Systems and methods for overmolding a card to prevent chip fraud

Information

  • Patent Grant
  • 10810475
  • Patent Number
    10,810,475
  • Date Filed
    Friday, December 20, 2019
    5 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
Systems and methods for overmolding a card are provided. A chip fraud prevention system include a device including a chip and a substrate. The chip may be at least partially encompassed in a chip pocket, and the substrate may be at least partially encompassed by the overmold.
Description
FIELD OF THE INVENTION

The present disclosure relates to systems and methods for overmolding a card, such as a smartcard, to prevent chip fraud.


BACKGROUND

Removing a chip from one smartcard and inserting it into another smartcard or other device increases the risk of fraud. Moreover, conventional chip placement methods are ineffective due to the ease of chip removal. For example, for smartcards having chips, there is a significant likelihood of the removal of chips that are not securely positioned, such as by physical removal or thermal removal, and these chips may then be subject to re-implantation into another card or other device. As a consequence, smartcards having chips may be fraudulently manipulated, reprogrammed, and/or otherwise misused.


These and other deficiencies exist. Accordingly, there is a need for a chip fraud prevention system that improves security, reduces the risk of fraud, reduces cost, and increases durability.


SUMMARY

Aspects of the disclosed technology include systems and methods for overmolding a card, such as a smartcard. Various embodiments describe systems and methods for overmolding a card in ways particularly designed to prevent chip fraud.


Example embodiments of the present disclosure provide a chip fraud prevention system that may comprise a payment card comprising a substrate and a chip pocket, a chip at least partially encompassed in the chip pocket, wherein one or more connections are communicatively coupled to one or more surfaces of the chip, and an overmold attached to the substrate, wherein the overmold at least partially encompasses the substrate. The substrate may further comprise one or more surface features, and the overmold may encompass the one or more surface features. The surface features may comprise at least one of a perforation, notch, channel, or peg. The overmold may be attached to the substrate without an adhesive, or may be adhesively attached to the substrate. The overmold may comprise a flexible polymer.


The card may comprise a front surface, a back surface, and a perimeter, and the overmold may wholly encompass the perimeter of the card, may encompass at least a portion of the front surface, and may encompass at least a portion of the back surface. At least one of the front surface or the back surface of the card may comprise a decorative image.


The card may comprise corners, and the overmold may comprise one or more corner pockets, the one or more corner pockets encompassing one or more corners of the card.


The substrate may comprise a metal layer having one or more perforations.


The chip fraud prevention system may also comprise a contact pad, wherein the one or more connections are communicatively coupled to the contact pad. A magnetic stripe may be included on the back surface of the card.


Example embodiments of the present disclosure also provide a method of making a chip fraud prevention device, which may comprise the steps of forming a chip pocket using one or more layers of substrate, positioning a chip of a device at least partially within the chip pocket, communicatively coupling one or more components to a first surface of the chip, perforating the one or more layers of substrate, and flowing an overmold material through the perforations in the substrate. The substrate may comprise at least one of a notch, channel, or protrusion, and the overmold material may encompass the notch, channel, or protrusion. The overmold material may be solidified to form an overmold, wherein the overmold at least partially encompasses the substrate. The overmold may comprise corner pockets, the corner pockets encompassing at least a portion of the substrate. The overmold may be adhered to the substrate. The one or more components may comprise at least one of wires, pins, or any combination thereof.


Example embodiments of the present disclosure also provide a contactless payment card which may comprise one or more metal substrate layers forming one or more chip housings, the metal substrate layer comprising one or more perforations, one or more integrated circuits positioned in the one or more chip housings, one or more connections communicatively coupled to one or more surfaces of each of the one or more integrated circuits, the one or more connections comprising at least one or more wires, pins, or any combination thereof, and an overmold encompassing at least a portion of the one or more metal substrate layers wherein at least a portion of the overmold passes through the one or more perforations.


Further features of the disclosed design, and the advantages offered thereby, are explained in greater detail hereinafter with reference to specific example embodiments illustrated in the accompanying drawings, wherein like elements are indicated be like reference designators.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an illustration of a card according to an example embodiment.



FIG. 1B is an illustration of a contact pad of the contactless card according to an example embodiment.



FIG. 2A is an illustration of a card and a chip according to an example embodiment.



FIG. 2B is an illustration of a card and a chip according to another example embodiment.



FIG. 2C is an illustration of a card and a chip according to another example embodiment.



FIG. 2D is an illustration of a card and a chip according to an example embodiment.



FIG. 2E is an illustration of a card and a chip according to another example embodiment.



FIG. 2F is an illustration of a card and a chip according to another example embodiment.



FIG. 3A is an illustration of a cross-sectional view of a chip pocket and a chip according to an example embodiment.



FIG. 3B is an illustration of a cross-sectional view of a chip pocket and a chip according to another example embodiment.



FIG. 3C is an illustration of a cross-sectional view of a chip pocket and a chip according to another example embodiment.



FIG. 3D is an illustration of a cross-sectional view of a chip pocket and a chip according to another example embodiment.



FIG. 4 illustrates a method of making a card according to an example embodiment.



FIG. 5 illustrates a schematic of one or more layers of the contactless card according to an example embodiment.



FIG. 6A is a front perspective view of a card according to an example embodiment.



FIG. 6B is a rear perspective view of a card according to an example embodiment.



FIG. 7 is an illustration of a cross section of a substrate of a card according to an example embodiment.



FIG. 8 is an illustration of a cross section of a card according to an example embodiment.



FIG. 9A is a front perspective view of a card according to an example embodiment.



FIG. 9B is a rear perspective view of a card according to an example embodiment.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Systems and methods described herein are directed to improving durability for chip placement methods in a card, including preventing removal of the chip by overmolding the card. As further described below, overmolding the card protects the card from efforts to tamper with, or remove, the chip. As a consequence of this removal prevention design, chip fraud is reduced or eliminated. In addition, manufacturing processes can be improved and production costs may be decreased. Further cost and resource savings may be achieved through a decrease in fraud, including decreased needs for investigating and refunding fraudulent transactions, customer support, and replacing smartcards.



FIG. 1A illustrates one or more contactless cards 100, which may comprise a payment card, such as a credit card, debit card, or gift card, issued by a service provider 105 displayed on the front or back of the card 100. In some examples, the contactless card 100 is not related to a payment card, and may comprise, without limitation, an identification card, a membership card, a data storage card, or other type of card. In some examples, the payment card may comprise a contactless card, such as a dual interface contactless payment card, a contact card that requires physical contact with a card reader, or other type of chip-based card. The card 100 may comprise a substrate 101, which may include a single layer or one or more laminated layers composed of plastics, metals, and other materials. Exemplary substrate materials include polyvinyl chloride, polyvinyl chloride acetate, acrylonitrile butadiene styrene, polycarbonate, polyesters, anodized titanium, palladium, gold, carbon, paper, and biodegradable materials. In some examples, the card 100 may have physical characteristics compliant with the ID-1 format of the ISO/IEC 7810 standard, and the card may otherwise be compliant with the ISO/IEC 14443 standard. However, it is understood that the card 100 according to the present disclosure may have different characteristics, and the present disclosure does not require a card to be implemented in a payment card.


