Systems and methods for performing a surgical navigation procedure

Information

  • Patent Grant
  • 11051886
  • Patent Number
    11,051,886
  • Date Filed
    Tuesday, September 27, 2016
    7 years ago
  • Date Issued
    Tuesday, July 6, 2021
    2 years ago
Abstract
A system and method for performing a navigation procedure including a surgical tool, an imaging device, and a computing device. The surgical tool is navigated to a target tissue located in a target area to perform a surgical procedure on the target tissue. The imaging device acquires image data of the target area while the surgical tool is being navigated to the target tissue by automatically traversing back and forth along a path relative to the target area and acquiring image data of the target area while traversing the path. The computing device receives the image data acquired by the imaging device and displays the image data such that the surgical tool can be navigated to the target tissue while simultaneously visualizing a position of the surgical tool relative to the target tissue from multiple perspectives relative to the target area.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to systems, methods, and devices for performing a navigation procedure, and more particularly for positioning a surgical tool using image guidance. In particular, the present disclosure relates to systems, methods, and devices for confirming proper placement of a surgical tool using imaging devices such as a fluoroscope or cone beam computed tomography device.


2. Discussion of Related Art

When planning a treatment or procedure, clinicians often rely on patient data including X-ray data, computed tomography (CT) scan data, magnetic resonance imaging (MRI) data, or other imaging data that allows the clinician to view the internal anatomy of a patient. The clinician utilizes the patient data to identify targets of interest and to develop strategies for accessing the targets of interest for the surgical procedure.


The use of CT images as a diagnostic tool has become routine and CT results are frequently the primary source of information available to a clinician regarding the size and location of a lesion, tumor, or other similar target of interest. This information is used by the clinician for planning an operative procedure such as a biopsy or an ablation procedure, but is only available as “offline” information which must typically be memorized to the best of the clinician's ability prior to beginning a procedure. During a CT scan, a patient is digitally imaged and a CT image data volume is assembled. The CT image data may then be viewed by the clinician in each of the axial, coronal, and sagittal perspectives. A clinician reviews the CT image data slice by slice from each direction when attempting to identify or locate a target. It is often difficult, however, for the clinician to effectively carry out a navigation procedure based on the previously acquired data.


SUMMARY

Systems and methods for planning and performing a surgical procedure, such as for example, a microwave ablation treatment procedure or other surgical procedure are provided. In order to navigate to a target tissue, either percutaneously using a rigid surgical tool, or via a natural orifice using a flexible extended working channel of a catheter guide assembly, a navigation plan or trajectory must be followed to get to the target tissue. Typically, the trajectory or navigation plan is determined using a workstation in a three dimensional space using previously acquired CT image data.


After a clinician navigates the surgical tool to the target, but before performing the procedure on the target, the clinician may use a fluoroscopic imaging device to confirm placement of the surgical tool relative to the target tissue. However, the fluoroscopic imaging device only provides the clinician with a two dimensional view of the surgical tool relative to the target from a single perspective. In order to gain another perspective of the placement, that is, in order to view the surgical tool relative to the target tissue from another angle, the user must move the fluoroscope relative to the target. Often, the clinician is able to see that the surgical tool is not properly positioned relative to the target tissue only upon visualizing its placement from more than one angle or perspective. Thus, what may seem to be a proper placement of the surgical tool from one perspective, may actually be an improper placement when viewed from a different perspective. After confirming that the surgical tool is not properly positioned, the clinician can move, or otherwise reposition, the surgical tool and again move the fluoroscope to view the placement from yet another angle. This process requires many iterations of moving the surgical tool and the fluoroscope before the clinician is able to confirm that the surgical tool is properly positioned.


The system and methods described herein provide solutions to the time-consuming, multi-iteration, approach of performing a navigation procedure described above. In particular, the system and methods performed by the system utilize an imaging device such as a CT, cone beam CT, or standard fluoroscope, to automatically capture a video or series or images of a target area from multiple angles relative to the target area, enabling a clinician to visualize placement of the surgical tool relative to the target tissue from multiple angles while in the process of navigating the surgical tool. This enables the clinician to correct the trajectory of the surgical tool as it progresses, without the need to retract the surgical tool to correct its placement.


One aspect provides a system for performing a navigation procedure including a surgical tool, an imaging device, and a computing device. The surgical tool is configured to be navigated to a target tissue located in a target area and to perform a surgical procedure on the target tissue. The imaging device is configured to acquire image data of the target area while the surgical tool is being navigated to the target tissue by automatically traversing back and forth along a rotational path relative to the target area and acquiring image data of the target area while traversing the path. The computing device is configured to receive the image data acquired by the imaging device and display the image data on a user interface such that the surgical tool can be navigated to the target tissue while simultaneously visualizing a position of the surgical tool relative to the target tissue from multiple perspectives relative to the target area. The user interface may be used by a clinician to set one or more parameters of the imaging device, for example, the length of the path for which the imaging device will traverse or the speed at which the imaging device traverses the path. The system may additionally include an electromagnetic field generator operably coupled to the computing device and configured to generate an electromagnetic field such that the computing device can determine a location of the surgical tool based on the electromagnetic field.


The surgical tool may include a catheter guide assembly configured to navigate to the target area via a natural orifice and the catheter guide assembly may include a handle and an extended working channel extending from the handle. A biopsy tool, a marker placement tool, a forceps, an ablation tool, or other tool may be positionable within the extended working channel to access the target tissue. Additionally, or alternatively, the surgical tool may be an ablation device including a tapered distal portion configured to percutaneously access the target tissue.


