Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for regulating output currents. Merely by way of example, some embodiments of the invention have been applied to power conversion systems. But it would be recognized that the invention has a much broader range of applicability.
Light emitting diodes (LEDs) are widely used for lighting applications. Oftentimes, approximately constant currents are used to control working currents of LEDs to achieve constant brightness.
An alternate-current (AC) input voltage 152 is applied to the system 100. A bulk voltage 150 (e.g., a rectified voltage no smaller than 0 V) associated with the AC input voltage 152 is received by the resistor 104. The capacitor 106 is charged in response to the bulk voltage 150, and a voltage 154 is provided to the system controller 102 at the terminal 138 (e.g., terminal VCC). If the voltage 154 is larger than a predetermined threshold voltage in magnitude, the system controller 102 begins to operate normally and generates a drive signal 199 through the terminal 142 (e.g., terminal GATE). The switch 128 receives a signal 156 associated with the drive signal 199. For example, the drive signal 199 is a pulse-width-modulation (PWM) signal with a switching frequency and a duty cycle. The switch 128 is closed (e.g., being turned on) or open (e.g., being turned off) in response to the drive signal 199 so that the output current 158 is regulated to be approximately constant.
The auxiliary winding 116 charges the capacitor 106 through the diode 108 when the switch 128 is opened (e.g., being turned off) in response to the drive signal 199 so that the system controller 102 can operate normally. For example, a feedback signal 160 is provided to the system controller 102 through the terminal 140 (e.g., terminal FB) in order to detect the end of a demagnetization process of the secondary winding 114 (e.g., for charging or discharging the capacitor 134 using an internal error amplifier in the system controller 102). In another example, the feedback signal 160 is provided to the system controller 102 through the terminal 140 (e.g., terminal FB) in order to detect the beginning and the end of the demagnetization process of the secondary winding 114. The resistor 130 is used for detecting a primary current 162 flowing through the primary winding 112, and a current-sensing signal 164 is provided to the system controller 102 through the terminal 144 (e.g., terminal CS) to be processed during each switching cycle. Peak magnitudes of the current-sensing signal 164 are sampled and provided to the internal error amplifier. The capacitor 120 is used to maintain an output voltage 168 so as to keep a stable output current through an output load (e.g., one or more LEDs 122). For example, the system 100 implements a primary-side-regulation scheme with single-stage power factor correction (PFC). As an example, the system 100 implements a flyback architecture or a buck-boost architecture.
As shown in
The system controller 102 is operated in a voltage-mode where, for example, the signal 224 from the error amplifier 216 and the signal 228 from the oscillator 202 are both voltage signals and are compared by the comparator 206 to generate the modulation signal 226 to drive the power switch 128. Therefore, an on-time period associated with the power switch 128 is determined by the signal 224 and the signal 228.
As shown in
Under stable normal operations, an average output current is determined, according to the following equation (e.g., without taking into account any error current):
where N represents a turns ratio between the primary winding 112 and the secondary winding 114, Vref_ea represents the reference signal 222 and Rcs represents the resistance of the resistor 130. As shown in Equation 1, the parameters associated with peripheral components, such as N and Rcs, can be properly selected through system design to achieve output current regulation.
For LED lighting, efficiency, power factor and total harmonic are also important. For example, efficiency is often needed to be as high as possible (e.g., >90%), and a power factor is often needed to be greater than 0.9. Moreover, total harmonic distortion is often needed to be as low as possible (e.g., <10%) for some applications. But the system 100 often cannot satisfy all these needs.
Hence it is highly desirable to improve the techniques of regulating output currents of power conversion systems.
Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for regulating output currents. Merely by way of example, some embodiments of the invention have been applied to power conversion systems. But it would be recognized that the invention has a much broader range of applicability.
According to one embodiment, a system controller for regulating a power conversion system includes: a first controller terminal configured to receive a first signal related to an input signal for a primary winding of a power conversation system; and a second controller terminal configured to output a drive signal to a switch to affect a current flowing through the primary winding of the power conversion system, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The system controller is configured to keep a multiplication product of the duty cycle and the duration of the on-time period approximately constant.
According to another embodiment, a system controller for regulating a power conversion system includes: a ramp-current generator configured to receive a modulation signal and generate a ramp current based at least in part on the modulation signal; a ramp-signal generator configured to receive the ramp current and generate a ramping signal based at least in part on the ramp current; a modulation component configured to receive the ramping signal and generate the modulation signal based at least in part on the ramping signal; a driving component configured to receive the modulation signal and output a drive signal to a switch to affect a current flowing through a primary winding of a power conversion system, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The ramp-current generator is further configured to generate the ramp current approximately proportional to the duty cycle in magnitude.
According to yet another embodiment, a system controller for regulating a power conversion system includes: a first controller terminal configured to provide a compensation signal based on at least information associated with a current flowing through a primary winding of a power conversion system; a ramp-current generator configured to receive a modulation signal, the compensation signal and a first reference signal and generate a ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal; a ramp-signal generator configured to receive the ramp current and generate a ramping signal based at least in part on the ramp current; a modulation component configured to receive the ramping signal and the compensation signal and generate the modulation signal based at least in part on the ramping signal and the compensation signal; and a driving component configured to receive the modulation signal and output a drive signal to a switch to affect the current, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The ramp-current generator is further configured to generate the ramp current approximately proportional in magnitude to a multiplication product of the duty cycle and a difference, the different representing the first reference signal minus the compensation signal in magnitude.
In one embodiment, a method for regulating a power conversion system includes: generating a drive signal associated with a switching period including an on-time period and an off-time period; and outputting the drive signal to a switch to affect a current flowing through a primary winding of a power conversion system. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; and outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the drive signal associated with the switching period includes keeping a multiplication product of the duty cycle and the duration of the on-time period approximately constant.
In another embodiment, a method for regulating a power conversion system includes: receiving a modulation signal; generating a ramp current based at least in part on the modulation signal; receiving the ramp current; generating a ramping signal based at least in part on the ramp current; receiving the ramping signal; generating the modulation signal based at least in part on the ramping signal; receiving the modulation signal; generating a drive signal based at least in part on the modulation signal, the drive signal being associated with a switching period including an on-time period and an off-time period; and outputting the drive signal to a switch to affect a current flowing through a primary winding of a power conversion system. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; and outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the ramp current based at least in part on the modulation signal includes generating the ramp current approximately proportional to the duty cycle in magnitude.
In yet another embodiment, a method for regulating a power conversion system includes: providing a compensation signal based on at least information associated with a current flowing through a primary winding of a power conversion system; receiving a modulation signal, the compensation signal and a first reference signal; generating a ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal; receiving the ramp current; generating a ramping signal based at least in part on the ramp current; receiving the ramping signal and the compensation signal; generating the modulation signal based at least in part on the ramping signal and the compensation signal; receiving the modulation signal; and outputting a drive signal to a switch to affect the current, the drive signal being associated with a switching period including an on-time period and an off-time period. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal includes generating the ramp current approximately proportional in magnitude to a multiplication product of the duty cycle and a difference, the different representing the first reference signal minus the compensation signal in magnitude.
Depending upon embodiment, one or more benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for regulating output currents. Merely by way of example, some embodiments of the invention have been applied to power conversion systems. But it would be recognized that the invention has a much broader range of applicability.
Referring to
where Iin_peak represents a peak value of the primary current 162, Ton represents an on-time period during which the power switch 128 is closed (e.g., being turned on), Vbulk represents the bulk voltage 150, and Lp represents the inductance of the primary winding 112.
