Systems and methods for performing replication copy storage operations

Information

  • Patent Grant
  • 9298382
  • Patent Number
    9,298,382
  • Date Filed
    Thursday, January 8, 2015
    10 years ago
  • Date Issued
    Tuesday, March 29, 2016
    8 years ago
Abstract
A system and method are provided for performing storage operations relating to a first secondary copy of electronic data. A storage policy or storage preferences may dictate that a replication copy should be used in storage operations performed to a particular client, sub-client, data, media or other item. Based on the storage policy, when a new client, sub-client, data, media or other item is received, a media agent determines whether there is a replication copy of the item. In the absence of a replication copy, one may be created. The replication copy may be provided by a third party application, or created by the client or a storage management system component. Information regarding the replication copy and its corresponding first secondary copy may be stored in a database. To optimize use of system resources, storage operations relating to the first secondary copy may be performed using the replication copy instead of the first secondary copy.
Description
RELATED APPLICATION

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference into this application under 37 CFR 1.57.


COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosures, as it appears in the Patent and Trademark Office patent files or records, but otherwise expressly reserves all other rights to copyright protection.


BACKGROUND

1. Field of the Invention


The invention disclosed herein relates generally to performing storage operations on electronic data in a computer network. More particularly, the present invention relates to using a replication copy or other copy of primary storage production data for performing storage operations.


2. Description of the Related Art


Current storage management systems employ a number of different methods to perform storage operations on electronic data. For example, data can be stored in primary storage as a primary copy or in secondary storage as various types of secondary copies including, a backup copy, a snapshot copy, a hierarchical storage management copy (“HSM”), as an archive copy, and as other types of copies.


A primary copy of data is generally a production copy or other “live” version of the data which is used by a software application and is generally in the native format of that application. Primary copy data may be maintained in a local memory or other high-speed storage device that allows for relatively fast data access if necessary. Such primary copy data is typically intended for short term retention (e.g., several hours or days) before some or all of the data is stored as one or more secondary copies, for example to prevent loss of data in the event that a problem occurred with the data stored in primary storage.


Secondary copies include point-in-time data and are typically intended for long-term retention (e.g., weeks, months or years depending on retention criteria, for example, as specified in a storage policy as further described herein) before some or all of the data is moved to other storage or discarded. Secondary copies may be indexed so that users can browse and restore the data at another point in time. After certain primary copy data is migrated to secondary storage, a pointer or other location indicia such as a stub may be placed in the primary copy to indicate the current location of that data.


In conventional storage management systems, a secondary copy is typically produced by performing a storage operation, such as a backup, of production data, such as a primary copy. Creating such secondary copies typically requires taking the production data or primary copy offline so that it is inaccessible or unavailable to a client or other system component. In general, it is preferable to avoid taking a primary copy, and any components associated therewith, offline, however, if it is unavoidable, it is preferable to minimize the duration that the copies or components are offline. Storage operations that require the primary copy are typically scheduled overnight when the primary copy is less likely to be used by a client, which typically accesses the primary copy during daytime hours. Thus, the primary copy may often be unavailable, or access to the primary copy may be difficult to provide because it is frequently in use. In addition, storage management system components using the primary copy for storage operations may also be unavailable to perform other concurrent storage operations. Such systems may encounter bottlenecks in allocation of system resources to perform storage operations.


SUMMARY

Systems and methods are provided for performing a storage operation using a replication copy or other data source. In one embodiment, a method for performing a storage operation using a replication copy is provided in which a data item for a storage operation is identified, a storage policy associated with the data item is identified, and a data source of the data item may be determined to be available. The data source for performing the storage operation may be selected according to a criterion and the storage operation may be performed. The data source may be a first secondary copy or a replication copy. In general, the data source is determined by consulting a schedule of storage operations involving the data source. A storage manager or other system component may select the data source according to a criterion by calculating a metric weighing one or more priorities for storage operation preferences.


In another embodiment, a method for performing a storage operation using a replication copy is provided, in which a storage operation instruction is received. The storage operation instruction may include data identifying a data item with which to perform the storage operation. A storage policy may be received. The storage policy may indicate that a storage operation relating to the data item should be performed using a replication copy. The replication copy may be determined to be available and the storage operation may be performed using the replication copy.


In another embodiment, a method for optimizing storage operations in a storage management system is provided, in which, a storage operation request is received, the storage operation request identifying a data item with which to perform the storage operation. A database may be consulted to determine whether a replication copy of the data item is available. Using the replication copy of the data item to perform the storage operation may be determined to optimize resource use in the storage management system; and the storage operation may be performed using the replication copy.


In another embodiment, a storage management system for performing a storage operation, is provided including a storage management component communicatively coupled to a database; wherein the database includes a storage policy; a media agent communicatively coupled to the storage management component, a first secondary copy and a replication copy; wherein the storage management component is programmed to receive a storage operation request relating to the first secondary copy, consult the database to identify the replication copy that corresponds to the first secondary copy, and determine whether using the replication copy to perform the storage operation optimizes use of system resources; and wherein the media agent is programmed to perform the storage operation using the replication copy.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:



FIG. 1A is a block diagram of a storage management system for creating a replication copy according to an embodiment of the invention;



FIG. 1B is a diagram of a log and a file according to an embodiment of the invention;



FIG. 2 is a block diagram of a storage management system according to an embodiment of the invention;



FIG. 3 is a high level block diagram of a storage management system according to an embodiment of the invention;



FIG. 4 is a storage operation schedule according to an embodiment of the invention;



FIG. 5 is a database table for tracking copy volumes according to an embodiment of the invention; and



FIG. 6 is a flow diagram of a method for performing a storage operation according to an embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Systems and methods are provided herein for performing a storage operation using a replication copy. A replication copy may be a copy of a first secondary copy of production data (e.g., a primary volume), but may also be a copy of production data or a primary copy. A first secondary copy is an initial or first secondary copy of production data, or some other initial copy of the primary volume. The first secondary copy may be considered for data storage management purposes to include the same data as a primary copy. The first secondary copy may be stored to primary storage, which is a storage medium which provides relatively faster access than secondary storage, however, secondary storage medium may also be used for the first secondary copy. The first secondary copy may alternatively refer to any copy of electronic data which may be frequently accessed by one or more system components for client use or storage operation purposes, and for which utilization may need to be restricted, e.g., to avoid bottlenecks, to avoid interrupting client use, etc. In this case, the first secondary copy may be considered equivalent to a primary copy in that storage management systems may wish to minimize system utilization of the first secondary copy as it would for a primary copy.


There are several ways to create a replication copy, such as by performing a copy operation, such as a snapshot copy, point in time copy, mirror copy, synchronous replication copy or asynchronous replication copy, or other copy operation. A replication copy is typically made of a first secondary copy and continuously updated. One example of a system for creating a replication copy is shown in FIG. 1A, but other system architectures may be used. As shown in FIG. 1A, a system for creating a replication copy may include system components such as a memory or data store 10, log filter driver 20, primary mass storage 40, logs 30, replication agent 87 and storage manager 100 and storage management index or database 111 and a replication copy 200.


In general, a replication copy 200 may be created at the direction of a replication agent 87, storage manager 100 or other system component, and information relating to the replication copy 200 may be stored in an index 111. The replication agent 87 may obtain the electronic data, such as from production data or a first secondary copy stored in memory 10, for the replication copy continuously via one or more data streams, or use logs 30 which include a production data log or change information obtained by the log filter driver 20, to update a replication copy periodically. The replication agent 87 may communicate with the log filter driver 20 to acknowledge receipt of logs 31 from a logs store or cache 30 or directly from the logs filter driver 20, and confirm that the replication copy 200 is updated with the received logs 31.


