This application is directed towards nanomechanical devices whose functioning is related to bistability, spontaneous vibrations, and/or stochastic resonance of nanoscale oligomeric structures and/or their nanoscale compositions.
Industrial miniaturization of devices and machines is typically carried out by top-down design. The creation of smaller and smaller components and devices is desired, and manufacturing is moving to the nanometer scale from the micrometer scale. Approaching the size of about 10 nm by top-down design, the cost of precise manipulations using macroscopic devices typically increases and may become prohibitively expensive. Alternatively, bottom-up strategies which design functional devices on the nanometer scale from building elements of sub-nanometer (atomic) size may prove beneficial.
Ultrasensitive elements for nanoscale devices capable of detecting single molecules are in demand for many important applications. The detection of trace concentrations of, e.g., toxic chemicals and explosives, as well as the precise control of drugs and biologically active substances in compartments of a micron size, is of interest. Typically, stochastic disturbances such as thermal fluctuations of a sensing element by its surroundings limits detection at the molecular level. However, oligomeric machines exhibiting thermally activated spontaneous vibrations and/or stochastic resonance may use such environmental noise to amplify, rather than distort, a weak signal. Spontaneous vibrations and/or stochastic resonance may be exhibited by oligomeric machines employing nonlinear bistable systems and may manifest itself near the critical point at which the bistability emerges.
In some embodiments, an oligomeric machine may include a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module. The oligomeric machine may exhibit dynamical bistability, spontaneous vibrations, and/or stochastic resonance in a solution at a temperature when the temperature is in a critical temperature range, and the oligomeric machine does not exhibit dynamical bistability, spontaneous vibrations, and/or stochastic resonance in the solution when the temperature is not in the critical temperature range. The oligomeric machine may exhibit dynamical bistability, spontaneous vibrations, and/or stochastic resonance in a solution under a force load applied to the oligomeric machine when the force load is in a critical force range while the temperature is not in a critical temperature range, and the oligomeric machine does not exhibit dynamical bistability, spontaneous vibrations, and/or stochastic resonance in the solution when both the force load and the temperature are not in the critical ranges.
In some embodiments, a molecular sensor comprises an oligomeric machine and is configured to bind with one or more analytes thus modulating the spontaneous vibration regime and/or the stochastic resonance regime of the oligomeric machine.
In some embodiments, a molecular sensor is used for the detection of one or more analytes in a solution.
Oligomeric and/or molecular machines may include devices capable of exhibiting controlled movements at the nanoscale. Some oligomeric and/or molecular machines exhibit conformational bistability wherein these machines, under certain conditions, may be capable of changing between at least two conformations upon application of one or more stimuli. Some oligomeric and/or molecular machines may comprise various components such as oligomeric modules, bending and/or hinge regions, and extenders.
Oligomeric machines may be configured to exhibit conformational bistability and may comprise oligomeric modules selected and joined so as to exhibit controllable and/or reproducible conformational changes. Conformational bistability may be characterized by the existence of at least two distinguishable conformational states wherein spontaneous or reproducible transitions between such states may be controllable. Non-limiting examples of conformational states include spatial shape or arrangement of a molecular, oligomeric, and/or polymeric material. For example, an oligomeric chain may have a stretched shape or it may be folded into a bent shape. Bistability implies that at least two conformational states are sufficiently stable or metastable for a desired process or application. For example, an oligomeric chain with a stretched state and a bent state may be repeatedly transitioned back-and-forth between the stretched state and bent state by, for example, subjecting the oligomeric chain to a temperature in a critical temperature range or/and to a force load in a critical force range. Oligomeric machines exhibiting conformational bistability may be utilized for nanomechanical operations. Nanomechanics refers to the movements performed by material structures such as, for example, molecular, oligomeric, and/or polymeric structures on the nanometer scale. The atomic fluctuations of such structures are typically much smaller than the structure size and its movements. Currently, industrial miniaturization of devices and machines is carried out on the basis of top-down design. At the present, the scale of several tens of nanometers is industrially achievable. At the same time, it becomes clear that approaching the size of about 10 nm by top-down design, the cost of precise manipulations using “macroscopic” devices sharply increases and becomes too expensive in typical batch production. Alternatively, the manipulations by objects of a few nanometers in size should utilize “molecular machines” of approximately the same size. Nanomechanics enables machine-like movements at the nanometer scale using rigid nanoscale materials. Machine-like movement may imply the motion of a “solid” unit, i.e. the movements of rigid structures, wherein atomic fluctuations are much less than the structure's characteristic sizes and the scale of their movements. Since the atomic fluctuations at room temperature are of the order of 1 Angstrom, the minimal size of functional units will generally not be significantly less than 1 nanometer.