For example, assuming the on-time period associated with the power switch 128 keeps approximately constant for a given input voltage and a given output load and the inductance of the primary winding 112 keeps approximately constant, the peak value of the primary current 162 follows the bulk voltage 150 (e.g., associated with a rectified sine waveform), according to Equation 2. In another example, an average of the primary current 162 is an average value of the primary current 162 during one or more switching periods, or is an average value of the primary current 162 during one or more switching periods that slide over time. In yet another example, the average of the primary current 162 is determined as follows:
where Ts represents a switching period including an on-time period (e.g., Ton) during which the power switch 128 is closed (e.g., being turned on) and an off-time period (e.g., Toff) during which the power switch 128 is open (e.g., being turned off). In addition, D represents a duty cycle associated with the power switch 128 and is determined as follows:
If the system 100 operates in the QR mode, the off-time period (e.g., Toff) is the same as a demagnetization period (e.g., Tdemag, associated with a demagnetization process of the secondary winding 114). Assuming the on-time period remains approximately constant in duration, the demagnetization period (e.g., Tdemag) changes with the peak value of the primary current 162 and thus the bulk voltage 150. As such, the switching period (e.g., Ts) changes with the bulk voltage 150. If the bulk voltage 150 increases in magnitude, the peak value of the primary current 162 increases and the switch period (e.g., Ts) increases in duration. As a result, the average of the primary current 162 does not follow closely the bulk voltage 150 and thus does not have a similar waveform as the bulk voltage 150 (e.g., a rectified sine waveform), which may result in poor total harmonic distortion.
According to some embodiments, the system controller 402 is implemented to vary the duration of an on-time period (e.g., Ton) during which the power witch 428 keeps closed (e.g., being turned on) with a bulk voltage 450 which is associated with an alternate-current (AC) input voltage 452. For example, the bulk voltage 450 (e.g., a rectified voltage no smaller than 0 V) is received by the resistor 404. In another example, the capacitor 406 is charged in response to the bulk voltage 450, and a voltage 454 is provided to the system controller 402 at the terminal 438 (e.g., terminal VCC). In yet another example, if the voltage 454 is larger than a predetermined threshold voltage in magnitude, the system controller 402 begins to operate normally, and outputs a signal 499 through the terminal 442 (e.g., terminal GATE). In yet another example, the switch 428 is closed (e.g., being turned on) or open (e.g., being turned off) in response to a drive signal 456 associated with the signal 499 so that the output current 458 is regulated to be approximately constant.
According to one embodiment, the auxiliary winding 416 charges the capacitor 406 through the diode 408 when the switch 428 is opened (e.g., being turned off) in response to the drive signal 456 so that the system controller 402 can operate normally. For example, a feedback signal 460 is provided to the system controller 402 through the terminal 440 (e.g., terminal FB) in order to detect the end of a demagnetization process of the secondary winding 414 for charging or discharging the capacitor 434 using an internal error amplifier in the system controller 402. In another example, the feedback signal 460 is provided to the system controller 402 through the terminal 440 (e.g., terminal FB) in order to detect the beginning and the end of the demagnetization process of the secondary winding 414. As an example, the capacitor 434 is charged or discharged in response to a compensation signal 474 at the terminal 448 (e.g., terminal COMP). In another example, the resistor 430 is used for detecting a primary current 462 flowing through the primary winding 412, and a current-sensing signal 464 is provided to the system controller 402 through the terminal 444 (e.g., terminal CS) to be processed during each switching cycle (e.g., corresponding to each switching period of the power switch 428). In yet another example, peak magnitudes of the current-sensing signal 464 are sampled and provided to the internal error amplifier. In yet another example, the capacitor 434 is coupled to an output terminal of the internal error amplifier. In yet another example, the capacitor 420 is used to maintain an output voltage 468 so as to keep a stable output current through the output load 422 (e.g., one or more LEDs). For example, the system 400 implements a primary-side-regulation scheme with single-stage power factor correction (PFC). As an example, the system 400 implements a flyback architecture or a buck-boost architecture.
According to another embodiment, an average of the primary current 162 is an average value of the primary current 162 during one or more switching periods, or is an average value of the primary current 162 during one or more switching periods that slide over time. For example, the average of the primary current 162 is determined as follows:
where Ts represents a switching period including an on-time period (e.g., Ton) during which the power switch 428 is closed (e.g., being turned on) and an off-time period (e.g., Toff) during which the power switch 428 is open (e.g., being turned off). In another example, a sum of the duration of the on-time period (e.g., Ton) and the off-time period (e.g., Toff) is equal to the duration of the switching period Ts. In addition, D represents a duty cycle associated with the power switch 428 and is determined as follows:
According to certain embodiments, the system controller 402 is implemented to keep a multiplication product of the duty cycle and the duration of the on-time period constant to achieve low total harmonic distortion as follows:
D×T=constant (Equation 7)
For example, according to Equation 7, if the multiplication product of the duty cycle and the duration of the on-time period is kept constant, the average of the primary current 462 changes with the bulk voltage 450 (e.g., associated with a rectified sine waveform).
In some embodiments, the system controller 402 is implemented to keep a multiplication product of the duty cycle and the duration of the on-time period approximately constant to achieve low total harmonic distortion as follows:
D×Ton≅constant (Equation 8)
For example, according to Equation 8, if the multiplication product of the duty cycle and the duration of the on-time period is kept approximately constant, the average of the primary current 462 changes (e.g., approximately linearly) with the bulk voltage 450 (e.g., associated with a rectified sine waveform). In another example, as shown in Equation 8, the error range of the multiplication product of the duty cycle and the duration of the on-time period being constant is ±5%. In yet another example, as shown in Equation 8, the error range of the multiplication product of the duty cycle and the duration of the on-time period being constant is ±10%. In yet another example, as shown in Equation 8, the error range of the multiplication product of the duty cycle and the duration of the on-time period being constant is ±15%. In yet another example, as shown in Equation 8, the error range of the multiplication product of the duty cycle and the duration of the on-time period being constant is ±20%.
According to one embodiment, the UVLO component 604 detects the signal 454 and outputs a signal 618 (e.g., por). For example, if the signal 454 is larger than a first predetermined threshold in magnitude, the system controller 402 begins to operate normally. If the signal 454 is smaller than a second predetermined threshold in magnitude, the system controller 402 is turned off. In another example, the second predetermined threshold is smaller than or equal to the first predetermined threshold in magnitude. In yet another example, the error amplifier 616 receives a signal 620 from the current-sensing-and-sample/hold component 614 and a reference signal 622. In yet another example, the error amplifier 616 generates a current which charges or discharges the capacitor 434 to generate the compensation signal 474 (e.g., Vcomp). In yet another example, the compensation signal 474 (e.g., Vcomp) is provided to the modulation component 606. In yet another example, the capacitor 434 is coupled to the terminal 448 and forms, together with the error amplifier 616, an integrator or a low-pass filter. In yet another example, the error amplifier 616 is a transconductance amplifier and outputs a current which is proportional to a difference between the reference signal 622 and the signal 620. In yet another example, the error amplifier 616 together with the capacitor 434 generates the compensation signal 474 (e.g., Vcomp) which is a voltage signal.
As an example, the reference-voltage generator 640 outputs a reference signal 636 (e.g., Vref1) to the ramp-current generator 642, outputs a voltage signal 694 (e.g., V1) to the ramp-signal generator 602, and outputs a reference signal 622 (e.g., Vref_ea) to the error amplifier 616. In another example, the ramp-signal generator 602 also receives a current signal 638 (e.g., Iramp) generated by the ramp-current generator 642 and generates a ramping signal 628. In yet another example, the current-sensing-and-sample/hold component 614 samples the current sensing signal 464 in response to the control signal 630 and then holds the sampled signal until the current-sensing-and-sample/hold component 614 samples again the current sensing signal 464.
