Systems and methods for orthopedic repair

Information

  • Patent Grant
  • 11471199
  • Patent Number
    11,471,199
  • Date Filed
    Wednesday, October 7, 2020
    4 years ago
  • Date Issued
    Tuesday, October 18, 2022
    2 years ago
Abstract
According to some embodiments, an implant for correcting a deformity in or near a joint of a subject includes an implant body having an internal lumen, a suture side hole or window extending through a wall of the implant body and providing access to the internal lumen through an exterior of the implant body, a tension assembly comprising a first bone anchor and a second bone anchor, wherein the first and second bone anchors are configured to be placed on opposite sides of the implant body, and an adjustable suture loop coupling the first bone anchor to the second bone anchor, wherein at least a portion of the at least one adjustable suture loop is positioned within the internal lumen of the implant body.
Description
FIELD

This application relates generally to implants for the repair of orthopedic deformities. More specifically, the application relates to devices and methods for stabilizing, supporting and compressing adjacent bones (e.g., phalanges) to eliminate motion and promote fusion.


BACKGROUND

Bone or joint fusion surgery (e.g., arthrodesis) can be performed to relieve arthritis pain in the ankles, wrists, fingers, thumbs, spine and/or other joints. In arthrodesis, two bones on each end of a joint are fused, eliminating movement along the joint. Joint fusion surgery can be used in patients whose joints have eroded or have been destroyed or disfigured by osteoarthritis, rheumatoid arthritis, other forms of arthritis and/or other diseases or conditions (e.g., hammer toe). While a fused joint loses flexibility, it can provide benefits with respect to bearing weight, stability, reduction of pain and the like.


SUMMARY

According to some embodiments, an implant for correcting a deformity (e.g., hammer toe, contracted toe, mallet toe, claw toe or related orthopedic deformities or conditions of the foot or hand, deformities resulting from osteoarthritis, rheumatoid arthritis, other inflammatory diseases, accidents, generalized joint pain and/or other joint diseases) comprises an implant body comprising an internal lumen extending from a first end to a second end of the implant body, wherein the implant body having a wall that defines one or more internal lumens. In some embodiments, the implant body comprises a suture side hole or window extending through the wall of the implant body, wherein the suture side hole or window is positioned between the first and second ends of the implant body, and wherein the suture side hole or window provides access to the at least one internal lumen through an exterior of the implant body. In some embodiments, the implant further comprises a tension assembly comprising a first bone anchor (and/or another type of bone engaging member) and a second bone anchor (and/or another type engaging member), wherein the first and second bone anchors are configured to be placed on opposite sides of the implant body when the implant is assembled for use. In some embodiments, the tension assembly further comprises at least one adjustable suture loop coupling, directly or indirectly, the first bone anchor to the second bone anchor, wherein at least a portion of the at least one adjustable suture loop is positioned within the internal lumen of the implant body. In some embodiments, at least a portion of the suture loop is routed or otherwise positioned outside the body. In some embodiments, the suture loop comprises a suture line. In other embodiments, the suture loop comprises an elastomeric member or component. In some embodiments, the elastomeric member or component does not comprise a suture. In some embodiments, the at least one adjustable suture loop comprises at least one suture tail or free end that extends through the suture side hole and to an exterior of the implant body, wherein, upon deployment and fixation of the first and second bone anchors within bone bores of a subject and upon the application of tension to the at least one suture tail in a direction away from the implant body, a tension between the first and second bone anchors is increased and/or maintained (e.g., to bring adjacent bones secured to the implant closer and/or in contact with one another).


According to some embodiments, one or more both of the first and second bone anchors comprise an outer anchor tube and an insert, the anchor tube defining a longitudinal channel that receives the insert. In some embodiments, the outer anchor tube of the first and second bone anchors comprises a plurality of fingers, barbs or other engagement members. In one embodiment, such fingers, barbs or other engagement members are arranged radially at least partially around the outer anchor tube, wherein the fingers are configured to engage bone at an implantation site (e.g., bone bore). In some embodiments, at least one of the first and second bone anchors comprises an eyelet or securement element, wherein a portion of the at least one adjustable suture loop traverses through the eyelet or securement element to secure the at least one adjustable suture loop to the corresponding bone anchor. According to some embodiments, the implant body comprises a rigid, semi-rigid and/or flexible structure. In some embodiments, the implant body comprises one or more rigid, semi-rigid and/or flexible materials. In one embodiment, the implant body comprises one or more of the following: a polymeric material (e.g., polyether ether ketone or PEEK), a metal or alloy (e.g., stainless steel), an elastomeric material (e.g., rubber) and/or any other natural or synthetic material.


According to some embodiments, the implant additionally comprises a positioning element located along the implant body, the positioning element being configured to facilitate adjustment of the implant body within corresponding bone bores of a subject once the implant has been located therein. In some embodiments, the positioning system is incorporated with the tension system. In one embodiment, the positioning system includes at least a portion of the suture loop that comprises the tension system. In other embodiments, the positioning system is separate and distinct from the tension system.


According to some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or system, wherein the at least one knotless construct or system includes a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop to create at least one locking or friction section or portion. In some embodiments, the at least one locking or friction section or portion of the knotless suture system permits a surgeon to create and maintain tension in the implant. In one embodiment, the tension created and maintained within the implant using the knotless system does not require a surgeon to tie the suture system or otherwise secure the system separately from the knotless configuration. According to some embodiments, at least one of the first and second bone anchors comprises an eyelet or securement element, wherein a portion of the at least one adjustable suture loop traverses through the eyelet to secure the at least one adjustable suture loop to the first and second bone anchors. According to some embodiments, the implant body comprises a rigid, semi-rigid and/or flexible structure. In some embodiments, the implant body comprises one or more rigid, semi-rigid and/or flexible materials. In one embodiment, the implant body comprises one or more of the following: a polymeric material (e.g., polyether ether ketone or PEEK), a metal or alloy (e.g., stainless steel), an elastomeric material (e.g., rubber) and/or any other natural or synthetic material.


According to some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or system, the at least one knotless construct or system comprising a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop, wherein each of the first and second bone anchors comprises an eyelet or securement element, wherein a portion of the at least one adjustable suture loop traverses through the eyelet to secure the at least one adjustable suture loop to the first and second bone anchors. In some embodiments, the implant body comprises a polymer or other rigid, semi-rigid and/or flexible material (e.g., metal, elastomeric material, etc.). In some embodiments, the cross-sectional shape of the implant body is hexagonal or other polygonal shape (e.g., triangular, square or rectangular, pentagonal, octagonal, etc.).


According to some embodiments, the implant further comprises a sliding knot formed by the at least one adjustable suture loop, wherein the sliding knot is maintained within the interior lumen of the implant body. In some embodiments, an outer dimension (e.g., diameter or other cross-sectional dimension) of the sliding knot is greater than the diameter or other cross-sectional dimension of the suture side hole or window.


According to some embodiments, the implant body comprises at least one polymeric material, e.g., polyether ether ketone (PEEK), another polymeric material, etc. In other embodiments, the implant body comprises a metal or alloy (e.g. stainless steel, brass, etc.), an elastomeric material (e.g., rubber) and/or any other natural or synthetic materials, either in addition to or in lieu of at least one polymeric material. In some embodiments, the implant body comprises both a polymeric material (e.g., PEEK) and a metal or alloy (e.g., Nitinol, stainless steel, etc.).


According to some embodiments, at least one of the first and second bone anchors comprises a plurality of deflectable fingers, barbs or other expandable elements or members configured to engage bone at an implantation site. In some embodiments, at least one of the first and second bone anchors comprises an eyelet or securement element (e.g., positioned so that it faces the adjacent implant body), wherein a portion of the at least one adjustable suture loop traverses through the eyelet or securement element to secure the at least one adjustable suture loop to the first and second bone anchors.


According to some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or design, wherein the at least one knotless construct comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


According to some embodiments, the cross-sectional shape of the implant body is polygonal (e.g., hexagonal, triangular, square or rectangular, pentagonal, octagonal, decagonal, etc.). In other embodiments, the cross-sectional shape of the implant body is at least partially circular, oval, curved, irregular and/or otherwise non-linear.


According to some embodiments, a length of the implant body is between 15 and 20 mm (e.g., 15, 16, 17, 18, 19, 20 mm). In other embodiment, the implant body is longer than 20 mm (e.g., 20-25 mm, 25-30 mm, 30-40 mm, 40-50 mm, more than 50 mm, etc.) or shorter than 15 mm (e.g., 10-15 mm, 5-10 mm, 0-5 mm, etc.). In some embodiments, an outer cross-section dimension (e.g., diameter) of the implant body is between 2 and 5 mm (e.g., 2, 3, 4, 5 mm). In other embodiments, the outer cross-section dimension (e.g., diameter) of the implant body is less than 2 mm (e.g., 0-0.5, 0.5-1, 1-1.5, 1.5-2 mm, etc.) or greater than 5 mm (e.g., 5-6, 6-7, 7-8, 8-9, 9-10, 10-15, 15-20 mm, more than 20 mm, etc.).


According to some embodiments, the implant body comprises at least one bend or angle along its length. In some embodiments, a bend or angle along the implant body helps provide a natural shape to the joint being treated (e.g. fused). In some embodiments, the angle or bend to the implant body is about 0 to 30 degrees (e.g., 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18, 18-19, 19-20, 21-22, 22-23, 23-24, 24-25, 25-26, 26-27, 27-28, 28-29, 29-30 degrees, etc.). In some embodiments, the bend or angle along the implant body is greater than 30 degrees (e.g., 30-35, 35-40, 40-50 degrees, greater than 50 degrees, etc.).


According to some embodiments, the at least one adjustable suture loop comprises polyethylene and/or another polymeric material. In some embodiments, at least a portion of the suture loop is routed or otherwise positioned outside the body. In some embodiments, the suture loop comprises a suture line. In other embodiments, the suture loop comprises an elastomeric member or component. In some embodiments, the elastomeric member or component does not comprise a suture. In some embodiments, the at least one suture loop comprises a flexible and/or resilient material.


According to some embodiments, a proximal and/or distal portion of the implant body (e.g., along either side of a joint or other point of fusion) is configured to extend across two or more bones (e.g., phalanges). Thus, in some embodiments, an implant body is configured to span across three or more bones.


According to some embodiments, method of correcting a deformity in or near a joint of a subject (e.g., hammer toe, contracted toe, mallet toe, claw toe or related orthopedic deformities or conditions of the foot or hand, deformities resulting from osteoarthritis, rheumatoid arthritis, other inflammatory diseases, accidents, generalized joint pain and/or other joint diseases) comprises positioning a first bone anchor to an implant into a first bore located in a proximal bone (e.g., proximal phalange) of the subject, positioning a second bone anchor of the implant into a second bore located in a distal bone (e.g., proximal or intermediate phalange) of the subject, deploying the first and second bone anchors so that the first and second bone anchors engage adjacent bone tissue, positioning a proximal end of the implant body into the first bore of the proximal bone, positioning a distal end of the implant body into the second bore of the distal bone and manipulating the at least one suture tail of the at least one adjustable suture loop to increase a tension between the first and second bone anchors. In some embodiments, increasing a tension between the first and second bone anchors creates compression between the proximal and distal bone to promote fusion.


According to some embodiments, manipulating the at least one suture tail of the at least one adjustable suture loop comprises moving the at least one suture tail away from the implant body. In some embodiments, the suture tail or free end is routed at least partially between the outside of the implant body and the inside of the bone bore, such that the suture tail or free end is positioned through a bore to the joint and/or through a longitudinal opening of the bone opposite of the joint.


According to some embodiments, the method further includes moving the implant body further within the first bore or the second bore (e.g., proximally and/or distally) prior to manipulating the at least one suture tail. In some embodiments, moving the implant body further within the first bore or the second bore comprises manipulating a positioning element of the implant body. In one embodiment, the positioning element includes the at least one suture tail of the at least one adjustable suture loop. In other embodiments, the positioning element is separate and distinct from the tension system of the implant.


According to some embodiments, the method further comprises preparing adjacent surfaces of the joint prior to implanting the implant therein, wherein preparing adjacent surfaces of the joint comprises resecting bone tissue (e.g., using a rasp to at least partially remove bone and/or cartilage tissue along the bone(s) adjacent the targeted joint) and/or drilling the first and second bores with in the bones. In some embodiments, the method further includes providing at least one graft material and/or other bone-fusion promoting material or components at or near the joint, before, during or after implantation of the implant within the targeted joint.


According to some embodiments, deploying the first and second bone anchors comprises radially expanding a plurality of deflectable fingers, barbs or members of each bone anchor. In one embodiment, the at least one adjustable suture loop comprises at least one knotless construct or design, wherein the at least one knotless construct or design comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


According to some embodiments, a method of correcting a deformity in or near a joint of a subject (e.g., hammer toe, contracted toe, mallet toe, claw toe or related orthopedic deformities or conditions of the foot or hand, deformities resulting from osteoarthritis, rheumatoid arthritis, other inflammatory diseases, accidents, generalized joint pain and/or other joint diseases) comprises positioning a first bone anchor of an implant into a first bore located in a proximal bone of the subject, wherein the implant comprises an implant body having an internal lumen, a suture window extending through a wall of the implant body, the suture window providing access to the internal lumen through an exterior of the implant body. In some embodiments, the implant further comprises a tension assembly having the first bone anchor and a second bone anchor, wherein the first and second bone anchors are located on opposite sides of the implant body. In one embodiment, the tension assembly further comprises at least one adjustable suture loop coupling the first bone anchor to the second bone anchor, wherein at least a portion of the at least one adjustable suture loop is positioned at least partially within the internal lumen of the implant body, the at least one adjustable suture loop further comprising at least one suture tail that extends through the suture window and to an exterior of the implant body. In some embodiments, the method further includes positioning the second bone anchor of the implant into a second bore located in a distal bone of the subject and deploying the first and second bone anchors so that the first and second bone anchors engage adjacent bone tissue of the proximal and distal bones. In some embodiments, the method additionally comprises positioning a proximal end of the implant body into the first bore of the proximal bone, positioning a distal end of the implant body into the second bore of the distal bone and applying tension to the at least one suture tail of the at least one adjustable suture loop to create compression between the proximal and distal bone to promote fusion.


According to some embodiments, applying tension to the at least one suture tail of the at least one adjustable suture loop comprises moving the at least one suture tail away from the implant body. In some embodiments, the method further includes moving the implant body further within the first bore or the second bore prior to manipulating the at least one suture tail. In one embodiment, moving the implant body further within the first bore or the second bore comprises manipulating a positioning element of the implant body. In some embodiments, positioning element includes the at least one suture tail of the at least one adjustable suture loop. In some embodiments, the method further comprises preparing adjacent surfaces of the joint prior to implanting the implant therein, wherein preparing adjacent surfaces of the joint comprises resecting bone tissue along the joint and drilling the first and second bores.


According to some embodiments, deploying the first and second bone anchors comprises radially expanding a plurality of deflectable fingers of each bone anchor. In some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or design, wherein the at least one knotless construct or design comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


According to some embodiments, an implant for correcting a deformity in or near a joint of a subject comprises an implant body comprising a lumen extending from a first end to a second end of the implant body, wherein the implant body comprises a window extending through a wall of the implant body, the window being positioned between the first and second ends of the implant body, and wherein the window provides access to the internal lumen through an exterior of the implant body. In some embodiments, the implant further includes a tension assembly comprising a first bone anchor, a second bone anchor and at least one adjustable suture loop coupling the first bone anchor to the second bone anchor, wherein the implant body is positioned between the first and second bone anchors, and wherein at least a portion of the at least one adjustable suture loop is positioned within the internal lumen of the implant body. In some embodiments, the at least one adjustable suture loop comprises at least one suture tail that extends to an exterior of the implant body through the window, wherein, upon deployment and fixation of the first and second bone anchors within bone bores of a subject and upon the application of tension to the at least one suture tail in a direction away from the implant body, a tension between the first and second bone anchors is increased, and wherein the at least one adjustable suture loop comprises at least one knotless construct, the at least one knotless construct comprising a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


According to some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or system, the at least one knotless construct or system comprising a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop, wherein each of the first and second bone anchors comprises an eyelet or securement element, wherein a portion of the at least one adjustable suture loop traverses through the eyelet to secure the at least one adjustable suture loop to the first and second bone anchors. In some embodiments, the implant body comprises a polymer or other rigid, semi-rigid and/or flexible material (e.g., metal, elastomeric material, etc.). In some embodiments, the cross-sectional shape of the implant body is hexagonal or other polygonal shape (e.g., triangular, square or rectangular, pentagonal, octagonal, etc.).


According to some embodiments, the implant further comprises a sliding knot formed by the at least one adjustable suture loop, wherein the sliding knot is maintained within the interior lumen of the implant body. In some embodiments, an outer dimension (e.g., diameter or other cross-sectional dimension) of the sliding knot is greater than the diameter or other cross-sectional dimension of the suture side hole or window.


According to some embodiments, the implant body comprises at least one polymeric material, e.g., polyether ether ketone (PEEK), another polymeric material, etc. In other embodiments, the implant body comprises a metal or alloy (e.g. stainless steel, brass, etc.), an elastomeric material (e.g., rubber) and/or any other natural or synthetic materials, either in addition to or in lieu of at least one polymeric material.