Memory 10 may be a data store which is attached to a client or other data generator or data producer and which is capable of storing electronic data, such as production data or a first secondary copy, etc. A log filter driver 20 may be a module which monitors an interaction or change of electronic data in memory 10. The log filter driver 20 may be programmed to monitor particular or specific data changes, such as changes to a sub-client, application type, client folder, or other aspect of electronic data. Referring to FIG. 1B, the interaction or change may be stored in a log 31 which includes metadata, such as a file ID 32 and offset 34 and the changed data payload 36. A file ID 32 may be any file identifier and may correspond to a file 35. The offset 34 is the point at which the change to the file data occurs. Payload 36 typically includes the changed data. Thus, the file log 31 relates to the file 35 in that the payload 36 of the log 31 fits in the file 35 at a certain offset point, for example, between portions of the file 38A and 38B.


Referring again to FIG. 1A, the log filter driver 20 monitors the production data stored in memory 10 for interactions or changes to the electronic data and when a change occurs, the log filter driver 20 creates a log, such as log 31, which is stored in logs 30. A log file 31 may be cached temporarily in logs 30 or transmitted immediately to the replication copy 200 for updating the replication copy 200. Logs 30 may be any data store capable of storing the logs 31 generated by the log filter driver 20, and is generally in communication with a replication agent 87, replication copy 200, or other system component. The log filter driver 20 may also create logs 31 which may be used to create a primary copy or first secondary copy, stored in mass storage 40. The mass storage 40 may be any data store capable of storing electronic data, such as a primary copy, first secondary copy or other copy.



FIG. 2 illustrates a block diagram of a storage operation cell 80 that may perform storage operations on electronic data in a computer network in accordance with an embodiment of the present invention. As shown, storage operation cell 80 may generally include a storage manager 100, a data agent 95, a media agent 105, a storage device 115, and, in some embodiments, may include certain other components such as a client 85, a replication agent 87, a data or information store 90, databases or indexes 110 and 111, jobs agent 120, an interface module 125, and a management agent 130. Such system and elements thereof are exemplary of a modular storage management system such as the CommVault QINETIX system, and the CommVault GALAXY storage management system, available from CommVault Systems, Inc. of Oceanport, N.J., and further described in U.S. patent application Ser. No. 09/610,738 which is incorporated herein by reference in its entirety. A storage operation cell, such as cell 80, may generally include combinations of hardware and software components associated with performing storage operations on electronic data.


In accordance with certain embodiments of the present invention, storage operations performed by storage operation cells may include creating, storing, retrieving, and migrating primary data copies and secondary data copies (which may include, for example, snapshot copies, backup copies, HSM copies, archive copies, and other types of copies of electronic data). In some embodiments, storage operation cells may also provide one or more integrated management consoles for users or system processes to interface with in order to perform certain storage operations on electronic data as further described herein. Such integrated management consoles may be displayed at a central control facility or several similar consoles distributed throughout multiple network locations to provide global or geographically specific network data storage information.


In some embodiments, storage operations may be performed according to a storage policy. A storage policy is generally a data structure or other information source that includes a set of preferences and other storage criteria for performing a storage operation. The preferences and storage criteria may include, but are not limited to, a storage location, relationships between system components, relationships between system components and use of a third party application, network pathway to utilize, retention policies, data characteristics, compression or encryption requirements, preferred system components to utilize in a storage operation, and other criteria relating to a storage operation. Thus, a storage policy may indicate that certain data is to be stored in a specific storage device, retained for a specified period of time before being aged to another tier of secondary storage, copied to secondary storage using a replication copy or a specified number of streams, etc. A storage policy may be stored to a storage manager database or index 111, to archive media as metadata for use in restore operations or other storage operations, or to other locations or components of the system.


A schedule policy may specify when and how often to perform storage operations and may also specify performing certain storage operations on sub-clients of data and how to treat those sub-clients. A sub-client may represent static or dynamic associations of portions of data of a volume and are mutually exclusive. Thus, a portion of data may be given a label and the association is stored as a static entity in an index, database or other storage location used by the system. Sub-clients may also be used as an effective administrative scheme of organizing data according to data type, department within the enterprise, storage preferences, etc. For example, a sub-client may be all media in an associated storage device and the sub-client is associated with a storage policy which requires that a replication copy be created or provided to perform secondary storage operations.


Storage operation cells may contain not only physical devices, but also may represent logical concepts, organizations, and hierarchies. For example, a first storage operation cell 80 may be configured to perform a storage operation, such as data backup or other types of data migration, and may include a variety of physical components including a storage manager 100 (or management agent 130), a media agent 105, a client component 85, and other components as described herein. A second storage operation cell may contain the same or similar physical components, however, it may be configured to perform other storage operations, such as monitoring a primary copy, first secondary copy, or replication copy volume or performing other known storage operations.


A storage preference may be a storage policy, user preference or other storage preference. In some embodiments the storage preference is defined by a system user or system administrator. In other embodiments, the storage preference is a default preference. Examples of storage preferences can include: using a particular data source for performing a storage operation, such as a replication copy, assigning priorities to performance of a storage operation, data security settings, encryption settings, data retention requirements, frequency of storage operations, such as frequency of backups, types of data for storage operations, such as data types for backups, types of storage operations to perform in the component group, network pathways, such as preferred network pathways to perform a storage operation, scheduling, such as a schedule of storage operations, reports, such as automatic generation of system reports regarding the group, which can include, for example the storage operations performed by the group, or other storage preference.


Replication agent 87 may be a software module or part of a software module that may be used to manage and direct creation and maintenance of a replication copy 200. For example, a replication agent 87 may communicate or direct communication of electronic data, such as production data for creating a replication copy 200. The replication copy 200 may be created synchronously or asynchronously, using a mirror, or other copy technique. The replication agent 87 may be a software module associated with a client 85 that generates the production data used to create replication copy 200. Alternatively, replication agent 87 may be provided by a third party software component which may interface with a client 85 and production data in, for example, data store 90, to create replication copy 200.


Data agent 95 may be a software module or part of a software module that is generally responsible for archiving, migrating, and recovering data from client computer 85 stored in an information store 90, or other memory location. Each client computer 85 may have at least one data agent 95 and the system can support multiple client computers 85. In some embodiments, data agents 95 may be distributed between client 85 and storage manager 100 (and any other intermediate components (not shown)) or may be deployed from a remote location or its functions approximated by a remote process that performs some or all of the functions of data agent 95.


Embodiments of the present invention may employ multiple data agents 95 each of which may backup, migrate, and recover data associated with a different application. For example, different individual data agents 95 may be designed to handle MICROSOFT EXCHANGE data, LOTUS NOTES data, MICROSOFT WINDOWS 2000 file system data, MICROSOFT ACTIVE DIRECTORY OBJECTS data, and other types of data known in the art. Other embodiments may employ one or more generic data agents 95 that can handle and process multiple data types rather than using the specialized data agents described above.


Generally speaking, storage manager 100 may be a software module or other application that coordinates and controls storage operations performed by storage operation cell 80. Storage manager 100 may communicate with some or all elements of storage operation cell 80 including client computers 85, data agents 95, media agents 105, and storage devices 115, to initiate and manage system storage operations.