According to another embodiment, the current 638 (e.g., Iramp) flows from the ramp-current generator 642 to the ramp-signal generator 602. For example, the current 638 (e.g., Iramp) flows from the ramp-signal generator 602 to the ramp-current generator 642. In another example, the modulation component 606 receives the ramping signal 628 and outputs a modulation signal 626. In yet another example, the logic controller 608 processes the modulation signal 626 and outputs a control signal 630 to the current-sensing-and-sample/hold component 614 and the driving component 610. In yet another example, the modulation signal 626 corresponds to a pulse-width-modulation (PWM) signal. In yet another example, the driving component 610 generates the signal 499 related to the drive signal 456 to affect the switch 428. In yet another example, when the signal 499 is at the logic high level, the signal 456 is at the logic high level, and when the signal 499 is at the logic low level, the signal 456 is at the logic low level.
According to yet another embodiment, the demagnetization detector 612 detects the feedback signal 460 and outputs a demagnetization signal 632 for determining the end of the demagnetization process of the secondary winding 414. For example, the demagnetization detector 612 detects the feedback signal 460 and outputs the demagnetization signal 632 for determining the beginning and the end of the demagnetization process of the secondary winding 414. In another example, the demagnetization detector 612 outputs a trigger signal 698 to the logic controller 608 to start a next cycle (e.g., corresponding to a next switching period).
In one embodiment, the on-time period (e.g., Ton) is determined as follows:
where Vcomp represents the compensation signal 474 (e.g., the output of the error amplifier 616), V1 represents the signal 694, and slp represents a slope of the ramping signal 628. For example, the ramping signal 628 increases, linearly or non-linearly, to a peak magnitude during each switching period, and the signal 694 (e.g., V1) corresponds to a start point of the increase of the ramping signal 628. As an example, the slope of the ramping signal 628 is determined as follows:
where Iramp represents the current 638, and C represents the capacitance of an internal capacitor in the ramp-signal generator 602. Combining Equations 8-10, it is determined:
To keep the multiplication product of the duty cycle (e.g., D) and the duration of the on-time period (e.g., Ton) constant, the ramp-current generator 642 generates the current 638 (e.g., Iramp) to be proportional in magnitude to the duty cycle (e.g., D), according to some embodiments. For example, the current 638 (e.g., Iramp) is determined as follows:
Iramp=k1*D (Equation 12)
where k1 represents a coefficient parameter (e.g., a constant).
In some embodiments, the ramp-current generator 642 generates the current 638 to be approximately proportional in magnitude to the duty cycle (e.g., D) so that the multiplication product of the duty cycle (e.g., D) and the duration of the on-time period (e.g., Ton) is kept approximately constant. For example, the current 638 (e.g., Iramp) is determined as follows:
Iramp≅k1*D (Equation 13)
where k1 represents a coefficient parameter (e.g., a constant). In another example, as shown in Equation 13, the error range of the current 638 being proportional in magnitude to the duty cycle is ±5%. In yet another example, as shown in Equation 13, the error range of the current 638 being proportional in magnitude to the duty cycle is ±10%. In yet another example, as shown in Equation 13, the error range of the current 638 being proportional in magnitude to the duty cycle is ±15%. In yet another example, as shown in Equation 13, the error range of the current 638 being proportional in magnitude to the duty cycle is ±20%.
As discussed above and further emphasized here,
An on-time period and an off-time period associated with the signal 499 are shown in
According to one embodiment, at to, the demagnetization signal 632 changes from the logic high level to the logic low level. For example, the demagnetization detector 612 generates a pulse (e.g., between to and t2) in the trigger signal 698 to trigger a new cycle. As an example, the ramping signal 628 begins to increase from a magnitude 912 to a magnitude 914 (e.g., at t4). In another example, at t1, the signal 626 changes from the logic low level to the logic high level. After a short delay, the signal 499 changes (e.g., at t3) from the logic low level to the logic high level, and in response the switch 428 is closed (e.g., being turned on). In yet another example, at t4, the signal 626 changes from the logic high level to the logic low level, and the ramping signal 628 decreases from the magnitude 914 to the magnitude 912. After a short delay, the signal 499 changes (e.g., at t5) from the logic high level to the logic low level, and in response, the switch 428 is open (e.g., being turned off). As an example, at t6, the demagnetization signal 632 changes from the logic low level to the logic high level which indicates a beginning of a demagnetization process. In another example, at t7, the demagnetization signal 632 changes from the logic high level to the logic low level which indicates the end of the demagnetization process. In yet another example, the demagnetization detector 612 generates another pulse in the trigger signal 698 to start a next cycle. In yet another example, the magnitude 912 of the ramping signal 628 is associated with the signal 694. In yet another example, the magnitude 914 of the ramping signal 628 is associated with the magnitude of the compensation signal 474.
According to another embodiment, the magnitude change of the ramping signal 628 during the on-time period is determined as follows:
ΔVramp=Vcomp−V1=slp×Ton (Equation 14)
where ΔVramp represents the magnitude changes of the ramping signal 628, Vcomp represents the signal 474, V1 represents the signal 694, slp represents a ramping slope associated with the ramping signal 628, and Ton represents the duration of the on-time period. For example, V1 corresponds to the magnitude 912 of the ramping signal 628. Based on Equation 14, the duration of the on-time period is determined as follows:
As shown in Equation 15, for a given compensation signal (e.g., the signal 474), the duration of the on-time period is determined by the ramping slope of the ramping signal 628, according to certain embodiments. For example, a slope of the waveform 910 between t1 and t4 corresponds to the ramping slope of the ramping signal 628.
According to one embodiment, the switch 502 is closed or opened in response to the modulation signal 626 (e.g., PWM), and the switch 504 is closed or opened in response to a signal 512 (e.g., PWM_b). For example, the NOT gate 518 generates the signal 512 (e.g., PWM_b) which is complementary to the modulation signal 626 (e.g., PWM). As an example, if the modulation signal 626 is at the logic high level, the signal 512 is at the logic low level, and if the modulation signal 626 is at the logic low level, the signal 512 is at the logic high level.
In one embodiment, if the modulation signal 626 (e.g., PWM) is at the logic high level, the switch 502 is closed (e.g., being turned on) and the operational amplifier 506 receives the reference signal 636 (e.g., Vref1) at its non-inverting terminal (e.g., terminal “+”), where the inverting terminal (e.g., terminal “−”) and the output terminal of the amplifier 506 are connected. For example, the operational amplifier 506 includes a buffer amplifier with a gain of 1. As an example, the signal 512 is at the logic low level, and the switch 504 is open (e.g., being turned off). For example, the low pass filter 508 receives a signal 516 from the amplifier 506 and outputs a filtered signal 514 (e.g., Vduty). In another example, the filtered signal 514 (e.g., Vduty) is a voltage signal and is converted by the voltage-to-current converter 510 to the current 638 (e.g., Iramp). In yet another example, the signal 516 is approximately equal (e.g., in magnitude) to the reference signal 636.
In another embodiment, if the modulation signal 626 (e.g., PWM) is at the logic low level and the signal 512 is at the logic high level, the switch 502 is open (e.g., being turned off), and the switch 504 is closed (e.g., being turned on). For example, the operational amplifier 506 receives a ground voltage 520 at its non-inverting terminal (e.g., terminal “+”), and changes the signal 516. As an example, the signal 516 is approximately equal to the ground voltage 520. As another example, the low pass filter 508 includes a RC filter which includes one or more resistors and one or more capacitors.
Iramp=k1*D=β(Vref1)*D (Equation 16)
where Vref1 represents the reference signal 636, and β represents a coefficient parameter (e.g., a constant).