According to some embodiments, at least one of the first and second bone anchors comprises a plurality of deflectable fingers, barbs or other expandable elements or members configured to engage bone at an implantation site. In some embodiments, at least one of the first and second bone anchors comprises an eyelet or securement element (e.g., positioned so that it faces the adjacent implant body), wherein a portion of the at least one adjustable suture loop traverses through the eyelet or securement element to secure the at least one adjustable suture loop to the first and second bone anchors.


According to some embodiments, the at least one adjustable suture loop comprises at least one knotless construct or design, wherein the at least one knotless construct comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


According to some embodiments, the cross-sectional shape of the implant body is polygonal (e.g., hexagonal, triangular, square or rectangular, pentagonal, octagonal, decagonal, etc.). In other embodiments, the cross-sectional shape of the implant body is at least partially circular, oval, curved, irregular and/or otherwise non-linear.


According to some embodiments, a length of the implant body is between 15 and 20 mm (e.g., 15, 16, 17, 18, 19, 20 mm). In other embodiment, the implant body is longer than 20 mm (e.g., 20-25 mm, 25-30 mm, 30-40 mm, 40-50 mm, more than 50 mm, etc.) or shorter than 15 mm (e.g., 10-15 mm, 5-10 mm, 0-5 mm, etc.). In some embodiments, an outer cross-section dimension (e.g., diameter) of the implant body is between 2 and 5 mm (e.g., 2, 3, 4, 5 mm). In other embodiments, the outer cross-section dimension (e.g., diameter) of the implant body is less than 2 mm (e.g., 0-0.5, 0.5-1, 1-1.5, 1.5-2 mm, etc.) or greater than 5 mm (e.g., 5-6, 6-7, 7-8, 8-9, 9-10, 10-15, 15-20 mm, more than 20 mm, etc.).


According to some embodiments, the implant body comprises at least one bend or angle along its length. In some embodiments, a bend or angle along the implant body helps provide a natural shape to the joint being treated (e.g. fused). In some embodiments, the angle or bend to the implant body is about 0 to 30 degrees (e.g., 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 17-18, 18-19, 19-20, 21-22, 22-23, 23-24, 24-25, 25-26, 26-27, 27-28, 28-29, 29-30 degrees, etc.). In some embodiments, the bend or angle along the implant body is greater than 30 degrees (e.g., 30-35, 35-40, 40-50 degrees, greater than 50 degrees, etc.).


According to some embodiments, the at least one adjustable suture loop comprises polyethylene and/or another polymeric material. In some embodiments, at least a portion of the suture loop is routed or otherwise positioned outside the body. In some embodiments, the suture loop comprises a suture line. In other embodiments, the suture loop comprises an elastomeric member or component. In some embodiments, the elastomeric member or component does not comprise a suture. In some embodiments, the at least one suture loop comprises a flexible and/or resilient material.


According to some embodiments, the implant body and/or the bone anchors, are provided in a variety of sizes and shapes to accommodate for different indications, applications, subject and/or the like. Such implant bodies and/or anchors can be provided to the surgeon or other user in a kit. For example, a kit can include implant bodies of varying lengths and/or cross-sectional dimensions. In some embodiments, a kit includes bone anchors of different diameters or sizes, implants of varying cross-sectional dimensions and/or lengths and suture loops of varying designs, sizes, lengths and/or other properties. Thus, a surgeon or other practitioner can advantageously customize a procedure by combining various components. This can help provide for a more successful treatment procedure by using components that are best sized, shaped and/or otherwise configured for a specific application or use. In other embodiments, the implant body is configured be cut or otherwise reshaped in order to modify the implant for a particular use or application. Thus, is some embodiments, the implant body is provided in one or more lengths that can be shortened. In some embodiments, the implant body comprises materials and/or a configuration that is configured to be cut or otherwise shortened. For example, in some embodiments, the implant body can include segments that are scored, perforated, undermined and/or otherwise configured to be cut along certain predetermined locations.


According to some embodiments, a method of correcting a deformity in or near a joint of a subject comprises providing an implant, wherein the implant comprises an implant body having an internal lumen, a window extending through a wall of the implant body, the window providing access to the internal lumen, wherein the implant further comprises a tension assembly having a first bone anchor and a second bone anchor, wherein the implant body is positioned generally between the first and second bone anchors. In some embodiments, the tension assembly further comprises at least one adjustable suture loop coupling the first bone anchor to the second bone anchor, wherein at least a portion of the at least one adjustable suture loop is positioned at least partially within the internal lumen of the implant body, the at least one adjustable suture loop further comprising at least one suture free end that extends through the window and to an exterior of the implant body. In some embodiments, the second bone anchor of the implant is configured to be positioned into a second bore located in a distal bone of the subject, wherein the first and second bone anchors are configured to be radially expanded so that the first and second bone anchors engage adjacent bone tissue of the proximal and distal bones. In one embodiment, a proximal end of the implant body is configured to be positioned within the first bore of the proximal bone, wherein a distal end of the implant body is configured to be positioned within the second bore of the distal bone. In some embodiments, upon an application of tension to the at least one suture free end of the at least one adjustable suture loop is configured to create compression between the proximal and distal bone to promote fusion by creating and sustaining tension between the first and second bone anchors.


According to some embodiments, the implant body is configured to be selectively moved further within the first bore or the second bore (e.g., distally or proximally) by manipulating a positioning element of the implant body. In some embodiments, the positioning element includes the at least one suture free end of the at least one adjustable suture loop. In some embodiments, the first and second bone anchors are configured to be expanded by radial deployment of a plurality of deflectable fingers of each bone anchor. In one embodiment, the at least one adjustable suture loop comprises at least one knotless construct, wherein the at least one knotless construct comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.


The methods summarized above and set forth in further detail below describe certain actions taken by a practitioner; however, it should be understood that they can also include the instruction of those actions by another party. Thus, actions such as “positioning a proximal or distal end of the implant body” include “instructing positioning a proximal or distal end of the implant body.”





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the present application are described with reference to drawings of certain embodiments, which are intended to illustrate, but not to limit, the various inventions disclosed herein. It is to be understood that the attached drawings are for the purpose of illustrating concepts and embodiments of the present application and may not be to scale.



FIG. 1 illustrates a skeletal system of a human foot with an implant according to one embodiment implanted to treat a joint deformity;



FIG. 2A illustrates a cross-sectional view of an embodiment of an orthopedic repair implant;



FIG. 2B illustrates a cross-sectional view of the implant body of the implant of FIG. 2A;



FIG. 3 illustrates a perspective side view of components of the tension assembly of the implant depicted in FIG. 2A;



FIG. 4 illustrates a cross-sectional view of a bone anchor included the implant of FIG. 2A;



FIG. 5 illustrates a cross-sectional view of an orthopedic repair implant according to another embodiment;



FIG. 6 illustrates a perspective side view of components of the tension assembly of the implant depicted in FIG. 5;



FIG. 7 illustrates a perspective view of the implant of FIG. 5;



FIG. 8 illustrates a cross-sectional view of an orthopedic repair implant according to another embodiment;



FIG. 9 illustrates a perspective side view of the implant depicted in FIG. 8;



FIG. 10 illustrates a partial cross-sectional view of one embodiment of an orthopedic repair implant;



FIG. 11 illustrates one embodiment of a bone anchor that can be incorporated into the implant depicted in FIG. 10;



FIGS. 12A and 12B illustrate different views of an orthopedic repair implant according to another embodiment;



FIG. 12C illustrates an orthopedic repair implant according to another embodiment;



FIGS. 13-18 are schematic illustrations of sequential steps of a method of treating a foot joint deformity using an orthopedic repair implant according to one embodiment; and



FIGS. 19 and 20 illustrate one embodiment of a knotless suture system configured for use in the implant depicted in FIG. 12A.





DETAILED DESCRIPTION

The discussion and the figures illustrated and referenced herein describe various embodiments of an implant, as well as various tools, systems and methods related thereto. A number of these devices and associated treatment methods are particularly well suited to treat hammer toe, contracted toe, mallet toe, claw toe or related orthopedic deformities or conditions of the foot. Such implants are configured to secure to adjacent phalanges or other bones in a subject's foot or hand (or to another anatomical area of the subject, e.g., wrists, cervical and/or other portions of the spine, other small joints, etc.) and to promote fusion or arthrodesis by reliably maintaining the adjacent bone surfaces in compressive contact with each other over time. Such embodiments can be used to treat deformities resulting from hammer toe, osteoarthritis, rheumatoid arthritis, other inflammatory diseases, accidents, generalized joint pain and/or other joint diseases. However, the various devices, systems, methods and other features of the embodiments disclosed herein may be utilized or applied to other types of apparatuses, systems, procedures and/or methods, including arrangements that have non-medical benefits or applications.



FIG. 1 illustrates a skeletal system 5 of a human foot F with an implant 100 according to an embodiment disclosed in the present application in an implanted state to treat a joint deformity (e.g., hammer toe) or another condition (e.g., other joint disease, fracture, etc.) of a subject. As shown and as discussed in greater detail herein, the implant 10 can be configured span a joint J (e.g., a proximal interphalangeal joint, other joint of the foot or hand, wrist, spine, etc.) and can include a proximal portion 17 disposed and secured within a proximal bone PB (e.g., a proximal phalange), and a distal portion 22 disposed and secured within a distal bone DB (e.g., an intermediate phalange). According to some embodiments, an implant 100 can help re-align adjacent bones (e.g., across a joint) or bone portions (e.g., across a fracture), such as, for example, proximal and intermediate phalanges PB, DB. Thus, the implant 10 can assist in permanently fusing and/or otherwise stabilizing a joint J. In addition, as described in further detail herein, the implant 10 can be configured to urge the adjacent bones or bone portions (e.g., proximal and intermediate phalanges, PB, DB) toward one another and apply compression to the joint J (e.g., interphalangeal joint), thereby further enhancing joint stability and encouraging rapid arthrodesis or fusion of the bones at the joint 15.


According to some embodiments, an implantable orthopedic repair implant comprises two or more elements, including, for example, an implant body and a tension assembly, which includes one or more bone anchors and/or other bone engaging members or features. The implant body can include a rigid tubular support element that provides stability to help join two adjacent bones. In some embodiments, the implant body comprises one or more rigid polymers, other biocompatible, bioresorbable and/or osteoinductive materials and/or any other materials. In one embodiment, the implant body and/or any other portion of an implant can include one or more radiolucent portions or components. In some embodiments, the implant body comprises one or more metals (e.g., stainless steel), alloys, other natural and/or synthetic materials, elastomeric materials and/or the like. In other embodiments, the implant body can comprises one or more flexible and/or semi-rigid materials, either in lieu of or in addition to rigid materials, as desired or required.


According to some embodiments, the implant body comprises one or more internal lumens, at least partially through which one or more portions of a tension assembly can be positioned. In some embodiments, the implant body includes ribs or similar features that extend at least partially along the length of the body in a longitudinal direction. Such ribs or other features can help improve the rigidity of the implant, prevent rotational movement once embedded into bone and/or provide one or more other advantages or benefits to the implant. In some embodiments, the cross-sectional shape of the implant body can vary, as desired or required for a particular application or use. For example, the cross-sectional shape can be circular, oval, triangular, square or other rectangular, pentagonal, hexagonal, octagonal, other polygonal, irregular and/or the like. In one embodiment, the implant body comprises a hexagonal cross-sectional shape that takes advantage of the exterior corners formed by adjacent sides of the body to help secure the implant body within an implant site. Such configurations can help prevent rotation or other movement in a target anatomical location (e.g., joint) after implantation.


As described in greater detail herein, the tension assembly can include an adjustable suture loop that is secured to bone anchoring elements (e.g., bone anchors, other bone-engaging members, etc.) positioned along opposite sides (e.g., on either side of a sliding knot). The suture loop, sliding knot and/or one or more other components of the tension assembly can extend at least partially within the implant body (e.g., within a lumen of the implant body). Such embodiments of an implant advantageously permit surgeons to place anchors into adjacent bones (or bone portions), position the implant body into such bones (or bone portions) and subsequently manipulate a tension assembly to draw the bones or bone portions to each other. Thus, as described in greater detail herein, the suture loop of the tension assembly can help draw two bones anchors toward one another to create compression between the two adjacent bones. The support, stability and compression help promote healing and bone growth and thereby enhance a fusion or arthrodesis procedure.


According to some embodiments, the tensioning of the suture loop of the tension assembly includes pulling on one or more suture tails or ends of the suture assembly. In turn, this can shorten the suture loop between the opposing bone anchors to draw on or both of the anchors closer to the implant body that is generally positioned between the anchors. In some embodiments, the bone anchors can comprises one or more fingers, barbs and/or other engaging members to help secure the bone anchor to adjacent tissue of the subject's bone. As discussed with reference to several embodiments disclosed herein, the implant body can include a suture hole or window that runs through a side wall (e.g., in some arrangements, orthogonally, perpendicularly, diagonally or at some desired angle relative to a lumen of the implant body). Such a side hole or window can form an internal wall which acts as an internal knot pusher for the sliding knot of the tension assembly. The side hole or window can advantageously permit one or more strands of the suture system to exit the interior lumen of the implant body so as to permit a surgeon or other practitioner to access and manipulate the suture system during an implantation procedure. Thus, in some embodiments, the outer diameter (or other cross-sectional dimension) of the sliding knot is larger than the suture side hole or window to ensure the sliding knot remains advantageously fixed within the lumen of the implant body.



FIG. 2A illustrates a cross-sectional view of one embodiment of an orthopedic implant 100 that comprises an implant body 110 and a tension assembly 120. As shown in FIGS. 2A and 2B, the implant body 110 can include a generally tubular shape which defines an inner lumen 130 extending longitudinally through the implant body 110 (e.g., along a central or major longitudinal axis). In some embodiments, the cross-sectional shape of the implant body can vary, as desired or required for a particular application or use. For example, the cross-sectional shape can be circular, oval, triangular, square or other rectangular, pentagonal, hexagonal, octagonal, other polygonal, irregular and/or the like. In one embodiment, the implant body comprises a hexagonal cross-sectional shape that takes advantage of the exterior corners formed by adjacent sides of the body to help secure the implant body within an implant site. Such configurations can help prevent rotation or other movement in a target anatomical location (e.g., joint) after implantation. The lumen 130 can extend form first and second open ends 140, 150 of the implant body 110. In some embodiments, the implant body 110 comprises one or more rigid polymeric materials, such as, for example, polyether ether ketone (PEEK) polyphenylene, polysulfone, polyethylene, and the like. However, in other embodiments, the implant body includes one or more other materials, including other rigid materials and/or semi-rigid and/or flexible materials, as desired or required by a particular application or use, such as for example, other polymeric materials, metals, alloys, other synthetic or natural materials and/or the like.


With continued reference to FIGS. 2A and 2B, the implant body 110 can include a suture side hole or window 160 that extends from the inner lumen 130 to the exterior of the implant body 110. Such a side hole or window 160, which permits access to the inner lumen 130 from the exterior of the implant body, can be orthogonal or perpendicular to the axis of the implant body and the lumen extending therethrough. Alternatively, the hole or window 160 can have any other angle (e.g., between 0 and 90 degrees, such as, for example, 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90 degrees, angles between the foregoing, etc.) relative to the lumen, as desired or required. As shown in FIG. 2A, the implant body 110 can include one or more ribs or other features or members 180 that extend at least partially (e.g., continuously or intermittently) along the length of the implant body 110 in a longitudinal direction. Such features or members 180 can help improve the rigidity of the implant body, prevent rotational movement of the implant body after implantation into a subject and/or provide one or more other benefits or advantages. In other embodiments, however, the implant body does not comprise such ribs or other external features. Instead, the implant body can comprise a polygonal cross-sectional shape (e.g., hexagonal, pentagonal, octagonal, square or other rectangular, triangular, etc.) along at least a portion of its length. Such a configuration can assist to prevent or reduce the likelihood that the implant will rotate or otherwise undesirably move or shift during or after implantation.



FIG. 3 illustrates one embodiment of a tension assembly 120 that can be incorporated into a bone fusion implant, such as the one depicted in FIGS. 2A and 2B, 10, 12 or any other implant disclosed herein. In some embodiments, the tension assembly 120 comprises a suture loop 200 that includes one or more strands or ends of a suture tail 210. The suture tail 210 can pass through the suture side hole or window 160 of the implant body and form a sliding knot 220 which is held in at or near a junction of the body's inner lumen 130 and the suture side hole or window 160. In other embodiments, as disclosed herein with reference to the implant of FIG. 12, the suture system can include one or more knotless systems (e.g., located within a lumen of the implant body) to assist in providing and maintaining the necessary tension to the implant. Such a knotless design can be incorporated into any of the embodiments disclosed herein or variations thereof. In some embodiments, the outer dimension (e.g., outer diameter or other cross-section dimension) of the knot 220 is larger than the diameter or other cross-sectional dimension of the suture side hole or window 160 to ensure that the knot 220 remains within the lumen. In some embodiments, the side hole or window 160 and the inner lumen 130 are configured to retain the knot 220 in a fixed position relative to the implant body 110. In some embodiments, the suture side hole or window 160 is offset from a central axis of the implant body 110 to facilitate implantation.