Stochastic resonance is a particular dynamic mode that may be realized by applying a periodic stimulus to spontaneously vibrating bistable system. Spontaneous vibrations are a particular dynamic mode that may be characteristic of bistable system. Bistability may be realized by nonlinear dynamical systems with critical behavior. A critical temperature or critical force relates to the critical point where a new (second) branch of steady states dynamics appears and the system becomes bistable.
In some embodiments, mechanical properties may be similar to the action of classical nonlinear mechanical systems such as an Euler arch or Zeeman's catastrophe machine. Catastrophe machines are mechanical devices with dynamics that demonstrate the “catastrophes”.
In some embodiments, cyclic variation of a control parameter near a threshold value may be demonstrated using full atomic computer simulations in a stochastic resonance regime by applying an additional weak oscillating force to simulate stochastic resonance. The cyclic variation of the pulling force near a threshold value Fc=400 pN was realized by setting an elementary charge at the movable end of the oligomer and applying a weak oscillating electrical field with the amplitude E0 ranged from 0.01-1.00 V/nm and the frequency varied from 50-500 MHz. Stochastic resonance was unambiguously observed under variation of these controlling parameters. An exemplary embodiment is illustrated in
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits dynamical bistability, spontaneous vibrations and/or stochastic resonance in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit stochastic resonance in the solution when the temperature is not in the critical temperature range; and wherein the oligomeric machine exhibits dynamical bistability, spontaneous vibrations, and/or stochastic resonance in a solution under a force load applied to the oligomeric machine when the force load is in a critical force range while the temperature is not in a critical temperature range, and the oligomeric machine does not exhibit dynamical bistability, spontaneous vibrations, and stochastic resonance in the solution when both the force load and the temperature are not in the critical ranges.
Dynamical bistability, spontaneous vibrations and/or stochastic resonance are characterized by an oligomeric machine repeatedly fluctuating spontaneously or regularly between a first conformation and a second conformation. A conformation of an oligomeric machine may be characterized by the relative orientation and displacement of the respective second ends of the first and second oligomeric modules. If a bistable system is perturbed by random impacts, and if these perturbations are sufficiently strong relatively to the bistability barrier, the system will jump between two energy minima performing spontaneous vibrations. Stochastic resonance is the regularization of spontaneous vibrations by a weak oscillating force applied to the bistable system. That is, by apply a weak oscillating force to a system in a spontaneous vibrations regime, random jumps between two states characteristic of spontaneous vibrations may be transformed into more regular jumps characteristic of stochastic resonance.
Oligomeric modules are oligomers comprising a few and/or many repeated monomeric residues. Oligomers may comprise one or many types of monomeric residues. For instance, oligomers may comprise one, two, three, or more types of monomeric residues. The types of monomers may not be particularly limited so long as the oligomeric machines exhibit spontaneous vibrations and stochastic resonance in solution in a critical temperature or/and under a critical force load applied to the oligomeric machine. For instance, monomeric residues may comprise optionally substituted acrylamide residues, optionally substituted (meth)acrylamide residues, optionally substituted (meth)acrylic acid residues, optionally substituted aziridine residues, optionally substituted epoxy residues, alkoxy substituted ethane residues, or combinations thereof. In general, the term “substituted” refers to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent such as a C1-C8 alkyl group. In preferred embodiments, monomeric residues are chosen from N-ethylacrylamide residues, 2-(isopropylcarbamoyl)acrylic acid residues, 1-(aziridin-1-yl)-2-methylpropan-1-one residues, methoxyethene residues, and 2-methyloxirane residues, and combinations thereof. Oligomers may be synthesized by a variety of methods. The synthesis of oligomers is not particularly limited and some exemplary techniques include iterated synthesis, step growth syntheses, polymerization reactions, living polymerizations, living radical polymerizations, atom transfer radical polymerization, anionic polymerizations, cationic polymerizations, reversible addition fragmentation chain transfer polymerizations, ring open polymerization, metathesis reactions, and/or solid supported synthesis. Oligomers may be synthesized in a single reaction or multiple reactions. Purification techniques may be used to fractionate and/or separate oligomers by, for example, molecular weight, functionality, tacticity, stereochemistry, and/or regiochemistry. Oligomers may contain more than one monomer type and may have various architectures such as block-co-oligomers, branched oligomers, random-co-oligomers, and/or gradient oligomers. Oligomers may be coupled together through a variety of means such as for instance click chemistry, azo-alkyne chemistry, thiol-ene chemistry, epoxy chemistry, Diels-Alder reactions, chain-end substitutions, and/or may be synthesized together in a single and/or multiple reaction steps. Oligomers may be telechelic. The tacticity may be controlled through various means such as, for example, though catalyst selection, solvent selection, reaction temperature, ligand selection, and/or polymerization reaction selection. The molecular weight of oligomers may be controlled by controlling reaction temperature, monomer concentration, initiator concentration, inhibitor concentration, reaction duration, post synthetic separation, and/or reactions may be quenched.