The card 100 may comprise account number information 110 that may be displayed on the front and/or back of the card 100. The card 100 may also include identification information 115 displayed on the front and/or back of the card 100, and a contact pad 120. In some examples, identification information 115 may comprise one or more of cardholder name and expiration date of the card 100. The contact pad 120 may be configured to establish contact with another communication device, such as a user device, smart phone, laptop, desktop, or tablet computer. The card 100 may also include processing circuitry, antenna and other components not shown in FIG. 1A. These components may be located behind the contact pad 120 or elsewhere on the substrate 101. The card 100 may also include a magnetic strip or tape, which may be located on the back of the card (not shown in FIG. 1A).


As illustrated in FIG. 1B, the contact pad 120 of FIG. 1A may include processing circuitry 125 for storing and processing information, including a microprocessor 130 and a memory 135. It is understood that the processing circuitry 125 may contain additional components, including processors, memories, error and parity/CRC checkers, data encoders, anticollision algorithms, controllers, command decoders, security primitives and tamperproofing hardware, as necessary to perform the functions described herein.


The memory 135 may be a read-only memory, write-once read-multiple memory or read/write memory, e.g., RAM, ROM, and EEPROM, and the card 100 may include one or more of these memories. A read-only memory may be factory programmable as read-only or one-time programmable. One-time programmability provides the opportunity to write once then read many times. A write once/read-multiple memory may be programmed at a point in time after the memory chip has left the factory. Once the memory is programmed, it may not be rewritten, but it may be read many times. A read/write memory may be programmed and re-programmed many times after leaving the factory. It may also be read many times.


The memory 135 may be configured to store one or more applets 140, one or more counters 145, and a customer identifier 150. The one or more applets 140 may comprise one or more software applications configured to execute on one or more cards, such as Java Card applet. However, it is understood that applets 140 are not limited to Java Card applets, and instead may be any software application operable on cards or other devices having limited memory. The one or more counters 145 may comprise a numeric counter sufficient to store an integer. The customer identifier 150 may comprise a unique alphanumeric identifier assigned to a user of the card 100, and the identifier may distinguish the user of the card from other card users. In some examples, the customer identifier 150 may identify both a customer and an account assigned to that customer and may further identify the card associated with the customer's account.


The processor and memory elements of the foregoing exemplary embodiments are described with reference to the contact pad, but the present disclosure is not limited thereto. It is understood that these elements may be implemented outside of the pad 120 or entirely separate from it, or as further elements in addition to processor 130 and memory 135 elements located within the contact pad 120.


In some examples, the card 100 may comprise one or more antennas 155. The one or more antennas 155 may be placed within the card 100 and around the processing circuitry 125 of the contact pad 120. For example, the one or more antennas 155 may be integral with the processing circuitry 125 and the one or more antennas 155 may be used with an external booster coil. As another example, the one or more antennas 155 may be external to the contact pad 120 and the processing circuitry 125.


In an embodiment, the coil of card 100 may act as the secondary of an air core transformer. The terminal may communicate with the card 100 by cutting power or amplitude modulation. The card 100 may infer the data transmitted from the terminal using the gaps in the card's power connection, which may be functionally maintained through one or more capacitors. The card 100 may communicate back by switching a load on the card's coil or load modulation. Load modulation may be detected in the terminal's coil through interference.


As illustrated in FIG. 2A, system 200 depicts various schematics of a surface of a contact pad and a chip. FIG. 2A may reference the same or similar components as illustrated in FIG. 1A and FIG. 1B, including the card, chip and the contact pad. In some examples, the chip may comprise an integrated circuit. In one example, contact pad 205 may include a planar surface 210 comprising a pad substrate 215 and a chip 220 embedded, integrated, or otherwise in communication with contact pad 205 via one or more electronic components or connections 225. For example, one or more connections 225 may comprise one or more leads, wires or pins, or any combination thereof, communicatively coupled to chip 220. One or more connections 225 may be configured to connect to a chip surface 230 of the chip 220. As illustrated in FIG. 2A, the chip surface 230 may comprise an exterior region of chip 220, and the chip 220 is shown as projecting outwards from card 205 to depict its connectivity.


As illustrated in FIG. 2B, the one or more connections 225, as previously depicted in FIG. 2A, are shown as being removed. FIG. 2B may reference the same or similar components of contact pad 205 as previously described with reference to FIG. 2A. In some examples, removal of the one or more connections 225 may take place by one or more structures 265, including but not limited to one or more of wire cutters, scissors, clippers, picks, pliers, pins, threads, needles, blades, knives, or any other structure, or any combination thereof, configured to remove the one or more connections 225.


As illustrated in FIG. 2C, the one or more connections 225, as previously depicted in FIG. 2B, have been severed due to the removal by one or more structures 265 as explained above with reference to FIG. 2B. FIG. 2C may reference the same or similar components of card 205 as previously described with reference to FIG. 2B.



FIG. 2D illustrates another example of a contact pad and a chip. As shown in FIG. 2D, contact pad 235 includes a planar surface 240 comprising a pad substrate 245 and a chip 250 embedded, integrated, or otherwise in communication with card 205 via one or more electronic components or connections 255. For example, one or more connections 255 may comprise one or more wires or pins, or any combination thereof, communicatively coupled to chip 250. One or more connections 255 may be configured to connect a surface 260 of the chip 250. As illustrated in FIG. 2D, surface 260 may comprise an interior region of chip 250, and the chip 250 is shown as projecting outwards from card 205 to depict its connectivity. As further illustrated in FIG. 2D, one or more connections 255 of card 235 have not yet been severed.


As illustrated in FIG. 2E, the one or more connections 255 of card 235, as previously depicted in FIG. 2D, are shown as being removed. FIG. 2E may reference the same or similar components of card 235 as previously described with reference to FIG. 2D. In some examples, removal of the one or more leads 255 may take place by one or more structures 265, including but not limited to one or more of wire cutters, scissors, clippers, picks, pliers, pins, threads, needles, blades, knives, or any other structure, or any combination thereof, configured to remove one or more connections 255.


As illustrated in FIG. 2F, the one or more connections 255 of card 235, as previously depicted in FIG. 2E, have been severed due to the removal by one or more structures 265 as explained above with reference to FIG. 2E. FIG. 2F may reference the same or similar components of card 235 as previously described with reference to FIG. 2E.