According to some embodiments, as illustrated, for example, in FIG. 2A, the suture loop 200 extends from the knot 220 through the inner lumen 130 beyond the first end 140 of the implant body 110. The suture loop 200 can be looped through a first eyelet or other securement feature (e.g., loop, recess, etc.) 230 of a first bone anchor 240 back through the first end 140. In addition, the suture loop 200 can extend beyond the second end 150 to a second eyelet 250 of a second bone anchor 260. The suture loop 200 can terminate at a suture terminus 270 at or near the knot 220. In such an arrangement, as the suture tail 210 can be selectively pulled away from the implant body 110 to provide tension to the tension assembly 120 in order to bring the first and second bone anchors 240, 260 towards one another (e.g., in a direction of the implant body 110). In some embodiments, the suture system comprises two or more suture tails 210, as desired or required, to provide more robust control to the manipulation of the suture loop 200 and/or the bone anchors 240, 260 (and/or other bone engaging components) coupled thereto. In some embodiments, the knot 220 is configured so that when opposing forces are applied on the knot (e.g., in the longitudinal direction), the knot tightens to ensure that the first and second anchors 240, 260 travel towards the implant body 110. As discussed in greater detail herein, once radially deployed within corresponding bone bores, the bone anchors 240, 260 can be configured to affix to the corresponding bone bores (e.g., at least in one direction) to ensure that the tensile forces generated by the tension assembly 120 are maintained and that adjacent bones (e.g., across a joint) are moved into compressive contact with one another to promote fusion.


In some embodiments, the suture loop 200 is adjustable when the sliding knot 220 is held in a fixed position, for example within the inner lumen 130 adjacent to the suture side hole or window 140. As the suture tail 210 is tensioned or pulled away from the implant body 110, the tensile force between the bone anchors 240, 260 is increased. This can cause the distance between the bone anchors to be advantageously shortened. The size and shape of the orthopedic implant 100 can be modified, alternated or otherwise configured or reconfigured according to a variety of applications or uses. For example, the implant 100 can be adapted for fusing bones in the hand or foot. Thus, the resulting implant may be smaller than an adaptation of the system for implantation in another portion of a subject's anatomy (e.g., wrist, cervical or other portion of a subject spine or neck). Accordingly, in some embodiments, the length, thickness, size, shape, other dimensions and/or other properties of the implant body 110, bone anchors 240, 260, tension assembly (e.g., suture loop) and the like can be adapted or customized according to a corresponding implant location and application.



FIG. 4 illustrates one embodiment of a bone anchor 240, 260 that may be incorporated into an implant, such as those depicted in FIGS. 2A and 2B, 10 and 12A and/or any other configuration disclosed herein or variation thereof. As shown, the bone anchor 240, 260 can include an outer anchor tube 300 and an insert 310. In one embodiment, the anchor tube 300 defines a longitudinal channel 320 that is sized and/or otherwise configured to receive the insert 310. The anchor tube 300 can include a plurality of barbs, fingers or other engaging members 330 arranged radially at least partially about the anchor tube 300. Each barb or other engaging member 330 can extend from the anchor tube 300 outwardly and can be configured to engage bone at the implantation site for securing the bone anchor. In some embodiments, the barbs or other engaging members 330, once expanded, help form an interference or friction fit between the anchor and the adjacent bone surface. In some embodiments, the insert comprises one or more polymeric materials (e.g., PEEK), other rigid or semi-rigid materials (e.g. metals, alloys, etc.) and/or the like. Further, in some embodiments, the anchor tube 300 and one or more of its components (e.g., the barbs, fingers or other engaging members 330) comprise a shape memory materials (e.g., Nitinol), other metals or alloys, polymeric materials, other resilient materials and/or any other rigid, semi-rigid and/or flexible material, as desired or required.


With continued reference to FIG. 4, the insert 310 can include a head 340 and a shank 350 extending longitudinally from the head through the anchor tube 300. In some embodiments, an eyelet or other securement feature, element, member or device 230, 250 is positioned at or near the end of the shank 350 (e.g., opposite the head 340). The eyelet or securement element 230, 250 can advantageously permits the suture loop 200 to traverse through eyelet 230, 250 to secure the suture system to the anchor and to provide the necessary tension to the implant (e.g., as the suture tail 210 is tensioned by a surgeon or other practitioner). Other types of features or components configured to secure to the suture loop 200 can be used, either in lieu of or in addition to eyelets.


For any of the implant embodiments disclosed herein, including without limitation those depicted in FIGS. 2A and 2B, 10, 12A to 12C, etc., other types of bone anchors can be incorporated into the implant design, such as, for example, screw-in bone anchors with various thread arrangements, other types of interference or friction fit bone anchors and/or the like. Additional details regarding the bone anchors illustrated herein are provided in U.S. Patent Publication No. 2013/0211451, filed as U.S. patent application Ser. No. 13/673,626 on Nov. 9, 2012 and published on Aug. 15, 2013, the entirety of which is incorporated by reference herein and explicitly made a part of this specification.


According to some embodiments, during an arthrodesis or fusion procedure, portions of a pair of adjacent bones selected to be fused (e.g., the adjacent bones of a joint) are resected and a bore hole is drilled into each the adjacent bones such that the bores are substantially parallel and opposing each other when an implant is positioned therein. Thus, in some embodiments, it may be necessary to account for the amount of correction that is desired in a deformed joint in order to drill the bores in the adjacent bones. In some embodiments, in order to enhance the resulting fusion procedure, the adjacent bones are resurfaced at least partially along the surfaces against which the bones will contact one another. For example, a rasp or other bone removal device can be used to remove cartilage and/or bone tissue of one or both bones that will be fused. Holes or openings can be created in each of the bones so that the anchors, the implant body and other components or portions of the implant can be secured therein. Accordingly, the size of the holes, bores or other openings created in the bones can be carefully selected depending on the size of the implant to be used. In addition, the bores or other openings can be made large enough to accept a cannula or other delivery tools or instrumentation that will be used in the fusion procedure. According to any of the implantations and fusion methods and procedures disclosed herein, preparation of the targeted bone surfaces (e.g., decertification, drilling, etc.) can be performed, at least in part, using the tools and other devices disclosed in U.S. Provisional Patent No. 61/887,132, filed Oct. 4, 2013 and titled CIRCULATING BONE RASP, the entirety of which is hereby incorporated by reference herein and made a part of this specification.


In some embodiments, during insertion, the bone anchors 240, 260 are positioned within a cannula of a delivery system such that the barbs or other bone engaging members of the anchor are deflected radially inwardly (e.g., toward the longitudinal axis of the bone anchor 240, 260). The cannula can be withdrawn proximally to release the bone anchor 240, 260 therefrom. Once released from the cannula, the barbs or other engaging members of the bone anchor 240, 260 can self-expand radially outwardly to bear against and engage the adjacent bone tissue of the bore or opening. This helps secure the bone anchor 240, 260 therein. As discussed, for any of the embodiments disclosed herein or variations thereof, the barbs or other engaging members or portions of a bone anchor incorporated into an implant can comprise Nitinol and/or other shape memory materials that are configured to self-expand. In other configurations, one or more portions of a bone anchor can be actively expanded (e.g., using a radially expansion member). In some embodiments, the hole or bore is drilled deep enough into the target bone (e.g., phalanges of a subject's foot or hand, cervical vertebra, etc.) to accept the entire bone anchor 240, 260 and a portion of the implant body 110. However, as discussed in greater detail herein, the depth, diameter and/or other properties of the bone bores can be carefully selected and customized depending on the implant and corresponding fusion procedure implemented.


As discussed herein, the suture side hole or window 140 of the implant body 110 can be offset from the central axis of the implant body. In some embodiments, the bore hole that accepts the second bone anchor 260 can be longer or deeper to accept a greater portion of the implant body 110. Therefore, the bore hole which accepts the first bone anchor 140 can be relatively short or shallow, as it is configured to receive a shorter portion of the implant body 110. However, as described herein, the implant body 110 can be configured to be advantageously moved relative to the bore holes after initial placement in a subject. In this manner, for example, a greater portion or length of the implant body can be translated or moved into the distal bone to provide for more stable and reliable implantation across a joint. In some embodiments, the suture side hole 140 is positioned in the implant body 110 such that it coincides with an interface that is formed between the adjacent bones once they are pulled together. In other embodiments, the suture side hole or window 140 can be positioned within the distal and/or proximal bone bore or opening, as desired or required. The offset arrangement of the suture side hole 140 can facilitate implantation and reduce procedure time.


According to some embodiments, the first and second bone anchors 240, 260 and the implant body 110 are arranged in a cannula of a delivery tool in a pre-arranged manner, such that each of the bone anchor 240, 260 can be introduced into the corresponding bores or holes, either sequentially or simultaneously. Once the bone anchors, the implant body and/or any other components of the implant have been properly positioned with in the target bone bores, the cannula, delivery tools and/or other instrumentation can be withdrawn. As discussed in greater detail herein, the surgeon or other practitioner can manipulate the tension system (e.g., one or more tails or ends of a suture system) to properly position the implant within the subject and to create and maintain the necessary tension and resulting compressive forces between the adjacent bones to promote fusion. The ability to create and maintain tension in the suture system (and thus, to maintain compressive forces between adjacent bones) provides for enhanced and improved fusion of the bones. It also ensures that the surgeon or other practitioner can create and increase the necessary compression within the targeted joint after initial implantation of the implant body.


With reference to FIG. 5, another embodiment of an implant 400 is illustrated. As with the system depicted in FIG. 2A, the implant 400 can include an implant body 410 and a tension assembly 420. In some embodiments, the implant body 410 comprises a rigid, semi-rigid and/or flexible structure that defines one or more inner lumens 430 that extend longitudinally through the implant body 410. As with other implant body configurations disclosed herein, the implant body 410 can include a polygonal (e.g., hexagonal, octagonal, pentagonal, etc.) cross-sectional shape. However, the implant body 410 can include any other cross-sectional shape, such as, for example, square, rectangular, triangular, circular, oval, irregular and/or the like, as desired or required. As shown, the implant 400 can include one or more anchors at either end to help secure the system to a subject's bone tissue. In addition, in some embodiments, the implant body 410 comprises a suture side hole or window 470 that extends from the inner lumen 430 to the exterior of the implant body 410, thereby allowing external access to the inner lumen 430.



FIG. 6 illustrates one embodiment of a tension assembly 420 that can be incorporated into the implant of FIG. 5 or any other implant disclosed herein. In the depicted embodiment, the tension assembly 420 includes one bone anchor 500 that is separate from the implant body 410. As shown in FIGS. 5 and 7, a second bone anchor 460 is integrated into the implant body 410, thereby forming a unitary structure with the implant body. In some embodiments, the implant body 410 and the second bone anchor 460 can be releasably or permanently secured to one another, as desired or required. Similar to other embodiments disclosed herein, a tail or free end 510 of a suture loop 520 can be configured to pass through a side hole or window 470 of the implant body 410. In some embodiments, the hole or window 470 is sized, shaped and otherwise adapted to secure a knot 530 (e.g., a sliding knot) of the suture system in place within the inner lumen 430 of the implant body 410.


With continued reference to FIGS. 5-7, a suture loop 520 can extend from the knot 530 through the inner lumen 430 of the implant body. Since the opposing bone anchor 460 is integrated into the implant body 410, the suture loop 420 may not pass through a second eyelet. Rather, in some embodiments, the suture loop passes through only a single eyelet or securement element 540 (e.g., the eyelet or securement element of a first bone anchor 500) and is fixedly terminated within the implant body 410 at the suture terminus 550. The sliding knot 530 can be formed such that when opposing forces are applied on the sliding knot 530 (e.g., in the longitudinal direction), the first bone anchor 500 is moved closer to the implant body and the integrated anchor and the knot tightens to ensure that the anchor 500 and the implant body 410 remain fixed relative to one another.


Unlike other configurations disclosed herein that include two bone anchors 240, 260 that are physically separated from the implant body 110, the implant 400 embodiment illustrated in FIGS. 5-7 includes a single independent bone anchor 500 and a bone anchor 460 which is integrated into the implant body 410. In some embodiments, such an arrangement can reduce the complexity of the implant 400, improves a rigidity and robustness of a planned orthopedic fusion and/or provide one or more additional benefits or advantages. In other embodiments, however, it may be preferred or desired to include separate anchors, based on the particular application or use of the implant.



FIGS. 8 and 9 illustrate another embodiment of an implant 600 that can be used to treat hammer toe or another orthopedic deformity or condition of a subject. As shown, the implant 600 can comprise an implant body 610 and a tension assembly 620. The implant body 610 can include a rigid, semi-rigid and/or flexible structure that can have a generally tubular shape. In some embodiments, the cross-sectional shape of the implant body 610 can be polygonal (e.g., hexagonal, octagonal, pentagonal, square or rectangular, triangular, etc.), circular or oval, irregular and/or any other shape, as desired or required. As disclosed herein with reference to other embodiments, the depicted implant body 610 can include one or more lumens 630 that extend longitudinally through it (e.g., along the central or major axis of the implant body 610, along another, non-central axis, etc.) to form at least one open end 640. Further, the implant body 610 can include a side hole or window 650 that extends from the inner lumen 630 to the exterior of the implant body 610 and that provides access to the inner lumen 630 from the exterior of the implant body 610.


With continued reference to the cross-sectional view of FIG. 8, one end of the implant body 610 can include an expandable element 670 that is configured to be selectively radially expanded to help anchor the implant body 610 within a bore or hole of a targeted bone. As shown, at one end of the lumen 630, the end opposite from the open end 640, the expandable element 670 can include a longitudinal channel 675 that is configured to receive an expanding insert that expands the expandable element 670. In some embodiments, such an insert can be larger in diameter or other cross-sectional dimension than the longitudinal channel 675. Accordingly, when the expanding insert is pulled into the longitudinal channel 675, the expanding element 670 is forced at least partially radially outwardly (e.g., as depicted schematically by the dashed lines in FIG. 8) to engage, at least partially, the inner wall of the bone bore or opening hole into which it is positioned. Thus, the expandable element 670 can help create an interference or friction fit between the implant body 610 and the adjacent bone tissue. As noted herein with reference to the embodiment depicted in FIGS. 5-7, such a configuration can replace one of the separate bone anchors, and instead, integrate a similar one engaging member or feature into the implant body itself. Such a design can be incorporated into any of the implant embodiments disclosed herein, including, without limitation, the implants of FIG. 10 or 12A-12C.


As illustrated in FIGS. 8 and 9, the tension assembly 620 can comprise a suture loop 680 having a suture tail or free end 690 that passes through the suture side hole or window 650. As with other embodiments disclosed herein, the depicted suture loop can be configured to form a knot 700 (e.g., sliding knot) that is held in place within the inner lumen 430 adjacent to the side hole or window 650. The suture loop 680 can extend from the knot 700 through the inner lumen 630 and beyond an open end 640 of the implant body 610. The suture loop 680 can be looped through an eyelet or other securement element or feature 720 of a bone anchor 730 and back through the open end 640. In some embodiments, the loop 680 extends and is secured to an integrated bone anchor portion 670a that is integrated with the implant body 610 (e.g., along an opposite end of the body 610). The suture loop 680 can terminate at a suture terminus 760 at or near the knot 700. As discussed above, a wedge or other insert 750 located or positioned within the expandable element 670 of the integrated bone anchor portion 670a can be used as an expanding insert to at least partially force the expandable element 670 radially outwardly so that at least a portion of the integrated bone anchor portion 670a engages and secures to adjacent bone tissue of a subject. In some embodiments, the knot 700 is formed such that when opposing forces are applied on the knot 700 (e.g., in the longitudinal direction), the knot tightens to ensure that the bone anchors or other bone engaging components or features of the implant 730, 670a remain fixed relative to one another.


With continued reference to FIGS. 8 and 9, in some embodiments, as the suture tail 690 is tensioned or pulled away from the implant body 610, the suture loop 680 forces the separate bone anchor 730 towards the open end 640 of the implant body 630 and pulls the wedge or other expanding insert 750 into the longitudinal channel 675 causing the expandable element 670 to at least partially radially expand outwardly. In some embodiments, e.g., such as those illustrated in FIGS. 5-9, since a bone anchor or other bone engaging feature is integrated into the implant body, the entire implant body forms an interference or friction fit with the bore or hole of the targeted bone structure.



FIG. 10 illustrates a cross-sectional view of another embodiment of an implant 1000 used to treat hammer toe and/or another orthopedic deformity or condition. As shown, the implant 1000 can include an implant body 1110 and a tension assembly 1120 at least partially routed therethrough. As with other embodiments disclosed herein, the tension assembly 1120 can comprise one or more bone anchors or other bone engaging components or elements. The bone anchors or other bone engaging elements or components can be separate from or integrated with the implant body 1110, as desired or required. In some embodiments, the implant 1000 can further include a positioning element 1125 that is used to selectively move (e.g., translate along the longitudinal axis of the implant body 1110) the implant body 1110. As discussed in greater detail herein, such movement of the implant body can occur after initial positioning of the implant body within the corresponding bone bores or openings.


According to some embodiments, the implant body 1110 can include a rigid, semi-rigid and/or flexible structure having a polygonal (e.g., hexagonal, square, other rectangular, triangular, pentagonal, octagonal, etc.) cross-sectional shape. In other embodiments, the implant body 1110 can include a different cross-sectional shape, such as, for example, circular, oval, square, rectangular, triangular, other polygonal, irregular and/or the like. In some embodiments, the use of an implant body 1110 having a polygonal shape helps ensure that the implant body will not rotate or otherwise move undesirably after completion of an implantation procedure. For example, the corners formed by the polygonal shape can provide for improved engagement with adjacent bone surfaces to reduce the likelihood of rotation or other movement when the implant is subject to various forces or moments post-implantation.