Storage manager 100 may include a jobs agent 120 that monitors the status of some or all storage operations previously performed, currently being performed, or scheduled to be performed by storage operation cell 80. Jobs agent 120 may be communicatively coupled with an interface agent 125 (typically a software module or application). Interface agent 125 may include information processing and display software, such as a graphical user interface (“GUI”), an application program interface (“API”), or other interactive interface through which users and system processes can retrieve information about the status of storage operations. Through interface 125, users may optionally issue instructions to various storage operation cells 80 regarding performance of the storage operations as described and contemplated by the present invention. For example, a user may modify a schedule concerning the number of pending snapshot copies or other types of copies scheduled as needed to suit particular needs or requirements. As another example, a user may employ the GUI to view the status of pending storage operations in some or all of the storage operation cells in a given network or to monitor the status of certain components in a particular storage operation cell (e.g., the amount of storage capacity left in a particular storage device). As a further example, interface 125 may display the cost metrics associated with a particular type of data storage and may allow a user to determine overall and target cost metrics associated with a particular data type, or certain storage operation cell 80 or other storage operation as predefined or user-defined.


Storage manager 100 may also include a management agent 130 that is typically implemented as a software module or application program. In general, management agent 130 provides an interface that allows various management components 100 in other storage operation cells 80 to communicate with one another. For example, assume a certain network configuration includes multiple cells 80 adjacent to one another or otherwise logically related in a WAN or LAN configuration (not shown). With this arrangement, each cell 80 may be connected to the other through each respective interface module 125. This allows each cell 80 to send and receive certain pertinent information from other cells 80 including status information, routing information, information regarding capacity and utilization, etc. These communication paths may also be used to convey information and instructions regarding storage operations.


Storage manager 100 may also maintain an index cache, a database, or other data structure 111. The data stored in database 111 may be used to indicate logical associations between components of the system, user preferences, management tasks, some SRM or HSM data or other useful data. As further described herein, some of this information may be stored in a media agent database 110 or other local data store according to some embodiments. For example, the storage manager 100 may use data from database 111 to track logical associations of primary copies of data, first secondary copies of data and corresponding replication copies, between media agents 105 and storage devices 115 or between other components of the system.


Generally speaking, a media agent 105 may be implemented as a software module that conveys data, as directed by a storage manager 100, between a client computer 85 and one or more storage devices 115 such as a tape library, a magnetic media storage device, an optical media storage device, or any other suitable storage device. In one embodiment, media agents 105 may be communicatively coupled with and control a storage device 115 associated with that particular media agent. A media agent 105 may be considered to be associated with a particular storage device 115 if that media agent 105 is capable of routing and storing data to a particular storage device 115.


In operation, a media agent 105 associated with a particular storage device 115 may instruct the storage device to use a robotic arm or other retrieval means to load or remove a certain storage media, and to subsequently archive, migrate, or restore data to or from that media. Media agents 105 may communicate with a storage device 115 via a suitable communications path such as a SCSI or fiber channel communications link. In some embodiments, the storage device 115 may be communicatively coupled to a data agent 105 via a Storage Area Network (“SAN”).


Each media agent 105 may maintain an index cache, a database, or other data structure 110 which stores index data generated during backup, migration, and restore and other storage operations as described herein. For example, performing storage operations on MICROSOFT EXCHANGE data may generate index data. Such index data provides a media agent 105 or other external device with a fast and efficient mechanism for locating data stored or backed up. Thus, in some embodiments, a storage manager database 111 may store data associating a client 85 with a particular media agent 105 or storage device 115, for example, as specified in a storage policy, while media agent database 110 may indicate where specifically the client 85 data is stored in storage device 115, what specific files were stored, and other information associated with storage of client 85 data. In some embodiments, such index data may be stored along with the data backed up in a storage device 115, with an additional copy of the index data written to index cache 110. The data in index cache 110 is thus readily available for use in storage operations and other activities without having to be first retrieved from the storage device 115.


In some embodiments, certain components may reside and execute on the same computer. For example, in some embodiments, a client computer 85 such as a data agent 95, a media agent 105, or a storage manager 100 coordinates and directs local archiving, migration, and retrieval application functions as further described in U.S. patent application Ser. No. 09/610,738. This client computer 85 can function independently or together with other similar client computers 85.


As described herein, storage operations may be performed by one or more media agents 105 at the direction of a storage manager 100 via the storage manager 100 or directly in communication with a client 85. Employing multiple media agents 105 in a storage system allows flexibility in associating one or more media agents 105 with a client 85, or other component. For example, one media agent 105 may be associated with a first client 85 and perform storage operations in regard to the associated client 85, e.g., using a primary copy of the first client 85, and another media agent 105 may be associated with a second client 85 and perform storage operations in regard with the second client 85, e.g., using a replication copy 200 of the second client 85. Thus, in the event that one or more system components fails or is unavailable, another system component, e.g., a media agent 105, may be used to perform a storage operation.


Referring to FIG. 3, a replication copy 200 of a first secondary copy 90 may be created by a third party application 150 or by cell components such as a media agent 105b, according to storage policies or at the direction of a storage manager 100. First secondary copy 90 is a first secondary copy or other initial copy of a primary copy 86 of data generated by client 85. First secondary copy 90 may be created via media agent 105a (which may be the same component as media agent 105b, or a separate component). As shown in FIG. 3, the replication copy 200 may be coupled to a media agent 105b and hosted by host 201. Media agent 105b or replication software on the first secondary copy 90 may be used to create replication copy 200, e.g., using known replication techniques. If the replication copy 200 is created by a third party application 150, the media agent 105b may interface with the third party application 150 to access the replication copy 200. The third party application 150 may be a software module which may communicate with a media agent 105 and replication copy 200. The media agent 105 may access the replication copy 200 to perform storage operations, such as creating secondary copies stored to secondary storage 200. Although, the media agent 105 may access first secondary copy 90 to perform storage operations, such configuration is not ideal because first secondary copy 90 is preferably free for use by other system components and for other storage operations.


One storage operation that the media agent 105 may perform in connection with the replication copy 200 or first secondary copy 90 is creation of a secondary copy or other backup operation. The media agent 105 may create, in accordance with a storage policy, a secondary copy 220 that may be created using data of a replication copy 200 or first secondary copy 90. In general, a secondary copy 220, such as an auxiliary copy, backup copy, or other copy, is stored to media that is slower than media used to store a first secondary copy 90 and the secondary copy 220 may be created to migrate electronic data to storage, such as at an offsite facility.


A storage policy stored in an index or database 110 or 111 may initiate a secondary copy operation and the media agent 105 may determine which copy to use for the copy operation. For example, the media agent 105 may check network and cell resources, storage policies, job scheduling or other storage characteristic to determine whether the first secondary copy 90 or replication copy 200 should be used. For example, a media agent 105 (or storage manager, jobs agent or other system component) may consult a job schedule, such as a storage operation schedule 250 depicted in FIG. 4. The storage operation schedule 250 may include a schedule or timeline for storage operations performed, currently in operation or scheduled in the future. Information about storage operation scheduling may be obtained from a storage policy, communicated from one or more system components, or provided by a system user or administrator.


In addition, preferences as to use of a replication copy, first secondary copy or other source data may be established for performing a storage operation, for example, in a storage policy or other preference associated with one or more cells, system components, scheduling policy, retention policy, or other preference. A user may set a preference or other criteria which may be used to select a replication copy or first secondary copy to perform a storage operation, or alternatively, a default template setting in a storage policy or other selection criteria, or a user preference may be that new media added to a storage device should use a replication copy in performing a storage operation, or a particular cell may include a client for which a replication copy may be used to perform storage operations, or other storage preference or selection criteria.