According to one embodiment, the switch 540 is closed or opened in response to the modulation signal 626 (e.g., PWM), and the switch 542 is closed or opened in response to the signal 512 (e.g., PWM_b). In one embodiment, if the modulation signal 626 (e.g., PWM) is at the logic low level and the signal 512 is at the logic high level, the switch 540 is open (e.g., being turned off) and the switch 504 is closed (e.g., being turned on). For example, the operational amplifier 546 receives the signal 694 (e.g., V1) at its non-inverting terminal (e.g., terminal “+”) and outputs a signal 548, where the inverting terminal (e.g., terminal “−”) and the output terminal of the amplifier 546 are connected together. As an example, the signal 548 is approximately equal (e.g., in magnitude) to the signal 694 (e.g., V1), and in response the voltage on the capacitor 544 becomes approximately equal (e.g., in magnitude) to the signal 548 and thus the signal 694 (e.g., V1).
In another embodiment, if the modulation signal 626 (e.g., PWM) changes to the logic high level and the signal 512 changes to the logic low level, the switch 540 is closed (e.g., being turned on) and the switch 504 is opened (e.g., being turned off). For example, the ramp-current generator 642 outputs the current 638 to charge the capacitor 544 through the closed switch 540. As an example, the ramping signal 628 which corresponds to the voltage on the capacitor 544 increases (e.g., linearly or non-linearly) from a magnitude approximately equal to the signal 694 (e.g., V1) to a maximum magnitude (e.g., the compensation signal 474) as the current 638 charges the capacitor 544.
As discussed above and further emphasized here,
For example, the ramp-signal generator 1602, the under-voltage lock-out (UVLO) component 1604, the modulation component 1606, the logic controller 1608, the driving component 1610, the demagnetization detector 1612, the error amplifier 1616, the current-sensing-and-sample/hold component 1614, the reference-voltage generator 1640, and the ramp-current generator 1642 are the same as the ramp-signal generator 602, the under-voltage lock-out (UVLO) component 604, the modulation component 606, the logic controller 608, the driving component 610, the demagnetization detector 612, the error amplifier 616, the current-sensing-and-sample/hold component 614, the reference-voltage generator 640, and the ramp-current generator 642, respectively.
According to one embodiment, the UVLO component 1604 detects the signal 454 and outputs a signal 1618 (e.g., por). For example, if the signal 454 is larger than a first predetermined threshold in magnitude, the system controller 402 begins to operate normally. If the signal 454 is smaller than a second predetermined threshold in magnitude, the system controller 402 is turned off. In another example, the second predetermined threshold is smaller than or equal to the first predetermined threshold in magnitude. In yet another example, the error amplifier 1616 receives a signal 1620 from the current-sensing-and-sample/hold component 1614 and a reference signal 1622, and the compensation signal 474 (e.g., Vcomp) is provided to the modulation component 1606 and the voltage-to-current-conversion component 1642. In yet another example, the capacitor 434 is coupled to the terminal 448 and forms, together with the error amplifier 1616, an integrator or a low-pass filter. In yet another example, the error amplifier 1616 is a transconductance amplifier and outputs a current which is proportional to a difference between the reference signal 1622 and the signal 1620. In yet another example, the error amplifier 1616 together with the capacitor 434 generates the compensation signal 474 (e.g., Vcomp) which is a voltage signal.
As an example, the reference-voltage generator 1640 outputs a reference signal 1636 (e.g., Vref) to the ramp-current generator 1642, outputs a voltage signal 1694 (e.g., V1) to the ramp-signal generator 1602, and outputs a reference signal 1622 (e.g., Vref_ea) to the error amplifier 1616. In another example, the ramp-signal generator 1602 also receives a current signal 1638 (e.g., Iramp) generated by the ramp-current generator 1642 and generates a ramping signal 1628. In one embodiment, the current signal 1638 is equal in magnitude to the current signal 638. In another embodiment, the current signal 1638 is not equal in magnitude to the current signal 638.
According to another embodiment, the current 1638 (e.g., Iramp) flows from the ramp-current generator 1642 to the ramp-signal generator 1602. For example, the current 1638 (e.g., Iramp) flows from the ramp-signal generator 1602 to the ramp-current generator 1642. In another example, the modulation component 1606 receives the ramping signal 1628 and outputs a modulation signal 1626. In yet another example, the logic controller 1608 processes the modulation signal 1626 and outputs a control signal 1630 to the current-sensing-and-sample/hold component 1614 and the driving component 1610. In yet another example, the modulation signal 1626 corresponds to a pulse-width-modulation (PWM) signal.
According to yet another embodiment, the current-sensing-and-sample/hold component 1614 samples the current sensing signal 464 in response to the control signal 1630 and then holds the sampled signal until the current-sensing-and-sample/hold component 1614 samples again the current sensing signal 464. For example, the driving component 1610 generates the signal 499 related to the drive signal 456 to affect the switch 428. In another example, if the signal 499 is at the logic high level, the signal 456 is at the logic high level, and if the signal 499 is at the logic low level, the signal 456 is at the logic low level. As an example, the demagnetization detector 1612 detects the feedback signal 460 and outputs a demagnetization signal 1632 for determining the end of the demagnetization process of the secondary winding 414. As another example, the demagnetization detector 1612 detects the feedback signal 460 and outputs the demagnetization signal 1632 for determining the beginning and the end of the demagnetization process of the secondary winding 414. In yet another example, the demagnetization detector 1612 outputs a trigger signal 1698 to the logic controller 1608 to start a next cycle (e.g., corresponding to a next switching period).
To keep the multiplication product of the duty cycle (e.g., D) and the duration of the on-time period (e.g., Ton) constant, the ramp-current generator 1642 generates the current 1638 (e.g., Iramp) to be proportional in magnitude to the duty cycle (e.g., D), according to some embodiments. For example, the current 1638 (e.g., Iramp) is determined as follows:
Iramp=k2*D (Equation 17)
where k2 represents a coefficient parameter. As an example, k2 is proportional to a difference between the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp). For example, a differential signal is generated based at least in part on the difference between the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp). In certain embodiments, the current 1638 (e.g., Iramp) is determined as follows:
Iramp=α(Vref−Vcomp)×D (Equation 18)
where α represents a coefficient parameter (e.g., a constant). In some applications, the compensation signal 474 (e.g., Vcomp), e.g., the output of the error amplifier 1616, represents an output load condition for a given input voltage (e.g., Vbulk), according to certain embodiments.
In some embodiments, the ramp-current generator 1642 generates the current 1638 to be approximately proportional in magnitude to the duty cycle (e.g., D) so that the multiplication product of the duty cycle (e.g., D) and the duration of the on-time period (e.g., Ton) is kept approximately constant. For example, the current 1638 (e.g., Iramp) is determined as follows:
Tramp≈k2*D (Equation 19)
where k2 represents a coefficient parameter. As an example, k2 is approximately proportional to a difference between the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp). For example, a differential signal is generated based at least in part on the difference between the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp). In certain embodiments, the current 1638 (e.g., Iramp) is determined as follows:
Iramp≈α(Vref−Vcomp)×D (Equation 20)
where α represents a coefficient parameter (e.g., a constant). For example, as shown in Equation 20, the error range of the current 1638 being proportional in magnitude to a multiplication product of the duty cycle and the difference between the reference signal 1636 and the compensation signal 474 is ±5%. In another example, as shown in Equation 20, the error range of the current 1638 being proportional in magnitude to a multiplication product of the duty cycle and the difference between the reference signal 1636 and the compensation signal 474 is ±10%. In yet another example, as shown in Equation 20, the error range of the current 1638 being proportional in magnitude to a multiplication product of the duty cycle and the difference between the reference signal 1636 and the compensation signal 474 is ±15%. In yet another example, as shown in Equation 20, the error range of the current 1638 being proportional in magnitude to a multiplication product of the duty cycle and the difference between the reference signal 1636 and the compensation signal 474 is ±20%.
