The invention generally relates to labeling machines, and relates in particular to labeling machines that require that containers, such as bottles, to be labeled are at some point oriented in consisted orientations for processing. Such processing may, for example, involve applying a label or an outsert to a container in a particular location with respect to the container. As used herein, the term outsert generally means any single sheet, folded or booklet bound article that is intended to be applied to an article such as a container for providing information to a purchaser of the article. For example, the information may include dosage information for a medication contained within the container, or conflicting medication information for a medication, or medication conditions requirements information etc.
For example, following the application of a label in a labeling machine, a container such as a bottle may continue to rotate or may migrate on a container conveyor. If subsequent processing steps are required (such as the application of a second label or an outsert), the actions taken to apply the initial label as well as any subsequent movement may adversely affect the processing of the containers. Moreover, many conventional automated label application systems either stop while each container is processed, or continuously feed containers along a conveyor, requiring that the processing steps do not significantly change the spacing (pitch) of the containers.
There is a need for an economical and efficient system that labels containers and provides the labeled containers at high speeds in a specific and consistent desired orientation with respect to the direction of movement of the conveyor. A subsequent labeling operation may include applying a second label or outsert to the container, wherein the second label or outsert is applied to the container, centered in an area that is not covered by the primary label. While systems that will optically analyze a labeled container to locate and orient such containers may be developed, such systems would require further processing steps as well as further complex machinery and processing.
Further, it is desirable to provide a labeling system that may be easily adjusted to provide for the application of different labels to a variety of containers in different runs. Since different labels and different containers will result in the labeled containers being provided at different orientations with respect to the direction of movement of the conveyor, there is a need for a system for orienting the containers with respect to the direction of movement of the conveyor.
The bottle pitch for a rotary labeling machine, for example, will always be constant. Rotary labeling machines take the bottles off of the primary (liner) conveyor, for example, using a star-wheel, and place them into a rotating turret with a number of bottle rotating stations that clamp individual bottles in place from the top and bottom, allowing each bottle to be rotated independently of the other as needed for orienting.
Once processed by the labeling machine, the bottles are placed back on the primary conveyor using another star-wheel. A limitation of certain prior art rotary labeling systems is that the rotations are generated through cams, and the cams must be changed to generate different motion profiles as would be required to orient different label and container combinations.
Other prior art rotary labeling machines employ a servo-motor on each bottle rotating station within the turret, allowing much more flexibility than using cams. Either way however, the cost and complexity of a rotary labeling machine is much higher than that of using a linear labeling machine.
Certain oscillating pressure station machines also will label bottles and inherently orient the label, as will other methods of wiping down the leading and trailing edges of the label, such as using chaser rollers for trailing label edges, and wipers for leading edges, all while the pitch stays constant. In general, the primary label is initially applied to the side of the bottle (with reference to the direction of travel), such that the centerline of the label is applied to the centerline of the side of the bottle. In the case of a round bottle, only a short section of label on either side of the centerline may be initially adhered to the bottle.
A wiper may be used to apply both leading and side portions of the label, centered as described above. The rest of the label is applied in a subsequent operation, using rubber pads (typical for round containers) or bristle brushes (typical for rectangular containers) to press the label in place. A limitation for such systems, is the brush or pad travel distance that the subsequent operation may be able to accommodate. Generally, an increase in brush or pad stroke distance means a decrease in operating speed. Neither a brush or pad may reach much beyond 180 degrees of wrap on a round container.
There is a need therefore, for a labeling system that accurately and consistently provides labeled containers at a desired orientation with respect to a direction of movement of the conveyor. There is a need in particular, for a labeling system that can apply long labels to round bottles, and then provide the labeled bottles to a secondary processing stations such as an outsert application station. There is further a need for such a system that is efficient and economical to produce and use.