As illustrated in FIG. 3A, system 300 depicts a schematic of cross-sectional view of a chip pocket of a card. FIG. 3A may reference the same or similar components as illustrated in FIGS. 2A-2F, such as a card, one or more connections, and a chip. Card 305 may comprise a chip 310 that is at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within a housing or reservoir, the housing or reservoir comprising a chip pocket 315. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more air gaps. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more tapered or jagged edges. Although single instances of the chip 310 are depicted in FIG. 3A, one or more chips 310 of card 305 may be at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within one or more housings or reservoirs.


In some examples, the one or more peaks and one or more valleys 320 of the chip pocket 315 may be generated or designed via a saw tooth milling pattern. The saw tooth milling pattern may be programmed or machined by a machine (not shown). In contrast to a smooth milling pattern, the saw tooth milling pattern for the chip pocket 315 or a derivation of the saw tooth milling pattern, makes it difficult to attempt removal and/or remove the chip 310 from the card 305. Thus, the saw tooth milling pattern promotes the success of adhesion of the chip 310 to the chip pocket 315 while also creating an uneven cutting process to prevent removal of the chip 310. In addition, one or more adhesives may be applied within the air gaps between the one or more peaks and one or more valleys 320 (e.g., to completely or partially fill the air gaps), which may strengthen the adhesion of the chip 310 within the chip pocket 315. As a consequence of this removal prevention design, removal of the chip may be more difficult and chip fraud may be reduced.


In some examples, each of the one or more peaks and one or more valleys 320 of the chip pocket 315 may comprise same or different shapes, lengths, and/or dimensions so as to produce one or more arrangements of the one or more shapes. For example, although seven types of peaks and valleys are illustrated in FIG. 3A, fewer or greater peaks and valleys may be included, and other types of peaks and valleys 320 may comprise one or more angled and/or curved portions. Accordingly, one or more peaks and one or more valleys 320 may comprise different or irregular shapes, lengths, and/or dimensions. In some examples, one or more subsets of the one or more peaks and the one or more valleys 320 may be generated or repeated after a predetermined interval, or one or more subsets of the one or more peaks and one or more valleys 320 may generated or repeated at random, as determined by one or more machining processes. Although FIG. 3A depicts the card 305, chip 310, one or more connections 320, and one or more peaks and one or more valleys 320, different variations may be used within a given card 305 issuance, such that the same card issued by an institution may have a number of different patterns based on the particular card 305 that is prepared for the user. In the event the user misplaces their card 305, a new card may be issued with an entirely different pattern to replace the previous card.



FIG. 3B illustrates another example embodiment of the system 300 shown in FIG. 3A, including a card 305, a chip 310, a chip pocket 315, and one or more peaks and one or more valleys 320 that may comprise one or more air gaps. As shown in FIG. 3B, one or more connections 325, which may comprise one or more leads, wires or pins, or any combination thereof, may be communicatively coupled to at least a portion of the chip 310. The one or more connection 325 may be disposed between the one or peaks and one or more valleys 320. In some examples, the one or more connections 325 may be disposed within air gaps between the one or peaks and one or more valleys 320. In other examples, the one or more connections 325 may be disposed within the adhesive that may completely or partially fill the air gaps. In either case, if any of the one or more connections 325 are severed during an attempt to remove the chip 310, the chip 310 may not properly function. Accordingly, disposing the one or more leads between the one or peaks and one or more valleys 320 may increase the difficulty of removing the chip and reduce the likelihood that chip fraud may be committed.


As illustrated in FIG. 3C, system 300 depicts a schematic of cross-sectional view of a chip pocket of a card. FIG. 3C may reference the same or similar components as illustrated in FIGS. 3A-3B, such as a card, one or more connections, and a chip. Card 305 may comprise a chip 310 that is at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within a housing or reservoir, the housing or reservoir comprising a chip pocket 315. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more air gaps. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more tapered or jagged edges. Although single instances of the chip 310 are depicted in FIG. 3C, one or more chips 310 of card 305 may be at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within one or more housings or reservoirs.


In some examples, the one or more peaks and one or more valleys 320 of the chip pocket 315 may be generated or designed via a saw tooth milling pattern. The saw tooth milling pattern may be programmed or machined by a machine (not shown). In contrast to a smooth milling pattern, the saw tooth milling pattern for the chip pocket 315 or a derivation of the saw tooth milling pattern, makes it difficult to attempt removal and/or remove the chip 310 from the card 305. Thus, the saw tooth milling pattern promotes the success of adhesion of the chip 310 to the chip pocket 315 while also creating an uneven cutting process to prevent removal of the chip 310. In addition, one or more adhesives may be applied within the air gaps between the one or more peaks and one or more valleys 320 (e.g., to completely or partially fill the air gaps), which may strengthen the adhesion of the chip 310 within the chip pocket 315. As a consequence of this removal prevention design, removal of the chip may be more difficult and chip fraud may be reduced.


In some examples, each of the one or more peaks and one or more valleys 320 of the chip pocket 315 may comprise same or different shapes, lengths, and/or dimensions so as to produce one or more arrangements of the one or more shapes. For example, although three peaks and four valleys are illustrated in FIG. 3C, fewer or greater peaks and valleys may be included, and other types of peaks and valleys 320 may comprise one or more angled and/or curved portions. Accordingly, one or more peaks and one or more valleys 320 may comprise different or irregular shapes, lengths, and/or dimensions. In some examples, one or more subsets of the one or more peaks and the one or more valleys 320 may be generated or repeated after a predetermined interval, or one or more subsets of the one or more peaks and one or more valleys 320 may generated or repeated at random, as determined by one or more machining processes. Although FIG. 3C depicts the card 305, chip 310, one or more connections 320, and one or more peaks and one or more valleys 320, different variations may be used within a given card 305 issuance, such that the same card issued by an institution may have a number of different patterns based on the particular card 305 that is prepared for the user. In the event the user misplaces their card 305, a new card may be issued with an entirely different pattern to replace the previous card.



FIG. 3D illustrates another example embodiment of the system 300 shown in FIG. 3C, including a card 305, a chip 310, a chip pocket 315, and one or more peaks and one or more valleys 320 that may comprise one or more air gaps. As shown in FIG. 3D, one or more connections 325, which may comprise one or more leads, wires or pins, or any combination thereof, may be communicatively coupled to at least a portion of the chip 310. The one or more connection 325 may be disposed between the one or peaks and one or more valleys 320. In some examples, the one or more connections 325 may be disposed within air gaps between the one or peaks and one or more valleys 320. In other examples, the one or more connections 325 may be disposed within the adhesive that may completely or partially fill the air gaps. In either case, if any of the one or more connections 325 are severed during an attempt to remove the chip 310, the chip 310 may not properly function. Accordingly, disposing the one or more leads between the one or peaks and one or more valleys 320 may increase the difficulty of removing the chip and reduce the likelihood that chip fraud may be committed.


