1. Technical Field
The disclosure generally relates to gas turbine engines.
2. Description of the Related Art
Gas turbine engines typically incorporate turbine blades and vanes that are gas-cooled. To facilitate gas-cooling, the blades and vanes include internal passages that route cooling gas to holes formed through to the exterior surfaces of the blades and vanes. So configured, the passages and holes provide thin films of cooling gas about the exterior of the blades and vanes. Notably, since sizes, shapes and cooling provisioning of blades and vanes are not standardized, each type of blade and vane typically requires a different pressure, volumetric flow and distribution of cooling gas in order to operate properly.
Systems and methods for performing cooling airflow analysis of gas turbine engine components are provided. In this regard, an exemplary embodiment of a system comprises: an airflow insert operative to form a seal with a component, the airflow insert having a main portion and a removable sacrificial portion, the sacrificial portion being sized and shaped to engage the component, the main portion having a cavity sized and shaped to removably receive the sacrificial portion, the main portion being sized and shaped to form a seal about the sacrificial portion and a corresponding portion of the component.
An exemplary embodiment of an airflow insert for performing cooling airflow analysis of a gas turbine engine component comprises: a main portion; and a sacrificial portion, the sacrificial portion being sized and shaped to engage the turbine component; the main portion having a cavity sized and shaped to removably receive the sacrificial portion, the main portion being sized and shaped to receive the sacrificial portion and form a seal about a corresponding portion of the component.
An exemplary embodiment of a method for performing cooling airflow analysis of a gas turbine engine component comprises: providing a component for airflow testing; engaging the component with an airflow insert to form a seal about at least a portion of the component, the airflow insert having a main portion and a sacrificial portion, the sacrificial portion being removably attached to the main portion such that, in an installed configuration, the main portion and the sacrificial portion form an airtight seal about a portion of the component; and testing the component with the airflow insert engaged therewith.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Systems and methods for performing cooling airflow analysis are provided, several exemplary embodiments of which will be described in detail. In this regard, turbine blades and vanes oftentimes are tested to determine cooling airflow characteristics. Unfortunately, these components can include sharp features, e.g. feather seals, which can damage the airflow test systems that are used to analyze the components. By way of example, sharp edges of the components can damage airflow inserts, which are used to form airtight seals about portions of the components so that gas can be routed through the components for testing. By providing a replaceable, sacrificial portion of such an airflow insert that is designed to engage a sharp edge of a turbine blade or vane, damage to the entire airflow insert can potentially be avoided. Specifically, damage caused by a sharp edge, for example, can potentially be isolated to the sacrificial portion and readily removed. A replacement sacrificial portion then can be installed.
In this regard, reference is made to the schematic diagram of
In the embodiment of
In operation, airflow component assembly 106 is mounted to the test fixture, with at least a portion of the airflow insert being seated within a corresponding recess 120 of the test fixture. A metered flow of gas (e.g., air) is provided to the test fixture via a gas supply line 122, which interconnects a gas supply 124 associated with the test bench to the test fixture. From the test fixture, the metered flow of gas enters an interior passage (not shown) of the vane and exits the vane through film-cooling holes, e.g., hole 126. In other embodiments, another fluid (e.g., water) could be used to perform various testing, such as determining flow blockage through a portion of the component being tested.
During testing, various parameters can be measured. By way of example, a constant flow parameter can be set thereby enabling pressure ratio to be measured. Additionally or alternatively, a constant pressure ratio can be set and flow parameter can be measured.
The embodiment of the airflow component assembly of
As shown in
Main portion 140 is configured to form an airtight seal about a portion of component 108 that includes edge 130. However, the main portion does not contact edge 130. In particular, sacrificial portion 142 is configured to engage edge 130, while seating within a cavity 144 defined by the main portion. Thus, the sacrificial portion contacts the sharp edge, while the main portion contacts an exterior of the sacrificial portion, as well as a portion of the vane platform.
In this configuration, degradation of the airflow insert caused by the sharp edge can be restricted to the sacrificial portion, which can be removed and replaced when desired. This is in contrast to a one-piece airflow insert, which may require complete replacement if a portion of the airflow insert becomes damaged.
Various other configurations can be used in other embodiments. For instance, more than one sacrificial portion can be used. Other such aspects may be specific to the part being measured. In some embodiments, the sacrificial portion could be made from a different material than that used for the main portion.
Continuing in block 310, the airflow insert is removed from the component that was tested in block 306, and a determination is made as to whether or not the airflow insert is damaged. If the airflow insert is damaged and a sacrificial portion of the insert is affected, the process may proceed to block 312, in which the sacrificial portion is removed and replaced. In block 314, the airflow insert with the replaced sacrificial portion is used to test another component.
It should be noted that a sacrificial portion may be used more than once and can be replaced on an as-needed basis. To determine the need for replacement, various techniques can be used, such as visual inspection and/or diagnostic testing.
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
3710617 | Andersen | Jan 1973 | A |
5313822 | Bees et al. | May 1994 | A |
5377534 | Boet | Jan 1995 | A |
5396793 | Colletti | Mar 1995 | A |
5405106 | Chintamani et al. | Apr 1995 | A |
5437737 | Draghi et al. | Aug 1995 | A |
5625958 | DeCoursey et al. | May 1997 | A |
6237426 | Gryc et al. | May 2001 | B1 |
6431555 | Schroder et al. | Aug 2002 | B1 |
6595742 | Scimone | Jul 2003 | B2 |
6772627 | Fleming | Aug 2004 | B2 |
6808552 | Borla | Oct 2004 | B2 |
6923051 | Fleming | Aug 2005 | B2 |
7021892 | Sidwell | Apr 2006 | B2 |
7024929 | Fleming et al. | Apr 2006 | B2 |
7204019 | Ducotey, Jr. et al. | Apr 2007 | B2 |
7207213 | Gerhardt et al. | Apr 2007 | B2 |
7207228 | Wang | Apr 2007 | B2 |
RE40481 | Borla | Sep 2008 | E |
7491253 | Wilson | Feb 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20090084170 A1 | Apr 2009 | US |