In accordance with an embodiment, the invention provides a method of orienting a container in a labeling system. The method includes the steps of: providing a plurality of containers on a conveyor wherein the containers and the conveyor are moving at a constant velocity VC; receiving a captured container of the plurality of containers between a first belt that is moving at a dynamic velocity VA and a second belt that is moving at a dynamic velocity VB, the first and second belts capturing opposing sides of a captured container while the captured container remains on the conveyor, wherein at the time of capturing the container between the first and second belts, VA, VB and VC are substantially equal to each other; applying a label to the container using the first and second belts by adjusting the velocities VA and VB; adjusting the orientation of the captured container by further adjusting the velocities VA and VB; and releasing the captured container from the first and second belts at the velocity VC on the conveyor, wherein at the time of releasing the container from between the first and second belts, VA, VB and VC are substantially equal to each other.
In accordance with another embodiment, the invention provides a method of labeling and orienting a container in a labeling system. The method includes the steps of: providing a plurality of containers on a conveyor wherein the containers and the conveyor are moving at a constant velocity VC; feeding a label toward an area between the first belt and the second belt such that an exposed adhesive side of the label may be applied to the captured container between the first belt and the second belt; receiving a captured container of the plurality of containers between a first belt that is moving at a dynamic velocity VA and a second belt that is moving at a dynamic velocity VB, said first and second belts capturing opposing sides of a captured container while the captured container remains on the conveyor, wherein at the time of capture, VA, VB and VC are substantially equal to each other; adjusting the velocities of VA and VB to rotate the captured container so as to cause the label to become applied to the captured container; adjusting the orientation of the captured container by adjusting the velocities VA and VB; and releasing the captured container from the first and second belts, wherein at the time of releasing the captured container, VA, VB and VC are substantially equal to each other.
In accordance with a further embodiment, the invention provides a labeling and orienting system for labeling containers on a conveyor and for orienting the containers on the conveyor. The system includes a first belt assembly including a first belt that is moving at a dynamic velocity VA and a second belt assembly including a second belt that is moving at a dynamic velocity VB, the first and second belts being positioned to capture opposing sides of a captured container while the captured container remains on the conveyor. The system also includes means for feeding a label toward area between the first belt and the second belt such that an exposed adhesive side of the label may contact the captured container; and label application and orientation means for adjusting the velocities of VA and VB to rotate the captured container so as to cause the label to become attached to the captured container and for adjusting the orientation of the captured container by adjusting the velocities VA and VB., wherein VA and VB are each substantially equal to VC when the container is captured between the first belt and the second belt, and again when the captured container is released from the first belt and the second belt.
The following description may be further understood with reference to the accompanying drawings in which:
The drawings are shown for illustrative purposed only.
In accordance with an embodiment, the invention provides a labeling and container orientation system as well as a method operation of such a system that reduces mass and therefore inertia of the moving parts of the system for very high dynamic response of the belts that are used to rotate the container. Systems of certain embodiments of the invention also provide that the inertia of the drive motors that control the orientation belts closely match the driven load inertia so as to provide a very high dynamic response of the belts.
As shown in
A silicone coated release liner 40 carries adhesive backed labels 42 over a peel plate 44 that is proximate the first belt 20 near the idler pulley 24. As the release liner 40 with labels 42 are drawn over the peel plate 44, the labels peel away from the release liner 40, and the adhesive side of the labels 42 contact containers. In the system 10, each container is received by the first and second belt assemblies and is pinched between the first and second belts at the same time that a label is fed between the container and the first belt, causing the label to stick to the container.
With further reference to
The labels may enter the labeling and orientation system either in flag-on or roll-on mode. In flag-on mode, the adhesive side of the label first contacts the container, and the non-adhesive side of the label is then received against the first belt. In roll-on mode, the non-adhesive side of the label is first contacted against the first belt, and the adhesive side of the label subsequently contacts the container.