With continued reference to FIG. 10, the implant body 1110 can comprise an inner lumen 1130 that extends along a longitudinal axis of the implant body 1110 from its open proximal end 1140 to its distal end 1145. In other embodiments, the inner lumen 1110 extends only partially within the implant body 1110. In addition, the implant body can include more than one lumen (e.g., 2, 3, 4 lumens, more than 4 lumens, etc.), as desired or required.


With continued reference to FIG. 10, the implant body 1110 can include a suture side hole or window 1150 that extends from the inner lumen 1130 to the exterior of the implant body 1110. Although the implant body 1110 illustrated herein is shown as generally straight, in other embodiments, the implant body 1110 may be formed with a bend having a desired angle. In some embodiments, the angle can vary between 0 and 30 degrees (e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 degrees, values between the foregoing angle ranges, etc.), greater than 30 degrees (e.g., 30-40, 40-50, 50-60 degrees, greater than 60 degrees, etc.), etc. In some embodiments, such a bend or angle in the implant body 1110 can approximate the natural angle of the phalangeal bones adjacent the targeted joint (e.g., the proximal and intermediate phalanges of a subject's foot, other phalangeal bones of a subject's foot or hand, etc.). Such a bend can help position the subject's toes, fingers or other bones in a more proper alignment and orientation following implantation of an implant. In some embodiments, the implant comprises two or more bends or angles. In other embodiments, the implant body comprises a non-linear shape along one or more portions. For example, one or more sections of the implant body can include a rounded or curved shape, a sinusoidal shape, an irregular shape and/or the like.


In some embodiments, the implant body 1110 comprises one or more rigid, semi-rigid and/or flexible materials. For example, the implant body 1110 can include one or more polymers, metals (e.g., stainless steel), alloys, other biocompatible, bioresorbable and/or osteoinductive materials, radiolucent materials, elastomeric materials and/or any other material. In some embodiments, the implant body 1110 comprises polyether ether ketone (PEEK), polyphenylene, polysulfone, polyethylene, or other suitable polymeric materials.


According to some embodiments, the implant body 1110 can include one or more longitudinal projections or ribs (e.g., extending along an exterior of main implant body) that operate to enhance bone engagement, help resist rotational movement of the implant body 1110 in situ and/or provide additional advantages and benefits to the implant. Such ribs or projections can extend continuously or intermittently along the length of the implant body. Further, the ribs or projections can extend along certain circumferential locations of the implant body (e.g., along every 30, 45, 60, 90, 180 degrees, angles between the foregoing values, etc.). The ribs or projections 1110 can include any shape, size and configuration. For example, in some embodiments, the projections include a generally rectangular shape when viewed from the side, such that the distance by which the projection extends from the exterior surface of the main portion of the implant body is constant or generally constant along the length of the implant body. In other embodiments, however, the ribs or other projections can include a different shape (e.g., circular or oval, curved, fluted, sinusoidal, triangular, other polygonal, stepped, irregular, etc.). Thus, is some configurations, the peripheral extent of a rib or projection relative to the exterior surface of the main portion of the implant body (e.g., when viewed from a cross-section generally perpendicular to the longitudinal axis of the implant body) varies along the length of the rib or projection. Such ribs or projections can include one or more sharp surfaces or edges to provide enhanced engagement with adjacent bone tissue. In some embodiments, the radial extension distance of the ribs or projections is between 0 and 3 mm (e.g., 0-0.5, 0.5-1, 1-1.5, 1.5-2, 2-2.5, 2.5-3 mm, lengths between the foregoing values, more than 3 mm, etc.). In some embodiments, the radial extension distance of the ribs or projections is between 0 and 100% of the diameter or cross-sectional dimension of the main portion of the implant body (e.g., 0-5, 5-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-120, 120-140, 140-160, 160-180, 180-200%, percentages between the foregoing values, greater than 200%, etc.). Such ribs or other projections can be incorporated into any of the implant body designs disclosed herein or variations thereof. As noted herein, alternatively or in addition to such ribs or projections, the implant body can include a polygonal cross-sectional shape (e.g., hexagonal) that helps prevent the likelihood of rotation of the implant body post implantation.


With continued reference to FIG. 10, a pair of through-holes or openings 1165, 1166 can extend through the implant body 1110 to the inner lumen 1130. A positioning element 1125, which in the illustrated embodiment comprises a loop of suture material, can extend through the through-holes 1165, 1166 and can be accessible by a surgeon or other practitioner outside the implant body 1110. As discussed in greater detail herein, the positioning element 1125 can be used to adjust the position of the implant body 1110 relative to the bone structures during an implantation procedure, thereby facilitating the ease of implantation, enhancing the degree of stabilization provided by the implant 1000 to the corresponding bone structures and/or providing one or more other benefits and advantages. For example, the positioning element 1125 and the corresponding features of the implant body 1110 (e.g., the openings 1165, 1166 of the implant body 1110) can be used to advance the implant body deeper into a distal bore or opening after initial positioning. In some embodiments, the surgeon can manipulate the positioning element 1125 to apply a force in a desired direction. Thus, for example, the implant body (and, in some embodiments, an adjacent bone anchor) can be advantageously advanced, shifted or otherwise moved deeper into a corresponding bone bore (e.g., distal or proximal).


In the embodiment illustrated in FIG. 10, the positioning element 1125 comprises a suture loop extending through the through-holes 1165, 1166 to couple the positioning element 1125 to the implant body 1110. However, in other embodiments, the positioning element 1125 includes a different configuration or method of attachment to the implant body 1110, as desired or required. For example, in some embodiments, the positioning element 1125 can include one or more tabs, openings, other projections or recesses, other features or components, combinations of the foregoing and/or the like positioned along a portion of the implant body that can be used to move the implant body after the implant body has been initially positioned within one or more bone bores of a subject.


In some embodiments, the positioning element 1125 can include any flexible structure having the physical properties (e.g., tensile strength, durability, etc.) sufficient to overcome tensile forces applied by the surgeon to it to transfer such forces to the implant body in order to adjust the position of the implant 1000 during the particular procedure. In addition, in lieu of the through-holes or openings 1165, 1166 included in the illustrated embodiment, in other embodiments, the positioning element 125 can be attached to the implant body 1110 by other devices, techniques or methods, such as, for example, adhesives, mechanical fasteners, friction or interference fit connections, knots, pledgets and/or the like. Furthermore, while in the illustrated embodiment the implant 1000 includes a separate tension assembly 1120 and positioning element 1125, in other embodiments, the functionality of these components can be provided in a single suture assembly. For example, the tension system of FIGS. 12A-12C can be used both to create tension between the opposing bone anchors and to shift (or translate) the implant body relative to the distal and/or proximal bores after initial placement of the implant therein.


In the embodiment illustrated in FIG. 10, an expandable element 1170 is positioned along a distal end 1145 of the implant body 1110. The expandable element 1170, when at least partially radially expanded, can be used to engage the expandable element 1170 to adjacent bone tissue, and thereby, anchor the implant body 1110 within a targeted bore or opening. In some embodiments, the expandable element 1170 includes a longitudinal channel 1175 (e.g., along one or more interior portions) that is configured to at least partially accept a wedge or other insert 1178 therein. In some embodiments, such an insert or wedge include an outer diameter or cross-sectional dimension that is larger than the diameter or other cross-sectional dimension of the longitudinal channel 1175. Accordingly, in some embodiments, when the insert or wedge 1178 is pulled into the longitudinal channel, at least a portion of the expandable element 1170 deflects radially outwardly to engage adjacent bone tissue of the corresponding bore in which it is positioned. Thus, in some configurations, an interference or friction fit is created between the implant body 1110 and the bone itself upon radial expansion of the expandable element 1170 of the implant body 1110. Such a configuration can be incorporated into any of the implant embodiments disclosed herein or variations thereof.


As discussed in greater detail herein with reference to FIGS. 2A and 18, in other embodiments, an implant can include bone anchors (and/or other bone engaging members or components) that are separate and distinct from the implant body 1110. A positioning assembly can be incorporated into any of the implant embodiments disclosed herein or variations thereof. As discussed above, such a positioning assembly can include through-holes or openings through which a suture loop (or other flexible member) can be positioned. Alternatively, the positioning assembly can include a different configuration that enables a surgeon or other practitioner to selectively move the implant body of the implant after initial positioning within a target anatomical location (e.g., within opposing bores on either side of a joint, fracture, etc.).


With continued reference to FIG. 10, as with other embodiments disclosed herein, the tension assembly 1120 can comprise a suture loop 1180 having one or more suture tails or free ends 1190 that pass through a suture side-hole or window 1150 of the implant body 1110 and help form a sliding knot 120, knotless suture system and/or the like therein. In some embodiments, the knot 120 is securely held in place within the inner lumen 1130 of the implant body 1110 adjacent to suture side hole or window 1150, such that the position of the knot 120 does not move during use. As discussed in greater detail herein, the knot can be sized, shaped and otherwise configured to be retained within the lumen of the implant body 1110 during use. For example, the diameter or cross-sectional dimension of the knot can be larger than the diameter or cross-sectional dimension of the side-hole or window 1150 so that the knot cannot exit the lumen of the implant body. In some embodiments, the diameter or cross-sectional dimension of the knot is approximately 0 to 30% (e.g., 1, 2, 3, 4, 5, 5-10, 10-15, 15-20, 20-25, 25-30%, percentages between the foregoing values, less than 1%, etc.) larger or more than 30% larger (e.g., 30-40, 40-50, more than 50%, etc.) than the diameter or cross-sectional dimension of the side-hole or window 1150.


As shown in FIG. 10, the suture loop 1180 can extend from the formed knot 120 through the inner lumen 1130. In some arrangements, the suture loop 1180 is routed beyond the open end 1140 of the implant body 1110, positioned through an eyelet or other securement feature 1220 of a bone anchor 1230 and back through the open end 1140. The suture loop 1180 can continue through the inner lumen 1130 of the implant body 1110 and through an eyelet or other securement feature 1240 of the wedge or insert 1178. In some embodiments, the wedge or insert 1178 is configured to force the expandable element 1170 radially or laterally outwardly when moved into an interior portion of the expandable element 1170. This can cause the expandable element 1170 to at least partially engage adjacent bone of the target bore or hole in which the implant body 1110 is positioned. According to some arrangements, the knot 1200 is designed and configured such that when opposing forces are applied on the knot 1200 in the longitudinal direction (e.g., by selectively manipulating the suture tails or free ends 1190 of the suture assembly 1120), the knot tightens to apply and maintain tension between the bone anchor 1230 and the expandable element 1170 along the opposite end of the implant. As discussed herein with reference to FIGS. 2A and 12A-12C, the expandable element 1170 or other bone engaging portion that is integrated into the structure of the implant body 1110 can be separate and distinct from the implant body 1110. Accordingly, in some embodiments, two separate an opposing bone anchors can be used on either side of an implant body 1110.


According to some embodiments, as the suture tail or free end 1190 is tensioned or pulled away from the implant body 1110, the suture loop 1180 is tightened, thereby urging the bone anchor 1230 toward the open end 1140 of the implant body 1110. In some arrangements, manipulation of one or more of the tails or free ends of the suture loop 1180 can also radially expand or otherwise deploy the expandable element 1170 (or, in other configurations, a second bone anchor). For example, manipulation of a tail or free end of the suture loop can advance the wedge or insert 1250 at least partially into the longitudinal channel 1175 of the expandable element. Accordingly, the expandable element 1170 can be urged at least partially radially outwardly to engage bone tissue and secure the anchor within the corresponding bone bore. In some embodiments, a single tail or free end of the suture loop is manipulated to radially expand an expandable element 1170 (or other bone anchor) and to simultaneously apply tension between bone anchoring elements positioned on opposite ends of the implant (e.g., bone anchors, expandable elements, etc.). Alternatively, however, the suture loop 1180, the knot and/or other components of the tension assembly 1120 can be designed and otherwise configured to separately or individually deploy one or more anchoring members (e.g. anchors, expandable elements, etc.) and to apply tension to the implant.


As noted herein, according to some embodiments, such as the implant 1000 of FIG. 10, at least one bone anchor or bone engaging element 1170 is integrated into the implant body 1110. Thus, under such a configuration, the implant body 1110 can form an interference or friction fit with the bore hole within the selected bone, at least along the location of the implant body that includes the expandable element or other bone engaging features. Such embodiments can reduce the complexity of the implant, improve the rigidity and robustness of an orthopedic fusion procedure and/or provide additional benefits and advantages.


With continued reference to FIG. 10, the bone anchor 1230 can include an outer anchor tube 1300 and an insert 1310 disposed partially within the anchor tube 1300. The insert 1310 can include a head portion 1320 that contacts and bears upon an end of the anchor tube 1300. In some embodiments, the anchor tube 1300 includes a plurality of deflectable fingers or other engaging members 1330 that are configured to be deflectable radially inwardly when advanced through a delivery cannula and/or bone bore. Such fingers or engaging members 1330 can be biased radially outwardly when properly positioned within a bone bore, such that they can engage a surface of the bore to secure the bone anchor 1230 thereto. The eyelet or other securement member 1220 of the bone anchor can be coupled to the head portion 1320 of the insert 1310, such that when tension is applied to the eyelet or other securement member 1220 (e.g., via pulling of the suture loop 1180 that is attached to the eyelet or other securement member), such a tensile force is transmitted to the head portion 1320 and adjacent portions of the anchor.


In some embodiments, once an anchor 1230 is delivered and deployed within a bone bore and its fingers or engaging members assume a radially expanded orientation (e.g., as illustrated in FIG. 10), movement of the anchor 1230 in the direction of the implant body 1110 is prevented or limited. This can be due, at least in part, on the orientation of the fingers or bone engaging members 1330 relative to the direction of tension applied to the anchor. In some embodiments, the anchor comprises one or more biocompatible rigid, semi-rigid and/or flexible materials that provide the desired structural characteristics (e.g., strength, durability, flexibility, longevity, etc.) to the overall implant design. For example, in some embodiments, the insert 1310 of the anchor and/or the anchor tube 1300, including the deployable fingers or other engaging members extending therefrom, can include one or more polymeric materials (e.g., polyether ether ketone or PEEK, polyphenylene, polysulfone, polyethylene, etc.). In other embodiments, at least one or more of the components of the bone anchor 1230 comprise other materials, either in lieu of or in addition to suitable polymeric materials, that provide the desired properties to the anchor, such as, for example, metals or metal alloys (e.g., stainless steel, Nitinol or other shape memory materials, etc.), elastomeric materials (e.g., biocompatible rubbers) and/or the like. According to one embodiment, the insert 1310 of the anchor comprises PEEK and/or other polymeric materials, while the anchor tube 1300 comprises Nitinol, another shape memory material and/or another metal or alloy configured to at least partially radially expand (e.g., self-expand, with the assistance of a separate member, etc.) to engage adjacent bone tissue.


Additional details regarding the bone anchors illustrated herein are provided in U.S. Patent Publication No. 2013/0211451, filed as U.S. patent application Ser. No. 13/673,626 on Nov. 9, 2012 and published on Aug. 15, 2013, the entirety of which is incorporated by reference herein and explicitly made a part of this specification. In other embodiments, other bone anchor configurations can be employed. The bone anchor 1230 can include any configuration suitable to permit the bone anchor 1230 to be inserted into a bone bore, and to thereafter engage the bone bore surface so as to resist being pulled from the bone bore in the direction opposite the insertion direction (e.g., in the direction of the implant body). Such anchors (e.g., those discussed with reference to FIG. 10) can be incorporated into implant disclosed herein, such as, for example, without limitation, the implant of FIGS. 12A-12C.



FIG. 11 illustrates a side view of an alternative embodiment of a bone anchor 1390 that can be used in the implant 1000 in lieu of the bone anchor 1230 (or in any other implant design disclosed herein). As shown, the bone anchor 1390 includes an outer anchor tube 1400, an insert 1410, and an elastic member or portion 1415. The insert 1410 can include a head portion 1420 and the anchor tube 1400 that comprises a plurality of deflectable fingers or engaging members 1430 for contacting and engaging the bone surface of a bone bore when inserted and positioned therein. In addition, an eyelet or other securement feature 1220 can be secured to or incorporated into the head portion 1420.


With continued reference to FIG. 11, the bone anchor 1390 can comprise one or more elastic members 1415 to provide for a variable compressive force to the anchor tube 1400 when a tensile force is applied to the insert 1410 (e.g., via a suture loop mechanically coupled thereto). As shown, the elastic member 1415 can comprise a tube or other structure positioned between the head portion 1420 of the insert 1410 and an end 1440 of the anchor tube 1400. Thus, in some embodiments, when the fingers or other deployable members 1430 engage an adjacent bone surface and tension is applied to the eyelet or other securement feature 1220, the head portion 1420 of the insert 1410 can abut and bear upon the elastic member 1415. In turn, the elastic member can bear upon the end 1425 of the anchor tube 1400. In some embodiments, the elastic member 1415 comprises one or more elastic or semi-elastic materials, such as, for example, rubbers, other elastomers, polymeric materials, resilient metals and/or alloys, other resilient or compressible materials and/or the like. Accordingly, in such configurations, a variable compressive force can be applied to the anchor tube 1400 in response to a tensile force on the eyelet or other securement feature 1220. In addition, the elastic member 1415 can operate similar to a compression spring, such that it maintains a compressive force on the anchor tube 1400, even as tension in the eyelet or other securement feature 1220 is relaxed or eased. According to some embodiments, the elastic element 1415 can comprise a variety of biocompatible, elastomeric and/or other materials, such as, without limitation, silicone rubbers, polyisoprene, other elastomeric and/or resilient materials and/or the like. Such anchors (e.g., those discussed with reference to FIG. 11) can be incorporated into implant disclosed herein, such as, for example, without limitation, the implant of FIGS. 12A-12C.