The imaging device may be configured to acquire image data which includes a plurality of fluoroscopic images where each fluoroscopic image of the plurality of fluoroscopic images is captured at a different point along the path such that each of the plurality of fluoroscopic images includes an image of the surgical tool relative to the target tissue from a different perspective. In one aspect, the imaging device may be configured to acquire image data which includes a video of the target area, such that each frame of the video includes an image of the surgical tool relative to the target tissue from a different perspective.


The imaging device may be configured to receive parameters controlling at least one of a format of the image data captured, a length of the path, or a speed at which the imaging device traverses the path. The parameters may be automatically set by the computing device or may be input by a user.


Another aspect of the present disclosure provides a method for performing a navigation procedure. The method includes initiating navigation of a surgical tool to a target tissue located in a target area and acquiring image data of the target area during navigation of the surgical tool to the target tissue by automatically traversing an imaging device back and forth along a path relative to the target area and acquiring image data of the target area while traversing the path. The method may also include displaying the acquired image data during navigation of the surgical tool to the target tissue such that a position of the surgical tool relative to the target tissue is displayed from multiple angles relative to the target area, and determining that navigation of the surgical tool to the target tissue is complete when the position of the surgical tool displayed in each of the multiple angles is at a desired location from the perspective of each of the multiple angles. The method may further include performing a procedure on the target tissue.


Initiating navigation of the surgical tool may include initiating navigation of a catheter guide assembly including an extended working channel through a natural orifice. A biopsy tool, a marker placement tool, a forceps, an ablation tool, or other tool may be positioned through the extended working channel to access the target tissue. Additionally, or alternatively, initiating navigation of the surgical tool may include percutaneously inserting an ablation tool including a tapered distal portion through tissue to access the target area.


In one aspect, acquiring image data of the target area during navigation of the surgical tool to the target tissue includes acquiring a plurality of fluoroscopic images, where each fluoroscopic image of the plurality of fluoroscopic images is captured at a different point along the path such that each of the plurality of fluoroscopic images includes an image of the surgical tool relative to the target tissue from a different perspective. Additionally, or alternatively, acquiring image data of the target area during navigation of the surgical tool to the target tissue may include acquiring a video of the target area, such that each frame of the video includes an image of the surgical tool relative to the target tissue from a different perspective.


The method may include receiving parameters controlling at least one of a format of the image data captured, a length of the path, or a speed at which the imaging device traverses the path. Additionally, or alternatively, the method may further include generating an electromagnetic field about the target area and determining a location of the surgical tool based on the electromagnetic field. In one aspect, determining that navigation of the surgical tool to the target tissue is complete includes determining that a distance between the surgical tool and the target tissue in each of the multiple angles is below a threshold.


In yet another aspect of the present disclose, a non-transitory computer-readable storage medium is provided. The non-transitory computer-readable storage medium may store instructions which, when executed by a processor, cause a computing device to acquire image data of a target area during navigation of a surgical tool to a target tissue located in the target area. The acquired image data may be received from an imaging device automatically traversing back and forth along a path relative to the target area and acquiring image data of the target area while traversing the path. The instructions, when executed, may further cause the computing device to display the acquired image data during navigation of the surgical tool to the target tissue such that a position of the surgical tool relative to the target tissue is displayed from multiple angles relative to the target area. Additionally, or alternatively, the instructions, when executed, may further cause the computing device to determine that navigation of the surgical tool to the target tissue is complete when the position of the surgical tool displayed in each of the multiple angles is at a desired position in each of the multiple angles. Additionally, or alternatively, the instructions, when executed, may further cause the computing device to determine a distance between the surgical tool and the target tissue in each of the multiple angles.


Any of the above components, aspects, and/or embodiments of the present disclosure may be combined or modified without departing from the scope of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

Objects and features of the presently disclosed system and method will become apparent to those of ordinary skill in the art when descriptions of various embodiments thereof are read with reference to the accompanying drawings, of which:



FIG. 1 is a perspective view of an illustrative embodiment of a system for performing a navigation procedure incorporating an imaging device in accordance with the present disclosure;



FIG. 2 is a plan view of an illustrative embodiment of a catheter guide assembly usable with the system of FIG. 1 to navigate through a natural orifice of a patient to access a target tissue;



FIG. 3 is a plan view of an illustrative embodiment of an ablation device usable with the system of FIG. 1 to percutaneously access a target tissue;



FIG. 4 is an illustration of an imaging device traversing a path relative to a patient;



FIG. 5 is flow chart of an illustrative embodiment of a method for performing a navigation procedure to navigate a surgical tool to a target using the system of FIG. 1; and



FIG. 6 is an example of a user interface displayable by the system of FIG. 1.





DETAILED DESCRIPTION

Although the present disclosure will be described in terms of specific illustrative embodiments, it will be readily apparent to those skilled in this art that various modifications, rearrangements and substitutions of components and steps may be made without departing from the spirit of the present disclosure.


The present disclosure is directed to systems, methods, and devices for performing a navigation procedure, and more particularly for positioning a surgical tool using image guidance. For illustrative purposes only, the following detailed description and accompanying drawing figures show and detail a surgical navigation system and methods for ablation treatments. However, the claims are not limited to such ablation systems, methods and devices but rather encompasses any suitable systems, methods and devices for performing a navigation procedure.


A surgical navigation procedure for ablation treatment or other treatments, according to the present disclosure, is generally divided into two phases: (1) a planning phase, and (2) a procedure phase. The planning phase of a microwave ablation treatment is more fully described in U.S. Patent Application Publication No. 2016/0038248, entitled TREATMENT PROCEDURE PLANNING SYSTEM AND METHOD, filed on Aug. 11, 2014 by Bharadwaj et al., the entire contents of which are incorporated by reference herein.