As discussed above and further emphasized here,
An on-time period and an off-time period associated with the signal 499 are shown in
According to one embodiment, at t10, the demagnetization signal 1632 changes from the logic high level to the logic low level. For example, the demagnetization detector 1612 generates a pulse (e.g., between t10 and t12) in the trigger signal 1698 to trigger a new cycle. As an example, the ramping signal 1628 begins to increase from a magnitude 1912 to a magnitude 1914 (e.g., at t14). In another example, at t11, the signal 1626 changes from the logic low level to the logic high level. After a short delay, the signal 499 changes (e.g., at t13) from the logic low level to the logic high level, and in response the switch 428 is closed (e.g., being turned on). In yet another example, at t14, the signal 1626 changes from the logic high level to the logic low level, and the ramping signal 1628 decreases from the magnitude 1914 to the magnitude 1912. After a short delay, the signal 499 changes (e.g., at t15) from the logic high level to the logic low level, and in response, the switch 428 is open (e.g., being turned off). As an example, at t16, the demagnetization signal 1632 changes from the logic low level to the logic high level which indicates a beginning of a demagnetization process. In another example, at t17, the demagnetization signal 1632 changes from the logic high level to the logic low level which indicates the end of the demagnetization process. In yet another example, the demagnetization detector 1612 generates another pulse in the trigger signal 1698 to start a next cycle. In yet another example, the magnitude 1912 of the ramping signal 1628 is associated with the signal 1694. In yet another example, the magnitude 1914 of the ramping signal 1628 is associated with the magnitude of the compensation signal 474. In yet another example, a ramping slope of the ramp signal 1628 is modulated by the compensation signal 474 (e.g., Vcomp), e.g., the output of the error amplifier 1616.
According to another embodiment, the magnitude change of the ramping signal 1628 during the on-time period is determined as follows:
ΔVramp=Vcomp−V1=slp×Ton (Equation 21)
where ΔVramp represents the magnitude changes of the ramping signal 1628, Vcomp represents the signal 474, V1 represents the signal 1694, slp represents a ramping slope associated with the ramping signal 1628, and Ton represents the duration of the on-time period. For example, V1 corresponds to the magnitude 1912 of the ramping signal 1628. Based on Equation 15, the duration of the on-time period is determined as follows:
As shown in Equation 22, for a given compensation signal (e.g., the output of the error amplifier 1616), the duration of the on-time period is determined by the ramping slope of the ramping signal 1628, according to certain embodiments. For example, a slope of the waveform 1910 between t11 and t14 corresponds to the ramping slope of the ramping signal 1628. In some embodiments, the ramping slope of the ramping signal 1628 is the same as the ramping slope of the ramping signal 628. In certain embodiments, the ramping slope of the ramping signal 1628 is different from the ramping slope of the ramping signal 628.
According to one embodiment, the switch 1502 is closed or opened in response to the modulation signal 1626 (e.g., PWM), and the switch 1504 is closed or opened in response to a signal 1512 (e.g., PWM_b). For example, the NOT gate 1518 generates the signal 1512 (e.g., PWM_b) which is complementary to the modulation signal 1626 (e.g., PWM). As an example, if the modulation signal 1626 is at the logic high level, the signal 1512 is at the logic low level, and if the modulation signal 1626 is at the logic low level, the signal 1512 is at the logic high level. In another example, the summation component 1522 receives the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp) and generates a signal 1524, where the signal 1524 is equal (e.g., in magnitude) to a difference between the reference signal 1636 (e.g., Vref) and the compensation signal 474 (e.g., Vcomp).
In one embodiment, if the modulation signal 1626 (e.g., PWM) is at the logic high level, the switch 1502 is closed (e.g., being turned on) and the operational amplifier 1506 receives the signal 1524 at its non-inverting terminal (e.g., terminal “+”), where the inverting terminal (e.g., terminal “−”) and the output terminal of the amplifier 1506 are connected together. As an example, the signal 1512 is at the logic low level, and the switch 1504 is open (e.g., being turned off). For example, the low pass filter 1508 receives a signal 1516 from the amplifier 1506 and outputs a filtered signal 1514 (e.g., Vduty). In another example, the filtered signal 1514 (e.g., Vduty) is a voltage signal and is converted by the voltage-to-current converter 1510 to the current 1638 (e.g., Iramp). In yet another example, the signal 1516 is approximately equal (e.g., in magnitude) to the signal 1524.
In another embodiment, if the modulation signal 1626 (e.g., PWM) is at the logic low level and the signal 1512 is at the logic high level, the switch 1502 is open (e.g., being turned off), and the switch 1504 is closed (e.g., being turned on). For example, the operational amplifier 1506 receives a ground voltage 1520 at its non-inverting terminal (e.g., terminal “+”), and changes the signal 1516. As an example, the signal 1516 is approximately equal to the ground voltage 1520. As another example, the low pass filter 1508 includes a RC filter which includes one or more resistors and one or more capacitors.
According to one embodiment, the switch 1540 is closed or opened in response to the modulation signal 1626 (e.g., PWM), and the switch 1542 is closed or opened in response to the signal 1512 (e.g., PWM_b). In one embodiment, if the modulation signal 1626 (e.g., PWM) is at the logic low level and the signal 1512 is at the logic high level, the switch 1540 is open (e.g., being turned off) and the switch 1504 is closed (e.g., being turned on). For example, the operational amplifier 1546 receives the signal 1694 (e.g., V1) at its non-inverting terminal (e.g., terminal “+”) and outputs a signal 1548, where the inverting terminal (e.g., terminal “−”) and the output terminal of the amplifier 1546 are connected together. In another example, the operational amplifier 1546 includes a buffer amplifier with a gain of 1. As an example, the signal 1548 is approximately equal (e.g., in magnitude) to the signal 1694 (e.g., V1), and in response the voltage on the capacitor 1544 becomes approximately equal (e.g., in magnitude) to the signal 1548 and thus the signal 1694 (e.g., V1).
In another embodiment, if the modulation signal 1626 (e.g., PWM) changes to the logic high level and the signal 1512 changes to the logic low level, the switch 1540 is closed (e.g., being turned on) and the switch 1504 is opened (e.g., being turned off). For example, the ramp-current generator 1642 outputs the current 1638 to charge the capacitor 1544 through the closed switch 1540. As an example, the ramping signal 1628 which corresponds to the voltage on the capacitor 1544 increases (e.g., linearly or non-linearly) from a magnitude approximately equal to the signal 1694 (e.g., V1) to a maximum magnitude (e.g., the compensation signal 474) as the current 1638 charges the capacitor 1544.