As shown, a first storage operation 252 may be scheduled to occur from T.sub.0 to T.sub.2. The first storage operation 252 may be any storage operation and may be associated with a storage policy, storage preference or other criteria which may indicate a preference for using or selecting a first secondary copy or a replication copy to perform the storage operation. During the time period T.sub.0 and T.sub.2, a second storage operation 254 is scheduled to occur from T.sub.1 to T.sub.4. The second storage operation 254 may also be associated with a storage policy or storage preference regarding a copy to use to perform the storage operation. Overlapping with the second storage operation 254, a third storage operation 256 is scheduled for T.sub.3 to T.sub.5. As with the first and second storage operations 252 and 254, respectively, the third storage operation 256 may be associated with one or more storage preferences or a storage policy. Such storage preferences may also include a relative priority weighting for performing the storage operation, and a priority weighting for using a particular copy for performing the storage operation, such as the first secondary copy or replication copy. Weighting each storage preference provides the ability to calculate an overall metric for selection of one or more aspects of performing the storage operation.


A storage manager, jobs agent, media agent or other system component, may consult the storage operation schedule 250 and/or an index to identify criteria for selecting a data source, or determine a priority of or availability to use a first secondary copy or a replication copy for a storage operation. For example, the first storage operation 252 may be associated with a storage preference that indicates that a first secondary copy or a replication copy may be used to perform a storage operation, and have a medium priority level. The second storage operation 254 may be associated with a storage preference that indicates that a first secondary copy is preferably used to perform a storage operation and it has a higher priority than first storage operation 252. The third storage operation 256 may be associated with a storage preference which indicates that a first secondary copy is preferably used to perform a storage operation and has a medium priority level. In such a case, the storage manager (or jobs agent, media agent or other system component) may automatically select a replication copy for performing the first storage operation 252, and a first secondary copy for performing the second storage operation 254. The storage manager may calculate the storage operation priority, other preferences and first secondary copy availability and override the data source preference with respect to the third storage operation 256 and select or allocate the replication copy for use in performing the third storage operation 256 based on selection criteria, for example, the higher priority weighting of the second storage operation 254 and the availability of the first secondary copy which will be in use in the second storage operation 254 at the time the third storage operation 256 is to be initiated.


A media agent 105 may consult a database table in its index 110 or a storage manager index 111 to identify a replication copy 200 that corresponds to a first secondary copy 90. An example of such database table may be the table 305 depicted in FIG. 5. As shown, table 305 includes information useful in performing storage operations, such as network pathways for primary copies 320 and corresponding replication copies 310. For example, first secondary copy 325 at c:/mydocuments/files corresponds to replication copy 345 at F:/mydocuments/files. First secondary copy 330 at c:/programfiles/files, however does not have a corresponding replication copy as shown by the empty record, 350. First secondary copy 335 at c:/database/files corresponds to g:/database/files 355. The table 305 may also include other information about the first secondary copies 320 and replication copies 310 such as a system component associated with each, media type, storage type, data content, data type, or other information. In addition, table 305 may include links or relational pointers between a production data set, primary copy, first secondary copy and a replication copy.


As described herein, using a replication copy to perform a storage operation, which may otherwise be performed using a first secondary copy, frees up the first secondary copy, and any system components that may be associated with the first secondary copy, for other uses. For example, a first media agent may be associated with a particular client and its respective data agent, data store or first secondary copy, and a second media agent may be associated with the same client and a replication copy associated with the client. In this case, the first secondary copy may be used to perform storage operations or other operations in connection with the first media agent, data agent or client, and concurrently, the replication copy could be used by the second media agent to perform a secondary copy operation or other storage operation.


A media agent or other system component may update a table regarding replication copy information, such as the table depicted in FIG. 5, and direct a storage operation according to the flow diagram depicted in FIG. 6. The table provides a convenient reference point for cell components to identify a replication copy associations or information about cell components. The table may be updated continuously as information about a replication copy becomes known to a media agent, storage manager or other cell component, such as a client.


A storage operation request may be received, such as a request to create a secondary copy or other which may include information for identifying data for performing a storage operation, step 410. The storage operation request may be user initiated or automatically initiated in accordance with a storage policy, job schedule, retention policy or other initiator. The storage operation request may include, among other information, data identifying the first secondary copy or corresponding client having source or production data to be used in the storage operation.


A storage policy may be identified that is associated with the data for performing the storage operation, step 420. In general, the storage policy is associated in an index or data table with a data source, such as a client, sub-client, or other system component or data classification. The storage policy may include one or more storage preferences which may indicate a priority for performing a storage operation, one or more criteria for selecting a component, data item, or data source with which to perform a storage operation, or other preference. The storage policy may be user defined, a default template, or other set of preferences.


A storage manager, media agent or other system component may determine whether a replication copy of data is available to perform a storage operation, step 430. In general, the replication copy information may be obtained by a media agent (or other component) by consulting a table, index or database to determine whether there is a replication copy that is associated with a first secondary copy of data targets, such as the identified data for performing the storage operation. Generally, the media agent will check the table for a replication copy if a storage preference or a user preference indicates that a replication copy should be used. However, even if the storage preference does not indicate that a replication copy should be used, a storage policy may have a default setting such that a media agent should determine whether to use a first secondary copy or replication copy in accordance with optimizing system resources, such as, for example, in accordance with availability of system components and network pathways, job scheduling, or other system characteristics, as described herein. Thus, a media agent may check for a replication copy whether or not a storage preference dictates use of a replication copy.


Availability of the replication copy may also include a determination that the replication copy is online or offline, the replication copy is in use for another storage operation, or otherwise available or unavailable. In addition to consulting the table to check for availability, a media agent may ping or communicate with the replication copy to determine if it is online and available.


In the event that no replication copy exists, a media agent or storage manager may direct the storage operation to be performed using a first secondary copy, step 440. Upon performance of the storage operation, the index is updated to reflect the completed storage operation, step 455. The index may be updated to include information about the completed storage operation, such as creation of a secondary copy, and information about the data source, e.g., the first secondary copy.


The media agent or storage manager may also determine whether a lack of a replication copy of data is causing inefficiencies in performing storage operations and may direct that in view of future storage operations, scheduled, or anticipated, for example, based on a storage policy, that a replication copy be produced for all, or particular types or data. For example, a replication copy may be created using a third party application, which may be interfaced directly by a media agent, or alternatively created by the media agent, replication agent, or other systems and methods described herein or known in the art.


If a replication copy exists, e.g., the media agent consults a table and finds a replication copy which is associated with a first secondary copy that is the data source for the storage operation, the media agent (or other system component) may calculate a selection criteria, step 445, for selecting a data source to perform the storage operation. For example, as described herein, a storage operation priority, storage preference, criteria, or other basis may be used to select a replication copy or first secondary copy to perform a storage operation. In one example, a first storage operation may be performed using a first secondary copy, step 440, if a selection criteria indicates that a first secondary copy should be used. For example, a criteria that a storage operation is a high priority storage operation, or concurrent storage operation scheduling, or other criteria, may cause a storage manager to select a first secondary copy to be used for a particular storage operation. In another example, a second storage operation having a medium priority which can use a replication copy may be performed using a replication copy, step 450.


In both scenarios, information about the completed storage operation may be stored to an index, step 455. Although a replication copy may have been used to create a secondary copy, the index may be updated with data indicating that a primary copy or a first secondary copy was used to create a secondary copy. Such an index entry is useful in the event that other components or modules may not recognize that a replication copy as an appropriate data source for creating a secondary copy, which may cause an error or other system failure.


Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser or other application in an ASP context, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein. Screenshots presented and described herein can be displayed differently as known in the art to input, access, change, manipulate, modify, alter, and work with information.


While the invention has been described and illustrated in connection with preferred embodiments, many variations and modifications as will be evident to those skilled in this art may be made without departing from the spirit and scope of the invention, and the invention is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the invention.