An oligomeric machine may be immobilized on a suitable organic or metal surface by fixing one end of the oligomeric machine on the surface and leaving the other end to move under compression or pulling forces. An oligomeric machine may have a charge such as a net positive or net negative charge associated with one end, and the second end of the oligomeric machine may be immobilized on a suitable surface such as, for example, an organic or metal surface. An electric field may be applied to the oligomeric machine so as to apply a force load to the oligomeric machine. The electric field may be constant with time or may change with time. The electric field may be periodic having a magnitude and a frequency. The electric filed may be oriented along a long axis of the oligomeric machine. In some embodiments, a net negative charge may be associated to one end of an oligomeric machine using one or more carboxylic acid groups. In some embodiments, a net positive charge may be associated to one end of an oligomeric machine using amine groups. In some embodiments, an oligomeric machine may be immobilized on a surface using, for example, thiol groups, silane groups, or nitrene chemistry. In some embodiments, an oligomeric machine may be synthesized from an initiator group attached to a surface.
Some exemplary embodiments include oligomers comprising N-isopropylacrylamide (NIPAm) and/or N-isopropylmethacrylamide (NIPMAm), Some exemplary embodiments include block-co-oligomers of N-isopropylacrylamide and/or N-isopropylmethacrylamide. Some exemplary embodiments include block-co-oligomers of N-isopropylacrylamide and/or N-isopropylmethacrylamide with one or more isotactic, atactic, and/or syndiotactic blocks. Some oligomers comprise at least 10, at least 15, at least 20, at least 25, and/or at least 30 monomeric units. In some embodiments, the first and second oligomeric modules each comprise from 10 to 30 repeat units. Some oligomers have a persistence length of at least 0.5 nm, at least 1 nm, and/or at least 2 nm. Some oligomers may be at least 0.5 nm, at least 1 nm, at least 2 nm, at least 5 nm, and/or at least 10 nm long. In some embodiments, the first and second oligomeric modules each have a persistence length from 0.5 nm to 20 nm. In some embodiments, the first end of the first oligomeric module is joined to the first end of the second oligomeric module through a linker unit having a persistence length that is less than the persistence length of both the first and second oligomeric modules.
Some oligomers may possess a lower critical solution temperature (LCST). Some oligomers may possess an upper critical solution temperature (UCST). Bulk poly(N-isopropylacrylamide) (PNIPAm) exhibits a LCST. The LCST of an oligomer may be different than the LCST of a longer polymer made from the same monomeric units. The LCST of an oligomer may be changed by changing the composition of the oligomer. The LCST of an oligomer may be changed by tuning the ratio of comonomers in an oligomer. Some oligomers may be polydisperse. Some oligomers may be monodisperse. Some oligomers may not possess any significant polydispersity. Some exemplary embodiments may comprise oligomeric fragments of PNIPAm of 20-30 units and PNIPMAm (poly-N-isopropylmethacrylamide) of the same length. Some embodiments comprise block-co-oligomer compositions with a central PNIPAm fragment of 5-15 units and two terminal PNMIPAm fragment of 5-20 units. Such exemplary embodiments may be configured to exhibit two clearly discernible conformational states, one of which corresponds to an unfolded, stretched form of oligomeric fragment, while the other has a folded, bent form. Transitions between these conformational states in these exemplary embodiments implement mechanic-like nano-scale motions of the fragment parts.
Oligomeric modules may be joined together. Oligomeric modules may be joined together during the synthesis of the oligomeric modules. Oligomeric modules may be joined together in a subsequent reaction. Oligomeric modules may be joined together at a bending and/or hinge region. The bending and/or hinge region may be inherent to the oligomeric structure. The bending and/or hinge region may comprise an additional molecular and/or oligomeric structure. The bending and/or hinge region may comprise a residue product from a linking reaction such as, for example, a click reaction, chain-end modification reaction, a thiol-ene reaction, an azo-alkyne reaction, a Diels-Alder reaction, an epoxy reaction, a esterification reaction, and/or a cyclo-addition reaction. A bending and/or hinge region may be flexible. A bending and/or hinge region may comprise, for example, acrylamide residues, methacrylamide residues, ether linkages, ethylene oxide units, peptides, and/or peptoids. In some embodiments, an oligomeric machine comprises at least one bending or hinge location at a position of co-joinder between the first oligomeric module and the second oligomeric module, the bending or hinge location permitting relative flexure between the first oligomeric module and the second oligomeric module.
Oligomeric machines may be configured to exhibit stochastic resonance and/or spontaneous vibrations in solution when the solution is in a critical temperature range and the oligomeric machine does not exhibit stochastic resonance and/or spontaneous vibrations in solution when the solution is not in the critical temperature range. Oligomeric machines may comprise oligomeric modules selected and joined so as to exhibit stochastic resonance and/or spontaneous vibrations in solution when the solution is in a critical temperature range and the oligomeric machine does not exhibit stochastic resonance and/or spontaneous vibrations in solution when the solution is not in the critical temperature.