According to one embodiment, a system controller for regulating a power conversion system includes: a first controller terminal configured to receive a first signal related to an input signal for a primary winding of a power conversation system; and a second controller terminal configured to output a drive signal to a switch to affect a current flowing through the primary winding of the power conversion system, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The system controller is configured to keep a multiplication product of the duty cycle and the duration of the on-time period approximately constant. For example, the system controller is implemented according to at least
According to another embodiment, a system controller for regulating a power conversion system includes: a ramp-current generator configured to receive a modulation signal and generate a ramp current based at least in part on the modulation signal; a ramp-signal generator configured to receive the ramp current and generate a ramping signal based at least in part on the ramp current; a modulation component configured to receive the ramping signal and generate the modulation signal based at least in part on the ramping signal; a driving component configured to receive the modulation signal and output a drive signal to a switch to affect a current flowing through a primary winding of a power conversion system, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The ramp-current generator is further configured to generate the ramp current approximately proportional to the duty cycle in magnitude. For example, the system controller is implemented according to at least
According to yet another embodiment, a system controller for regulating a power conversion system includes: a first controller terminal configured to provide a compensation signal based on at least information associated with a current flowing through a primary winding of a power conversion system; a ramp-current generator configured to receive a modulation signal, the compensation signal and a first reference signal and generate a ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal; a ramp-signal generator configured to receive the ramp current and generate a ramping signal based at least in part on the ramp current; a modulation component configured to receive the ramping signal and the compensation signal and generate the modulation signal based at least in part on the ramping signal and the compensation signal; and a driving component configured to receive the modulation signal and output a drive signal to a switch to affect the current, the drive signal being associated with a switching period including an on-time period and an off-time period. The switch is closed in response to the drive signal during the on-time period. The switch is opened in response to the drive signal during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The ramp-current generator is further configured to generate the ramp current approximately proportional in magnitude to a multiplication product of the duty cycle and a difference, the different representing the first reference signal minus the compensation signal in magnitude. For example, the system controller is implemented according to at least
In one embodiment, a method for regulating a power conversion system includes: generating a drive signal associated with a switching period including an on-time period and an off-time period; and outputting the drive signal to a switch to affect a current flowing through a primary winding of a power conversion system. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; and outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the drive signal associated with the switching period includes keeping a multiplication product of the duty cycle and the duration of the on-time period approximately constant. For example, the method is implemented according to at least
In another embodiment, a method for regulating a power conversion system includes: receiving a modulation signal; generating a ramp current based at least in part on the modulation signal; receiving the ramp current; generating a ramping signal based at least in part on the ramp current; receiving the ramping signal; generating the modulation signal based at least in part on the ramping signal; receiving the modulation signal; generating a drive signal based at least in part on the modulation signal, the drive signal being associated with a switching period including an on-time period and an off-time period; and outputting the drive signal to a switch to affect a current flowing through a primary winding of a power conversion system. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; and outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the ramp current based at least in part on the modulation signal includes generating the ramp current approximately proportional to the duty cycle in magnitude. For example, the method is implemented according to at least
In yet another embodiment, a method for regulating a power conversion system includes: providing a compensation signal based on at least information associated with a current flowing through a primary winding of a power conversion system; receiving a modulation signal, the compensation signal and a first reference signal; generating a ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal; receiving the ramp current; generating a ramping signal based at least in part on the ramp current; receiving the ramping signal and the compensation signal; generating the modulation signal based at least in part on the ramping signal and the compensation signal; receiving the modulation signal; and outputting a drive signal to a switch to affect the current, the drive signal being associated with a switching period including an on-time period and an off-time period. The outputting the drive signal to the switch to affect the current includes: outputting the drive signal to close the switch during the on-time period; outputting the drive signal to open the switch during the off-time period. A duty cycle is equal to a duration of the on-time period divided by a duration of the switching period. The generating the ramp current based at least in part on the modulation signal, the compensation signal and the first reference signal includes generating the ramp current approximately proportional in magnitude to a multiplication product of the duty cycle and a difference, the different representing the first reference signal minus the compensation signal in magnitude. For example, the method is implemented according to at least
For example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented using one or more software components, one or more hardware components, and/or one or more combinations of software and hardware components. In another example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented in one or more circuits, such as one or more analog circuits and/or one or more digital circuits. In yet another example, various embodiments and/or examples of the present invention can be combined.
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0249026 | May 2015 | CN | national |