A planning and procedure system according to the present disclosure, for example, for a microwave ablation procedure may be a unitary system configured to perform both the planning phase and the procedure phase, or the system may include separate devices and software programs for the various phases. An example of the latter may be a system wherein a first computing device with one or more specialized software programs is used during the planning phase, and a second computing device with one or more specialized software programs may import data from the first computing device to be used during the procedure phase.


Referring now to FIG. 1, the present disclosure is generally directed to a procedure system 10, which may be used to navigate to a target within a patient's body and perform a procedure on the target. System 10 includes a computing device 100, a display 110, a table 120, a surgical tool 130, and an imaging device 140. Computing device 100 may be, for example, a laptop computer, desktop computer, tablet computer, or other similar device. Computing device 100 may be configured to control an electrosurgical generator, a fluid pump, a power supply, and/or any other accessories and peripheral devices relating to, or forming part of, system 10. Additionally, computing device 100 may include an electrosurgical generator 134 configured to generate electrosurgical energy such as microwave ablation energy. Display 110 is configured to display user interfaces which include parameter setting inputs, output instructions, images, messages relating to the performance of the procedure, and other useful user interfaces.


System 10 may be configured for reviewing previously acquired CT image data to identify one or more targets, planning a pathway to an identified target (planning phase), navigating a tool to a target (navigation/procedure phase) via a user interface, and confirming placement of the surgical tool 130 relative to the target. To this end, system 10 may be used to navigate surgical tools to a target through a natural orifice using an extended working channel of a catheter guide assembly 200 (FIG. 2), for example through a branched luminal network of a patient, or percutaneously using an surgical tool having a tapered distal portion, such as ablation tool 300 (FIG. 3). An example system is the ELECTROMAGNETIC NAVIGATION BRONCHOSCOPY® system, or the ILOGIC® suite, currently sold by Medtronic PLC. The target may be tissue of interest or a region of interest identified during review of the CT image data during the planning phase. The procedure performed on the target may include obtaining a tissue sample from the tissue located at or proximate to, the target, delivering items, such as radio-opaque markers and/or therapeutic agents to the region of the target, or treating the target using electrosurgical or microwave energy.


Although not explicitly shown, surgical tools 130 that may be used with system 10 include catheter guide assemblies 200 (FIG. 2) configured to navigate to targets through a natural orifice, such as those currently marketed and sold by Medtronic PLC under the brand names SUPERDIMENSION® Procedure Kits or EDGE™ Procedure Kits. For a more detailed description of these catheter guide assemblies, reference is made to commonly-owned U.S. Pat. No. 9,247,992, filed on Mar. 15, 2013, by Ladtkow et al., U.S. Pat. No. 7,233,820, filed on Apr. 16, 2003, and U.S. Pat. No. 9,044,254, filed on Mar. 15, 2013, the entire contents of each of which are incorporated by reference herein. Additionally, or alternatively, as detailed below, system 10 may be used with surgical tool 130 such as ablation tool 300 (FIG. 3) configured to percutaneously access a target tissue site and deliver ablation energy to the target tissue. Further, surgical tool 130 may include biopsy tools, chemotherapy catheters for localized treatment, balloon catheters or any other such device. To this end, surgical tool 130 may be a device used to navigate any of the above-described tools or may be the actual device itself.


Continuing with reference to FIG. 1, table 120 may be, for example, an operating table or other table suitable for use during a surgical procedure, which includes an electromagnetic field generator 121. Electromagnetic field generator 121 is used to generate an electromagnetic field during the navigation procedure and forms part of an electromagnetic tracking system which is used to track the positions of surgical instruments within the body of a patient. Electromagnetic field generator 121 may include various components, such as a specially designed pad to be placed under, or integrated into, an operating table or patient bed. An example of such an electromagnetic tracking system is the AURORA™ system sold by Northern Digital Inc.


Surgical tool 130 may be a surgical instrument having a microwave ablation antenna which is used to ablate tissue. Surgical tool 130 can used to ablate a target tissue (for example, a lesion or tumor) by using electromagnetic radiation or microwave energy to heat tissue in order to denature or kill cancerous cells. The construction and use of a system including such a surgical tool 130 is more fully described in co-pending U.S. Patent Application Publication No. 2016/0058507 entitled MICROWAVE ABLATION SYSTEM, filed on Aug. 18, 2015, by Dickhans, U.S. Pat. No. 9,247,992 entitled MICROWAVE ABLATION CATHETER AND METHOD OF UTILIZING THE SAME, filed on Mar. 15, 2013, by Ladtkow et al., and U.S. Pat. No. 9,119,650 entitled MICROWAVE ENERGY-DELIVERY DEVICE AND SYSTEM, filed on Mar. 15, 2013, by Brannan et al., the entire contents of each of which are incorporated by reference herein.


In addition to the electromagnetic tracking system, after a surgical tool 130 is navigated to a target area using a preplanned trajectory, imaging device 140 may be used to visualize the location of the surgical tool 130 relative to a target inside the patient's body. Imaging device 140 may be any device suitable for visualizing the navigated surgical tool 130 relative to the target tissue. For example, imaging device 140 may include a CT imaging device, a cone beam CT imaging device, or a fluoroscopic imaging device.