As illustrated in FIG. 3E, system 300 depicts a schematic of cross-sectional view of a chip pocket of a card. FIG. 3E may reference the same or similar components as illustrated in FIGS. 3A-3D, such as a card, one or more connections, and a chip. Card 305 may comprise a chip 310 that is at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within a housing or reservoir, the housing or reservoir comprising a chip pocket 315. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more air gaps. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more tapered or jagged edges. Although single instances of the chip 310 are depicted in FIG. 3E, one or more chips 310 of card 305 may be at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within one or more housings or reservoirs.


In some examples, the one or more peaks and one or more valleys 320 of the chip pocket 315 may be generated or designed via a saw tooth milling pattern. The saw tooth milling pattern may be programmed or machined by a machine (not shown). In contrast to a smooth milling pattern, the saw tooth milling pattern for the chip pocket 315 or a derivation of the saw tooth milling pattern, makes it difficult to attempt removal and/or remove the chip 310 from the card 305. Thus, the saw tooth milling pattern promotes the success of adhesion of the chip 310 to the chip pocket 315 while also creating an uneven cutting process to prevent removal of the chip 310. In addition, one or more adhesives may be applied within the air gaps between the one or more peaks and one or more valleys 320 (e.g., to completely or partially fill the air gaps), which may strengthen the adhesion of the chip 310 within the chip pocket 315. As a consequence of this removal prevention design, removal of the chip may be more difficult and chip fraud may be reduced.


In some examples, each of the one or more peaks and one or more valleys 320 of the chip pocket 315 may comprise same or different shapes, lengths, and/or dimensions so as to produce one or more arrangements of the one or more shapes. For example, although three peaks and four valleys are illustrated in FIG. 3E, fewer or greater peaks and valleys may be included, and other types of peaks and valleys 320 may comprise one or more angled and/or curved portions. Accordingly, one or more peaks and one or more valleys 320 may comprise different or irregular shapes, lengths, and/or dimensions. In some examples, one or more subsets of the one or more peaks and the one or more valleys 320 may be generated or repeated after a predetermined interval, or one or more subsets of the one or more peaks and one or more valleys 320 may generated or repeated at random, as determined by one or more machining processes. Although FIG. 3E depicts the card 305, chip 310, one or more connections 320, and one or more peaks and one or more valleys 320, different variations may be used within a given card 305 issuance, such that the same card issued by an institution may have a number of different patterns based on the particular card 305 that is prepared for the user. In the event the user misplaces their card 305, a new card may be issued with an entirely different pattern to replace the previous card.



FIG. 3F illustrates another example embodiment of the system 300 shown in FIG. 3E, including a card 305, a chip 310, a chip pocket 315, and one or more peaks and one or more valleys 320 that may comprise one or more air gaps. As shown in FIG. 3F, one or more connections 325, which may comprise one or more leads, wires or pins, or any combination thereof, may be communicatively coupled to at least a portion of the chip 310. In some examples, the one or more connections 325 may be disposed within air gaps between the one or peaks and one or more valleys 320. In other examples, the one or more connections 325 may be disposed within the adhesive that may completely or partially fill the air gaps. In either case, if any of the one or more connections 325 are severed during an attempt to remove the chip 310, the chip 310 may not properly function. Accordingly, disposing the one or more leads between the one or peaks and one or more valleys 320 may increase the difficulty of removing the chip and reduce the likelihood that chip fraud may be committed.


As illustrated in FIG. 3G, system 300 depicts a schematic of cross-sectional view of a chip pocket of a card. FIG. 3G may reference the same or similar components as illustrated in FIGS. 3A-3F, such as a card, one or more connections, and a chip. Card 305 may comprise a chip 310 that is at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within a housing or reservoir, the housing or reservoir comprising a chip pocket 315. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more air gaps. In some examples, the one or more peaks and one or more valleys 320 may comprise one or more tapered or jagged edges. Although single instances of the chip 310 are depicted in FIG. 3G, one or more chips 310 of card 305 may be at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within one or more housings or reservoirs.


In some examples, the one or more peaks and one or more valleys 320 of the chip pocket 315 may be generated or designed via a saw tooth milling pattern. The saw tooth milling pattern may be programmed or machined by a machine (not shown). In contrast to a smooth milling pattern, the saw tooth milling pattern for the chip pocket 315 or a derivation of the saw tooth milling pattern, makes it difficult to attempt removal and/or remove the chip 310 from the card 305. Thus, the saw tooth milling pattern promotes the success of adhesion of the chip 310 to the chip pocket 315 while also creating an uneven cutting process to prevent removal of the chip 310. In addition, one or more adhesives may be applied within the air gaps between the one or more peaks and one or more valleys 320 (e.g., to completely or partially fill the air gaps), which may strengthen the adhesion of the chip 310 within the chip pocket 315. As a consequence of this removal prevention design, removal of the chip may be more difficult and chip fraud may be reduced.


In some examples, each of the one or more peaks and one or more valleys 320 of the chip pocket 315 may comprise same or different shapes, lengths, and/or dimensions so as to produce one or more arrangements of the one or more shapes. For example, although two peaks and three valleys are illustrated in FIG. 3G, fewer or greater peaks and valleys may be included, and other types of peaks and valleys 320 may comprise one or more angled and/or curved portions. Accordingly, one or more peaks and one or more valleys 320 may comprise different or irregular shapes, lengths, and/or dimensions. In some examples, one or more subsets of the one or more peaks and the one or more valleys 320 may be generated or repeated after a predetermined interval, or one or more subsets of the one or more peaks and one or more valleys 320 may generated or repeated at random, as determined by one or more machining processes. Although FIG. 3G depicts the card 305, chip 310, one or more connections 320, and one or more peaks and one or more valleys 320, different variations may be used within a given card 305 issuance, such that the same card issued by an institution may have a number of different patterns based on the particular card 305 that is prepared for the user. In the event the user misplaces their card 305, a new card may be issued with an entirely different pattern to replace the previous card.



FIG. 3H illustrates another example embodiment of the system 300 shown in FIG. 3H, including a card 305, a chip 310, a chip pocket 315, and one or more peaks and one or more valleys 320 that may comprise one or more air gaps. As shown in FIG. 3H, one or more connections 325, which may comprise one or more leads, wires or pins, or any combination thereof, may be communicatively coupled to at least a portion of the chip 310. In some examples, the one or more connections 325 may be disposed within air gaps between the one or peaks and one or more valleys 320. In other examples, the one or more connections 325 may be disposed within the adhesive that may completely or partially fill the air gaps. In either case, if any of the one or more connections 325 are severed during an attempt to remove the chip 310, the chip 310 may not properly function. Accordingly, disposing the one or more connections 325 between the one or peaks and one or more valleys 320 may increase the difficulty of removing the chip and reduce the likelihood that chip fraud may be committed.