This application is a continuation of U.S. patent application Ser. No. 15/804,712, filed Nov. 6, 2017, which is a continuation of U.S. patent application Ser. No. 14/753,079, filed Jun. 29, 2015, which claims priority to Chinese Patent Application No. 201510249026.4, filed May 15, 2015, all of these applications being commonly assigned and incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3018966 | Zelina | May 1955 | A |
3913002 | Steigerwald et al. | Oct 1975 | A |
3967173 | Stich | Jun 1976 | A |
4356542 | Bruckner et al. | Oct 1982 | A |
4753079 | Sumitomo | Jun 1988 | A |
4952853 | Archer | Aug 1990 | A |
4975820 | Szepesi | Dec 1990 | A |
5416689 | Silverstein et al. | May 1995 | A |
5442538 | Ikeda et al. | Aug 1995 | A |
5528483 | Mohandes | Jun 1996 | A |
5550702 | Schmidt et al. | Aug 1996 | A |
5574392 | Jordan | Nov 1996 | A |
5578908 | Persson | Nov 1996 | A |
5677606 | Otake | Oct 1997 | A |
5796595 | Cross | Aug 1998 | A |
5796598 | Nowak et al. | Aug 1998 | A |
5867379 | Maksimovic et al. | Feb 1999 | A |
5917714 | Ogawa | Jun 1999 | A |
6061257 | Spampinato et al. | May 2000 | A |
6084783 | Rascon Martinez et al. | Jul 2000 | A |
6292376 | Kato | Sep 2001 | B1 |
6469917 | Ben-Yaakov | Oct 2002 | B1 |
6515876 | Koike et al. | Feb 2003 | B2 |
6583610 | Groom et al. | Jun 2003 | B2 |
6611439 | Yang et al. | Aug 2003 | B1 |
6714425 | Yamada et al. | Mar 2004 | B2 |
6737845 | Hwang | May 2004 | B2 |
6839247 | Yang et al. | Jan 2005 | B1 |
6842350 | Yamada et al. | Jan 2005 | B2 |
6903536 | Yang | Jun 2005 | B2 |
6914789 | Kinoshita et al. | Jul 2005 | B2 |
6947298 | Uchida | Sep 2005 | B2 |
6954367 | Yang et al. | Oct 2005 | B2 |
7027313 | Amei | Apr 2006 | B2 |
7061225 | Yang et al. | Jun 2006 | B2 |
7099164 | Zhu et al. | Aug 2006 | B2 |
7149098 | Chen | Dec 2006 | B1 |
7342383 | Song et al. | Mar 2008 | B1 |
7362592 | Yang et al. | Apr 2008 | B2 |
7362593 | Yang et al. | Apr 2008 | B2 |
7391630 | Acatrinei | Jun 2008 | B2 |
7394634 | Fang et al. | Jul 2008 | B2 |
7679938 | Ye et al. | Mar 2010 | B2 |
7684220 | Fang et al. | Mar 2010 | B2 |
7719249 | Matyas et al. | May 2010 | B2 |
7738227 | Fang et al. | Jun 2010 | B2 |
7746615 | Zhu et al. | Jun 2010 | B2 |
7759891 | Serizawa et al. | Jul 2010 | B2 |
7778049 | Morota | Aug 2010 | B2 |
7791903 | Zhang et al. | Sep 2010 | B2 |
8004112 | Koga et al. | Aug 2011 | B2 |
8018743 | Wang et al. | Sep 2011 | B2 |
8018745 | Fang et al. | Sep 2011 | B2 |
8098502 | Mao et al. | Jan 2012 | B2 |
8102676 | Huyhn et al. | Jan 2012 | B2 |
8416596 | Huang | Apr 2013 | B2 |
8482946 | Fang et al. | Jul 2013 | B2 |
8488342 | Zhang et al. | Jul 2013 | B2 |
8508142 | Lin et al. | Aug 2013 | B2 |
8519691 | McCloy-Stevens | Aug 2013 | B2 |
8559152 | Cao et al. | Oct 2013 | B2 |
8680884 | Chobot | Mar 2014 | B2 |
8824167 | Hughes et al. | Sep 2014 | B2 |
8824173 | Fang et al. | Sep 2014 | B2 |
8917527 | Fang et al. | Dec 2014 | B2 |
9083245 | Zhao | Jul 2015 | B2 |
9088218 | Zhang et al. | Jul 2015 | B2 |
9136703 | Cummings | Sep 2015 | B2 |
9362737 | Yang et al. | Jun 2016 | B2 |
9401648 | Li | Jul 2016 | B2 |
9548652 | Cao et al. | Jan 2017 | B2 |
9553501 | Yao et al. | Jan 2017 | B2 |
9564811 | Zhai et al. | Feb 2017 | B2 |
9570986 | Zhai et al. | Feb 2017 | B2 |
9577536 | Yang et al. | Feb 2017 | B2 |
9584005 | Fang | Feb 2017 | B2 |
9614445 | Zhu et al. | Apr 2017 | B2 |
9647448 | Fang et al. | May 2017 | B2 |
9935556 | Rana | Apr 2018 | B1 |
9960674 | Fang | May 2018 | B2 |
9991802 | Zhai et al. | Jun 2018 | B2 |
10003268 | Fang et al. | Jun 2018 | B2 |
10044254 | Zhai et al. | Aug 2018 | B2 |
10170999 | Fang et al. | Jan 2019 | B2 |
10177665 | Zhu | Jan 2019 | B2 |
10211626 | Yang et al. | Feb 2019 | B2 |
10211740 | Zhu et al. | Feb 2019 | B2 |
10270334 | Fang et al. | Apr 2019 | B2 |
10277110 | Yao et al. | Apr 2019 | B2 |
10340795 | Fang | Jul 2019 | B2 |
10432096 | Fang et al. | Oct 2019 | B2 |
10483838 | Yao et al. | Nov 2019 | B2 |
20020131279 | Tang | Sep 2002 | A1 |
20030099119 | Yamada et al. | May 2003 | A1 |
20030156433 | Gong et al. | Aug 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20040201369 | Perrier et al. | Oct 2004 | A1 |
20040218405 | Yamada et al. | Nov 2004 | A1 |
20050036342 | Uchida | Feb 2005 | A1 |
20050099164 | Yang | May 2005 | A1 |
20060055433 | Yang et al. | Mar 2006 | A1 |
20060291258 | Zhu et al. | Dec 2006 | A1 |
20080198638 | Reinberger et al. | Aug 2008 | A1 |
20080257397 | Glaser et al. | Oct 2008 | A1 |
20080298099 | Huang et al. | Dec 2008 | A1 |
20080309380 | Yang et al. | Dec 2008 | A1 |
20080316781 | Liu | Dec 2008 | A1 |
20090021233 | Hsu | Jan 2009 | A1 |
20090128113 | Ryoo | May 2009 | A1 |
20090219070 | Zhang et al. | Sep 2009 | A1 |
20100036839 | Kamimaeda et al. | Feb 2010 | A1 |
20100039839 | Lin | Feb 2010 | A1 |
20100123447 | Vecera et al. | May 2010 | A1 |
20100141307 | Yang et al. | Jun 2010 | A1 |
20100253250 | Marvelly et al. | Oct 2010 | A1 |
20100328831 | Zhang et al. | Dec 2010 | A1 |
20110101953 | Cheng et al. | May 2011 | A1 |
20110110126 | Morrish | May 2011 | A1 |
20110169418 | Yang et al. | Jul 2011 | A1 |
20120008352 | Huang et al. | Jan 2012 | A1 |
20120075891 | Zhang et al. | Mar 2012 | A1 |
20120119650 | Lee | May 2012 | A1 |
20120147630 | Cao et al. | Jun 2012 | A1 |
20120194227 | Lin et al. | Aug 2012 | A1 |
20120224397 | Yeh | Sep 2012 | A1 |
20120250362 | Chen | Oct 2012 | A1 |
20120281438 | Fang et al. | Nov 2012 | A1 |
20130003421 | Fang | Jan 2013 | A1 |
20130051090 | Xie | Feb 2013 | A1 |
20130100715 | Lin et al. | Apr 2013 | A1 |
20130135775 | Yao et al. | May 2013 | A1 |
20130181635 | Ling | Jul 2013 | A1 |
20130223107 | Zhang et al. | Aug 2013 | A1 |
20130258723 | Fang et al. | Oct 2013 | A1 |
20130294121 | Fang et al. | Nov 2013 | A1 |
20130336029 | Cao et al. | Dec 2013 | A1 |
20140016366 | Su | Jan 2014 | A1 |
20140029315 | Zhang et al. | Jan 2014 | A1 |
20140085941 | Li et al. | Mar 2014 | A1 |
20140197811 | Qiu | Jul 2014 | A1 |
20140355316 | Wu et al. | Dec 2014 | A1 |
20150023069 | Zhu et al. | Jan 2015 | A1 |
20150055382 | Yang et al. | Feb 2015 | A1 |
20150115919 | Yang et al. | Apr 2015 | A1 |
20150180328 | Yao et al. | Jun 2015 | A1 |
20150207416 | Kim | Jul 2015 | A1 |
20150301542 | Yang et al. | Oct 2015 | A1 |
20150303787 | Zhai | Oct 2015 | A1 |
20150303898 | Zhai et al. | Oct 2015 | A1 |
20150340952 | Manohar et al. | Nov 2015 | A1 |
20150340957 | Fang et al. | Nov 2015 | A1 |
20150357912 | Perreault et al. | Dec 2015 | A1 |
20160226239 | Yang | Aug 2016 | A1 |
20160336852 | Fang et al. | Nov 2016 | A1 |
20160336864 | Fang et al. | Nov 2016 | A1 |
20160336868 | Fang et al. | Nov 2016 | A1 |
20170141688 | Zhai et al. | May 2017 | A1 |
20170163026 | Yang et al. | Jun 2017 | A1 |
20170179808 | Zhai et al. | Jun 2017 | A1 |
20170187294 | Fang et al. | Jun 2017 | A1 |
20170194869 | Yao et al. | Jul 2017 | A1 |
20170214327 | Zhu et al. | Jul 2017 | A1 |
20170214328 | Zhu et al. | Jul 2017 | A1 |
20180123448 | Yao et al. | May 2018 | A1 |
20180123456 | Fang et al. | May 2018 | A1 |
20180123464 | Fang et al. | May 2018 | A1 |
20180287492 | Fang et al. | Oct 2018 | A1 |
20180351447 | Zhai et al. | Dec 2018 | A1 |
20190020262 | Yao et al. | Jan 2019 | A1 |
20190165683 | Zhu et al. | May 2019 | A1 |
20190199201 | Yao et al. | Jun 2019 | A1 |
20190348908 | Yao et al. | Nov 2019 | A1 |
20190348914 | Fang et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2552047 | May 2003 | CN |
1430314 | Jul 2003 | CN |