FIGS. 12A and 12B illustrate another embodiment of an implant 1600 that can be used in a joint arthrodesis or fusion procedure to treat hammer toe or another orthopedic deformity. According to some embodiments, the implant 1600 comprises an implant body 1610 (having a proximal end 1612 and a distal end 1615), a pair of bone anchors 1618, 1619, and a tension assembly 1620. In some embodiments, the tension assembly 1620 comprises a suture system or construct that includes one or more strands of suture. In some embodiments, the implant body 1610 comprises a longitudinal lumen 1622 that extends to openings along the proximal and distal ends 1612, 1615 of the implant body 1610. In addition, as with other implant embodiments described herein, the suture or other component of the tension assembly 1620 can extend into the internal lumen of the implant body 1610 through a side-hole or window 1623 positioned along a portion of the implant body 1610. In some embodiments, such a side-hole or window is located along or near the middle of the implant body (e.g., generally between the proximal and distal ends 1612, 1615 of the implant body). However, in other embodiments, the side-hole or window can be located closer to the proximal end 1612 or the distal end 1615 of the implant body 1610, as desired or required for a particular application or use.


With continued reference to FIG. 12A, the tension assembly 1620 can comprise a pair of opposed suture loops 1625, 1630, each of which is connected to one of the bone anchors 1618, 1619 (e.g., via eyelets or other securement members 1635, 1640). In addition, the tension assembly 1620 can comprise one or more locking or friction elements or portions 1650, 1655 formed in the suture construct of the tension assembly 1620, and a pair of suture tails or ends 1660, 1665. As discussed in greater detail herein (e.g., with reference to the embodiments of FIGS. 19 and 20), the locking or friction elements or portions 1650, 1655 of the suture system can include portions in which a suture strand is routed through a portion of itself (e.g., through a cannulated portion of the suture) over a particular distance or length. Friction or other resistive forces created between the suture strand routed through an interior portion of itself (e.g., via an opening in the suture sidewall) over the length of such elements or portions 1650, 1655 can help prevent or reduce the likelihood of relative movement of the adjacent portions of the suture. In such a knotless construct, the resulting friction or interference fit created within the suture loop at these locations helps maintain the position of the suture tails or ends 1660, 1665 that are routed through the side-hole or window 1623 to the exterior of the implant body 1610, even when the suture tails or ends are subjected to a certain level of tension (e.g., when the surgeon pulls the suture ends to create tension within the tension assembly). Thus, each of the locking elements 1650, 1655 can include a knotless construct, in which a section suture is routed through one sidewall of the tubular suture material and extends within the tubular suture material for a pre-defined distance before exiting the sidewall. Accordingly, upon application of tension to the suture system by a surgeon, the tension can be applied to and advantageously maintained between the opposing anchors of the implant.


Although the implant body 1610 illustrated herein is shown as generally straight, in other embodiments, the implant body 1610 may be formed with a bend having a desired angle or shape. In some embodiments, the angle can vary between 0 and 30 degrees (e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 degrees, values between the foregoing angle ranges, etc.), greater than 30 degrees (e.g., 30-40, 40-50, 50-60 degrees, greater than 60 degrees, etc.), etc. In some embodiments, such a bend or angle in the implant body 1610 can approximate the natural angle of the phalangeal bones adjacent the targeted joint (e.g., the proximal and intermediate phalanges of a subject's foot, other phalangeal bones of a subject's foot or hand, etc.). Such a bend can help position the subject's toes, fingers or other bones in a more proper alignment and orientation following implantation of an implant. In some embodiments, the implant comprises two or more bends or angles. In other embodiments, the implant body comprises a non-linear shape along one or more portions. For example, one or more sections of the implant body can include a rounded or curved shape, a sinusoidal shape, an irregular shape and/or the like.


According to some embodiments, each tail or free end 1660, 1665 can be associated with a corresponding suture loop 1625, 1630. Thus, as discussed in greater detail herein, the surgeon can pull or otherwise manipulate the tails or free ends 1660, 1665 that extend to the exterior of the implant body 1610 to reduce or eliminate any slack in the corresponding suture loop 1625, 1630, and thus, provide a desired level of tension to the implant. For example, pulling of the tails or free ends can generate a tensile force between the two anchors 1618, 1619, resulting in compressing the adjacent bones in which the anchors are secured toward one another. Such a compressive force can help maintain contact between adjacent bone surfaces to facilitate in the arthrodesis or fusion process. Thus, applying tension to the suture tails 1660, 1665 allows the surgeon to selectively apply tension to the respective suture loops 1625, 1630, and thus, to the overall implant.


In other embodiments, the locking elements or portions 1650, 1655 of the suture loops include one or more other locking features, elements, designs or configurations (e.g., one-way knot constructs, separate components or devices that restrict relative movement between two adjacent portions of a suture strand, etc.). As discussed in greater detail herein, in the embodiment illustrated in FIG. 12A, the tension assembly 1620 can also be used as a repositioning element to adjust the axial or longitudinal position of the implant body 1610 during the implantation procedure. For example, once the implant body 1610 has been inserted within corresponding bores of proximal and distal bones (or proximal and distal portions of a bone, in a case of a fracture), the tension assembly 1620 can be used to move the implant body 1610 deeper into the proximal or distal bore, as desired or required. In some embodiments, for instance, a surgeon can manipulate the tails or free ends 1660, 1665 of the suture strands that pass through the side-hole or window 1623 of the implant body 1610 to accomplish the desired repositioning.


According to some embodiments, the implant body 1610 includes a rigid or semi-rigid structure having a hexagonal cross-sectional shape. In other embodiments, however, the implant body 1610 can include a different cross-sectional shape, such as, for example, circular, oval, square, rectangular, triangular, other polygonal, irregular and/or the like. In some embodiments, the use of an implant body 1110 having a polygonal shape helps ensure that the implant body will not rotate or otherwise move undesirably after completion of an implantation procedure. For example, the corners formed by the polygonal shape can provide for improved engagement with adjacent bone surfaces to reduce the likelihood of rotation or other movement when the implant is subject to various forces or moments post-implantation.


In some embodiments, the implant body 1610 comprises one or more biocompatible rigid, semi-rigid and/or flexible materials that provide the desired structural characteristics (e.g., strength, durability, flexibility, longevity, etc.) to the overall implant design. For example, in some embodiments, the implant body 1610 can include one or more polymeric materials (e.g., polyether ether ketone or PEEK, polyphenylene, polysulfone, polyethylene, etc.). In other embodiments, at least one or more of the components of the implant body 1610 comprise other materials, either in lieu of or in addition to suitable polymeric materials, that provide the desired properties to the anchor, such as, for example, metals or metal alloys (e.g., stainless steel, Nitinol or other shape memory materials, etc.), elastomeric materials (e.g., biocompatible rubbers) and/or the like. In some embodiments, the implant body comprises both a polymeric material (e.g., PEEK) and a metal or alloy (e.g., Nitinol, stainless steel, etc.).


According to some embodiments, the length of the implant body 1610 can be 5-50 mm (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 25-30, 30-35, 35-40, 40-45, 45-50 mm, lengths between the foregoing ranges, etc.). In other embodiments, the length of the implant body is less than about 5 mm (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 mm, lengths between the foregoing values, less than 0.5 mm, etc.). In one embodiment, an implant body 1610 used for repairing hammer toe in an adult subject is about 15 to 20 mm long (e.g., 15, 16, 17, 18, 19, 20 mm long).


In some embodiments, the outer cross-sectional dimension of the implant body 1610 can be 1-5 mm (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 mm, dimensions between the foregoing values, etc.). In other arrangements, the outer cross-sectional dimension of the implant body 1610 is less than 1 mm (e.g., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1 mm, dimensions between the foregoing values, less than about 0.1 mm, etc.) or greater than 5 mm (e.g., 5-10, 10-15, 15-20 mm, greater than 20 mm, etc.), as desired or required by a particular application or use.


The proximal and distal bone anchors 1618, 1619 included in the implant of FIG. 12A can be similar or identical to those discussed herein with reference to other embodiments, such as, for example, the anchor 1230 incorporated into the implant design of FIG. 10 or the bone anchor 1390 illustrated in FIG. 11. In some embodiments, the anchors comprise one or more biocompatible rigid, semi-rigid and/or flexible materials that provide the desired structural characteristics (e.g., strength, durability, flexibility, longevity, etc.) to the overall implant design. For example, in some embodiments, the insert of the anchor and/or the anchor tube, including the deployable fingers or other engaging members extending therefrom, can include one or more polymeric materials (e.g., polyether ether ketone or PEEK, polyphenylene, polysulfone, polyethylene, etc.). In other embodiments, at least one or more of the components of the bone anchor comprise other materials, either in lieu of or in addition to suitable polymeric materials, that provide the desired properties to the anchor, such as, for example, metals or metal alloys (e.g., stainless steel, Nitinol or other shape memory materials, etc.), elastomeric materials (e.g., biocompatible rubbers) and/or the like. According to one embodiment, the insert of the anchor comprises PEEK and/or other polymeric materials, while the anchor tube comprises Nitinol, another shape memory material and/or another metal or alloy configured to at least partially radially expand (e.g., self-expand, with the assistance of a separate member, etc.) to engage adjacent bone tissue.


Additional details regarding the bone anchors illustrated herein are provided in U.S. Patent Publication No. 2013/0211451, filed as U.S. patent application Ser. No. 13/673,626 on Nov. 9, 2012 and published on Aug. 15, 2013, the entirety of which is incorporated by reference herein and explicitly made a part of this specification. In other embodiments, other bone anchor configurations can be employed into the implant design illustrated in FIG. 12A. The bone anchors can include any configuration suitable to permit the bone anchors to be inserted into a bone bore, and to thereafter engage the bone bore surface so as to resist being pulled from the bone bore in the direction opposite the insertion direction (e.g., in the direction of the implant body).


With continued reference to FIG. 12A, in some embodiments, the outer diameter or cross-sectional dimension of the bone anchors 1618 is identical or similar to the outer cross-sectional dimension of the adjacent implant body 1610. However, in other arrangements, the outer diameter or cross-sectional dimension of the bone anchors 1618 can be greater than or smaller than the outer cross-sectional dimension of the adjacent implant body 1610. For example, the outer diameter or cross-sectional dimension of the bone anchors 1618 can be about 0-20% (e.g., 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10, 10-11, 11-12, 12-13, 13-14, 14-15, 15-16, 16-17, 18-19, 9-20%, percentages between the foregoing, etc.) larger or smaller than the outer cross-sectional dimension of the adjacent implant body 1610, as desired or required.


The implant body 1610 and/or the bone anchors 1618, 1619 can be provided in a variety of sizes and shapes to accommodate for different indications, applications, subject and/or the like. Such implant bodies and/or anchors can be provided to the surgeon or other user in a kit. For example, a kit can include implant bodies 1610 of varying lengths and/or cross-sectional dimensions. In some embodiments, a kit includes bone anchors of different diameters or sizes, implants of varying cross-sectional dimensions and/or lengths and suture loops of varying designs, sizes, lengths and/or other properties. Thus, a surgeon or other practitioner can advantageously customize a procedure by combining various components. This can help provide for a more successful treatment procedure by using components that are best sized, shaped and/or otherwise configured for a specific application or use. In other embodiments, the implant body is configured be cut or otherwise reshaped in order to modify the implant for a particular use or application. Thus, is some embodiments, the implant body is provided in one or more lengths that can be shortened. In some embodiments, the implant body comprises materials and/or a configuration that is configured to be cut or otherwise shortened. For example, in some embodiments, the implant body can include segments that are scored, perforated, undermined and/or otherwise configured to be cut along certain predetermined locations.


According to some embodiments, the proximal bone anchor 1618 and the proximal end 1612 of the implant body 1610 can be inserted into a bore of a proximal bone (e.g., a proximal phalange) such that the distal end 1615 of the implant body extends distally from the proximal phalange by a desired first distance. In some embodiments, for example, the first distance is approximately 4 to 8 mm (e.g., 4, 5, 6, 7, 8 mm, distances between the foregoing values, etc.). Such a protruding distance beyond the proximal bone permits the distal bone to be safely and relatively easily placed over the protruding portion of the implant body. In some embodiments, the distal bone anchor 1619 can be seated in the bone bore of a distal bone (or distal bone portion), such as the intermediate phalange of a subject's foot. In such configurations, the tension assembly 1620 can include sufficient slack to allow the proximal bone anchor 1618 and the distal bone anchor 1619 to be separately seated in the respective bone bores while the proximal and intermediate phalanges are displaced from one another.


According to some embodiments, with reference to the implant of FIG. 12A, the distal bone (e.g., intermediate phalange) can then be positioned adjacent to the proximal bone (e.g., proximal phalange) such that the distal end 1615 of the implant body 1610 extends into the bone bore of the distal bone. Slack in the proximal suture loop 1630 can be taken up (e.g., reduced or eliminated) by applying tension to the corresponding suture tail or free end 1665. In some embodiments, in doing so, the interaction between the suture tail or free end 1665 and the inner surface of the side-hole or window 1623 can displace the implant body 1620 distally within the bone bores. In one embodiment, the position of the implant body 1620 within the bone bores may be adjusted until substantially equal lengths of the implant body 1610 are positioned within each of the phalanges (as can be visually confirmed when the side-hole 1623 is aligned with the joint between the phalanges). However, in other embodiments, it may be desirable to move the implant body deeper into the distal or proximal bore, such that the relative length of the implant body positioned in the distal and proximal bores is unequal. For example, in some embodiments a longer portion of the implant body (e.g., 50-60, 60-70, 70-80, 80-90% of the overall implant body length) is positioned within the distal bore or the proximal bore of the adjacent bones or bone portions along which fusion is sought, as desired or required. In one embodiment, the implant body 1610 is urged as deep as possible into the distal bore, such that a distal end of the implant body 1610 abuts and contacts the distal anchor 1619 positioned and secured within the distal bore.


With the implant body 1610 positioned as desired, one or more of the suture tails or free ends 1660, 1665 can be pulled so as to apply tension to the suture loops 1625, 1630, thus drawing the bone anchors 1618, 1619, and consequently, the proximal and intermediate phalanges toward one another. In doing so, the joint between the phalanges is placed in compression. As discussed in greater detail herein, the knotless locking or friction elements 1650, 1655 along each of the suture loops 1625, 1630 are configured to maintain this compression post-implantation. In some embodiments, at the end of an implantation procedure, the surgeon can optionally secure the suture free ends to each other (e.g., using one or more knots), trim such free ends and/or perform one or more other steps, ad desired or required.


According to some embodiments, once the implant body 1610 can be initially inserted within the proximal and distal bores and subsequently moved to a desired axial position (e.g., deeper into the distal bore, deeper into the proximal bore, etc., the side hole or window of the implant body may not be located at or near the targeted joint being treated. For example, the window 1623, and thus the suture tails or free ends that pass therethrough, can be located a particular distance (e.g., 0-10 mm, 0-1, 1-2, 2-3, 3-4, 4-5, 5-6,6-7, 7-8, 9, 10 mm, greater than 10 mm, distances between the foregoing values, etc.) distal or proximal to the joint or other bone interface. Thus, in some embodiments, once the implant body is moved either proximally or distally into a corresponding bone bore, the free end or tail of the suture system exiting the window can be routed along the outside of the implant body until it reached the joint. Thus, in some embodiments, the suture line or other elastomeric component comprising the suture loop and other portions of the suture system can comprises the necessary properties (e.g., strength, durability, flexibility, etc.) to transmit the tensile forces along the entire suture length, include any portion that is situation between the outside of the implant body and the inside diameter or portion of a corresponding bone bore.


In other embodiments, the distal (or proximal) bore can be created entirely through the targeted bone (e.g., phalange). Thus, the tension system in the implant of FIG. 12A (and/or any other implant disclosed herein) can be reconfigured to that the tails or free ends of a suture can be routed entirely through a bone to an opening opposite of the targeted joint being fused or otherwise treated. Thus, for example, for the implant of FIG. 12A, once the free ends or tails 1660, 1665 of the suture system 1620 exit the window 1623 of the implant body 1610, they can be routed distally or proximally (e.g., past the corresponding anchors 1619, 1618), along an area generally between the outside of the anchor and the insider diameter of the bone bore, toward a distal or proximal opening of the adjacent bones being fused.