FIG. 2 illustrates an example surgical tool 130 (FIG. 1) as a catheter guide assembly 200 usable with the system 10 and introducible through a natural orifice of a patient. Catheter guide assembly 200 includes a handle 210 and an extended working channel (EWC) 220 which extends distally from handle 210. In practice, the EWC 220 is inserted into a bronchoscope for access to a luminal network of the patient. Specifically, EWC 220 of catheter guide assembly 200 may be inserted into a working channel of a bronchoscope for navigation through a patient's luminal network. A locatable guide (LG) 230, including a sensor 240 disposed thereon, is inserted into the EWC 220 and locked into position such that the sensor 240 extends a desired distance beyond the distal tip of the EWC 220. In certain aspects, EWC 220 includes sensor 240 disposed thereon (for example, on the distal portion of EWC 220), eliminating the need for a separate LG 230. The position and orientation of the sensor 240 relative to a reference coordinate system, and thus the distal end of the EWC 220, within an electromagnetic field can be derived by system 10 using the electromagnetic field generator 121. As noted above, catheter guide assemblies 200 are currently marketed and sold by Medtronic PLC under the brand names SUPERDIMENSION® Procedure Kits or EDGE™ Procedure Kits, and are contemplated as useable with the present disclosure. As also described above, a more detailed description of these catheter guide assemblies, reference is made to commonly-owned U.S. Pat. No. 9,247,992, filed on Mar. 15, 2013, by Ladtkow et al., U.S. Pat. No. 7,233,820, filed on Apr. 16, 2003, and U.S. Pat. No. 9,044,254, filed on Mar. 15, 2013, the entire contents of each of which are incorporated by reference herein.



FIG. 3 illustrates an example of a surgical tool 130 (FIG. 1) as an ablation tool 300 usable with the system 10 which is used to percutaneously access a target tissue site of the patient. As described above, the construction and use of such a surgical tool 130 is more fully described in co-pending U.S. Patent Application Publication No. 2016/0058507 entitled MICROWAVE ABLATION SYSTEM, filed on Aug. 18, 2015, by Dickhans, U.S. Pat. No. 9,247,992 entitled MICROWAVE ABLATION CATHETER AND METHOD OF UTILIZING THE SAME, filed on Mar. 15, 2013, by Ladtkow et al., and U.S. Pat. No. 9,119,650 entitled MICROWAVE ENERGY-DELI VERY DEVICE AND SYSTEM, filed on Mar. 15, 2013, by Brannan et al., the entire contents of each of which are incorporated by reference herein.


Turning now to FIG. 4, an imaging device 140 (also referred to herein as a “CT imaging device 140”) is shown in a position relative to the patient during or after navigation of a surgical tool 130 (either catheter guide assembly 200 of FIG. 2 or ablation tool 300 of FIG. 3) to a desired target tissue site. The CT imaging device 140 moves along path “P” while capturing image data (for example, a video or a series of images) along path “P” from different perspectives relative to the patient or target area. In particular, CT imaging device 140 slowly reciprocates back and forth along path “P” and transmits the acquired image data to computing device 100 for processing and/or display of the image data on display 110. In one aspect, CT imaging device 140 includes a C-arm and a motor for moving an imager of the CT imaging device 140 along the C-arm.


The image data may include fluoroscopic images, fluoroscopic video, or other CT data. Computing device 100 displays the acquired CT data on display 110 such that a clinician can visualize the position of the surgical tool 130 relative to the target tissue from multiple perspectives, without the need to iteratively adjust the position of the CT imaging device 140, and readjust the position of the surgical tool 130 multiple times before reaching the desired target tissue. In particular, computing device 100 provides the clinician with a continuous multi-perspective or multi-angle visualization of the target region, thereby enabling the clinician to interpolate the three-dimensional space and simultaneously navigate the surgical tool 130 to the target tissue without being required to repeatedly retract the surgical tool 130 and correct its trajectory.


The length of path “P” to which imaging device 140 traverses may be selected or modified by computing device 100 or may be selected or modified by a clinician. In particular, a clinician may choose the length of the path “P” for which the imaging device 140 will traverse along in order to suit the particular needs of the navigation procedure. The length of path “P” is directly correlated to the range of angular positions of the imaging device 140 relative to the patient. In some instances it may be useful for the clinician to visualize the target area from a large range of perspectives (greater angular range) and in some other instances it may be useful for a clinician to visualize the target area from a small range of perspectives (lower angular range).


Additionally, the speed at which the imaging device 140 traverses the path “P” may also be selected or modified by the computing device 100 or the clinician. In particular, a clinician may choose the speed at which the imaging device 140 traverses along the path “P” in order to suit the particular needs of the navigation procedure. That is, in some instances it may be useful for the clinician to visualize the target area while receiving images or video of the target area while the imaging device 140 traverses back and forth along path “P” at a fast speed and in some other instances it may be useful for the clinician to visualize the target area while receiving images or video of the target area while the imaging device 140 traverses back and forth along path “P” at a slow speed. The faster the imaging device 140 traverses along the path “P,” the faster the images and/or video captured by the imaging device 140 are displayed to the user. At certain higher speeds, the user may visualize the two-dimensional object in the two-dimensional frames and/or video as a three-dimensional-like object. Thus, when the display 110 displays the movement around the object (for example, the target), the user may interpolate the three-dimensional space and thus understand the multiple two-dimensional perspectives of the object as a three-dimensional-like object.


Additionally, the type or format of the image data acquired by the imaging device 140 may be selected or modified by the computing device 100 or may be selected or modified by a clinician. In particular, in certain instances it may be beneficial to receive the image data as a video stream to maximize the visualization of the target area. In other instances it may be useful for the image data to be a series of images taken along the path “P.” For example, in instances where a clinician may desire to expose the patient to lower amounts of radiation, the clinician may select the image data to be a series of images, or a combination of a series of images and video along different portions of the path “P.”


Having described the components of system 10 depicted in FIGS. 1-4, the following description of FIG. 5 provides an exemplary workflow of using the components of system 10, including the imaging device 140, to navigate to a target region (for example, through a luminal network of a patient or percutaneously through tissue) utilizing a previously generated navigation plan and the image data acquired by the imaging device 140. Although the methods illustrated and described herein are illustrated and described as being in a particular order and requiring particular steps, any of the methods may include some or all of the steps and may be implemented in any order not specifically described.