Oligomeric machines may be configured to exhibit stochastic resonance and/or spontaneous vibrations in solution under a force load applied to the oligomeric machine when the force load is in the critical force range, and the oligomeric machine does not exhibit stochastic resonance and/or spontaneous vibrations in solution when the force load in not in the critical force range. Oligomeric machines may comprise oligomeric modules selected and joined so as to exhibit stochastic resonance and/or spontaneous vibrations in solution under a force load applied to the oligomeric machine when the force load is in the critical force range, and the oligomeric machine does not exhibit stochastic resonance and/or spontaneous vibrations in solution when the force load in not in the critical force range.
A critical temperature is a temperature about which an oligomeric machine displays stochastic resonance and/or spontaneous vibrations, and a critical temperature range is a range of temperatures including the critical temperature wherein the oligomeric machine displays stochastic resonance and/or spontaneous vibrations. A critical temperature range may be within a temperature range given by 250 K to 400 K, 275 K to 375 K, and/or 300 K to 350 K. A critical temperature range may be within a temperature range given by −25° C. to 100° C., 0° C. to 100° C., and/or 25° C. to 100° C. A critical temperature range may be within a temperature range given by 25° C. to 45° C. A critical temperature range may be increased or decreased by changing the composition of the solution. For example, a critical temperature range may be increased or decrease by changing the ionic strength, pH, and/or weight percent of solvents and/or co-solvents in the solution.
A critical force load is a force load about which an oligomeric machine displays stochastic resonance and/or spontaneous vibrations, and a critical force range is a range of force loads including the critical force load wherein the oligomeric machine displays stochastic resonance and/or spontaneous vibrations. A critical force range may be within a force range given by 25 pN (pico-Newton) to 200 pN, 100 pN to 350 pN, and/or 300 pN to 450 pN. A critical force range may be within a force range given by 370 pN to 400 pN. A critical force range may be increased or decreased by changing the composition of the solution. For example, a critical force range may be increased or decrease by changing the ionic strength, pH, and/or weight percent of solvents and/or co-solvents in the solution.
A solution may be an aqueous solution. Aqueous solutions may comprise one or more salts such as, for example, halide salts such as sodium chloride or phosphate salts such as sodium phosphate. Aqueous solutions may comprise one or more buffers such as, for example, phosphate buffered saline, tris buffer, acetate buffer, HEPES buffer, Good's buffers. An aqueous solution may be a body fluid. An aqueous solution may be a body fluid derived from a subject such as a human subject. An aqueous solution may be a blood sample. An aqueous solution may be a saliva sample.
A molecular sensor may comprise an oligomeric machine and the molecular sensor may be configured to bind with one or more analytes. In some embodiments, the binding with one or more analytes modulates the spontaneous vibrations of the oligomeric machine. In some embodiments, the binding with one or more analytes modulates the stochastic resonance of the oligomeric machine. A molecular sensor may be configured for sensing of analytes. A molecular sensor may be configured such that upon binding and/or associating with an analyte, the oligomeric machine changes from a first conformation to a second conformation. A molecular sensor may be configured such that upon binding and/or associating with an analyte, the oligomeric machine changes from spontaneous vibrations to the first conformation or the second conformation. A molecular sensor may be configured such that upon binding and/or associating with an analyte, the oligomeric machine changes from the stochastic resonance mode to the spontaneous vibrations mode. A molecular sensor may be configured such that upon binding and/or associating with an analyte, the oligomeric machine changes a critical force load for the spontaneous vibrations and/or the stochastic resonance. A molecular sensor may be configured such that upon binding and/or associating with an analyte, the frequency at which the oligomeric machine fluctuates between a first and second conformation is modulated. The frequency at which the oligomeric machine fluctuates between a first and second conformation may be decreased or increased. An analyte may be and/or comprise a small molecule, an amino acid, a saccharide, a hormone, an oligomer, a peptide, a metabolic product, a coordinating group, an ion, an aromatic group, a hydrogen bonding donor, and/or a hydrogen bonding acceptor. A molecular sensor may comprise a Forster resonance energy transfer (FRET) donor and/or a FRET acceptor. A molecular sensor may be configured such that a noncovalent interaction between a bending and/or hinge region of the oligomeric machine and an analyte induces a change in the conformation of the oligomeric machine cause a change in the spectroscopic properties of the oligomeric machine. Binding and/or association of an analyte with a molecular sensor may modulate a FRET signal. Oligomeric machines a few nanometers in size, which possess the property of conformational bistability associated with thermally activated spontaneous vibrations and stochastic resonance may be used as detecting units in the design of molecular sensors. A physical mechanism of detection may be based on the sensitivity of spontaneous vibrations and stochastic resonance of the oligomeric machines to physical or chemical binding of an analyte to the oligomeric machines.
