant compression or as a means to control the liquid refrigerant level, rather than taking advantage of the staged flashes present in a cascade refrigerant system to recover energy.
The present disclosure is described below with references to the accompanying drawings in which like elements are referenced with like reference numerals, and in which:
The present disclosure overcomes one or more deficiencies in the prior art by providing systems and methods for multi-stage refrigeration in mixed refrigerant and cascade refrigeration cycles using one or more liquid motive eductors.
In one embodiment, the present disclosure includes a multi-stage refrigeration system, comprising: an eductor in fluid communication with a first vapor line and one of a liquid source and a supercritical fluid source; a flashdrum in fluid communication with the eductor for receiving a two-phase fluid, the flashdrum connected to a second vapor line and a liquid line; a first expansion valve in fluid communication with the liquid line and connected to a chilled two-phase fluid line; and another flashdrum in fluid communication with the chilled two-phase fluid line and connected to the first vapor line.
In another embodiment, the present disclosure includes a method for multi-stage refrigeration, comprising: introducing one of a first liquid stream and a superciitical fluid stream into an eductor; introducing a first vapor stream into the eductor to achieve partial liquefaction and produce a two-phase fluid stream comprising the first vapor stream and one of the liquid stream and the supercritical fluid stream; flashing the two-phase fluid stream to produce a second liquid stream and a second vapor stream; expanding the second liquid stream to produce a chilled two-phase fluid stream; and flashing the chilled two-phase fluid stream to produce the first vapor stream and a third liquid stream.
The subject matter of the present disclosure is described with specificity, however, the description itself is not intended to limit the scope of the disclosure. The subject matter thus, might also be embodied in other ways, to include different structures, steps and/or combinations similar to and/or fewer than those described herein, in conjunction with other present or future technologies. Moreover, although the term “step” may be used herein to describe different elements of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless otherwise expressly limited by the description to a particular order. The pressures and temperatures described herein are exemplary and only for purposes of illustration. The various streams described herein may be carried in a line. Although the present disclosure may be may be implemented in certain cascade refrigeration cycles described herein, it is not limited thereto and may also be implemented in any other multi-stage refrigeration process including other cascade refrigeration cycles and mixed refrigerant cycles to achieve similar results.
Referring now to
The following description refers to
Referring now to
Referring now to
Referring now to FIG, 5, a schematic diagram illustrates one embodiment of a closed multi-stage refrigeration system 500 according to the present disclosure. The system 500 includes a source 502 of a liquid stream or a supercritical fluid stream from an accumulator 562 that is supplied to an eductor 504. A first vapor stream 526 enters the eductor 504 at a lower pressure than a pressure at the source 502 of the liquid stream or a supercritical fluid stream to achieve partial liquefaction and produce a two-phase fluid stream 506 comprising the first vapor stream 526 in a compressed state and one of the liquid stream and the supercritical fluid stream. A portion of the two-phase fluid stream 506 from the eductor 504 enters a first heat exchanger 507a where it is vaporized to produce a vaporized refrigerant 507c and another portion of the two-phase fluid stream 506 from the eductor 504 enters a first expansion valve 507b where it is expanded to produce a partially expanded refrigerant 507d. The vaporized refrigerant 507c and the partially expanded refrigerant 507d enter a flash drum 508 where they are mixed and flashed to produce a liquid stream 510 and a second vapor stream 512 at a higher pressure than the pressure of the first vapor stream 526. The liquid stream 510 from the flash drum 508 enters a second expansion valve 518 where it is expanded to produce a chilled two-phase fluid stream 520. A portion of the chilled two-phase fluid stream 520 from the second expansion valve 518 enters a second heat exchanger 521a where it is vaporized to produce another vaporized refrigerant 521c and another portion of the chilled two-phase fluid stream 520 from the second expansion valve 518 enters a third expansion valve 521b where it is expanded to produce another partially expanded refrigerant 521d. The another vaporized refrigerant 521c and the another partially expanded refrigerant 521d enter another flash drum 522 where they are mixed and flashed to produce a third vapor stream 526 and another liquid stream 524. The another liquid stream 524 from the another flash drum 522 enters a fourth expansion valve 528 where it is expanded to produce another chilled two-phase fluid stream 530. The another chilled two-phase fluid stream 530 enters a third heat exchanger 534 where it is vaporized to produce another vaporized refrigerant 536. The another vaporized refrigerant 536 enters another accumulator 538 where any residual condensation is retained to produce a completely vaporized refrigerant 540. The completely vaporized refrigerant 540 enters a first compressor 542 and is compressed to produce a compressed refrigerant 544. The compressed refrigerant 544 is mixed with all or a portion of the third vapor stream 526 before entering a second compressor 548 to produce another compressed refrigerant 550 at a higher pressure. A portion of the third vapor stream 526 may be directed to pass through control valve 546 where it is directed to enter the eductor 504. The another compressed refrigerant 550 is mixed with the second vapor stream 512 before entering a third compressor 552 where it is compressed to produce another compressed refrigerant 554. The another compressed refrigerant 554 enters a fourth heat exchanger 558 where it is condensed to produce a liquid refrigerant 560. The liquid refrigerant 560 enters the accumulator 562 where any residual vapor is retained to produce the source 502 of a liquid stream or a supercritical fluid stream. The system 500 may be implemented in any multi-stage refrigeration process and utilizes one or more liquid motive eductors to raise the lower stage vapor pressure, lower the feed gas pressure and improve the energy efficiency of any multi-stage refrigeration process.
As demonstrated by the comparison of simulated data in Table 1 below, the power consumption in holding mode for producing ethylene is noticeably less using the open multi-stage refrigeration system illustrated in
While the present disclosure has been described in connection with presently preferred embodiments, it will be understood by those skilled in the art that it is not intended to limit the disclosure to those embodiments. It is therefore, contemplated that various alternative embodiments and modifications may be made to the disclosed embodiments without departing from the spirit and scope of the disclosure defined by the appended claims and equivalents thereof.
The priority of U.S. Provisional Patent Application No. 62/252,855, filed Nov. 9, 2015, is hereby claimed and the specification thereof is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/61077 | 11/9/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62252855 | Nov 2015 | US |