Turning now to FIG. 5, a method for navigating a surgical tool 130 to a target using the imaging device 140 of system 10, will now be illustrated and described as method 500. Method 500 begins at step 501 where navigation of a surgical tool 130 to a target region is initiated. Step 501 may include using a catheter guide assembly 200 (FIG. 2) using a navigation pathway previously planned, as described above. Alternatively, step 501 may include percutaneously inserting an ablation tool 300 (FIG. 3) to access the target region along a previously determined trajectory.


In step 503, computing device 100 receives parameters for the path “P” (FIG. 4) or parameters of the imaging device 140. In particular, in step 503 a user may input the distance or length of path “P” for which the imaging device 140 will traverse. Setting the length of path “P” sets the range of angular positions of the imaging device 140 relative to the target. Additionally, in step 503 a user may input the speed at which the imaging device 140 traverses along path “P.” In one aspect, in step 503, a user may also input the type of image data desired to be acquired. For example, in certain instances a clinician may desire to generate a video stream of the target area. Alternatively, in certain instances the clinician may desire to expose the patient to less radiation and therefore may set the capture of the imaging device 140 to be run at a low frame rate or even be collimated to reduce radiation exposure. In one aspect, step 503 includes receiving a command for the imaging device 140 to acquire image data as a video along certain portions of path “P” and to acquire image data as an image or series of images along other portions of path “P.” Step 503 may implemented at any point during method 500, such that modifications to the parameters of the path “P” and/or the parameters of the image device 140 may be made at any point during the navigation procedure.


In step 505, while traversing back and forth along path “P,” imaging device 140 acquires image data of the target region. As described above, the image data acquired in step 505 may include a plurality of images of the target region captured along the path “P,” a video of the target region captured along the path “P,” combinations of images and video along the path “P,” or images along portions of the path “P” and video along other portions of the path “P.” Depending on the radiation output of the imaging device 140, it may be useful to reduce the level of radiation to which the patient is exposed by only capturing a series of images along the path “P” as opposed to capturing a continuous video of the target region along the path “P.” The image data of the target region acquired in step 505 enables visualization of the target tissue located in the target region and the surgical tool 130 that is in the process of being navigated to the target tissue from multiple different perspectives.


In step 507, the image data acquired in step 505 is delivered to computing device 100 and displayed on display 110 for a clinician to view. Because the image data includes multiple images, or video, of the target region including the surgical tool 130 approaching the target tissue, the clinician is able to visualize the position of the surgical tool 130 with respect to the target tissue from multiple perspectives while simultaneously continuing to navigate the surgical tool 130 to the target tissue. This visualization of both the surgical tool 130 and the target, which is apparent in the images allows the clinician to overcome any navigation error or misplacement of the surgical tool 130 in the final centimeters or inches of navigation. At this point, the planned pathway to the target may be ignored and the final steps of the navigation can be undertaken under imaging utilizing the imaging device 140. Moreover, this imaging at different angles relative to the patient as the imaging device 140 traverses the path “P” provides for enhanced imaging of the position of the surgical tool 130 relative to the target at a number of angles. As noted above, as the clinician observes the images, either still or video, the effect is the impression of a three-dimensional-like image which is viewable by the clinician. As a result, the clinician is able to observe the relative position of the surgical tool 130 and the target from multiple perspective angles. Such a continuous multi-perspective visualization of the target region enables the clinician to interpolate the three-dimensional space and simultaneously navigate the surgical tool 130 to the target tissue without being required to repeatedly retract the surgical tool 130 and correct its trajectory.


In step 509, it is determined if the surgical tool 130 is at a desired location (for example, the target tissue or target region). In one aspect, step 509 is accomplished by determining whether a distance between a portion of the surgical tool 130 and an edge, or center, of the target tissue is within a predetermined threshold. For example, when the distance between the surgical tool 130 and the target tissue is more than the predetermined threshold, then it is determined that the surgical tool 130 is not at the desired position (no in step 509) and method 500 proceeds to step 511 where the clinician can adjust the position of the surgical tool 130. Specifically, in step 511, the clinician can continue to advance the surgical tool 130 while simultaneously visualizing the position of the surgical tool 130 relative to the target tissue from multiple angles with the image data being displayed on display 110. When the distance between the surgical tool 130 and the target tissue is less than the predetermined threshold, then it is determined that the surgical tool 130 is at the desired position (yes in step 509) and method 500 proceeds to step 513. In one aspect, the desired position is the center of the target tissue.


In step 513, the procedure is performed on the target tissue. As described above, method 500 may be used to navigate to a target region for various purposes. That is, step 513 may include any type of procedure, which may include for example, biopsy collection, marker placement, device placement, therapeutic treatments, agent delivery, ablation treatments including radiofrequency and microwave ablations, and any other such procedure that may benefit from enhanced and more accurate navigation to a target within a patient.


Turning now to FIG. 6, an example user interface 600 is illustrated which can be displayed on display 110 (FIG. 1). User interface 600 includes a split screen view which is presented to the user to assist the user in visualizing the position of the surgical tool 130 relative to the target from multiple perspectives while simultaneously advancing the surgical tool 130 to the target. Specifically, section 610 includes an axial slice of the target “T” which is generated from previously acquired CT image data. The particular axial slice of the target “T” displayed in section 610 corresponds to the axial position of the imaging device 140 relative to the patient. Icon 611 is a virtual representation of the position of the imaging device 140 at a given point in time. As the imaging device 140 traverses back and forth along the path “P,” the position of icon 611 updates to represent the latest position of the imaging device 140. Section 611 also includes setting input region 613. Setting input region 613 may be used by an operator to input parameters associate with the imaging device 140 and path “P.” As described above, a user may utilize input region 613 to set or modify the length of the path “P” (which in turn sets or modifies the angular range a-e of images to acquire), the speed at which the imaging device 140 traverses back and forth along the path “P,” the image format to acquire, and the portions of the path “P” for which to capture different types of images formats. A graphical representation of the path “P” may also be included in section 610 and when the length of the path “P” is adjusted using region 613, the graphical representation is adjusted accordingly.