In an exemplary embodiment, spontaneous vibrations and stochastic resonance of two oligomeric machines (oligo-NIPMAm-30 and oligo-NIPAm-20) subjected to attachment of molecular cargo were studied by computer simulation methods. An exemplary embodiment is illustrated in
In some embodiments, when one or more analytes become attached to an oligomeric machine exhibiting spontaneous vibrations, the oligomeric machine stops exhibiting spontaneous vibrations. In some embodiments, when one or more analytes become attached to an oligomeric machine exhibiting stochastic resonance, the oligomeric machine stops exhibiting stochastic resonance. In some embodiments, when one or more analytes become attached to an oligomeric machine exhibiting stochastic resonance, the oligomeric machine stops exhibiting stochastic resonance and instead exhibits spontaneous vibrations. In some embodiments, the attachment of one or more analytes to an oligomeric machine having a frequency of vibrations may be detected by monitoring the frequency of vibrations.
In some embodiments, PNIPAm oligomers, being of a length about two joint Kuhn segments, may undergo a reversible conformational change when the solute's temperature passes over a LCST, thus reproducibly changing mutual orientation of the Kuhn segments. This may be demonstrated using a series of computational experiments. Full atomic GROMACS molecular dynamics package were used to perform atomistic simulations of a NIPAm-oligomer in water solution at temperatures below and above LCST. OPLS-AA force field in combination with TIP3P explicit water model are used to describe inter- and intra-molecular interactions. The conformation of the chain is characterized by its radius of gyration and/or the distance between the chain ends. In an exemplary embodiment, an oligomer may comprise 20 NIPAm monomeric units connected isotactically (named oligo-NIPAm-20).
For some embodiments, 25-30 monomeric units connected syndiotactically is optimal, and it seemingly corresponds to approximately two persistent Kuhn segments. For instance, an oligomer consisting of 15 NIPAm monomers connected syndiotactically (named oligo-NIPAm-15s) does not show conformational bistability in response to temperature change, having gyration radius of 0.97 nm at 280K and 0.98 nm at 320K.
Poly-(N-isopropyl)-methacrylamide (PNIPMAm) is also a thermosensitive polymer that has an LCST at approximately 315K (42° C./108° F.). In some embodiments PNIPMAm oligomers, being of a length about two joint persistent Kuhn segments, may be configured to undergo a conformational change from unfolded to folded states when a solute's temperature passes over the transition point. GROMACS molecular dynamics package was used to perform full atomistic simulations of single PNIPMAm oligomers in water at temperatures below and above LCST. OPLS-AA force field in combination with TIP3P explicit water model is used to describe inter- and intra-molecular interactions. The critical temperature for some oligomers is lower than the LCST for bulk polymers. In some embodiments, it is expected to be between 305K and 310K.
In an exemplary embodiment,
It may be demonstrated that some oligomeric structures do not demonstrate conformational bistability. For example, an oligomer consisting of a block of 21 NIPAm monomers connected isotactically, and a block of 19 NIPAm monomers connected syndiotactically (named oligo-NIPAm-21i-19s) does not demonstrate thermosensitive folding as shown in
In some exemplary embodiments illustrated in
In another exemplary embodiment, an oligomeric machine component comprising two stiff fragments of about 10 isotactic NIPAm units joined by a bending or hinge location of syndiotactic NIPAm is demonstrated. In a preferred three-block oligomeric machine comprising two edge blocks, each of 12 NIPAm monomers connected isotactically, which are joined by the bending location composed of 4 NIPAm monomers connected syndiotactically. This composition is denoted oligo-NIPAm-12i-4s-12i. Below the LCST, the oligo-NIPAm-12i-4s-12i composition exists predominately in a stretched rod-like structure with an average gyration radius of 1.3 nm. Above the LCST, this three-block oligomeric machine folds into an L-shaped lever-like form with an average radius of gyration of 1.05 nm.
In another exemplary embodiment, a three-block oligomeric machine consists of two edge blocks, each of 15 NIPAm monomers connected isotactically are joined by a bending or hinge location composed of 10 NIPAm monomers connected syndiotactically and is named oligo-NIPAm-15i-10s-15i. Below LCST the composition exists as a stretched rod-like structure with an average gyration radius of 1.5 nm, while above the LCST it folds into a V-shaped hairpin-like form with an average radius of gyration of 1.25 nm.