Claims
  • 1. A method for performing a storage operation using a replication copy, the method comprising: determining with at least computer hardware that a replication copy is available on a second storage volume, the replication copy comprises a second set of data that is a copy of at least a portion of a first set of data on a first storage volume;based on a priority of a storage operation, automatically selecting with the computer hardware the replication copy to perform the storage operation;performing with the computer hardware, the storage operation on the second set of data associated with the replication copy on the second storage volume rather than the first set of data on the first storage volume; andcreating a third set of data based on performing the storage operation on the second set of data.
  • 2. The method of claim 1 further comprising automatically selecting the first set of data on the first storage volume to perform the storage operation when the storage operation has a higher priority.
  • 3. The method of claim 1 wherein automatically selecting the replication copy to perform the storage operation when the storage operation has a lower priority.
  • 4. The method of claim 1 wherein automatically selecting the replication copy to perform the storage operation to perform the storage operation occurs when the storage operation has a medium priority.
  • 5. The method of claim 1 additionally comprising updating an index to indicate that the storage operation was performed on the first set of data after the storage operation was performed on the replication copy.
  • 6. The method of claim 1 additionally comprising monitoring changes to the first set of data with a filter driver.
  • 7. The method of claim 1 additionally comprising generating the replication copy via a snapshot operation.
  • 8. The method of claim 1 additionally comprising generating the replication copy via a mirroring operation.
  • 9. The method of claim 1 additionally comprising performing a second storage operation on the first set of data, wherein the second storage operation at least partially overlaps the first storage operation on the second set of data.
  • 10. The method of claim 1 wherein determining that a replication copy is available further comprises determining if the replication copy is online or offline.
  • 11. A storage management system configured to perform storage operations, the storage management system comprising: a first storage device that stores a first set of data;a second storage device that stores a replication copy, the replication copy comprises a second set of data that is a copy of at least a portion of the first set of data;a storage manager comprising at least computer hardware that determines whether a replication copy is available on a second storage volume;wherein based on a priority of a storage operation, the storage manager directs the automatic selection of the replication copy to perform of the storage operation;wherein the storage manager directs performance of the storage operation on the second set of data associated with the replication copy on the second storage volume rather than the first set of data on the first storage volume; andcreate a third set of data based on performing the storage operation on the second set of data.
  • 12. The system of claim 11 wherein the storage manager directs the automatic selection of the first set of data on the first storage volume to perform the storage operation when the storage operation has a higher priority.
  • 13. The system of claim 11 wherein the storage manager directs the automatic selection of the replication copy to perform the storage operation when the storage operation has a lower priority.
  • 14. The system of claim 11 wherein the storage manager directs the automatic selection of the replication copy to perform the storage operation when the storage operation has a medium priority.
  • 15. The system of claim 11 wherein the storage manager further directs an update to an index to indicate that the storage operation was performed on the first set of data after the storage operation was performed on the replication copy.
  • 16. The system of claim 11 wherein the storage manager further directs the generation of the second set of data by processing a log file containing a least a portion of the changes monitored by a filter driver.
  • 17. The system of claim 11 wherein the storage manager further directs generation of the replication copy via a snapshot operation.
  • 18. The system of claim 11 wherein the storage manager further directs generation of the replication copy via a mirroring operation.
  • 19. The system of claim 11 wherein the storage manager directs the performance of a second storage operation on the first set of data, wherein the second storage operation at least partially overlaps the first storage operation on the second set of data.
  • 20. The system of claim 11 wherein determining that a replication copy is available further comprises determining if the replication copy is online or offline.
US Referenced Citations (641)
Number Name Date Kind
4296465 Lemak Oct 1981 A
4686620 Ng Aug 1987 A
4995035 Cole et al. Feb 1991 A
5005122 Griffin et al. Apr 1991 A
5093912 Dong et al. Mar 1992 A
5133065 Cheffetz et al. Jul 1992 A
5193154 Kitajima et al. Mar 1993 A
5212772 Masters May 1993 A
5226157 Nakano et al. Jul 1993 A
5231668 Kravitz Jul 1993 A
5239647 Anglin et al. Aug 1993 A
5241668 Eastridge et al. Aug 1993 A
5241670 Eastridge et al. Aug 1993 A
5263154 Eastridge et al. Nov 1993 A
5265159 Kung Nov 1993 A
5276860 Fortier et al. Jan 1994 A
5276867 Kenley et al. Jan 1994 A
5287500 Stoppani, Jr. Feb 1994 A
5301351 Jippo Apr 1994 A
5311509 Heddes et al. May 1994 A
5317731 Dias et al. May 1994 A