User interface 600 also includes section 620 which displays a continuous stream of images or video of the image data acquired by the imaging device 140. In particular, section 620 includes an image of target “T” and surgical tool 130 which continuously changes to a different perspective captured by the imaging device 140. Continuously displaying the target “T” and the position of the surgical tool 130 relative to the target “T” while simultaneously navigating the surgical tool enables the clinician to visualize the position of the surgical tool relative to the target “T” from multiple perspectives while still in the process of advancing the surgical tool 130 to the target “T.” In this manner, as the clinician observes the display in section 620, the effect is the impression of a three-dimensional-like image which is being viewed by the clinician. As a result, the clinician is able to observe the relative position of the surgical tool 130 and the target from multiple perspective angles. Such a continuous multi-perspective visualization of the target region enables the clinician to interpolate the three-dimensional space and simultaneously navigate the surgical tool 130 to the target tissue without being required to repeatedly retract the surgical tool 130 and correct its trajectory.


Although embodiments have been described in detail with reference to the accompanying drawings for the purpose of illustration and description, it is to be understood that the inventive processes and apparatus are not to be construed as limited thereby. It will be apparent to those of ordinary skill in the art that various modifications to the foregoing embodiments may be made without departing from the scope of the disclosure.

Claims
  • 1. A system for performing a navigation procedure, the system comprising: a surgical tool configured to be navigated to a target tissue located in a target area and to perform a surgical procedure on the target tissue;an imaging device configured to acquire image data of the target area while the surgical tool is being navigated to the target tissue, the imaging device including a motor configured to drive the imaging device in a first direction then a second direction opposing the first direction along an arcuate path relative to the target area;a user interface for a clinician to set one or more parameters of the imaging device, the parameters including at least one of a length of the path or a speed at which the imaging device traverses the path; anda computing device configured to receive the image data acquired by the imaging device and display the image data on the user interface in real-time as the imaging device drives in the first direction then the second direction opposing the first direction along the path, wherein the surgical tool can be navigated to the target tissue while under visualization of at least a portion of the surgical tool relative to the target tissue from multiple perspectives,wherein the imaging device is configured to output: a first level of radiation along a first portion of the path to acquire a plurality of fluoroscopic images along the first portion of the path, the first portion of the path having a first length; anda second level of radiation higher than the first level of radiation along a second portion of the path different from the first portion to acquire a video along the second portion of the path, the second portion of the path having a second length less than the first length.
  • 2. The system for performing a navigation procedure of claim 1, wherein the surgical tool includes a catheter guide assembly configured to navigate to the target area via a natural orifice, the catheter guide assembly including a handle and an extended working channel extending from the handle and wherein at least one of a biopsy tool, a marker placement tool, a forceps, or an ablation tool is positionable within the extended working channel to access the target tissue.
  • 3. The system for performing a navigation procedure of claim 1, wherein the surgical tool includes at least one of an ablation device including a tapered distal portion configured to percutaneously access the target tissue or a biopsy device including a tapered distal portion configured to percutaneously access the target tissue.
  • 4. The system for performing a navigation procedure of claim 1, wherein the imaging device is configured to receive parameters controlling a format of the image data captured.
  • 5. The system for performing a navigation procedure of claim 1, further comprising an electromagnetic field generator operably coupled to the computing device and configured to generate an electromagnetic field, the computing device configured to determine a location of the surgical tool based on the electromagnetic field.
  • 6. A method for performing a navigation procedure comprising: initiating navigation of a surgical tool to a target tissue located in a target area;acquiring image data of the target area during navigation of the surgical tool to the target tissue by automatically traversing an imaging device back and forth along a path relative to the target area and acquiring the image data of the target area while traversing the path, wherein acquiring image data includes:outputting a first level of radiation along a first portion of the path to acquire a plurality of fluoroscopic images along the first portion of the path, the first portion of the path having a first length; andoutputting a second level of radiation higher than the first level of radiation along a second portion of the path different from the first portion to acquire a video along the second portion of the path, the second portion of the path having a second length less than the first length;displaying the acquired image data in real-time as the imaging device traverses back and forth along the path during navigation of the surgical tool to the target tissue such that a position of the surgical tool relative to the target tissue is displayed real-time from multiple angles relative to the target area; andcompleting navigation of the surgical tool to the target tissue under visualization of the position of the surgical tool displayed in each of the multiple angles.