2567850 | Aug 2003 | CN |
1448005 | Oct 2003 | CN |
1459903 | Dec 2003 | CN |
1497827 | May 2004 | CN |
1815838 | Aug 2006 | CN |
1917322 | Feb 2007 | CN |
101079576 | Nov 2007 | CN |
101295872 | Oct 2008 | CN |
101340149 | Jan 2009 | CN |
101425750 | May 2009 | CN |
101499713 | Aug 2009 | CN |
101552570 | Oct 2009 | CN |
100559678 | Nov 2009 | CN |
101662223 | Mar 2010 | CN |
101295872 | Apr 2010 | CN |
201477463 | May 2010 | CN |
101924536 | Dec 2010 | CN |
101964647 | Feb 2011 | CN |
101997412 | Mar 2011 | CN |
102202449 | Sep 2011 | CN |
202009514 | Oct 2011 | CN |
102364990 | Feb 2012 | CN |
102412727 | Apr 2012 | CN |
102487246 | Jun 2012 | CN |
102545567 | Jul 2012 | CN |
102611306 | Jul 2012 | CN |
102624237 | Aug 2012 | CN |
102625514 | Aug 2012 | CN |
102638169 | Aug 2012 | CN |
102651613 | Aug 2012 | CN |
102684503 | Sep 2012 | CN |
102761255 | Oct 2012 | CN |
102790531 | Nov 2012 | CN |
102801300 | Nov 2012 | CN |
102820781 | Dec 2012 | CN |
103036438 | Apr 2013 | CN |
103078489 | May 2013 | CN |
103166198 | Jun 2013 | CN |
103167665 | Jun 2013 | CN |
103178717 | Jun 2013 | CN |
103368400 | Oct 2013 | CN |
103401424 | Nov 2013 | CN |
103781256 | May 2014 | CN |
103781257 | May 2014 | CN |
103887980 | Jun 2014 | CN |
103916027 | Jul 2014 | CN |
103956905 | Jul 2014 | CN |
203747681 | Jul 2014 | CN |
103986336 | Aug 2014 | CN |
104022648 | Sep 2014 | CN |
104617792 | May 2015 | CN |
104853493 | Aug 2015 | CN |
104967328 | Oct 2015 | CN |
0871328 | Aug 2003 | EP |
1317052 | Oct 2006 | EP |
2003-333839 | Nov 2003 | JP |
2006-237519 | Sep 2006 | JP |
2006-237619 | Sep 2006 | JP |
4064296 | Mar 2008 | JP |
2009-36750 | Feb 2009 | JP |
200929824 | Jul 2009 | TW |
M400069 | Mar 2011 | TW |
201117670 | May 2011 | TW |
201218860 | May 2012 | TW |
201225495 | Jun 2012 | TW |
201241591 | Oct 2012 | TW |
201325304 | Jun 2013 | TW |
I403875 | Aug 2013 | TW |
I434500 | Apr 2014 | TW |
201429132 | Jul 2014 | TW |
I458232 | Oct 2014 | TW |
201541845 | Nov 2015 | TW |
WO 2012147453 | Nov 2012 | WO |
Entry |
---|
Chinese Patent Office, Office Action dated Aug. 1, 2014, in Application No. 201310015152.4. |
Chinese Patent Office, Office Action dated Jan. 17, 2014, in Application No. 201310306106.X. |
Chinese Patent Office, Office Action dated Jan. 3, 2014, in Application No. 201010587658.9. |
Chinese Patent Office, Office Action dated Nov. 26, 2015, in Application No. 201410134395.4. |
Chinese Patent Office, Office Action dated Dec. 4, 2015, in Application No. 201410198140.4. |
Chinese Patent Office, Office Action dated Jan. 25, 2016, in Application No. 201410157557.6. |
Chinese Patent Office, Office Action dated Dec. 5, 2017, in Application No. 201410157557.6. |
Chinese Patent Office, Office Action dated Aug. 17, 2016, in Application No. 201510053255.9. |
Chinese Patent Office, Office Action dated Apr. 5, 2017, in Application No. 201510413940.8. |
Chinese Patent Office, Office Action dated Nov. 2, 2016, in Application No. 201510249026.4. |
Chinese Patent Office, Office Action dated Aug. 31, 2017, in Application No. 201510249026.4. |
Chinese Patent Office, Office Action dated Jun. 21, 2017, in Application No. 201510788449.3. |
Chinese Patent Office, Office Action dated Aug. 22, 2018, in Application No. 201710147830.0. |
Taiwan Intellectual Property Office, Office Action dated Mar. 13, 2014, in Application No. 100101960. |
Taiwan Intellectual Property Office, Office Action dated May 5, 2015, in Application No. 102131370. |
Taiwan Intellectual Property Office, Office Action dated May 18, 2016, in Application No. 103121063. |
Taiwan Intellectual Property Office, Office Action dated May 24, 2016, in Application No. 104110694. |
Taiwan Intellectual Property Office, Office Action dated May 23, 2016, in Application No. 104132444. |
Taiwan Intellectual Property Office, Approval Report dated May 26, 2016, in Application No. 104125785. |
Taiwan Intellectual Property Office, Office Action dated Jul. 29, 2016, in Application No. 105106390. |
United States Patent and Trademark, Office Action dated Oct. 5, 2017, in U.S. Appl. No. 15/374,896. |
United States Patent and Trademark, Office Action dated Jun. 15, 2018, in U.S. Appl. No. 15/374,896. |
United States Patent and Trademark, Notice of Allowance dated Oct. 11, 2018, in U.S. Appl. No. 15/374,896. |
United States Patent and Trademark, Notice of Allowance dated Apr. 15, 2019, in U.S. Appl. No. 15/374,896. |
United States Patent and Trademark, Office Action dated Jun. 29, 2018, in U.S. Appl. No. 15/804,712. |
United States Patent and Trademark, Notice of Allowance dated Dec. 11, 2018, in U.S. Appl. No. 15/804,712. |
United States Patent and Trademark, Notice of Allowance dated Jul. 17, 2018, in U.S. Appl. No. 15/815,468. |
United States Patent and Trademark, Notice of Allowance dated Sep. 17, 2018, in U.S. Appl. No. 15/815,468. |
United States Patent and Trademark, Notice of Allowance dated Dec. 28, 2018, in U.S. Appl. No. 15/815,468. |
United States Patent and Trademark, Office Action dated May 4, 2018, in U.S. Appl. No. 15/852,490. |
United States Patent and Trademark, Office Action dated Oct. 4, 2018, in U.S. Appl. No. 15/852,490. |
United States Patent and Trademark, Notice of Allowance dated Feb. 21, 2019, in U.S. Appl. No. 15/852,490. |
United States Patent and Trademark, Office Action dated Aug. 31, 2018, in U.S. Appl. No. 15/927,790. |
United States Patent and Trademark, Notice of Allowance dated Jan. 3, 2019, in U.S. Appl. No. 15/927,790. |
United States Patent and Trademark, Office Action dated Nov. 29, 2018, in U.S. Appl. No. 16/008,343. |
United States Patent and Trademark, Office Action dated Nov. 1, 2018, in U.S. Appl. No. 16/014,337. |
United States Patent and Trademark, Office Action dated May 22, 2019, in U.S. Appl. No. 16/014,337. |
United States Patent and Trademark, Office Action dated May 16, 2019, in U.S. Appl. No. 16/205,002. |
United States Patent and Trademark, Notice of Allowance dated Sep. 11, 2019, in U.S. Appl. No. 15/852,490. |
United States Patent and Trademark, Office Action dated Sep. 3, 2019, in U.S. Appl. No. 16/008,343. |
United States Patent and Trademark, Office Action dated Sep. 19, 2019, in U.S. Appl. No. 16/293,695. |
Chinese Patent Office, Office Action dated Oct. 31, 2019, in Application No. 201810179096.0. |
United States Patent and Trademark, Notice of Allowance dated Nov. 27, 2019, in U.S. Appl. No. 16/008,343. |
United States Patent and Trademark, Notice of Allowance dated Oct. 9, 2019, in U.S. Appl. No. 16/014,337. |
United States Patent and Trademark, Office Action dated Oct. 22, 2019, in U.S. Appl. No. 16/205,002. |
United States Patent and Trademark, Office Action dated Oct. 4, 2019, in U.S. Appl. No. 16/414,296. |
United States Patent and Trademark, Office Action dated Apr. 16, 2020, in U.S. Appl. No. 16/205,002. |
United States Patent and Trademark, Notice of Allowance dated Jan. 3, 2020, in U.S. Appl. No. 15/815,468. |
United States Patent and Trademark, Notice of Allowance dated Feb. 3, 2020, in U.S. Appl. No. 16/014,337. |
United States Patent and Trademark, Office Action dated Feb. 28, 2020, in U.S. Appl. No. 16/293,695. |
Number | Date | Country | |
---|---|---|---|
20190348919 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15804712 | Nov 2017 | US |
Child | 16288776 | US | |
Parent | 14753079 | Jun 2015 | US |
Child | 15804712 | US |