As shown in FIG. 12C, an elastomeric insert 1690 can be positioned on one or more sides of the implant body 1610 (e.g., between the implant body and the adjacent anchor or other bone engaging element). Such an insert or other component 1690 can include a spring (e.g., coil spring), another elastomeric, compressible or resilient sleeve, component or material (e.g., rubber insert) and/or the like. In some embodiments, such an insert 1690 can help increase or otherwise enhance the tension created within an implant once the tension system is manipulated. For example, in one embodiment, the insert 1690 is sized, shaped and otherwise configured so that, upon application of tension to the implant, the insert is squeezed or otherwise positioned between one end of the implant body and an adjacent anchor. Thus, as a result of such contact, the insert 1690 can be at least partially axially or longitudinally compressed to further increase the tension in the implant (e.g., and thus, increase the compressive forces maintained between adjacent bones being fused). Such an insert can be incorporated into any of the implant embodiments disclosed herein or variations thereof.


In some embodiments, as discussed herein, before an implant (e.g., the implant illustrated in FIGS. 12A and 12B) is positioned within a joint, certain preparatory steps can be performed to the adjacent bones of the joint. For example, the joint can be at least partially exposed or resected and the adjacent bone surfaces of the joint can undergo a particular rasping or other tissue removal step. For instance, a rasp or other bone cutting tool or method can be used to remove cartilage and/or bone tissue along each adjacent bone, resulting in bone to bone (e.g., bleeding bone to bleeding bone) contact. Further, before, during or after implantation of the implant into the joint, one or more graft or other materials or inserts can be positioned along the joint to promote fusion of the joint.


According to some embodiments, a proximal and/or distal portion of the implant body (e.g., along either side of a joint or other point of fusion) is configured to extend across two or more bones (e.g., phalanges). Thus, in some embodiments, an implant body is configured to span across three or more bones.



FIGS. 13-18 schematically illustrate sequential steps of a method of treating a foot joint deformity, such as, for example, hammer toe, using the implantable orthopedic repair implant 1000, according to one embodiment. During the arthrodesis procedure, portions of a pair of adjacent bones to selected to be fused that create the joint are resected and a bore hole is drilled into each the adjacent bones such that are substantially parallel and opposing. The drilled holes are large enough to accept the implant body 1110. Such an embodiment can be used with any configuration of an implant disclosed herein, including, without limitation, the implants depicted in FIGS. 2A, 10 and 12A.


In the illustrated embodiment, as shown in FIG. 13, bone bores 1500, 1510 are formed, respectively, in the proximal and intermediate phalanges PB, DB after dissecting the soft tissues connecting the phalanges. In the illustrated embodiment, the bone bores 1500, 1510 can be formed using a bone drill, awl or similar device 1520. In some embodiments, the bone bores 1500, 1510 are drilled to a predetermined depth, as dictated by the implanting orthopedic specialist or as required by a particular procedure or protocol.


According to any of the implantations and fusion methods and procedures disclosed herein, preparation of the targeted bone surfaces (e.g., decertification, drilling, etc.) can be performed, at least in part, using the tools and other devices disclosed in U.S. Provisional Patent No. 61/887,132, filed Oct. 4, 2013 and titled CIRCULATING BONE RASP, the entirety of which is hereby incorporated by reference herein and made a part of this specification.


Next, as shown in FIG. 14, the implant 1000 can be partially inserted into the bone bore 1500 with the aid of a delivery tool 1550. In the illustrated embodiment, the delivery tool 1550 comprises a cannulated main body 1560 and a pull tab 1570. As shown, the distal end 1145 of the implant body 1110 can be received within the cannulated main body 1560, and the suture loop of the positioning element 1125 can be secured to the pull tab 1570. As further shown, in the configuration of FIG. 13, the bone anchor 1230 of the implant 1100 abuts the open proximal end 1140 of the implant body 1110. Although not illustrated in FIG. 13, in such a configuration, slack can exist in the tension assembly 1120 that is attached to the main body 1560 of the delivery tool 1550. Such slack can permit for the subsequent repositioning of the implant body 1110 as discussed in greater detail herein. As further shown in FIG. 13, the implant 1100 can be initially inserted fully into the bone bore 1500.


As shown in FIG. 15, according to some embodiments, the cannulated main body 1560 of the delivery tool 1550 can be removed from the distal end 1145 of the implant body 1110, and the pull tab 1570 can be separated from the cannulated main body 1560. As further shown in FIG. 15, the positioning element 1125 can be attached to the pull tab 1570, and the suture tail 1190 of the tension assembly 1120 can be attached to the cannulated main body 1560. Further, the distal end 1145 of the implant body 1110 can extend distally from the proximal bone PB (e.g., proximal phalange) by a pre-determined distance based on the length of the implant body 1110 and the insertion depth into the bone bore 1500. In various embodiments, such a distance is relatively small to facilitate ease of subsequent steps in the repair procedure. The distance can be selected to facilitate positioning the intermediate phalange proximate the interphalangeal joint to be repaired. In some embodiments, the procedure is performed, and the implant 1100 is configured, so that the distal end 1145 initially extends about 5 mm from the distal face of the proximal bone PB (e.g., proximal phalange) upon initial insertion of the implant body 1110 into the bone bore 1500. However, in other embodiments, such a distance can be greater or less than 5 mm (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mm, greater than 10 mm, etc.).


With reference to FIG. 16, the intermediate phalange DB can be positioned adjacent the proximal phalange PB, with the distal end 1145 of the implant body 1110 at least partially inserted into the bone bore 1510 of the intermediate phalange DB. As shown in FIG. 17, while holding the proximal and intermediate phalanges in place, the surgeon can apply tension to the pull tab 1570 (as indicated by the arrow T), which in turn causes the implant body 1110 to be displaced distally within the bone bores 1500, 1510 (as indicated by the arrow D). As can be seen in FIG. 17, the implant body 1110 can thus extend further into the bone bore 1110 than in the earlier phase of the repair method illustrated in FIG. 16. This can advantageously enhance the stability of the joint J upon completion of a fusion procedure.


In some embodiments, because the bone anchor 1230 has engaged the bone surfaces within the bone bore 1500, movement in the distal direction is generally resisted. Accordingly, displacement of the implant body 1110 can result in separation between the proximal end 1140 of the implant body 1110 and the bone anchor 1230, with slack in the tension assembly 1120 being partially or wholly taken up by such separation.


With reference to FIG. 18, applying tension to the main body 1560 (as indicated by the arrow P) can apply tension to the tension assembly 1120 between the bone anchor 1230 and the expandable element 1170 at the distal end 1145 of the implant body 1110. In some embodiments, since the bone anchor 1230 and the expandable element 1170 are positively engaged with bone surfaces within the respective bone bores 1500, 1510, tension applied to the tension assembly 1120 can cause the adjacent bones PB, DB (e.g., proximal and intermediate phalanges) to be drawn toward one another so as to place the joint J in compression (as indicated by the arrows C in FIG. 18). In various embodiments, the tension assembly 1120, and in particular, the sliding knot 1200, are configured to retain the tension assembly under tension, thus maintaining compression on the joint J post-implantation.


In some embodiments, the tension assembly 1120 and the positioning element 1125 are formed of separate suture structures. In other embodiments, however, these components may be combined, at least partially, into a single suture structure or construct that is operatively coupled to the bone anchor 1230 and the implant body 1110. Also, in various embodiments, the steps of applying tension to the positioning element 1125 and applying tension between the bone anchor 1230 and the expandable element 1170 can be performed as separate steps (as shown in FIGS. 17 and 18). Alternatively, such steps can be performed substantially concurrently by applying tension to a single suture tail of an appropriately constructed suture construct.



FIGS. 19 and 20 illustrate different views of one embodiment of a knotless suture system configured to be used in a tension assembly 1620 for any of the implant configurations disclosed herein. As shown, the suture system can include two separate suture strands 1621A, 1621B that can be secured to each other to form a knot K or other structure. As discussed herein with reference to several implant embodiments, such a knot K or other joining structure can be strategically positioned within an interior lumen of an implant body 1610. In some embodiments, the knot K can include an outer cross-sectional dimension that is greater than the size of side-hole or window of the implant body 1610, thereby securely maintaining the knot K and other portions of the tension system 1620 within an interior of the implant body 1610. In alternative embodiments, the tension system 1620 includes only a single strand of suture.


With continued reference to the illustrated embodiment, free ends or tails 1660, 1665 of suture loops 1625, 1630 can pass through a side-hole or window of the implant body and exit to the exterior of the implant body. In some embodiments, as discussed in greater detail above, a surgeon can manipulate (e.g. pull) these free ends or tails to provide tension to the implant and create compression in the joint targeted for fusion.


In some embodiments, as illustrated in the detailed schematic view of FIG. 20, the suture strand can loop around an eyelet or securement feature 1635 of a bone anchor or other bone engaging member and pass through an interior portion of itself during the return loop along a locking or friction element or portion 1650 of the loop. In some embodiments, the suture is cannulated to facilitate the passage of the suture through its interior along such a portion 1650. As noted herein, such a configuration helps create a knotless suture system that is capable of maintaining a threshold level of tension to the implant. For example, as the surgeon pulls on the free end or tail 1660, slack in suture loop 1625 is reduced or eliminated. With reference to FIG. 20, as the free end 1660 is pulled, a portion of the suture looping around the eyelet or other securement feature 1635 of the anchor 1618 passes through the interior of a section of the suture loop (e.g., along the locking or friction element or portion 1650). The frictional forces between the suture sections along this friction portion 1650 help prevent the suture loop from loosening and creating slack in the tension assembly. Accordingly, the tension created by manipulating the free ends or tails of the sutures can be advantageously maintained without a knot or additional securement feature or method.


According to some embodiments, any of the suture structures disclosed herein comprise surgical suture comprising one or more biocompatible polymeric materials, such as, for example, ultra-high-molecular-weight polyethylene, other types of polyethylene, other polymeric materials and/or the like. In some configurations, the suture includes one or more elastomeric materials (e.g., rubber bands or other rubber elastics or components) and/or other elastic materials or features. In one embodiment, the diameter of the suture is about 0.2 to 0.6 mm (e.g., 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6 mm, diameter between the foregoing values, etc.). In other embodiments, however, the suture diameter can be greater than 0.6 mm or smaller than 0.2 mm, as desired or required. In other embodiments, however, the tension system can include an elastomeric component or member that is not a suture, but is nevertheless capable to providing the necessary tension to the implant and withstanding the necessary forces, moments and other elements to which it is subjected. Such an elastomeric component can include a flexible insert and/or the like.


In some embodiments, the locking or friction element or portion 1650 of a knotless suture system can be configured to withstand a maximum of 5 to 20 pounds of force before failing (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 pounds, values between the foregoing, etc.). In other arrangements, depending on the specific protocol, the maximum fail force can be lower than 5 pounds or greater than 20 pounds, as desired or required. In some embodiments, the end portions of the suture tails or free ends that are grasped or otherwise manipulated by the surgeon during a procedure can be configured to comprise a lower maximum force threshold (e.g., in some embodiments, about 1 to 30% lower failure threshold). Such portions can be limited to portions of the implant's tension assembly that are not routed through an implant body. Thus, if an upper force threshold is realized, the end portions of the suture tails or free ends (e.g., the portions with the lower force threshold) will fail and will be sacrificed to protect the remaining portions of the tension assembly (e.g., the suture loops, the friction portions, etc.).


To assist in the description of the disclosed embodiments, words such as upward, upper, bottom, downward, lower, rear, front, vertical, horizontal, upstream, downstream have been used above to describe different embodiments and/or the accompanying figures. It will be appreciated, however, that the different embodiments, whether illustrated or not, can be located and oriented in a variety of desired positions.


Although several embodiments and examples are disclosed herein, the present application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and modifications and equivalents thereof. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combine with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.


While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the inventions are not to be limited to the particular forms or methods disclosed, but, to the contrary, the inventions are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “positioning a proximal or distal end of the implant body” include “instructing positioning a proximal or distal end of the implant body.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 10 mm” includes “10 mm.” Terms or phrases preceded by a term such as “substantially” include the recited term or phrase. For example, “substantially parallel” includes “parallel.”

Claims
  • 1. An implant for correcting a deformity in or near a joint of a subject, comprising: an implant body comprising: an internal lumen extending from a first end to a second end of the implant body; a wall that defines the internal lumen; and an expandable element provided at the first end of the implant body, wherein the expandable element forms an integrated bone anchor, and wherein the implant body is rigid; and wherein the implant body comprises a suture side hole extending through the wall of the implant body, the suture side hole being positioned between the first and second ends of the implant body, andwherein the suture side hole provides access to the internal lumen from an exterior of the implant body; anda tension assembly comprising a wedge insert and a second bone anchor, wherein the wedge insert is positioned at the integrated bone anchor of the implant body and the second bone anchor is positioned on an opposite side of the implant body; the tension assembly further comprising at least one adjustable suture loop coupling the second bone anchor to the wedge insert, wherein at least a portion of the at least one adjustable suture loop is positioned within the internal lumen of the implant body;wherein the at least one adjustable suture loop comprises at least one suture tail that extends through the suture side hole and to an exterior of the implant body, wherein, upon deployment and fixation of the integrated bone anchor and the second bone anchor within bone bores of a subject and upon the application of tension to the at least one suture tail in a direction away from the implant body, a tension in the at least one adjustable suture loop between the wedge insert and the second bone anchors is increased.
  • 2. The implant of claim 1, wherein the first end of the implant body comprises a longitudinal channel and the wedge insert is positioned within the longitudinal channel, wherein the increased tension in the at least one adjustable suture loop pulls the second bone anchor toward the implant body and pulls the wedge insert further into the longitudinal channel causing the expandable element to at least partially radially expand outwardly.
  • 3. The implant of claim 1, further comprising a positioning element located along the implant body, the positioning element being configured to facilitate adjustment of the implant body within corresponding bone bores of a subject once the implant has been located therein, wherein the at least one adjustable suture loop comprises at least one knotless construct, the at least one knotless construct comprising a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop; wherein the wedge insert and the second bone anchor are coupled to the at least one adjustable suture loop; wherein a cross-sectional shape of the implant body is polygonal; andwherein the joint of the subject comprises a toe, and the deformity comprises hammer toe.
  • 4. The implant of claim 1, wherein the at least one adjustable suture loop comprises at least one knotless construct, the at least one knotless construct comprising a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop; and wherein the at least one adjustable suture loop is coupled to the wedge insert and the second bone anchor.
  • 5. The implant of claim 1, further comprising a sliding knot formed by the at least one adjustable suture loop, wherein the sliding knot is maintained within the internal lumen of the implant body.
  • 6. The implant of claim 5, wherein an outer dimension of the sliding knot is greater than a diameter of the suture side hole.
  • 7. The implant of claim 1, wherein the integrated bone anchor comprises an expandable element that is configured to engage bone at an implantation site and the second bone anchor comprises a plurality of deflectable fingers configured to engage bone at an implantation site.
  • 8. The implant of claim 1, wherein the at least one adjustable suture loop comprises at least one knotless construct, wherein the at least one knotless construct comprises a portion of the at least one adjustable suture loop routed through an interior of a section of the at least one adjustable suture loop.
  • 9. The implant of claim 1, wherein the implant body comprises a hexagonal or other polygonal cross-sectional shape.
  • 10. The implant of claim 1, wherein the implant body comprises at least one bend along a length of the implant body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. application Ser. No. 16/246,307, filed Jan. 11, 2019, which is a continuation application of U.S. application Ser. No. 14/763,502, filed Jul. 24, 2015, now U.S. Pat. No. 10,179,012, which is the U.S. National Stage under 35 U.S.C. § 371 of International Application PCT/US2014/013242, filed Jan. 27, 2014, titled Systems and Methods for Orthopedic Repair, which claims priority benefit of U.S. Provisional Application Nos. 61/757,553, filed Jan. 28, 2013, and 61/914,341, filed Dec. 10, 2013. The entireties of all of the foregoing are hereby incorporated by reference herein.