FIG. 4 illustrates a method 400 of making a card. FIG. 4 may reference the same or similar components of FIGS. 1-3, as explained above.


At block 410, method may comprise laminating one or more layers together. In some examples, the one or more layers may comprise an outermost or exterior layer which includes a layer that receives paint, ink, or laser treatment. The outermost or exterior layer may comprise the ceiling or top layer of the one or more laminated layers. The outermost or exterior layer may comprise a thin film that receives laser personalization. In some examples, the laser personalization may comprise custom laser personalization.


The one or more layers may further comprise one or more artwork layers positioned below the outermost or exterior layer. For example, the one or more artwork layers may comprise personalized information about the user and/or financial institution that issues the card.


The one or more layers may further comprise one or more metal core layers positioned below the one or more artwork layers.


The one or more layers may comprise one or more magnetic stripe layer positioned below the one or more metal core layers. In some examples, the one or more magnetic stripe layers may comprise the innermost or interior layer of the card.


In some examples, the one or more layers may be arranged in one or more sheets. By way of an example, each sheet may comprise a plurality of cards. In some examples, one or more sheets may comprise 50 or more cards. The one or more sheets may be fed to a laminating press which is configured to laminate the one or more layers together. In some examples, the lamination process may comprise hot lamination or cold lamination. At this point, the card includes the one or more layers, and does not yet include personal information, a signature panel, a hologram, and a chip.


At block 420, a hologram may be placed on the card. In some examples, the hologram may comprise a secure hologram, and the hologram may be placed on an area of the card. In some examples, the hologram may be placed on a secure area of the card that may be checked by a merchant.


At block 430, a signature panel may be placed on the card. In some examples, the signature panel may be heat stamped onto a portion the card. The signature panel may also be checked by a merchant. The signature panel may be placed on a portion of the card, such as the back of the card.


At block 440, the card may be transferred to one or more machines. The one or more machines may comprise a stamping machine and may be configured to mill one or more chip pockets and embed a chip into the card. In some examples, the card may comprise a chip that is at least partially or wholly positioned on or at least partially or wholly encompassed or at least partially or wholly integrated within a housing or reservoir, the housing or reservoir comprising a chip pocket. As further discussed below, one or more connections may communicatively couple at least a portion, such as a surface, of the chip which may be at least partially or wholly disposed on one or more peaks and one or more valleys of the chip pocket. In some examples, the one or more peaks and one or more valleys may comprise one or more air gaps. In some examples, the one or more peaks and one or more valleys may comprise one or more tapered or jagged edges.


In some examples, the one or more peaks and one or more valleys of the chip pocket may be generated or designed via a saw tooth milling pattern. The saw tooth milling pattern may be programmed or machined by a machine. In contrast to a smooth milling pattern, the saw tooth milling pattern for the chip pocket and one or more connections, or a derivation of the saw tooth milling pattern, makes it difficult to attempt removal and/or remove the chip from the card. Thus, the saw tooth milling pattern promotes the success of adhesion of the chip to the chip pocket while also creating an uneven cutting process to prevent removal of the chip. As a consequence of this removal prevention design, chip fraud is eliminated.


In some examples, each of the one or more peaks and one or more valleys of the chip pocket may comprise same or different shapes, lengths, and/or dimensions so as to produce one or more arrangements of the one or more shapes. Accordingly, one or more connections may comprise different or irregular shapes, lengths, and/or dimensions. In some examples, one or more subsets of the one or more peaks and the one or more valleys may be generated or repeated after a predetermined interval, or one or more subsets of the one or more peaks and one or more valleys may generated or repeated at random, as determined by one or more machining processes. For example, one or more peaks and one or more valleys may be included, and other types of peaks and valleys may comprise one or more angled and/or curved portions. Different variations may be used within a given card issuance, such that the same card issued by an institution may have a number of different patterns based on the particular card that is prepared for the user. In the event the user misplaces their card, a new card may be issued with an entirely different pattern to replace the previous card.


In some examples, the chip may comprise an integrated circuit. In one example, card may include a planar surface comprising a substrate, and a chip embedded or integrated or otherwise in communication with card via one or more electronic components or connections. For example, the one or more connections may comprise one or more leads, wires or pins, or any combination thereof, communicatively coupled to chip. One or more connections may be configured to connect a surface of the chip. The surface may comprise an exterior region of chip, and the chip may project outwards from card to depict its connectivity.


In another example, the card may include a chip embedded or integrated or otherwise in communication with card via one or more electronic components or connections. For example, one or more connections may comprise one or more wires or pins, or any combination thereof, communicatively coupled to chip. One or more connections may be configured to connect a surface of the chip. The surface may comprise an interior region of chip, and the chip may be project outwards from the card to depict its connectivity.


At block 450, after the one or more chip pockets are created for housing the chip, the one or more machines may be configured to punch the chip into the one or more chip pockets. In some examples, other machines may be used in lieu of the stamping machine to punch the chip into the one or more chip pockets.


At block 460, the chip may include MasterCard or Visa information. At this point, no other information exists within the chip, such as card information or to whom the card is assigned to. The card may be associated with one or more card identifiers. In some examples, the one or more card identifiers may be printed adjacent to a corner of the card; however, other regions of the card may be used for display of the one or more card identifiers.


At block 470, the card may be sent to a vault or facility, such as a personalization facility, and the card is ready for pick up. One or more machines within the vault or facility may request the card based on the one or more card identifiers. The one or more machines may receive the card based on the one or more card identifiers and may perform encoding of the magnetic stripe; printing of data, such as account number information and user information, including first and last name, on the front and/or back of the card; encoding of the chip. For example, the card may comprise identification information displayed on the front and/or back of the card, and a contact pad. In some examples, the identification information may comprise one or more of cardholder name and expiration date of the card. The card may also include a magnetic stripe or tape, which may be located on the back of the card.



FIG. 5 illustrates a schematic of one or more layers of the card 500. FIG. 5 may reference the same or similar components of FIGS. 1-4 as explained above.


Card 500 may comprise one or more layers that are laminated together. Although single instances of each layer are depicted in FIG. 5, card 500 may include one or more layers for each layer. In some examples, the card 500 may comprise a first layer 510, such as an outermost or exterior layer which includes a layer that receives paint, ink, or laser treatment. The outermost or exterior layer may comprise the ceiling or top layer of the one or more laminated layers. The outermost or exterior layer may comprise a thin film that receives laser personalization. In some examples, the laser personalization may comprise custom laser personalization.