5321816 Rogan et al. Jun 1994 A
5333315 Saether et al. Jul 1994 A
5347653 Flynn et al. Sep 1994 A
5369757 Spiro et al. Nov 1994 A
5403639 Belsan et al. Apr 1995 A
5410700 Fecteau et al. Apr 1995 A
5448724 Hayashi et al. Sep 1995 A
5455926 Keele et al. Oct 1995 A
5487072 Kant Jan 1996 A
5491810 Allen Feb 1996 A
5495607 Pisello et al. Feb 1996 A
5504873 Martin et al. Apr 1996 A
5544345 Carpenter et al. Aug 1996 A
5544347 Yanai et al. Aug 1996 A
5546536 Davis et al. Aug 1996 A
5555404 Torbjornsen et al. Sep 1996 A
5559957 Balk Sep 1996 A
5559991 Kanfi Sep 1996 A
5598546 Blomgren Jan 1997 A
5604862 Midgely et al. Feb 1997 A
5606693 Nilsen et al. Feb 1997 A
5615392 Harrison et al. Mar 1997 A
5619644 Crockett et al. Apr 1997 A
5638509 Dunphy et al. Jun 1997 A
5642496 Kanfi Jun 1997 A
5668986 Nilsen et al. Sep 1997 A
5673381 Huai et al. Sep 1997 A
5675511 Prasad et al. Oct 1997 A
5677900 Nishida et al. Oct 1997 A
5682513 Candelaria et al. Oct 1997 A
5687343 Fecteau et al. Nov 1997 A
5689706 Rao et al. Nov 1997 A
5699361 Ding et al. Dec 1997 A
5719786 Nelson et al. Feb 1998 A
5720026 Uemura et al. Feb 1998 A
5729743 Squibb Mar 1998 A
5737747 Vishlitzky et al. Apr 1998 A
5742792 Yanai et al. Apr 1998 A
5745753 Mosher, Jr. Apr 1998 A
5751997 Kullick et al. May 1998 A
5758359 Saxon May 1998 A
5761677 Senator et al. Jun 1998 A
5761734 Pfeffer et al. Jun 1998 A
5764972 Crouse et al. Jun 1998 A
5765173 Cane et al. Jun 1998 A
5778395 Whiting et al. Jul 1998 A
5790114 Geaghan et al. Aug 1998 A
5790828 Jost Aug 1998 A
5805920 Sprenkle et al. Sep 1998 A
5812398 Nielsen Sep 1998 A
5813009 Johnson et al. Sep 1998 A
5813017 Morris Sep 1998 A
5829046 Tzelnic et al. Oct 1998 A
5860104 Witt et al. Jan 1999 A
5875478 Blumenau Feb 1999 A
5875481 Ashton et al. Feb 1999 A
5878408 Van Huben et al. Mar 1999 A
5887134 Ebrahim Mar 1999 A
5901327 Ofek May 1999 A
5907621 Bachman et al. May 1999 A
5907672 Matze et al. May 1999 A
5924102 Perks Jul 1999 A
5926836 Blumenau Jul 1999 A
5933104 Kimura Aug 1999 A
5933601 Fanshier et al. Aug 1999 A
5950205 Aviani, Jr. Sep 1999 A
5956519 Wise et al. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5970233 Liu et al. Oct 1999 A
5970255 Tran et al. Oct 1999 A
5974563 Beeler, Jr. Oct 1999 A
5987478 See et al. Nov 1999 A
5991779 Bejar Nov 1999 A
5995091 Near et al. Nov 1999 A
6003089 Shaffer et al. Dec 1999 A
6009274 Fletcher et al. Dec 1999 A
6012090 Chung et al. Jan 2000 A
6021415 Cannon et al. Feb 2000 A
6021475 Nguyen et al. Feb 2000 A
6023710 Steiner et al. Feb 2000 A
6026414 Anglin Feb 2000 A
6049889 Steely, Jr. et al. Apr 2000 A
6052735 Ulrich et al. Apr 2000 A
6058066 Norris et al. May 2000 A
6061692 Thomas et al. May 2000 A
6072490 Bates et al. Jun 2000 A
6076148 Kedem et al. Jun 2000 A
6088697 Crockett et al. Jul 2000 A
6094416 Ying Jul 2000 A
6105129 Meier et al. Aug 2000 A
6112239 Kenner et al. Aug 2000 A
6122668 Teng et al. Sep 2000 A
6131095 Low et al. Oct 2000 A
6131148 West et al. Oct 2000 A
6131190 Sidwell Oct 2000 A
6137864 Yaker Oct 2000 A
6148377 Carter et al. Nov 2000 A
6148412 Cannon et al. Nov 2000 A
6154787 Urevig et al. Nov 2000 A
6154852 Amundson et al. Nov 2000 A
6158044 Tibbetts Dec 2000 A
6161111 Mutalik et al. Dec 2000 A
6163856 Dion et al. Dec 2000 A
6167402 Yeager Dec 2000 A
6175829 Li et al. Jan 2001 B1
6195695 Cheston et al. Feb 2001 B1
6205450 Kanome et al. Mar 2001 B1
6212512 Barney et al. Apr 2001 B1
6212521 Minami et al. Apr 2001 B1
6230164 Rikieta et al. May 2001 B1
6260068 Zalewski et al. Jul 2001 B1
6260069 Anglin Jul 2001 B1
6269431 Dunham Jul 2001 B1
6275953 Vahalia et al. Aug 2001 B1
6279078 Sicola et al. Aug 2001 B1
6292783 Rohler Sep 2001 B1
6301592 Aoyama et al. Oct 2001 B1
6304880 Kishi Oct 2001 B1
6311193 Sekido et al. Oct 2001 B1
6324581 Xu et al. Nov 2001 B1
6328766 Long Dec 2001 B1
6330570 Crighton Dec 2001 B1
6330642 Carteau Dec 2001 B1
6343324 Hubis et al. Jan 2002 B1
6350199 Williams et al. Feb 2002 B1
RE37601 Eastridge et al. Mar 2002 E
6353878 Dunham Mar 2002 B1
6356801 Goodman et al. Mar 2002 B1
6363464 Mangione Mar 2002 B1
6366986 St. Pierre et al. Apr 2002 B1
6366988 Skiba et al. Apr 2002 B1
6374336 Peters et al. Apr 2002 B1
6374363 Wu et al. Apr 2002 B1
6389432 Pothapragada et al. May 2002 B1
6397308 Ofek et al. May 2002 B1
6418478 Ignatius et al. Jul 2002 B1
6421711 Blumenau et al. Jul 2002 B1
6434681 Amangau Aug 2002 B1
6438595 Blumenau et al. Aug 2002 B1
6466950 Ono Oct 2002 B1
6473775 Kusters et al. Oct 2002 B1
6487561 Ofek et al. Nov 2002 B1
6487644 Huebsch et al. Nov 2002 B1
6487645 Clark et al. Nov 2002 B1
6502205 Yanai et al. Dec 2002 B1
6516314 Birkler et al. Feb 2003 B1
6516327 Zondervan et al. Feb 2003 B1
6516348 MacFarlane et al. Feb 2003 B1
6519679 Devireddy et al. Feb 2003 B2
6538669 Lagueux, Jr. et al. Mar 2003 B1
6539462 Mikkelsen et al. Mar 2003 B1
6542468 Hatakeyama Apr 2003 B1
6542909 Tamer et al. Apr 2003 B1
6542972 Ignatius et al. Apr 2003 B2
6564228 O'Connor May 2003 B1
6564229 Baweja et al. May 2003 B1
6564271 Micalizzi, Jr. et al. May 2003 B2
6581143 Gagne et al. Jun 2003 B2
6604118 Kleinman et al. Aug 2003 B2
6604149 Deo et al. Aug 2003 B1
6611849 Raff et al. Aug 2003 B1
6615223 Shih et al. Sep 2003 B1
6629189 Sandstrom Sep 2003 B1
6631477 LeCrone et al. Oct 2003 B1
6631493 Ottesen et al. Oct 2003 B2
6647396 Parnell et al. Nov 2003 B2
6647473 Golds et al. Nov 2003 B1
6651075 Kusters et al. Nov 2003 B1
6654825 Clapp et al. Nov 2003 B2
6658436 Oshinsky et al. Dec 2003 B2
6658526 Nguyen et al. Dec 2003 B2
6662198 Satyanarayanan et al. Dec 2003 B2
6665815 Goldstein et al. Dec 2003 B1
6681230 Blott et al. Jan 2004 B1
6691209 O'Connell Feb 2004 B1
6721767 De Meno et al. Apr 2004 B2
6728733 Tokui Apr 2004 B2
6732124 Koseki et al. May 2004 B1
6732125 Autrey et al. May 2004 B1
6742092 Huebsch et al. May 2004 B1