In another embodiment, three-block co-oligomers comprising two rigid blocks are joined by a bending third block. In some embodiments, oligo-NMIPAm fragments, a stereoisomer of NIPAm which methyl and isopropyl groups are replaced one by another, demonstrate high rigidness, and can be used as rigid edge blocks in the composition while oligo-NIPAm fragments may bend, and may be positioned at a bending or hinge location. For instance, a preferred three-block chimeric oligomer may comprise two edge NMIPMAm-blocks each of 10 monomers and are joined by the bending location composed of 7 NIPMAm monomers of isotactic configuration. The composition of this embodiment is denoted 10-7-10-NMIPMA-NIPMA-NMIPMA. In
In some exemplary embodiments, two joined oligomeric modules possess conformational bistability with controlled conformational change. The molecular and/or oligomeric machine component comprises a first oligomeric module having a first end and a second end and a second oligomeric module having a first end and a second end. The first end of the first oligomeric module is joined to the first end of the second oligomeric module to form an oligomeric chain, and the second end of the first oligomeric module is disconnected from the second end of the second oligomeric modules. The first oligomeric module and the second oligomeric module are selected and joined so that a pair of joined oligomeric modules possesses conformational bistability. A relative orientation of the first oligomeric module and the second oligomeric module spontaneously changes from a first orientation to a second orientation above a critical temperature. The relative orientation of the first oligomeric module and the second oligomeric module repeatedly changes from a first orientation to a second orientation in response to energy applied to the joined oligomeric modules. An oligomeric module may have a length between 0.5 nm and 20 nm. The relative orientation of the first and second oligomeric modules may define a conformation, and two such stable or metastable conformations may exist. A transition between a first conformation and a second conformation may include relative motion of the first and second oligomeric modules. An oligomeric module may comprise at least 5 repeat units. An oligomeric module may comprise at least 10 repeat units. An oligomeric module may comprise at least 15 repeat units. An oligomeric module may comprise at least 20 repeat units. An oligomeric module may comprise at least 25 repeat units. An oligomeric module may comprise at least 30 repeat units. An oligomeric module may comprise poly-N-isopropylacrylamide. An oligomeric module may comprise poly-N-isopropylmethacrylamide. An oligomeric and/or molecular machine component may be configured so as to exhibit a conformational transitional point within 250 K to 400 K. An oligomeric and/or molecular machine component may be configured so as to exhibit a conformational transitional point within 275 K to 375 K. An oligomeric and/or molecular machine component may be configured so as to exhibit a conformational transitional point within 300 K to 350 K. An oligomeric module may comprise a single type of monomeric unit. An oligomeric module may comprise NIPAm residues.
In some exemplary embodiments, oligomeric machines may include Poly(N-isopropylacrylamide). A synthetic oligomer for a bistable oligomeric machine may comprise a fragment of Poly(N-isopropylacrylamide) (PNIPAm) of at least 15 repeating units. The PNIPAm-oligomer may be stereo-regular or stereo-irregular. The PNIPAm-oligomer may comprise regions which are isotactic, syndiotactic, and/or atactic. The PNIPAm oligomer may be such that at least a one-third portion of the PNIPAm oligomer does not flex more than 50% along a length of the at least one-third portion. The PNIPAm-oligomer may have conformational bistability with reproducible change of mutual displacement of the oligomer fragment ends above a critical temperature. The PNIPAm-oligomer may exhibit thermally activated stochastic resonance with reproducible change of mutual displacement of the oligomer fragment ends above a critical temperature. The PNIPAm-oligomer may be a block-co-oligomer. A block-co-oligomer may be composed of certain portions, each in isotactic, syndiotactic, or atactic form. A PNIPAm-co-oligomer may be selected such that each block of the PNIPAm-co-oligomer composition does not flex more than 50% along a length of the block. The oligomer may comprise 20 units of NIPAm. The oligomer may comprise 25 units of NIPAm. The oligomer may comprise 30 units of NIPAm.
In some exemplary embodiments, oligomeric machines may include Poly (N-isopropylmethacrylamide). A synthetic oligomer for an oligomeric machine may comprise a fragment of Poly(N-isopropylmethacrylamide) (PNIPMAm) of at least 15 repeating units. The PNIPMAm-oligomer may be stereo-regular or stereo-irregular. The PNIPMAm-oligomer may comprise regions which are isotactic, syndiotactic, and/or atactic. The PNIPMAm oligomer may be such that at least a one-third portion of the PNIPMAm oligomer does not flex more than 50% along a length of the at least one-third portion. The PNIPMAm-oligomer may have conformational bistability with reproducible change of mutual displacement of the oligomer fragment ends above a critical temperature. The PNIPMAm-oligomer may exhibit thermally activated stochastic resonance with reproducible change of mutual displacement of the oligomer fragment ends above a critical temperature. The PNIPMAm-oligomer may be a block-co-oligomer. A block-co-oligomer may be composed of certain portions, each in isotactic, syndiotactic, or atactic form. A PNIPMAm-co-oligomer may be selected such that each block of the PNIPMAm-co-oligomer composition does not flex more than 50% along a length of the block. The PNIPMAm-co-oligomer may have conformational bistability with reproducible change of mutual arrangement of the blocks above a critical temperature. The oligomer may comprise 20 units of NIPMAm. The oligomer may comprise 25 units of NIPMAm. The oligomer may comprise 30 units of NIPMAm.