Card 500 may further comprise a second layer, including one or more artwork layers 520 positioned below the outermost or exterior layer 510. For example, the one or more artwork layers 520 may comprise personalized information about the user and/or financial institution that issues the card 500.


Card 500 may further comprise a third layer 530, including one or more metal core layers positioned below the one or more artwork layers 520.


Card 500 may further comprise a fourth layer 540, including one or more magnetic stripe layer positioned below the one or more metal core layers 530. In some examples, the one or more magnetic stripe layers 540 may comprise the innermost or interior layer of the card 500.


To further prevent removal of the chip, an overmold may be applied to the card. In particular, injection molding methods may be used to apply an overmold to the card, and the substrate of the card may be modified to strengthen the application of the overmold to the card.



FIGS. 6A and 6B illustrate an exemplary embodiment overmolded card, showing the front (FIG. 6A) and back (FIG. 6B) of overmolded card 600.


As illustrated in FIG. 6A, card 600 comprises substrate 601 and chip 602, and may further include account number information, identification information, decorative images, processing circuitry, antenna and other components not shown in FIG. 6A. As shown in FIGS. 6A and 6B, overmold 603 has been applied to card 600 and substrate 601. In the overmold process, card 600 may be placed in a mold, and the overmold material, such as a flexible polymer, rubber, or other suitable material, is injected into the mold. As the overmold material is forced into the mold, the overmold material fills a cavity in the mold that at least partially surrounds the card 600. For example, the overmold may be applied to at least a portion of the back of the card, and may wrap around the side of the card to apply to at least a portion of the front of the card. The overmolding material may be applied to substrate 601 and bonded thereto in an adhesive bond, a chemical bond, or a combination of the two. A chemical bond has the advantage of reducing the use of an additional material like an adhesive.


With the application of overmold 603 to substrate 601, card 600 and chip 602 are further protected from efforts to remove chip 602 from card 600. By covering at least a portion of the back of card 600, overmold 603 prevents direct access to chip 602 from the back of card 600. By covering at least a portion of the sides of card 600, overmold 603 prevents attempts to peel away overmold 603, or attempts to peel away layers of card 600 and substrate 601, to remove chip 602.


As illustrated in FIG. 7, substrate 701 may include one or more surface features 710. To improve the strength of the bond between the overmold and the card, the substrate of the card may be shaped, cut, punched, notched, or otherwise machined or formed into a shape that allows the overmold material to penetrate the card during the injection molding process. This shaping of the substrate creates surface features 710 on substrate 701, and the overmold may fill these one or more surface features to create a stronger application of the overmold. The surface features may be, for example, perforations, notches, channels, pegs, crimped or clipped edges or corners, or the like.


As illustrated in FIG. 8, one or more layers of the substrate, such as the metal layer, may have perforations or channels formed into the layer to allow the overmold material to fill the space and create a stronger application to the substrate. FIG. 8 illustrates one or more layers of a card that may be laminated together. For example, first layer 810 may be the outermost or exterior layer. As a further example, artwork layer 820 may be positioned below the first layer, and may comprise personalized information about the user and/or financial institution that issues the card. As a further example, third layer 830 may include one or more metal core layers. Third layer 830 may include surface features 835, which may be perforations or channels formed into the third layer 830 for the overmold material to fill.



FIG. 9 illustrates an additional example of overmold 903 applied to card 900 having substrate 901 and chip 902. In this example, overmold 903 includes one or more corner pockets 904, which help to secure overmold 903 to substrate 901. By covering at least a portion of the back of card 900, overmold 903 prevents direct access to chip 902 from the back of card 900. By covering at least a portion of the sides of card 900, overmold 903 prevents attempts to peel away overmold 903, or attempts to peel away layers of card 900 and substrate 901, to remove chip 902.


As used herein, the terms “card,” “contactless card,” and “smartcard” are not limited to a particular type of card. Rather, it is understood that these terms can refer to a contact-based card, a contactless card, or any other card including a chip. It is further understood that the card may be any type of card containing a chip, including without limitation an identity card, a membership card, a loyalty card, an access card, a security card, and a badge.


Exemplary embodiments described herein relate to chips used in smartcards, however, the present disclosure is not limited thereto. It is understood that the present disclosure encompasses chips that may be used in a variety of devices that include electronic components having chips, including without limitation computing devices (e.g., laptop computers, desktop computers, and servers), vehicles (e.g., automobiles, airplanes, trains, and ships), appliances (e.g., televisions, refrigerators, air conditions, furnaces, microwaves, dish washers, smoke detectors, thermostats, and lights), mobile devices (e.g., smartphones and tablets), and wearable devices (e.g., smartwatches).


Throughout the specification and the claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “or” is intended to mean an inclusive “or.” Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form.


In this description, numerous specific details have been set forth. It is to be understood, however, that implementations of the disclosed technology may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description. References to “some examples,” “other examples,” “one example,” “an example,” “various examples,” “one embodiment,” “an embodiment,” “some embodiments,” “example embodiment,” “various embodiments,” “one implementation,” “an implementation,” “example implementation,” “various implementations,” “some implementations,” etc., indicate that the implementation(s) of the disclosed technology so described may include a particular feature, structure, or characteristic, but not every implementation necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrases “in one example,” “in one embodiment,” or “in one implementation” does not necessarily refer to the same example, embodiment, or implementation, although it may.


As used herein, unless otherwise specified the use of the ordinal adjectives “first,” “second,” “third,” etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.


While certain implementations of the disclosed technology have been described in connection with what is presently considered to be the most practical and various implementations, it is to be understood that the disclosed technology is not to be limited to the disclosed implementations, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