6748504 Sawdon et al. Jun 2004 B2
6751635 Chen et al. Jun 2004 B1
6757794 Cabrera et al. Jun 2004 B2
6760723 Oshinsky et al. Jul 2004 B2
6763351 Subramaniam et al. Jul 2004 B1
6789161 Blendermann et al. Sep 2004 B1
6792472 Otterness et al. Sep 2004 B1
6792518 Armangau et al. Sep 2004 B2
6799258 Linde Sep 2004 B1
6820035 Zahavi Nov 2004 B1
6836779 Poulin Dec 2004 B2
6839724 Manchanda et al. Jan 2005 B2
6871163 Hiller et al. Mar 2005 B2
6871271 Ohran et al. Mar 2005 B2
6880051 Timpanaro-Perrotta Apr 2005 B2
6886020 Zahavi et al. Apr 2005 B1
6892211 Hitz et al. May 2005 B2
6912482 Kaiser Jun 2005 B2
6925476 Multer et al. Aug 2005 B1
6925512 Louzoun et al. Aug 2005 B2
6938135 Kekre et al. Aug 2005 B1
6938180 Dysert et al. Aug 2005 B1
6941393 Secatch Sep 2005 B2
6944796 Joshi et al. Sep 2005 B2
6952705 Knoblock et al. Oct 2005 B2
6952758 Chron et al. Oct 2005 B2
6954834 Slater et al. Oct 2005 B2
6968351 Butterworth Nov 2005 B2
6973553 Archibald, Jr. et al. Dec 2005 B1
6978265 Schumacher Dec 2005 B2
6981177 Beattie Dec 2005 B2
6983351 Gibble et al. Jan 2006 B2
6993539 Federwisch et al. Jan 2006 B2
7003519 Biettron et al. Feb 2006 B1
7003641 Prahlad et al. Feb 2006 B2
7007046 Manley et al. Feb 2006 B2
7020669 McCann et al. Mar 2006 B2
7032131 Lubbers et al. Apr 2006 B2
7035880 Crescenti et al. Apr 2006 B1
7039661 Ranade May 2006 B1
7051050 Chen et al. May 2006 B2
7062761 Slavin et al. Jun 2006 B2
7065538 Aronoff et al. Jun 2006 B2
7068597 Fijolek et al. Jun 2006 B1
7082441 Zahavi et al. Jul 2006 B1
7085787 Beier et al. Aug 2006 B2
7085904 Mizuno et al. Aug 2006 B2
7093012 Olstad et al. Aug 2006 B2
7096315 Takeda et al. Aug 2006 B2
7103731 Gibble et al. Sep 2006 B2
7103740 Colgrove et al. Sep 2006 B1
7106691 Decaluwe et al. Sep 2006 B1
7107298 Prahlad et al. Sep 2006 B2
7107395 Ofek et al. Sep 2006 B1
7111021 Lewis et al. Sep 2006 B1
7111189 Sicola et al. Sep 2006 B1
7120757 Tsuge Oct 2006 B2
7130860 Pachet Oct 2006 B2
7130970 Devassy et al. Oct 2006 B2
7139932 Watanabe Nov 2006 B2
7155465 Lee et al. Dec 2006 B2
7155633 Tuma et al. Dec 2006 B2
7158985 Liskov Jan 2007 B1
7177866 Holenstein et al. Feb 2007 B2
7181477 Saika et al. Feb 2007 B2
7188292 Cordina et al. Mar 2007 B2
7191198 Asano et al. Mar 2007 B2
7194454 Hansen et al. Mar 2007 B2
7194487 Kekre et al. Mar 2007 B1
7200620 Gupta Apr 2007 B2
7203807 Urabe et al. Apr 2007 B2
7209972 Ignatius et al. Apr 2007 B1
7225204 Manley et al. May 2007 B2
7225208 Midgley et al. May 2007 B2
7225210 Guthrie, II. May 2007 B2
7228456 Lecrone et al. Jun 2007 B2
7231391 Aronoff et al. Jun 2007 B2
7231544 Tan et al. Jun 2007 B2
7234115 Sprauve et al. Jun 2007 B1
7246140 Therrien et al. Jul 2007 B2
7246207 Kottomtharayil Jul 2007 B2
7250963 Yuri et al. Jul 2007 B2
7257689 Baird Aug 2007 B1
7269612 Devarakonda et al. Sep 2007 B2
7269641 Powers et al. Sep 2007 B2
7272606 Borthakur et al. Sep 2007 B2
7275138 Saika Sep 2007 B2
7275177 Amangau et al. Sep 2007 B2
7278142 Bandhole et al. Oct 2007 B2
7284153 Okbay et al. Oct 2007 B2
7287047 Kavuri Oct 2007 B2
7293133 Colgrove et al. Nov 2007 B1
7296125 Ohran Nov 2007 B2
7315923 Retnamma et al. Jan 2008 B2
7318134 Oliveira et al. Jan 2008 B1
7340652 Jarvis et al. Mar 2008 B2
7343356 Prahlad et al. Mar 2008 B2
7343365 Farnham et al. Mar 2008 B2
7343453 Prahlad et al. Mar 2008 B2
7343459 Prahlad et al. Mar 2008 B2
7346623 Prahlad et al. Mar 2008 B2
7346751 Prahlad et al. Mar 2008 B2
7356657 Mikami Apr 2008 B2
7359917 Winter et al. Apr 2008 B2
7363444 Ji Apr 2008 B2
7370232 Safford May 2008 B2
7373364 Chapman May 2008 B1
7380072 Kottomtharayil et al. May 2008 B2
7383293 Gupta et al. Jun 2008 B2
7389311 Crescenti et al. Jun 2008 B1
7392360 Aharoni et al. Jun 2008 B1
7395282 Crescenti et al. Jul 2008 B1
7401064 Arone et al. Jul 2008 B1
7409509 Devassy et al. Aug 2008 B2
7415488 Muth et al. Aug 2008 B1
7428657 Yamasaki Sep 2008 B2
7430587 Malone et al. Sep 2008 B2
7433301 Akahane et al. Oct 2008 B2
7440982 Lu et al. Oct 2008 B2
7454569 Kavuri et al. Nov 2008 B2
7457980 Yang et al. Nov 2008 B2
7461230 Gupta et al. Dec 2008 B1
7464236 Sano et al. Dec 2008 B2
7467167 Patterson Dec 2008 B2
7467267 Mayock Dec 2008 B1
7469262 Baskaran et al. Dec 2008 B2
7472238 Gokhale Dec 2008 B1
7472312 Jarvis et al. Dec 2008 B2
7475284 Koike Jan 2009 B2
7484054 Kottomtharayil et al. Jan 2009 B2
7490207 Amarendran Feb 2009 B2
7496589 Jain et al. Feb 2009 B1
7496690 Beverly et al. Feb 2009 B2
7500053 Kavuri et al. Mar 2009 B1
7500150 Sharma et al. Mar 2009 B2
7502902 Sato Mar 2009 B2
7509316 Greenblatt et al. Mar 2009 B2
7512601 Cucerzan et al. Mar 2009 B2
7516088 Johnson et al. Apr 2009 B2
7519726 Palliyll et al. Apr 2009 B2
7523483 Dogan Apr 2009 B2
7529745 Ahluwalia et al. May 2009 B2
7529748 Wen et al. May 2009 B2
7529782 Prahlad et al. May 2009 B2
7529898 Nguyen et al. May 2009 B2
7532340 Koppich et al. May 2009 B2
7533181 Dawson et al. May 2009 B2
7536291 Retnamma et al. May 2009 B1
7539707 Prahlad et al. May 2009 B2
7539835 Kaiser May 2009 B2
7543125 Gokhale Jun 2009 B2
7546324 Prahlad et al. Jun 2009 B2
7546364 Raman et al. Jun 2009 B2
7552358 Asgar-Deen et al. Jun 2009 B1
7565572 Yamasaki Jul 2009 B2
7581077 Ignatius et al. Aug 2009 B2
7590668 Kathuria et al. Sep 2009 B2
7593966 Therrien et al. Sep 2009 B2
7596586 Gokhale et al. Sep 2009 B2
7606841 Ranade Oct 2009 B1
7606844 Kottomtharayil Oct 2009 B2
7607037 LeCrone et al. Oct 2009 B1
7613748 Brockway et al. Nov 2009 B2
7613750 Valiyaparambil et al. Nov 2009 B2
7617253 Prahlad et al. Nov 2009 B2
7617262 Prahlad et al. Nov 2009 B2
7617321 Clark Nov 2009 B2
7617369 Bezbaruah et al. Nov 2009 B1
7617541 Plotkin et al. Nov 2009 B2
7627598 Burke Dec 2009 B1
7627617 Kavuri et al. Dec 2009 B2
7634477 Hinshaw Dec 2009 B2
7636743 Erofeev Dec 2009 B2
7651593 Prahlad et al. Jan 2010 B2