The first belt assembly 16 may also include a first guide plate 60 and the second belt assembly 18 may include a second guide plate 62 that cooperate to guide and stabilize the containers 14 as they leave the first and second belts 20, 30. In certain embodiments, as further shown in
A belt controller 68 (shown in
Upon entry into the labeling and orientation system, the belt 20 on the same side as the label peel plate matches the motion of the incoming label, as produced by the label application portion of the machine. The opposing belt 30 may have a motion profile that decreases in speed, stopping or even running in the reverse direction for a short time, before matching the conveyor speed and the container at the exit of the orientation system. At the point of exit from the orientation system, each container remains upright and the containers are each provided in a desired orientation with respect to the direction of movement of the conveyor. At all times, therefore, the containers are maintained at the same spacing (pitch) at the entrance and exit of the labeling and orientation system; they do not slip at all with respect to the conveyor. So, while VC is constant but VA and VB are non-constant, at all times:
V
C=(VA+VB)/2
During the time therefore, of capturing a container between the first and second belts, VA, VB and VC are substantially equal (which includes exactly equal) to each other, and at the time of releasing the container from the first and second belts, VA, VB and VC are again substantially equal (which includes exactly equal) to each other.
Further, at all times, each container remains centered along the centerline 64 of the conveyor as shown in
As shown diagrammatically in
ω=(VA−VB)/D
For example, a label first contacts a container and the container is then rotated at a rate ω until the label is fully applied. Then container then continues rotating to the starting point where the label first contacted the container. Now, to orient the container to a desired orientation for application of a second label or an outsert, the container is then rotated a distance of L/2. So, the total distance of rotation is given by πD+L/2.
If the time to rotate the angle θ is t, it is known that θ=ωt. Since ω=(VA−VB)/D, it is known that:
The belt linear velocities may then be determined as:
V
A
=V
0
+at
VB−V0 at
wherein V0 is the initial velocity and a is the acceleration. Note that the second belt turns in the opposite direction as the first belt at this point in time. Substituting for VA and VB, it is known that:
which becomes:
Solving for a provides:
With reference again to
To determine the acceleration of the belts, it may then be determined that:
which may be simplified to:
Since there is no slippage between the center of the container and the conveyor, the arc length L is equal to the linear distance traveled by the belt.
By maintaining both belts as having matched acceleration and deceleration, the velocities of the two belts always sum to VC, so the pitch of the containers is never lost. At certain times, the velocity of the second (or back belt) will be negative, so the belt is moving in a reverse direction with respect to the conveyor. To calculate the acceleration required for VA, the total distance that a bottle must rotate, is again, provided by πD+L/2. The bottle pitch P (e.g., 6 inches) must be greater than the distance Y (e.g., 5.5 inches) between the pulley wheels 24 and 26 to ensure that only one bottle at a time is between the belts 20 and 30. In accordance with an example therefore, if the production rate is 220 bottles per minute, it may be determined that:
The time that velocities of the first and second belts match is provided by:
t
M
=V
C=0.25 inches/22 inches/sec.=0.114 sec.
wherein M is a distance of travel (e.g., 0.25Y) with matched belt speeds.
Since the acceleration time is the distance that the conveyor travels during acceleration and deceleration, it may be determined that:
The acceleration required is therefore, provided by:
Since the acceleration of the belts is split equally, the deceleration rate for the first belt is the negative of the acceleration rate. The second belt has an acceleration and deceleration that is equal but opposite the acceleration and deceleration of the first belt.
The first belt (the wrapping belt) may have movement profile as shown in
The second belt (the backing belt) may have a movement profile as shown in
The first belt may have a dispenser movement profile as shown in
The first belt dispenser movement profile (as shown in
The first dispenser therefore has three modes of operation. The first is a roll-on mode with label orientation. The second is a roll-on mode with no label orientation, and the third is a flag-on mode.
The roll-on mode of operation may be used when label wrapping & orientation is required. This mode will perform the initial label wrapping and then it will rotate the bottle so that when it exits the system, the label gap on the bottle will be positioned in a specific orientation. The roll-on mode with no label orientation mode of operation may be used when only label wrapping is required. This mode will perform the label wrapping process, but will not orient the bottle. The flag-on mode of operation may be used to attach a label onto a bottle without requiring the label to be wrapped onto the bottle.
Those skilled in the art will appreciate that numerous modifications and variations may be made to the above disclosed embodiments without departing from the spirit and scope of the present invention.