  • 7. The method for performing a navigation procedure of claim 6, further comprising performing a procedure on the target tissue.
  • 8. The method for performing a navigation procedure of claim 6, wherein initiating navigation of the surgical tool includes: initiating navigation of a catheter guide assembly including an extended working channel through a natural orifice; andinserting at least one of a biopsy tool, a marker placement tool, a forceps, or an ablation tool through the extended working channel.
  • 9. The method for performing a navigation procedure of claim 6, wherein initiating navigation of the surgical tool includes percutaneously inserting at least one of an ablation tool or a biopsy tool including a tapered distal portion through tissue to access the target area.
  • 10. The method for performing a navigation procedure of claim 6, further comprising receiving parameters controlling at least one of a format of the image data captured, a length of the path, or a speed at which the imaging device traverses the path.
  • 11. The method for performing a navigation procedure of claim 6, further comprising: generating an electromagnetic field about the target area; anddetermining a location of the surgical tool based on the electromagnetic field.
  • 12. The method for performing a navigation procedure of claim 6, further comprising determining that navigation of the surgical tool to the target tissue is complete.
  • 13. The method for performing a navigation procedure of claim 12, wherein determining that navigation of the surgical tool to the target tissue is complete includes determining that a distance between the surgical tool and the target tissue in each of the multiple angles is below a threshold.
  • 14. The method for performing a navigation procedure according to claim 6, wherein displaying the acquired image data during navigation of the surgical tool includes simultaneously displaying the position of the surgical tool relative to the target tissue from multiple angles relative to the target area and a corresponding position of the imaging device relative to the target area for each of the multiple angles.
  • 15. A system for performing a navigation procedure, the system comprising: an imaging device configured to acquire image data of a target area while a surgical tool is being navigated to a target tissue within the target area, the imaging device configured to move in a first direction then a second direction opposing the first direction along a path relative to the target area;a user interface for a clinician to set one or more parameters of the imaging device, the parameters including at least one of a length of the path or a speed at which the imaging device traverses the path; anda computing device configured to receive the image data acquired by the imaging device and display the image data on the user interface in real-time as the imaging device moves in the first direction then the second direction opposing the first direction along the path, wherein the surgical tool can be navigated to the target tissue while under real-time visualization of at least a portion of the surgical tool relative to the target tissue from multiple perspectives,wherein the imaging device is configured to output: a first level of radiation along a first portion of the path to acquire a plurality of fluoroscopic images along the first portion of the path, the first portion of the path having a first length; anda second level of radiation higher than the first level of radiation along a second portion of the path different from the first portion to acquire a video along the second portion of the path, the second portion of the path having a second length less than the first length.
US Referenced Citations (184)
Number Name Date Kind
5852646 Klotz et al. Dec 1998 A
5930329 Navab Jul 1999 A
5963612 Navab Oct 1999 A
5963613 Navab Oct 1999 A
6038282 Wiesent et al. Mar 2000 A
6049582 Navab Apr 2000 A
6050724 Schmitz et al. Apr 2000 A
6055449 Navab Apr 2000 A
6081577 Webber Jun 2000 A
6120180 Graumann Sep 2000 A
6236704 Navab et al. May 2001 B1
6317621 Graumann et al. Nov 2001 B1
6351513 Bani-Hashemi et al. Feb 2002 B1
6389104 Bani-Hashemi et al. May 2002 B1
6404843 Valliant Jun 2002 B1
6424731 Launay et al. Jul 2002 B1
6484049 Seeley et al. Nov 2002 B1
6485422 Mikus et al. Nov 2002 B1
6490475 Seeley et al. Dec 2002 B1
6491430 Seissler Dec 2002 B1
6546068 Shimura Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6549607 Webber Apr 2003 B1
6697664 Kienzle, III et al. Feb 2004 B2
6707878 Claus et al. Mar 2004 B2
6714810 Grzeszczuk et al. Mar 2004 B2
6731283 Navab May 2004 B1
6731970 Schlossbauer et al. May 2004 B2
6768784 Green et al. Jul 2004 B1
6782287 Grzeszczuk et al. Aug 2004 B2
6785356 Grass et al. Aug 2004 B2
6785571 Glossop Aug 2004 B2
6801597 Webber Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6865253 Blumhofer et al. Mar 2005 B2
6898263 Avinash et al. May 2005 B2
6944260 Hsieh et al. Sep 2005 B2
6956927 Sukeyasu et al. Oct 2005 B2
7010080 Mitschke et al. Mar 2006 B2
7010152 Bojer et al. Mar 2006 B2