US Referenced Citations (803)
Number Name Date Kind
3131957 Musto May 1964 A
3648705 Lary Mar 1972 A
3752516 Mumma Aug 1973 A
3875595 Froning Apr 1975 A
3895753 Bone Jul 1975 A
3990619 Russell Nov 1976 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4013078 Field Mar 1977 A
4059115 Jamushev Nov 1977 A
4224413 Burbidge Sep 1980 A
4235238 Ogiu et al. Nov 1980 A
4262665 Roalstad et al. Apr 1981 A
4502161 Wall Mar 1985 A
4512338 Balko et al. Apr 1985 A
4532926 O'Holla Aug 1985 A
4545374 Jacobson Oct 1985 A
4602635 Mulhollan et al. Jul 1986 A
4632100 Somers et al. Dec 1986 A
4662886 Moorse May 1987 A
4663358 Hyon et al. May 1987 A
4669473 Richards et al. Jun 1987 A
4678459 Onik et al. Jul 1987 A
4731084 Dunn et al. Mar 1988 A
4736746 Anderson Apr 1988 A
4741330 Hayhurst May 1988 A
4743260 Burton May 1988 A
4744364 Kensey May 1988 A
4772287 Ray et al. Sep 1988 A
4781190 Lee Nov 1988 A
4790850 Dunn et al. Dec 1988 A
4798205 Bonomo et al. Jan 1989 A
4834757 Brantigan May 1989 A
4837285 Berg et al. Jun 1989 A
4844088 Kambin Jul 1989 A
4852568 Kensey Aug 1989 A
4863477 Monson Sep 1989 A
4873976 Schreiber Oct 1989 A
4884572 Bays et al. Dec 1989 A
4890612 Kensey Jan 1990 A
4895148 Bays et al. Jan 1990 A
4898156 Gatturna Feb 1990 A
4904260 Ray et al. Feb 1990 A
4904261 Dove et al. Feb 1990 A
4911718 Lee et al. Mar 1990 A
4917704 Frey et al. Apr 1990 A
4919667 Richmond Apr 1990 A
4932969 Frey et al. Jun 1990 A
4946377 Kovach Aug 1990 A
4946378 Hirayama et al. Aug 1990 A
4955908 Frey et al. Sep 1990 A
4959069 Brennan et al. Sep 1990 A
4976715 Bays et al. Dec 1990 A
5002576 Fuhrmann et al. Mar 1991 A
5015255 Kuslich May 1991 A
5021059 Kensey et al. Jun 1991 A
5035716 Downey Jul 1991 A
5041129 Hayhurst et al. Aug 1991 A
5047055 Bao Sep 1991 A
5053046 Janese Oct 1991 A
5059193 Kushlich Oct 1991 A
5059206 Winters Oct 1991 A
5061274 Kensey Oct 1991 A
5062344 Gerker Nov 1991 A
5071437 Steffee Dec 1991 A
5085661 Moss Feb 1992 A
5100422 Berguer et al. Mar 1992 A
5108420 Marks Apr 1992 A
5108438 Stone Apr 1992 A
5116357 Eberbach May 1992 A
5122154 Rhodes Jun 1992 A
5122155 Eberbach Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5123926 Pisharodi Jun 1992 A
5129912 Noda et al. Jul 1992 A
5141515 Eberbach Aug 1992 A
5147374 Fernandez Sep 1992 A
5171259 Inoue Dec 1992 A
5171278 Pisharodi Dec 1992 A
5171280 Baumgartner Dec 1992 A
5171281 Parsons et al. Dec 1992 A
5176682 Chow Jan 1993 A
5176691 Pierce Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5192326 Bao et al. Mar 1993 A
5195541 Obenchain Mar 1993 A
5203787 Noblitt et al. Apr 1993 A
5204106 Schepers et al. Apr 1993 A
5207695 Trout May 1993 A
5211650 Noda May 1993 A
5222962 Burkhart Jun 1993 A
5222974 Kensey et al. Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5242439 Larsen et al. Sep 1993 A
5254133 Seid Oct 1993 A
5258000 Gianturco Nov 1993 A
5258043 Stone Nov 1993 A
5269783 Sander Dec 1993 A
5269791 Mayzels et al. Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5282827 Kensey et al. Feb 1994 A
5282863 Burton Feb 1994 A
5304194 Chee et al. Apr 1994 A
5306311 Stone et al. Apr 1994 A
5312435 Nash et al. May 1994 A
5313962 Obenchain May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5320629 Noda et al. Jun 1994 A
5320633 Allen et al. Jun 1994 A
5320644 Baumgartner Jun 1994 A
5342393 Stack Aug 1994 A
5342394 Matsuno et al. Aug 1994 A
5344442 Deac Sep 1994 A
5354736 Bhatnagar Oct 1994 A
5356432 Rutkow et al. Oct 1994 A
5366460 Eberbach Nov 1994 A
5368602 de la Torre Nov 1994 A
5370660 Weinstein et al. Dec 1994 A
5370662 Stone et al. Dec 1994 A
5370697 Baumgartner Dec 1994 A
5374268 Sander Dec 1994 A
5376120 Sarver et al. Dec 1994 A
5383477 DeMatteis Jan 1995 A
5383905 Golds et al. Jan 1995 A
5390683 Pisharodi Feb 1995 A
5391182 Chin Feb 1995 A
5397326 Mangum Mar 1995 A
5397331 Himpens et al. Mar 1995 A
5397332 Kammerer et al. Mar 1995 A
5397991 Rogers Mar 1995 A
5398861 Green Mar 1995 A
5405352 Weston Apr 1995 A
5405359 Pierce Apr 1995 A
5405360 Tovey Apr 1995 A
5411523 Goble May 1995 A
5417691 Hayhurst May 1995 A
5417699 Klein et al. May 1995 A
5417712 Whittaker et al. May 1995 A
5425772 Brantigan Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5429598 Waxman et al. Jul 1995 A
5437631 Janzen Aug 1995 A
5437680 Yoon Aug 1995 A
5439464 Shapiro Aug 1995 A
5441502 Bartlett Aug 1995 A
5456720 Schultz et al. Oct 1995 A
5464407 McGuire Nov 1995 A
5464425 Skiba Nov 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis et al. Nov 1995 A
5470337 Moss Nov 1995 A
5489307 Kuslich et al. Feb 1996 A
5492697 Boyan et al. Feb 1996 A
5496348 Bonutti Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5507754 Green et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5514180 Heggeness et al. May 1996 A
5520696 Wenstrom, Jr. May 1996 A
5520700 Beyar et al. May 1996 A
5527342 Pietrzak et al. Jun 1996 A
5527343 Bonutti Jun 1996 A
5529075 Clark Jun 1996 A
5531678 Tomba et al. Jul 1996 A
5531759 Kensey et al. Jul 1996 A
5534012 Bonutti Jul 1996 A
5534028 Bao et al. Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5540703 Barker et al. Jul 1996 A
5540704 Gordon et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5545178 Kensey et al. Aug 1996 A
5545229 Parsons et al. Aug 1996 A
5549617 Green et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5556428 Shah Sep 1996 A
5556429 Felt Sep 1996 A
5562684 Kammerer Oct 1996 A
5562689 Green et al. Oct 1996 A
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5569252 Justin et al. Oct 1996 A
5569303 Johnson Oct 1996 A
5569306 Thal Oct 1996 A
5571189 Kuslich Nov 1996 A
5573286 Rogozinski Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5578057 Wenstrom, Jr. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584862 Bonutti Dec 1996 A
5591177 Lehrer Jan 1997 A
5591223 Lock et al. Jan 1997 A
5593425 Bonutti et al. Jan 1997 A
5599279 Slotman et al. Feb 1997 A
5601557 Hayhurst Feb 1997 A
5601571 Moss Feb 1997 A
5613974 Andreas et al. Mar 1997 A
5618314 Harwin et al. Apr 1997 A
5620012 Benderev et al. Apr 1997 A
5624463 Stone et al. Apr 1997 A
5626612 Bartlett et al. May 1997 A
5626613 Schmieding May 1997 A
5626614 Hart May 1997 A
5628756 Barker et al. May 1997 A
5634931 Kugel Jun 1997 A
5634944 Magram Jun 1997 A
5643319 Green et al. Jul 1997 A
5643320 Lower et al. Jul 1997 A
5645084 McKay Jul 1997 A
5645597 Krapiva Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649945 Ray et al. Jul 1997 A
5658343 Hauselmann et al. Aug 1997 A
5662658 Wenstrom, Jr. Sep 1997 A
5662681 Nash et al. Sep 1997 A
5662683 Kay Sep 1997 A
5669935 Rosenman et al. Sep 1997 A
5674294 Bainville et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676698 Janzen et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5681310 Yuan et al. Oct 1997 A
5681351 Jamiolkowski et al. Oct 1997 A
5683417 Cooper Nov 1997 A
5683418 Luscombe et al. Nov 1997 A
5683419 Thal Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5690677 Schmieding et al. Nov 1997 A
5695525 Mulhauser et al. Dec 1997 A
5697950 Fucci et al. Dec 1997 A
5699657 Paulson Dec 1997 A
5702449 McKay Dec 1997 A
5702450 Bisserie Dec 1997 A
5702451 Biedermann et al. Dec 1997 A
5702454 Baumgartner Dec 1997 A
5702462 Oberlander Dec 1997 A
5704943 Yoon et al. Jan 1998 A
5709708 Thal Jan 1998 A
5716404 Vacanti et al. Feb 1998 A
5716408 Eldridge et al. Feb 1998 A
5716409 Debbas Feb 1998 A
5716413 Walter et al. Feb 1998 A
5716416 Lin Feb 1998 A
5718717 Bonutti Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5725577 Saxon Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5728150 McDonald et al. Mar 1998 A
5730744 Justin et al. Mar 1998 A
5733307 Dinsdale Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5735875 Bonutti Apr 1998 A
5736746 Furutoh Apr 1998 A
5743917 Saxon Apr 1998 A
5746755 Wood et al. May 1998 A
5752964 Mericle May 1998 A
5755797 Baumgartner May 1998 A
5759189 Ferragamo et al. Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5769864 Kugel Jun 1998 A
5769893 Shah Jun 1998 A
5772661 Michelson Jun 1998 A
5776183 Kanesaka et al. Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5782864 Lizardi Jul 1998 A
5785705 Baker Jul 1998 A
5786217 Tubo et al. Jul 1998 A
5788625 Plouhar et al. Aug 1998 A
5792152 Klein et al. Aug 1998 A
5797929 Andreas et al. Aug 1998 A
5800549 Bao et al. Sep 1998 A
5800550 Sertich Sep 1998 A
5810848 Hayhurst Sep 1998 A
5810851 Yoon Sep 1998 A
5814051 Wenstrom, Jr. Sep 1998 A
5823994 Sharkey et al. Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5824011 Stone et al. Oct 1998 A
5824082 Brown Oct 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5827325 Landgrebe et al. Oct 1998 A
5827328 Butterman Oct 1998 A
5836315 Benderev et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5843084 Hart et al. Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5849331 Ducheyne et al. Dec 1998 A
5851219 Goble et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860425 Benderev et al. Jan 1999 A
5860977 Zucherman et al. Jan 1999 A
5865845 Thalgott Feb 1999 A
5865846 Bryan et al. Feb 1999 A
5868762 Cragg et al. Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5888220 Felt et al. Mar 1999 A
5888222 Coates Mar 1999 A
5888226 Rogozinski Mar 1999 A
5891146 Simon et al. Apr 1999 A
5893592 Schulze et al. Apr 1999 A
5893889 Harrington Apr 1999 A
5895426 Scarborough et al. Apr 1999 A
5899920 DeSatnick et al. May 1999 A
5904703 Gilson May 1999 A
5916225 Kugel Jun 1999 A
5919235 Husson et al. Jul 1999 A
5922026 Chin Jul 1999 A
5922028 Plouhar et al. Jul 1999 A
5928284 Mehdizadeh Jul 1999 A
5935147 Kensey et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5954716 Sharkey et al. Sep 1999 A
5954767 Pajotin et al. Sep 1999 A
5957939 Heaven et al. Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5961538 Pedlick et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5964807 Gan et al. Oct 1999 A
5970697 Jacobs et al. Oct 1999 A
5972000 Beyar et al. Oct 1999 A
5972007 Sheffield et al. Oct 1999 A
5972022 Huxel Oct 1999 A
5976174 Ruiz Nov 1999 A
5976186 Bao et al. Nov 1999 A
5980504 Sharkey et al. Nov 1999 A
5980558 Wiley Nov 1999 A
5981826 Ku et al. Nov 1999 A
5984948 Hasson Nov 1999 A
6001130 Bryan et al. Dec 1999 A
6007567 Bonutti Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6007575 Samuels Dec 1999 A
6010525 Bonutti et al. Jan 2000 A
6019792 Cauthen Feb 2000 A
6019793 Perren et al. Feb 2000 A
6024096 Buckberg Feb 2000 A
6024754 Engelson Feb 2000 A
6024758 Thal Feb 2000 A
6027523 Schmieding Feb 2000 A
6027527 Asano et al. Feb 2000 A
6036699 Andreas et al. Mar 2000 A
6039761 Li et al. Mar 2000 A
6039762 McKay Mar 2000 A
6045561 Marshall et al. Apr 2000 A
6045573 Wenstrom, Jr. et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6063378 Nohara et al. May 2000 A
6066146 Carroll et al. May 2000 A
6066776 Goodwin et al. May 2000 A
6068648 Cole et al. May 2000 A
6073051 Sharkey et al. Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6093205 McLeod et al. Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6099514 Sharkey et al. Aug 2000 A
6102934 Li Aug 2000 A
6106545 Egan Aug 2000 A
6113609 Adams Sep 2000 A
6113623 Sgro Sep 2000 A
6113639 Ray et al. Sep 2000 A
6117162 Schmieding et al. Sep 2000 A
6123715 Amplatz Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6139565 Stone et al. Oct 2000 A
6140452 Felt et al. Oct 2000 A
6143006 Chan et al. Nov 2000 A
6143017 Thal Nov 2000 A
6146380 Racz et al. Nov 2000 A
6146406 Shluzas et al. Nov 2000 A
6146422 Lawson Nov 2000 A
6162203 Haago Dec 2000 A
6168598 Martello Jan 2001 B1
6171317 Jackson et al. Jan 2001 B1
6171318 Kugel et al. Jan 2001 B1
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6176863 Kugel et al. Jan 2001 B1
6179874 Cauthen Jan 2001 B1
6179879 Robinson et al. Jan 2001 B1
6183518 Tormala et al. Feb 2001 B1
6187048 Milner et al. Feb 2001 B1
6190401 Green et al. Feb 2001 B1
6200329 Fung et al. Mar 2001 B1
6203554 Roberts Mar 2001 B1
6203565 Bonutti Mar 2001 B1
6206895 Levinson Mar 2001 B1
6206921 Guagliano et al. Mar 2001 B1
6221092 Koike et al. Apr 2001 B1
6221109 Geistlich et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6228096 Marchand May 2001 B1
6231605 Ku May 2001 B1
6231615 Preissman May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6245080 Levinson Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248106 Ferree Jun 2001 B1
6248131 Felt et al. Jun 2001 B1
6258094 Nicholson et al. Jul 2001 B1
6264677 Simon et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287324 Yarnitsky et al. Sep 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6296659 Foerster Oct 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
6312448 Bonutti Nov 2001 B1
6319263 Levinson Nov 2001 B1
6332894 Stalcup Dec 2001 B1
6340369 Ferree Jan 2002 B1
6342064 Koike et al. Jan 2002 B1
6344057 Rabbe et al. Feb 2002 B1
6344058 Ferree Feb 2002 B1
6352557 Ferree Mar 2002 B1
6355052 Neuss Mar 2002 B1
6364897 Bonutti Apr 2002 B1
6371984 Van Dyke et al. Apr 2002 B1
6371990 Ferree Apr 2002 B1
6391060 Ory et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402784 Wardlaw Jun 2002 B1
6402785 Zdeblick Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419702 Ferree Jul 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6419706 Graf Jul 2002 B1
6423065 Ferree Jul 2002 B2
6423080 Gellman et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6425924 Rousseau Jul 2002 B1
6428562 Bonutti Aug 2002 B2
6428576 Haldimann Aug 2002 B1
6432107 Ferree Aug 2002 B1
6432123 Schwartz et al. Aug 2002 B2
6436098 Michelson Aug 2002 B1
6436099 Drewry et al. Aug 2002 B1
6436143 Ross et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6447531 Amplatz Sep 2002 B1
6452924 Golden et al. Sep 2002 B1
6454804 Ferree Sep 2002 B1
6464712 Epstein Oct 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6488691 Carroll et al. Dec 2002 B1