This written description uses examples to disclose certain implementations of the disclosed technology, including the best mode, and also to enable any person skilled in the art to practice certain implementations of the disclosed technology, including making and using any devices or systems and performing any incorporated methods. The patentable scope of certain implementations of the disclosed technology is defined in the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims
  • 1. A chip fraud prevention system comprising: a payment card comprising a substrate and a chip pocket, wherein the substrate includes one or more crimped corners; a chip at least partially encompassed in the chip pocket, wherein one or more connections are communicatively coupled to one or more surfaces of the chip; and an overmold attached to the substrate, wherein: the overmold at least partially encompasses the substrate, the overmold comprises one or more corner pockets, each of the one or more corner pockets corresponding to one of the one or more crimped corners, and the one or more corner pockets encompasses the one or more crimped corners.
  • 2. The chip fraud prevention system of claim 1, wherein the substrate comprises one or more surface features and the overmold encompasses the one or more surface features.
  • 3. The chip fraud prevention system of claim 2, wherein the one or more surface features comprise at least one of a perforation, notch, channel, or peg.
  • 4. The chip fraud prevention system of claim 1, wherein the overmold is attached to the substrate without an adhesive.
  • 5. The chip fraud prevention system of claim 4, wherein the overmold is chemically bonded to the substrate.
  • 6. The chip fraud prevention system of claim 1, wherein the overmold is adhesively attached to the substrate.
  • 7. The chip fraud prevention system of claim 1, wherein the overmold comprises a flexible polymer.
  • 8. The chip fraud prevention system of claim 1, wherein the card comprises a front surface, a back surface, and a perimeter, and wherein the overmold wholly encompasses the perimeter of the card, encompasses at least a portion of the front surface, and encompasses at least a portion of the back surface.
  • 9. The chip fraud prevention system of claim 8, wherein at least one of the front surface or the back surface of the card comprises a decorative image.
  • 10. The chip fraud prevention system of claim 8, further comprising a magnetic stripe on the back surface of the card.
  • 11. The chip fraud prevention system of claim 1, wherein the substrate comprises a metal layer having one or more perforations.
  • 12. The chip fraud prevention system of claim 1, further comprising a contact pad, wherein the one or more connections are communicatively coupled to the contact pad.
  • 13. A method of making a chip fraud prevention device, the method comprising the steps of: forming a chip pocket using one or more layers of substrate; forming a crimped corner using one or more layers of substrate positioning a chip of a device at least partially within the chip pocket; communicatively coupling one or more components to a first surface of the chip; perforating the one or more layers of substrate; flowing an overmold material through the perforations in the substrate; and flowing the overmold material over the crimped corner.
  • 14. The method of making a chip fraud prevention device of claim 13, wherein the substrate comprises at least one of a notch, channel, or protrusion.
  • 15. The method of making a chip fraud prevention device of claim 14, wherein the overmold material encompasses the notch, channel, or protrusion.
  • 16. The method of making a chip fraud prevention device of claim 13, further comprising solidifying the overmold material to form an overmold, wherein the overmold at least partially encompasses the substrate.
  • 17. The method of making a chip fraud prevention device of claim 16, further comprising adhering the overmold to the substrate.
  • 18. The method of making a chip fraud prevention device of claim 16, wherein the overmold encompasses the crimped corner.
  • 19. The method of making a chip fraud prevention device of claim 13, wherein the one or more components comprises at least one of wires, pins, or any combination thereof.
  • 20. A contactless payment card comprising: one or more metal substrate layers forming one or more chip housings, the metal substrate layer comprising one or more perforations and one or more crimped corners; one or more integrated circuits positioned in the one or more chip housings; one or more connections communicatively coupled to one or more surfaces of each of the one or more integrated circuits, the one or more connections comprising at least one or more wires, pins, or any combination thereof, and an overmold encompassing at least a portion of the one or more metal substrate layers wherein at least a first portion of the overmold passes through the one or more perforations and at least a second portion of the overmold passes over the one or more crimped corners.
US Referenced Citations (212)
Number Name Date Kind
4079646 Morishita Mar 1978 A
4192449 Tippetts Mar 1980 A
4297566 Ahmann Oct 1981 A
4359632 Fisher Nov 1982 A
4360727 Lehmann Nov 1982 A
4398902 Mangum Aug 1983 A
4409471 Aigo Oct 1983 A
4431911 Rayburn Feb 1984 A
4441391 Seaman Apr 1984 A
4447716 Aigo May 1984 A
4485298 Stephens et al. Nov 1984 A
4503323 Flam Mar 1985 A
4506148 Berthold et al. Mar 1985 A
4511796 Aigo Apr 1985 A
4563575 Hoppe et al. Jan 1986 A
4589687 Hannon May 1986 A
4593384 Kleijne Jun 1986 A
4605845 Takeda Aug 1986 A
4625102 Rebjock et al. Nov 1986 A
4637544 Quercetti Jan 1987 A
4727246 Hara et al. Feb 1988 A
4772783 Ono et al. Sep 1988 A
4775093 Lin Oct 1988 A
4795895 Hara et al. Jan 1989 A
4805797 Natori Feb 1989 A
4819828 Mirabel Apr 1989 A
4835843 Wendt et al. Jun 1989 A
4960983 Inoue Oct 1990 A
4987683 Brych Jan 1991 A
4999601 Gervais Mar 1991 A
5105073 Kovach et al. Apr 1992 A
5281795 Harlan Jan 1994 A
5288979 Kreft Feb 1994 A