Some exemplary embodiments may include chimeric bistable oligomeric machines. A synthetic oligomer for a molecular and/or oligomeric machine may comprise a fragment of Poly(N-isopropylacrylamide) (PNIPAm) of at least 5 repeating units in the stereo-regular or the stereo-irregular form and at least one other oligomeric fraction other than PNIPAm of at least 0.5 nm in length and/or possessing a persistence length of at least 0.5 nm. At least one portion of the PNIPAm may be such that it does not flex more than 50% along a length of the at least one portion of the PNIPAm oligomer and does not flex more than 50% along a length of the at least one-third portion. The oligomer fragment may exhibit stochastic resonance with reproducible change of spatial arrangements of the fragment ends above a critical temperature. The oligomer composition may include three oligomeric modules with two edge NMIPAm-modules each of 10 monomers which are joined by a bending location composed of 7 NIPMAm monomers of isotactic configuration. A chimeric composition may allow for significant customization of the structure and function of a molecular and/or oligomeric machine such as, for example, length, rigidity, and/or chemical functionalization. The oligomer composition may comprise three modules with two edge NMIPAm-modules each of 8 monomers, which are joint by the bending location composed of 5 NIPMAm monomers of isotactic configuration.
Additional exemplary embodiments may include oligomeric machines for sensing. A molecular and/or oligomeric machine may comprise a synthetic material including a first oligomeric module and a second oligomeric module joined to the first oligomeric module to form an oligomeric chain, at least one bending or hinge location at a position of co-joinder between the first oligomeric module and the second oligomeric module, the bending or hinge location permitting relative flexure between the first oligomeric module and the second oligomeric module; at least one chemically specific site disposed in the bending or hinge location of the oligomeric chain for selective binding of a detectable molecule, at least one electric generating element, and a substrate configured with the electric generating element and the oligomeric chain such that the second oligomeric modules of the oligomeric chain to ensure the mechanical action on the electric generating elements. The oligomeric chain may be formed such that above a critical temperature, relative movement occurs between the first oligomeric module and the second oligomeric module in a manner causing the mechanical action of the second oligomeric module on the electric generating element to produce an electrical voltage and/or current. The electric generating element may be a piezoelectric element, a nano-particle, a nano-wire, and/or a nano-layer. The oligomeric chain with a chemically specific site may be formed such that in response to binding of a detectible molecule, relative movement occurs between the first oligomeric module and the second oligomeric module in a manner causing the pressure of the second oligomeric module on the electric generating element to produce an electrical voltage. A synthetic material comprising a first oligomeric module and a second oligomeric module joined to the first oligomeric module to form an oligomeric chain may possess thermally activated stochastic resonance with reproducible change of mutual displacement of the oligomeric modules in response to stochastic perturbations. The detecting unit may comprise a NIPAm-20 oligomeric machine. The detecting unit may comprise a NIPMAm-30 oligomeric machine.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits stochastic resonance in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit stochastic resonance in the solution when the temperature is not in the critical temperature range.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits spontaneous vibrations in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit spontaneous vibrations in the solution when the temperature is not in the critical temperature range.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; wherein the oligomeric machine exhibits spontaneous vibrations in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit spontaneous vibrations in the solution when the temperature is not in the critical temperature range; wherein the spontaneous vibrations have a non-regular frequency.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; wherein the oligomeric machine exhibits spontaneous vibrations in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit spontaneous vibrations in the solution when the temperature is not in the critical temperature range; wherein the spontaneous vibrations have a non-regular frequency; and wherein, upon application of a oscillatory force having a force load within a critical force range and a force frequency to the oligomeric machine when the temperature is in the critical range, the oligomeric machine exhibits stochastic resonance having a frequency substantially the same as the force frequency.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits stochastic resonance in a solution at a temperature when the temperature is in a critical temperature range and the oligomeric machine does not exhibit stochastic resonance in the solution when the temperature is not in the critical temperature range.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits spontaneous vibrations in a solution under a force load applied to the oligomeric machine when the force load is in a critical force range while the temperature is not in a critical temperature range, and the oligomeric machine does not exhibit spontaneous vibrations in the solution when the force load and the temperature are not in the critical ranges.