6491724 Ferree Dec 2002 B1
6494883 Ferree Dec 2002 B1
6500132 Li Dec 2002 B1
6500184 Chan et al. Dec 2002 B1
6508828 Akerfeldt et al. Jan 2003 B1
6508839 Lambrecht et al. Jan 2003 B1
6511488 Marshall et al. Jan 2003 B1
6511498 Fumex Jan 2003 B1
6511958 Atkinson et al. Jan 2003 B1
6514255 Ferree Feb 2003 B1
6514514 Atkinson et al. Feb 2003 B1
6524317 Ritchart et al. Feb 2003 B1
6527794 McDevitt et al. Mar 2003 B1
6527795 Lizardi Mar 2003 B1
6530933 Yeung et al. Mar 2003 B1
6533799 Bouchier Mar 2003 B1
6533817 Norton et al. Mar 2003 B1
6544267 Cole et al. Apr 2003 B1
6547800 Foerster et al. Apr 2003 B2
6547806 Ding Apr 2003 B1
6558386 Cragg May 2003 B1
6558390 Cragg May 2003 B2
6562052 Nobles et al. May 2003 B2
6569187 Bonutti et al. May 2003 B1
6569442 Gan et al. May 2003 B2
6572635 Bonutti Jun 2003 B1
6572653 Simonson Jun 2003 B1
6575979 Cragg Jun 2003 B1
6576017 Foley et al. Jun 2003 B2
6579291 Keith et al. Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6592608 Fisher et al. Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6592625 Cauthen Jul 2003 B2
6596012 Akerfeldt et al. Jul 2003 B2
6602291 Ray et al. Aug 2003 B1
6605096 Ritchart Aug 2003 B1
6607541 Gardiner et al. Aug 2003 B1
6610006 Amid et al. Aug 2003 B1
6610071 Cohn et al. Aug 2003 B1
6610079 Li et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6610666 Akerblom Aug 2003 B1
6613044 Carl Sep 2003 B2
6620185 Harvie et al. Sep 2003 B1
6620196 Trieu Sep 2003 B1
6623492 Berube et al. Sep 2003 B1
6623508 Shaw et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6635073 Bonutti Oct 2003 B2
6645227 Fallin et al. Nov 2003 B2
6645247 Ferree Nov 2003 B2
6648890 Culbert et al. Nov 2003 B2
6648892 Martello Nov 2003 B2
6648918 Ferree Nov 2003 B2
6648919 Ferree Nov 2003 B2
6648920 Ferree Nov 2003 B2
6652561 Tran Nov 2003 B1
6652585 Lange Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6656183 Colleran et al. Dec 2003 B2
6669687 Saadat Dec 2003 B1
6669707 Swanstrom et al. Dec 2003 B1
6669729 Chin Dec 2003 B2
6673088 Vargas et al. Jan 2004 B1
6676665 Foley et al. Jan 2004 B2
6679887 Nicholson et al. Jan 2004 B2
6679914 Gabbay Jan 2004 B1
6684886 Alleyne Feb 2004 B1
6685695 Ferree Feb 2004 B2
6685728 Sinnott et al. Feb 2004 B2
6689125 Keith et al. Feb 2004 B1
6692506 Ory et al. Feb 2004 B1
6695858 Dubrul et al. Feb 2004 B1
6696073 Boyce Feb 2004 B2
6699263 Cope Mar 2004 B2
6706068 Ferree Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6712837 Akerfeldt et al. Mar 2004 B2
6712853 Kuslich Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716234 Grafton et al. Apr 2004 B2
6719761 Reiley et al. Apr 2004 B1
6719773 Boucher et al. Apr 2004 B1
6719797 Ferree Apr 2004 B1
6723058 Li Apr 2004 B2
6723095 Hammerslag Apr 2004 B2
6723097 Fraser et al. Apr 2004 B2
6723107 Skiba et al. Apr 2004 B1
6723133 Pajotin Apr 2004 B1
6723335 Moehlenbruck et al. Apr 2004 B1
6726721 Stoy et al. Apr 2004 B2
6730092 Songer May 2004 B2
6730112 Levinson May 2004 B2
6733531 Trieu May 2004 B1
6733534 Sherman May 2004 B2
6736815 Ginn May 2004 B2
6740093 Hochschuler et al. May 2004 B2
6743255 Ferree Jun 2004 B2
6752831 Sybert et al. Jun 2004 B2
6758863 Estes Jul 2004 B2
6761720 Senegas Jul 2004 B1
6761722 Cole et al. Jul 2004 B2
6764514 Li et al. Jul 2004 B1
6767037 Wenstrom Jul 2004 B2
6770076 Foerster Aug 2004 B2
6773436 Donnelly et al. Aug 2004 B2
6773699 Soltz et al. Aug 2004 B1
6780198 Gregoire et al. Aug 2004 B1
6783546 Zuckerman et al. Aug 2004 B2
6805695 Keith et al. Oct 2004 B2
6805697 Helm et al. Oct 2004 B1
6805715 Reuter et al. Oct 2004 B2
6812211 Slivka et al. Nov 2004 B2
6821276 Lambrecht et al. Nov 2004 B2
6824562 Mathis et al. Nov 2004 B2
6827716 Ryan et al. Dec 2004 B2
6827743 Eisermann et al. Dec 2004 B2
6830570 Frey et al. Dec 2004 B1
6833006 Foley et al. Dec 2004 B2
6835205 Atkinson et al. Dec 2004 B2
6835207 Zacouto et al. Dec 2004 B2
6835208 Marchosky Dec 2004 B2
6841150 Halvorsen et al. Jan 2005 B2
6843799 Bartlett Jan 2005 B2
6852128 Lange Feb 2005 B2
6860895 Akerfeldt et al. Mar 2005 B1
6878155 Sharkey et al. Apr 2005 B2
6878167 Ferree Apr 2005 B2
6883520 Lambrecht et al. Apr 2005 B2
6893462 Buskirk et al. May 2005 B2
6896675 Leung et al. May 2005 B2
6911034 Nobles et al. Jun 2005 B2
6913622 Gjunter Jul 2005 B2
6923823 Bartlett et al. Aug 2005 B1
6932833 Sandoval et al. Aug 2005 B1
6936070 Muhanna Aug 2005 B1
6936072 Lambrecht et al. Aug 2005 B2
6960215 Olson, Jr. et al. Nov 2005 B2
6964674 Matsuura et al. Nov 2005 B1
6966910 Ritland Nov 2005 B2
6966931 Huang Nov 2005 B2
6969404 Ferree Nov 2005 B2
6972027 Fallin et al. Dec 2005 B2
6974479 Trieu Dec 2005 B2
6980862 Fredricks et al. Dec 2005 B2
6984241 Lubbers et al. Jan 2006 B2
6984247 Cauthen Jan 2006 B2
6997956 Cauthen Feb 2006 B2
7001431 Bao et al. Feb 2006 B2
7004959 Bonutti Feb 2006 B2
7004970 Cauthen Feb 2006 B2
7033393 Gainor et al. Apr 2006 B2
7033395 Cauthen Apr 2006 B2
7037334 Hlavka et al. May 2006 B1
7052516 Cauthen, III et al. May 2006 B2
7083638 Foerster Aug 2006 B2
7094258 Lambrecht et al. Aug 2006 B2
7147651 Morrison et al. Dec 2006 B2
7189235 Cauthen Mar 2007 B2
7217279 Reese May 2007 B2
7223289 Trieu et al. May 2007 B2
7280865 Adler Oct 2007 B2
7285124 Foerster Oct 2007 B2
7306417 Dorstewitz Dec 2007 B2
7309337 Colleran et al. Dec 2007 B2
7318840 McKay Jan 2008 B2
7320701 Haut et al. Jan 2008 B2
7322978 West, Jr. Jan 2008 B2
7329272 Burkhart et al. Feb 2008 B2
7331982 Kaiser et al. Feb 2008 B1
7344539 Serhan et al. Mar 2008 B2
7367978 Drewry et al. May 2008 B2
7371253 Leung et al. May 2008 B2
7390332 Selvitelli et al. Jun 2008 B2
7399018 Khachaturian Jul 2008 B1
7410489 Dakin et al. Aug 2008 B2
7445634 Trieu Nov 2008 B2
7465308 Sikora et al. Dec 2008 B2
7494496 Swain et al. Feb 2009 B2
7500983 Kaiser et al. Mar 2009 B1
7513911 Lambrecht et al. Apr 2009 B2
7524333 Lambrecht et al. Apr 2009 B2
7556640 Foerster Jul 2009 B2
7611521 Lubbers et al. Nov 2009 B2
7651509 Bojarski et al. Jan 2010 B2
7682540 Boyan et al. Mar 2010 B2
7749273 Cauthen, III et al. Jul 2010 B2
7758611 Kato Jul 2010 B2
7766915 Jackson Aug 2010 B2
7766923 Catanese et al. Aug 2010 B2
7766939 Yeung et al. Aug 2010 B2
7846162 Nelson et al. Dec 2010 B2
7875058 Holmes, Jr. Jan 2011 B2
7905903 Stone et al. Mar 2011 B2
7910124 Boyan et al. Mar 2011 B2
7938847 Fanton et al. May 2011 B2
7955388 Jensen et al. Jun 2011 B2
8002830 Boyan et al. Aug 2011 B2
8021367 Bourke et al. Sep 2011 B2
8038920 Denoziere et al. Oct 2011 B2
RE43143 Hayhurst Jan 2012 E
8100141 Slupecki et al. Jan 2012 B2
8128698 Bentley et al. Mar 2012 B2
8142808 Boyan et al. Mar 2012 B2
8163022 Bentley et al. Apr 2012 B2
8202305 Reiley Jun 2012 B2
8318192 Boyan et al. Nov 2012 B2
8486436 Boyan et al. Jul 2013 B2
8652172 Denham et al. Feb 2014 B2
8895073 Boyan et al. Nov 2014 B2
9155543 Walsh et al. Oct 2015 B2
9737294 Wales Aug 2017 B2
10179012 Wales Jan 2019 B2
10835300 Wales Nov 2020 B2
20010029399 Ku Oct 2001 A1
20010041916 Bonutti Nov 2001 A1
20010051816 Enzerlink et al. Dec 2001 A1
20020032483 Nicholson et al. Mar 2002 A1
20020077701 Kuslich Jun 2002 A1
20020082698 Parenteau et al. Jun 2002 A1
20020111688 Cauthen Aug 2002 A1
20020123807 Cauthen, III Sep 2002 A1
20020133179 McDevitt et al. Sep 2002 A1
20020147461 Aldrich Oct 2002 A1
20020151979 Lambrecht et al. Oct 2002 A1
20020173851 McKay Nov 2002 A1
20020188297 Dakin et al. Dec 2002 A1
20030008396 Ku Jan 2003 A1
20030074075 Thomas Apr 2003 A1
20030083662 Middleton May 2003 A1
20030105489 Eichhorn et al. Jun 2003 A1
20030125807 Lambrecht et al. Jul 2003 A1
20030130669 Damarati et al. Jul 2003 A1
20030130694 Bojarski et al. Jul 2003 A1
20030153976 Cauthen, III et al. Aug 2003 A1
20030158604 Cauthen, III et al. Aug 2003 A1
20030181983 Cauthen Sep 2003 A1
20030195514 Trieu et al. Oct 2003 A1
20030195628 Bao et al. Oct 2003 A1
20030220649 Bao et al. Nov 2003 A1
20030220690 Cauthen, III Nov 2003 A1
20030220693 Cauthen, III Nov 2003 A1
20030220694 Cauthen, III Nov 2003 A1
20040039392 Trieu Feb 2004 A1
20040054414 Trieu Mar 2004 A1
20040097980 Ferree May 2004 A1
20040143329 Ku Jul 2004 A1
20040153074 Bojarski et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050033363 Bojarski et al. Feb 2005 A1
20050033440 Lambrecht et al. Feb 2005 A1
20050038519 Lambrecht et al. Feb 2005 A1
20050049592 Keith et al. Mar 2005 A1
20050049704 Jackson Mar 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050060038 Sammartin Mar 2005 A1
20050071003 Ku Mar 2005 A1
20050106255 Ku May 2005 A1
20050149197 Cauthen Jul 2005 A1
20050159812 Dinger, III et al. Jul 2005 A1
20050234512 Nakao Oct 2005 A1
20050256582 Ferree Nov 2005 A1
20050278025 Ku et al. Dec 2005 A1
20050283246 Cauthen, III et al. Dec 2005 A1
20060060038 Sammartin Mar 2006 A1
20060084994 Atkinson et al. Apr 2006 A1
20060100711 Cauthen May 2006 A1
20060122608 Fallin et al. Jun 2006 A1
20060129156 Cauthen, III et al. Jun 2006 A1
20060129245 Cauthen Jun 2006 A1
20060142864 Cauthen Jun 2006 A1
20060161258 Cauthen Jul 2006 A1
20060167553 Cauthen Jul 2006 A1
20060173545 Cauthen Aug 2006 A1
20060190042 Stone et al. Aug 2006 A1
20060190085 Cauthen Aug 2006 A1
20060241773 Cauthen Oct 2006 A1
20060253152 Evans et al. Nov 2006 A1
20060287731 Cauthen, III et al. Dec 2006 A1
20070061012 Cauthen, III Mar 2007 A1
20070061013 Cauthen, III et al. Mar 2007 A1
20070071568 Dorstewitz Mar 2007 A1
20070073407 Cauthen, III et al. Mar 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070088438 Cauthen, III et al. Apr 2007 A1
20070100348 Cauthen, III et al. May 2007 A1
20070100354 Cauthen, III et al. May 2007 A1
20070118226 Lambrecht et al. May 2007 A1
20070156244 Cauthen Jul 2007 A1
20070156245 Cauthen, III et al. Jul 2007 A1
20070185497 Cauthen et al. Aug 2007 A1
20070185532 Stone Aug 2007 A1
20070198021 Wales Aug 2007 A1
20070225814 Atkinson et al. Sep 2007 A1
20070225815 Keith et al. Sep 2007 A1
20070225816 Keith et al. Sep 2007 A1
20070233257 Keith et al. Oct 2007 A1
20070239280 Keith et al. Oct 2007 A1
20070288041 Cauthen Dec 2007 A1
20070299540 Ku Dec 2007 A1
20080033561 Cauthen Feb 2008 A1
20080082128 Stone Apr 2008 A1
20080086138 Stone et al. Apr 2008 A1
20080140092 Stone et al. Jun 2008 A1
20080147127 Tipirneni et al. Jun 2008 A1
20080255613 Kaiser et al. Oct 2008 A1
20090024165 Ferree Jan 2009 A1
20090036893 Kartalian et al. Feb 2009 A1
20090062854 Kaiser et al. Mar 2009 A1
20090131936 Tipirneni et al. May 2009 A1
20090131991 Tipirneni May 2009 A1
20090138042 Thal May 2009 A1
20090259260 Bentley et al. Oct 2009 A1
20090306711 Stone et al. Dec 2009 A1
20090306718 Tipirneni Dec 2009 A1
20090318961 Stone et al. Dec 2009 A1
20100016892 Kaiser et al. Jan 2010 A1
20100016894 Houard et al. Jan 2010 A1
20100036389 Schwartz Feb 2010 A1
20100198258 Heaven Aug 2010 A1
20100318125 Gerber et al. Dec 2010 A1
20110004242 Stchur Jan 2011 A1
20110118780 Holmes, Jr. May 2011 A1
20110118796 Reiley et al. May 2011 A1
20110172682 Brady et al. Jul 2011 A1
20110172701 Wales et al. Jul 2011 A1
20110224729 Baker et al. Sep 2011 A1
20110257652 Roman Oct 2011 A1
20110295252 Tipirneni Dec 2011 A1
20120016426 Robinson Jan 2012 A1
20120089193 Stone et al. Apr 2012 A1
20120101502 Kartalian et al. Apr 2012 A1
20120165864 Hernandez et al. Jun 2012 A1
20120165938 Denham Jun 2012 A1
20130012765 Vemuri et al. Jan 2013 A1
20130012942 Nelson et al. Jan 2013 A1
20130096611 Sullivan Apr 2013 A1
20130211451 Wales Aug 2013 A1
20130253581 Robinson Sep 2013 A1
20140081325 Sengun Mar 2014 A1
20140214080 Wales Jul 2014 A1
20150351815 Wales Dec 2015 A1
20160038308 Walsh et al. Feb 2016 A1
20190142482 Wales May 2019 A1
20210077160 Wales Mar 2021 A1
Foreign Referenced Citations (55)
Number Date Country
43239595 Jul 1994 DE
0020021 Dec 1980 EP
0025706 Mar 1981 EP
0042953 Jan 1982 EP
0049978 Apr 1982 EP
0076409 Apr 1983 EP
0110316 Jun 1984 EP
0122902 Oct 1984 EP
0126570 Nov 1984 EP
0145577 Jun 1985 EP
0193784 Sep 1986 EP
1108401 Jun 2001 EP
1743587 Jan 2007 EP
1797827 Jun 2007 EP
1857055 Nov 2007 EP
2054383 Feb 1981 GB
WO 9116867 Nov 1991 WO
WO 9423671 Oct 1994 WO
WO 9522285 Aug 1995 WO
WO 9531946 Nov 1995 WO
WO 9531948 Nov 1995 WO
WO 9627339 Sep 1996 WO
WO 9720874 Jun 1997 WO
WO 9726847 Jul 1997 WO
WO 9801091 Jan 1998 WO
WO 9805274 Feb 1998 WO
WO 9820939 May 1998 WO
WO 9822050 May 1998 WO
WO 9900074 Jan 1999 WO
WO 9902108 Jan 1999 WO
WO 9904720 Feb 1999 WO
WO 9916381 Apr 1999 WO
WO 9961084 Dec 1999 WO
WO 0020021 Apr 2000 WO
WO 0025706 May 2000 WO
WO 0042953 Jul 2000 WO
WO 0049978 Aug 2000 WO
WO 0061037 Oct 2000 WO
WO 0062832 Oct 2000 WO
WO 0076409 Dec 2000 WO
WO 0110316 Feb 2001 WO
WO 0112107 Feb 2001 WO
WO 0121246 Mar 2001 WO
WO 0122902 Apr 2001 WO
WO 0126570 Apr 2001 WO
WO 0128464 Apr 2001 WO
WO 0145577 Jun 2001 WO
WO 0193784 Dec 2001 WO
WO 0195818 Dec 2001 WO
WO 0217825 Mar 2002 WO
WO 2007135101 Nov 2007 WO
WO 2009100242 Aug 2009 WO
WO 2010088561 Aug 2010 WO
WO 2013119812 Aug 2013 WO
WO 2014117107 Jul 2014 WO
Non-Patent Literature Citations (4)
Entry
Int'l Search Report and Written Opinion in Int'l App No. PCT/US14/13242, dated Jun. 23, 2014 (19 pgs).
Surgical Technique for “PRO-TOE™ VO Hammertoe Fixation System” by Wright Medical Technology, Inc. (12 pgs) (dated 2011 and retrieved on or about May 2015).
Surgical Technique for “Hammertoe PIP Joint Arthrodesis using Trim-It Spin Pin™ Fixation” by Arthrex, Inc. (4 pgs) (dated 2014 and retrieved on or about May 2015).
Camasta et al., Buried Kirschner-Wire Fixation for Hammertoe Arthrodesis, S.J. Miller (Ed.) Reconstructive Surgery of the Foot and Leg, Pod Inst (2008) pp. 5-8.
Related Publications (1)
Number Date Country
20210077160 A1 Mar 2021 US
Provisional Applications (2)
Number Date Country
61757553 Jan 2013 US
61914341 Dec 2013 US
Continuations (2)
Number Date Country
Parent 16246307 Jan 2019 US
Child 17064726 US
Parent 14763502 US
Child 16246307 US