5303472 Mbanugo Apr 1994 A
5331139 Lee Jul 1994 A
5341923 Arasim Aug 1994 A
5376778 Kreft Dec 1994 A
5416423 De Borde May 1995 A
5424522 Iwata Jun 1995 A
5518171 Moss May 1996 A
5529174 McQueeny Jun 1996 A
5531145 Haghiri-Tehrani Jul 1996 A
5545884 Seto et al. Aug 1996 A
5557089 Hall et al. Sep 1996 A
5569898 Fisher et al. Oct 1996 A
5600175 Orthmann Feb 1997 A
5703350 Suhir Dec 1997 A
5775516 McCumber et al. Jul 1998 A
5779055 Lacy, III Jul 1998 A
5782371 Baerenwald et al. Jul 1998 A
5796085 Bleier Aug 1998 A
5836779 Vogler Nov 1998 A
5837153 Kawan Nov 1998 A
5852289 Masahiko Dec 1998 A
5861662 Candelore Jan 1999 A
5905252 Magana May 1999 A
5949060 Schattschneider et al. Sep 1999 A
5984179 May Nov 1999 A
6020627 Fries et al. Feb 2000 A
6041998 Goldberg Mar 2000 A
6073856 Takahashi Jun 2000 A
6094831 Shigyo Aug 2000 A
6095423 Houdeau et al. Aug 2000 A
6105872 Lotz Aug 2000 A
6109439 Goade, Sr. Aug 2000 A
6149064 Yamaoka et al. Nov 2000 A
6179210 Haas Jan 2001 B1
6186402 Johnson Feb 2001 B1
6193163 Fehrman Feb 2001 B1
6196594 Keller Mar 2001 B1
6224108 Klure May 2001 B1
6230977 Johnson May 2001 B1
6308832 Pirro et al. Oct 2001 B1
6364114 Glassman Apr 2002 B1
6371364 Maillot et al. Apr 2002 B1
6386459 Patrice et al. May 2002 B1
6424029 Giesler Jul 2002 B1
6439613 Klure Aug 2002 B2
6443041 Pirovano et al. Sep 2002 B1
6488152 Steffann Dec 2002 B1
6543809 Kistner et al. Apr 2003 B1
6568593 Hetzer May 2003 B2
6571953 Sherline et al. Jun 2003 B2
6593167 Dobashi et al. Jul 2003 B2
6601329 Vaudreuil Aug 2003 B2
6629637 Von Der Lippe et al. Oct 2003 B1
6651891 Zakel et al. Nov 2003 B1
6729538 Farquhar May 2004 B2
6742117 Hikita et al. May 2004 B1
6843408 Agren Jan 2005 B1
7000774 Bryant Feb 2006 B2
7003678 Ikefuji et al. Feb 2006 B2
7080776 Lewis et al. Jul 2006 B2
7143935 Marta Dec 2006 B2
7175085 Oguchi Feb 2007 B2
7207107 Usner et al. Apr 2007 B2
7299968 Mittmann et al. Nov 2007 B2
7311263 Eichler et al. Dec 2007 B2
7360711 Jung et al. Apr 2008 B2
7559468 Kawaguchi Jul 2009 B2
7699225 Horiguchi et al. Apr 2010 B2
7806340 Daio et al. Oct 2010 B2
7844255 Petrov et al. Nov 2010 B2
7868441 Eaton et al. Jan 2011 B2
7931148 Hansen et al. Apr 2011 B2
8006834 Marcinkowski Aug 2011 B2
8025207 Correll Sep 2011 B1
8038003 Rometty et al. Oct 2011 B2
8267327 Tsao et al. Sep 2012 B2
8403229 McGrane Mar 2013 B2
8496183 Kiyozuka Jul 2013 B2
8613389 Payne Dec 2013 B2
8616373 Hansen et al. Dec 2013 B2
8783549 Jo Jul 2014 B2
8800768 Corbat et al. Aug 2014 B2
8915434 Mitchell et al. Dec 2014 B2
9242436 Hallman et al. Jan 2016 B1
9569769 Smith et al. Feb 2017 B2
9576161 Tanaka et al. Feb 2017 B2
9760816 Williams et al. Sep 2017 B1
9818049 Goedee et al. Nov 2017 B2
20020046635 Christen et al. Apr 2002 A1
20020070280 Ikefuji et al. Jun 2002 A1
20020079372 Hino Jun 2002 A1
20020174336 Sakakibara et al. Nov 2002 A1
20030052033 Schwester Mar 2003 A1
20030069860 Berndtsson et al. Apr 2003 A1
20030164320 Magnusson Sep 2003 A1
20030205624 Huang et al. Nov 2003 A1
20040026520 Kawai et al. Feb 2004 A1
20040079805 Nagata et al. Apr 2004 A1
20040079806 Ogushi Apr 2004 A1
20040123715 Stuckel et al. Jul 2004 A1
20040159570 Schwester Aug 2004 A1
20050077164 Dhers Apr 2005 A1
20050103832 Correll May 2005 A1
20050127166 Minemura Jun 2005 A1
20050211600 Saito Sep 2005 A1
20050218027 Lammers et al. Oct 2005 A1
20060016704 Moskovich et al. Jan 2006 A1
20060027481 Gelardi et al. Feb 2006 A1
20060044138 Sin Mar 2006 A1
20060086793 Oguchi Apr 2006 A1
20060091212 Chien et al. May 2006 A1
20060118642 Latka et al. Jun 2006 A1
20060141828 Dean Jun 2006 A1
20060266672 Young Nov 2006 A1
20060273149 Awano Dec 2006 A1
20060278640 Watts Dec 2006 A1
20060289665 Yoda Dec 2006 A1
20070051653 Tilton Mar 2007 A1
20070187264 Hofte et al. Aug 2007 A1
20070187273 Grosskopf Aug 2007 A1
20070187835 Chi Aug 2007 A1
20070193922 Bacon et al. Aug 2007 A1
20070251997 Brown et al. Nov 2007 A1
20080083827 Ho Apr 2008 A1
20080142393 Grosskopf Jun 2008 A1
20080164320 Garrido-Gadea et al. Jul 2008 A1
20080251905 Pope et al. Oct 2008 A1
20080314784 Schroeder Dec 2008 A1
20090047104 Jung Feb 2009 A1
20100025400 Sytsma Feb 2010 A1
20100122984 Kim et al. May 2010 A1
20100133123 Thibault Jun 2010 A1
20100182020 Thornley et al. Jul 2010 A1
20100206942 Rometty et al. Aug 2010 A1
20100288833 Santos et al. Nov 2010 A1
20110068159 Yamada et al. Mar 2011 A1
20110101080 Ho May 2011 A1
20110233098 Ye et al. Sep 2011 A1
20110233099 Pitt Sep 2011 A1
20110255253 Campbell et al. Oct 2011 A1
20110259899 McClure Oct 2011 A1
20110290675 Shiue et al. Dec 2011 A1
20120048924 Hong Mar 2012 A1
20120074232 Spodak et al. Mar 2012 A1
20120106113 Kirmayer May 2012 A1
20120123937 Spodak May 2012 A1
20120126004 Chen May 2012 A1
20120173432 Yeager Jul 2012 A1
20120181158 Chang Jul 2012 A1
20130024372 Spodak et al. Jan 2013 A1
20130030997 Spodak et al. Jan 2013 A1
20130068651 Gelardi et al. Mar 2013 A1
20130068844 Bosquet et al. Mar 2013 A1
20130134216 Spodak et al. May 2013 A1
20130233754 Liu Sep 2013 A1
20130306512 Smith Nov 2013 A1
20140136417 Spodak et al. May 2014 A1
20140274641 Tattersall Sep 2014 A1
20140346220 Saulas Nov 2014 A1
20150108606 Lamy et al. Apr 2015 A1
20150136777 Baillies May 2015 A1
20150166218 Banducci Jun 2015 A1
20150225157 Nakamura et al. Aug 2015 A1
20160009473 Korinek et al. Jan 2016 A1
20160031624 Pascua et al. Feb 2016 A1
20160137373 Olschan et al. May 2016 A1
20160162712 Ozawa et al. Jun 2016 A1
20160193748 Luhmann Jul 2016 A1
20160229081 Williams et al. Aug 2016 A1
20160272396 Cataudella et al. Sep 2016 A1
20160272398 Cataudella et al. Sep 2016 A1
20170344869 Williams et al. Nov 2017 A1
20170351880 Ozawa et al. Dec 2017 A1
20180022498 Everett Jan 2018 A1
20180044051 Chang Feb 2018 A1
20180079248 Pascua et al. Mar 2018 A1
20180114036 Spodak et al. Apr 2018 A1
20180227276 Chen Aug 2018 A1
20190050706 Lowe Feb 2019 A1
Foreign Referenced Citations (7)
Number Date Country
1850255 Oct 2007 EP
1710692 Sep 2018 EP
2007003301 Jan 2007 WO
2007052116 May 2007 WO
2013051029 Apr 2013 WO
2013112839 Aug 2013 WO
2016172449 Oct 2016 WO