In some embodiments, an oligomeric machine comprises a first oligomeric module having a first end and a second end, and a second oligomeric module having a first end and a second end; wherein the first end of the first oligomeric module is joined to the first end of the second oligomeric module; and wherein the oligomeric machine exhibits stochastic resonance in a solution under a force load applied to the oligomeric machine when the force load is in a critical force range while the temperature is not in a critical temperature range, and the oligomeric machine does not exhibit stochastic resonance in the solution when the force load and the temperature are not in the critical ranges.
In some embodiments, the oligomeric machine further comprises at least one bending or hinge location at a position of co-joinder between the first oligomeric module and the second oligomeric module, the bending or hinge location permitting relative flexure between the first oligomeric module and the second oligomeric module.
In some embodiments, the first and/or second oligomeric module comprises optionally substitute acrylamide residues, optionally substituted (meth)acrylamide residues, optionally substituted (meth)acrylic acid residues, optionally substituted aziridine residues, optionally substituted epoxy residues, alkoxy substituted ethane residues, or combinations thereof.
In some embodiments, the first and/or second oligomeric module comprises at least one of N-ethylacrylamide residues, 2-(isopropylcarbamoyl)acrylic acid residues, 1-(aziridin-1-yl)-2-methylpropan-1-one residues, methoxyethene residues, and 2-methyloxirane residues.
In some embodiments, the first end of the first oligomeric module is joined to the first end of the second oligomeric module through a linker unit having a persistence length that is less than the persistence length of both the first and second oligomeric modules.
In some embodiments, the first and second oligomeric modules each comprise from 10 to 30 repeat units.
In some embodiments, the first and second oligomeric modules each comprise from 10 to 30 stereo-regular repeat units.
In some embodiments, the first and second oligomeric modules each have a persistence length from 0.5 nm to 20 nm.
In some embodiments, the solution is an aqueous solution.
In some embodiments, the critical temperature range is within the temperature range given by −25° C. to 100° C.
In some embodiments, the critical temperature range is within the temperature range given by 25° C. to 45° C.
In some embodiments, the critical force range is within the force range given by 10 pN (pico-Newton) to 1000 pN.
In some embodiments, the critical force range is within the force range given by 250 pN to 350 pN.
In some embodiments, the critical force range is within the force range given by 375 pN to 400 pN.
In some embodiments, a molecular sensor comprises an oligomeric machine, wherein the molecular sensor is configured to bind with one or more analytes and wherein binding with one or more analytes modulates the stochastic resonance of the oligomeric machine.
In some embodiments, the molecular sensor is configured to bind with one or more analytes by hydrogen bonding and/or hydrophobic interactions.
In some embodiments, binding with one or more analytes induces folding of the oligomeric machine.
In some embodiments, the spontaneous vibrations of the oligomeric machine stops upon binding with one or more of the one or more analytes.
In some embodiments, the stochastic resonance of the oligomeric machine stops upon binding with one or more of the one or more analytes.
In some embodiments, the stochastic resonance of the oligomeric machine transforms in to spontaneous vibrations upon binding with one or more of the one or more analytes.
In some embodiments, one or more of the one or more analytes comprise a small molecule, an amino acid, a saccharide, a hormone, an oligomer, a peptide, a metabolic product, a coordinating group, an ion, an aromatic group, a hydrogen bonding donor, and/or a hydrogen bonding acceptor.
In some embodiments, one or more of the one or more analytes are chosen from ATTO-390, tryptophan, estradinol, and triiodothyronine.
In some embodiments, binding of the one or more analytes is detected spectroscopically.
In some embodiments, binding of the one or more analytes is detected by an increased or decreased FRET signal.
In some embodiments, ta molecular sensor is used for the detection of one or more analytes in a solution.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described herein, although methods and materials similar or equivalent to those described herein can be used in practice or testing of embodiments of the present disclosure. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting. The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of,” and “consisting essentially of” the embodiments or elements presented herein, whether explicitly set forth or not. The conjunctive term “or” may include any and all combinations of one or more listed elements associated by the conjunctive term. For example, the phrase “an apparatus comprising a or b” may refer to an apparatus including a where b may be not present, an apparatus including b where a may be not present, or an apparatus where both a and b are present. The phrases “at least one of a, b, . . . , and n” or “at least one of a, b, . . . , n, or combinations thereof” are defined in the broadest sense to mean one or more elements selected from the group comprising a, b, . . . , and n, that is to say, any combination of one or more of the elements a, b, . . . , or n including any one element alone or in combination with one or more of the other elements, which may also include, in combination, additional elements not listed. The terms “first,” “second,” “third,” and the like, as used herein, do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The term “substantially,” as used herein, represents the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” may be also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue. The term “at least one bending location or one hinge location” refers to at least one position of co-joinder between the at least two oligomeric modules that allow the at least two oligomeric modules to predictably flex relative to each other about the bending or hinge location.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 62/949,800, filed on Dec. 18, 2019, the contents of which are incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/001069 | 12/17/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62949800 | Dec 2019 | US |