7035371 Boese et al. Apr 2006 B2
7106825 Gregerson et al. Sep 2006 B2
7117027 Zheng et al. Oct 2006 B2
7129946 Ditt et al. Oct 2006 B2
7130676 Barrick Oct 2006 B2
7165362 Jobs et al. Jan 2007 B2
7251522 Essenreiter et al. Jul 2007 B2
7327872 Valliant et al. Feb 2008 B2
7343195 Strommer et al. Mar 2008 B2
7369641 Tsubaki et al. May 2008 B2
7440538 Tsujii Oct 2008 B2
7467007 Lothert Dec 2008 B2
7474913 Durlak Jan 2009 B2
7502503 Bojer et al. Mar 2009 B2
7505549 Ohishi et al. Mar 2009 B2
7508388 Barfuss et al. Mar 2009 B2
7603155 Jensen Oct 2009 B2
7620223 Xu et al. Nov 2009 B2
7639866 Pomero et al. Dec 2009 B2
7664542 Boese et al. Feb 2010 B2
7689019 Boese et al. Mar 2010 B2
7689042 Brunner et al. Mar 2010 B2
7693263 Bouvier et al. Apr 2010 B2
7711082 Fujimoto et al. May 2010 B2
7711083 Heigl et al. May 2010 B2
7711409 Keppel et al. May 2010 B2
7720520 Willis May 2010 B2
7725165 Chen et al. May 2010 B2
7734329 Boese et al. Jun 2010 B2
7742557 Brunner et al. Jun 2010 B2
7761135 Pfister et al. Jul 2010 B2
7778685 Evron et al. Aug 2010 B2
7787932 Vilsmeier et al. Aug 2010 B2
7804991 Abovitz et al. Sep 2010 B2
7831096 Williamson, Jr. Nov 2010 B2
7835779 Anderson et al. Nov 2010 B2
7853061 Gorges et al. Dec 2010 B2
7877132 Rongen et al. Jan 2011 B2
7899226 Pescatore et al. Mar 2011 B2
7907989 Borgert et al. Mar 2011 B2
7912180 Zou et al. Mar 2011 B2
7912262 Timmer et al. Mar 2011 B2
7949088 Nishide et al. May 2011 B2
7991450 Virtue et al. Aug 2011 B2
8000436 Seppi et al. Aug 2011 B2
8043003 Vogt et al. Oct 2011 B2
8045780 Boese et al. Oct 2011 B2
8050739 Eck et al. Nov 2011 B2
8090168 Washburn et al. Jan 2012 B2
8111894 Van De Haar Feb 2012 B2
8111895 Spahn Feb 2012 B2
8126111 Uhde et al. Feb 2012 B2
8126224 Zuhars et al. Feb 2012 B2
8126241 Zarkh et al. Feb 2012 B2
8150131 Rarer et al. Apr 2012 B2
8180132 Gorges et al. May 2012 B2
8195271 Rahn Jun 2012 B2
8200316 Keppel et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8229061 Hanke et al. Jul 2012 B2
8248413 Gattani et al. Aug 2012 B2
8270691 Xu et al. Sep 2012 B2
8271068 Khamene et al. Sep 2012 B2
8275448 Camus et al. Sep 2012 B2
8306303 Bruder et al. Nov 2012 B2
8311617 Keppel et al. Nov 2012 B2
8320992 Frenkel et al. Nov 2012 B2
8340379 Razzaque et al. Dec 2012 B2
8345817 Fuchs et al. Jan 2013 B2
8374416 Gagesch et al. Feb 2013 B2
8374678 Graumann Feb 2013 B2
8423117 Pichon et al. Apr 2013 B2
8442618 Strommer et al. May 2013 B2
8515527 Vaillant et al. Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8532258 Bulitta et al. Sep 2013 B2
8532259 Shedlock et al. Sep 2013 B2
8548567 Maschke et al. Oct 2013 B2
8625869 Harder et al. Jan 2014 B2
8666137 Nielsen et al. Mar 2014 B2
8670603 Tolkowsky et al. Mar 2014 B2
8675996 Liao et al. Mar 2014 B2
8693622 Graumann et al. Apr 2014 B2
8693756 Tolkowsky et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8706186 Fichtinger et al. Apr 2014 B2
8712129 Strommer et al. Apr 2014 B2
8718346 Isaacs et al. May 2014 B2
8750582 Boese et al. Jun 2014 B2
8755587 Bender et al. Jun 2014 B2
8781064 Fuchs et al. Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798339 Mielekamp et al. Aug 2014 B2
8831310 Razzaque et al. Sep 2014 B2
8855748 Keppel et al. Oct 2014 B2
9001121 Finlayson et al. Apr 2015 B2
9001962 Funk Apr 2015 B2
9008367 Tolkowsky et al. Apr 2015 B2
9031188 Belcher et al. May 2015 B2
9036777 Ohishi et al. May 2015 B2
9042624 Dennerlein May 2015 B2
9044190 Rubner et al. Jun 2015 B2
9087404 Hansis et al. Jul 2015 B2
9095252 Popovic Aug 2015 B2
9104902 Xu et al. Aug 2015 B2
9111175 Strommer et al. Aug 2015 B2
9135706 Zagorchev et al. Sep 2015 B2
9171365 Mareachen et al. Oct 2015 B2
9179878 Jeon Nov 2015 B2
9216065 Cohen et al. Dec 2015 B2
9232924 Liu et al. Jan 2016 B2
9262830 Bakker et al. Feb 2016 B2
9265468 Rai et al. Feb 2016 B2
9277893 Tsukagoshi et al. Mar 2016 B2
9280837 Grass et al. Mar 2016 B2
9282944 Fallavollita et al. Mar 2016 B2
9401047 Bogoni et al. Jul 2016 B2
9406134 Klingenbeck-Regn Aug 2016 B2
9445772 Callaghan Sep 2016 B2
9445776 Han et al. Sep 2016 B2
9466135 Koehler et al. Oct 2016 B2
20010022834 Graumann Sep 2001 A1
20010036245 Kienzle, III Nov 2001 A1
20020038118 Shoham Mar 2002 A1
20040097805 Verard May 2004 A1
20060058647 Strommer et al. Mar 2006 A1
20070225550 Gattani et al. Sep 2007 A1
20070268994 Chen Nov 2007 A1
20110116598 Gotman May 2011 A1
20120250818 Helm Oct 2012 A1
20130342578 Isaacs Dec 2013 A1
20150042643 Shibata et al. Feb 2015 A1
20150073211 Dickhans Mar 2015 A1
20150173690 Ning Jun 2015 A1
20150196260 Lee et al. Jul 2015 A1
20150227679 Kamer et al. Aug 2015 A1
20150297311 Tesar Oct 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160120522 Weingarten et al. May 2016 A1
20160206380 Sparks et al. Jul 2016 A1
20160287343 Eichler et al. Oct 2016 A1
Foreign Referenced Citations (3)
Number Date Country
105658164 Jun 2016 CN
2006116749 Nov 2006 WO
2015035287 Mar 2015 WO
Non-Patent Literature Citations (7)
Entry
Australian Examination Report issued in Appl. No. AU 2017232099 dated Feb. 19, 2018. (9 pages).
Extended European Search Report issued in Appl. No. EP 17193197.5 dated Jan. 26, 2018 (8 pages).
Australian Examination Report No. 2 issued in Appl. No. AU 2017232099 dated Oct. 25, 2018 (4 pages).
Canadian Office Action issued in Appl. No. CA 2,980,211 dated Aug. 31, 2018 (4 pages).
Office Action issued in corresponding Chinese Appl. No. 201710885356.1 dated Oct. 31, 2019 (10 pages).
Canadian Office Action issued in corresponding Appl. No. CA 2,980,211 dated Jul. 12, 2019 (4 pages).
Chinese Office Action issued in corresponding Appl. No. CN 201710885356.1 dated Apr. 21, 2020 (11 Pages).
Related Publications (1)
Number Date Country
20180085173 A1 Mar 2018 US