7661028 Erofeev Feb 2010 B2
7668798 Scanlon et al. Feb 2010 B2
7669029 Mishra et al. Feb 2010 B1
7672979 Appellof et al. Mar 2010 B1
7673000 Smoot et al. Mar 2010 B2
7685126 Patel et al. Mar 2010 B2
7689467 Belanger et al. Mar 2010 B1
7694086 Bezbaruah et al. Apr 2010 B1
7702533 Barnard et al. Apr 2010 B2
7702670 Duprey et al. Apr 2010 B1
7707184 Zhang et al. Apr 2010 B1
7716171 Kryger May 2010 B2
7734715 Hyakutake et al. Jun 2010 B2
7739235 Rousseau et al. Jun 2010 B2
7809691 Karmarkar et al. Oct 2010 B1
7810067 Kaelicke et al. Oct 2010 B2
7831553 Prahlad et al. Nov 2010 B2
7831622 Prahlad et al. Nov 2010 B2
7840533 Prahlad et al. Nov 2010 B2
7840537 Gokhale et al. Nov 2010 B2
7870355 Erofeev Jan 2011 B2
7904681 Bappe Mar 2011 B1
7930476 Castelli et al. Apr 2011 B1
7962455 Erofeev Jun 2011 B2
7962709 Agrawal Jun 2011 B2
8005795 Galipeau et al. Aug 2011 B2
8024294 Kottomtharayil Sep 2011 B2
8121983 Prahlad et al. Feb 2012 B2
8166263 Prahlad Apr 2012 B2
8190565 Prahlad et al. May 2012 B2
8195623 Prahlad et al. Jun 2012 B2
8204859 Ngo Jun 2012 B2
8219524 Gokhale Jul 2012 B2
8271830 Erofeev Sep 2012 B2
8285684 Prahlad et al. Oct 2012 B2
8291101 Yan et al. Oct 2012 B1
8352422 Prahlad et al. Jan 2013 B2
8463751 Kottomtharayil Jun 2013 B2
8489656 Erofeev Jul 2013 B2
8504515 Prahlad et al. Aug 2013 B2
8504517 Agrawal Aug 2013 B2
8572038 Erofeev Oct 2013 B2
8589347 Erofeev Nov 2013 B2
8655850 Ngo et al. Feb 2014 B2
8656218 Erofeev Feb 2014 B2
8666942 Ngo Mar 2014 B2
8725694 Kottomtharayil May 2014 B2
8725698 Prahlad et al. May 2014 B2
8726242 Ngo May 2014 B2
8745105 Erofeev Jun 2014 B2
8793221 Prahlad et al. Jul 2014 B2
8805818 Zane et al. Aug 2014 B2
8868494 Agrawal Oct 2014 B2
8935210 Kottomtharayil Jan 2015 B2
9002785 Prahlad et al. Apr 2015 B2
9002799 Ngo et al. Apr 2015 B2
9003374 Ngo Apr 2015 B2
9020898 Prahlad et al. Apr 2015 B2
9047357 Ngo Jun 2015 B2
20010029512 Oshinsky et al. Oct 2001 A1
20010029517 De Meno et al. Oct 2001 A1
20010032172 Moulinet et al. Oct 2001 A1
20010035866 Finger et al. Nov 2001 A1
20010042222 Kedem et al. Nov 2001 A1
20010044807 Kleiman et al. Nov 2001 A1
20020002557 Straube et al. Jan 2002 A1
20020004883 Nguyen et al. Jan 2002 A1
20020019909 D'Errico Feb 2002 A1
20020023051 Kunzle et al. Feb 2002 A1
20020040376 Yamanaka et al. Apr 2002 A1
20020042869 Tate et al. Apr 2002 A1
20020049626 Mathias et al. Apr 2002 A1
20020049718 Kleiman et al. Apr 2002 A1
20020049738 Epstein Apr 2002 A1
20020049778 Bell et al. Apr 2002 A1
20020062230 Morag et al. May 2002 A1
20020069324 Gerasimov et al. Jun 2002 A1
20020083055 Pachet et al. Jun 2002 A1
20020091712 Martin et al. Jul 2002 A1
20020103848 Giacomini et al. Aug 2002 A1
20020107877 Whiting et al. Aug 2002 A1
20020112134 Ohran et al. Aug 2002 A1
20020120741 Webb et al. Aug 2002 A1
20020124137 Ulrich et al. Sep 2002 A1
20020133511 Hostetter et al. Sep 2002 A1
20020133512 Milillo et al. Sep 2002 A1
20020161753 Inaba et al. Oct 2002 A1
20020174107 Poulin Nov 2002 A1
20020174139 Midgley et al. Nov 2002 A1
20020174416 Bates et al. Nov 2002 A1
20020181395 Foster et al. Dec 2002 A1
20030005119 Mercier et al. Jan 2003 A1
20030018657 Monday Jan 2003 A1
20030023893 Lee et al. Jan 2003 A1
20030028736 Berkowitz et al. Feb 2003 A1
20030033308 Patel et al. Feb 2003 A1
20030061491 Jaskiewicz et al. Mar 2003 A1
20030079018 Lolayekar et al. Apr 2003 A1
20030097296 Putt May 2003 A1
20030126200 Wolff Jul 2003 A1
20030131278 Fujibayashi Jul 2003 A1
20030135783 Martin et al. Jul 2003 A1
20030161338 Ng et al. Aug 2003 A1
20030167380 Green et al. Sep 2003 A1
20030177149 Coombs Sep 2003 A1
20030177321 Watanabe Sep 2003 A1
20030187847 Lubbers et al. Oct 2003 A1
20030225800 Kavuri Dec 2003 A1
20040006572 Hoshino et al. Jan 2004 A1
20040006578 Yu Jan 2004 A1
20040010487 Prahlad et al. Jan 2004 A1
20040015468 Beier et al. Jan 2004 A1
20040039679 Norton et al. Feb 2004 A1
20040078632 Infante et al. Apr 2004 A1
20040098425 Wiss et al. May 2004 A1
20040107199 Dairymple et al. Jun 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040117572 Welsh et al. Jun 2004 A1
20040133634 Luke et al. Jul 2004 A1
20040139128 Becker et al. Jul 2004 A1
20040158588 Pruet Aug 2004 A1
20040193625 Sutoh Sep 2004 A1
20040193953 Callahan et al. Sep 2004 A1
20040205206 Naik et al. Oct 2004 A1
20040212639 Smoot et al. Oct 2004 A1
20040215724 Smoot et al. Oct 2004 A1
20040225437 Endo et al. Nov 2004 A1
20040230615 Blanco et al. Nov 2004 A1
20040230829 Dogan et al. Nov 2004 A1
20040236958 Teicher et al. Nov 2004 A1
20040249883 Srinivasan et al. Dec 2004 A1
20040250033 Prahlad et al. Dec 2004 A1
20040254919 Giuseppini Dec 2004 A1
20040260678 Verbowski et al. Dec 2004 A1
20040267777 Sugimura et al. Dec 2004 A1
20040267835 Zwilling et al. Dec 2004 A1
20040267836 Amangau et al. Dec 2004 A1
20050015409 Cheng et al. Jan 2005 A1
20050027892 McCabe et al. Feb 2005 A1
20050033800 Kavuri et al. Feb 2005 A1
20050044114 Kottomtharayil et al. Feb 2005 A1
20050055445 Gupta et al. Mar 2005 A1
20050060613 Cheng Mar 2005 A1
20050071389 Gupta et al. Mar 2005 A1
20050071391 Fuerderer et al. Mar 2005 A1
20050080928 Beverly et al. Apr 2005 A1
20050086443 Mizuno et al. Apr 2005 A1
20050108292 Burton et al. May 2005 A1
20050114406 Borthakur et al. May 2005 A1
20050131900 Palliyll et al. Jun 2005 A1
20050138306 Panchbudhe et al. Jun 2005 A1
20050144202 Chen Jun 2005 A1
20050172073 Voigt Aug 2005 A1
20050187982 Sato Aug 2005 A1
20050187992 Prahlad et al. Aug 2005 A1
20050188109 Shiga et al. Aug 2005 A1
20050188254 Urabe et al. Aug 2005 A1
20050193026 Prahlad et al. Sep 2005 A1
20050198083 Saika et al. Sep 2005 A1
20050228875 Monitzer et al. Oct 2005 A1
20050246376 Lu et al. Nov 2005 A1
20050246510 Retnamma et al. Nov 2005 A1
20050254456 Sakai Nov 2005 A1
20050268068 Ignatius et al. Dec 2005 A1
20060005048 Osaki et al. Jan 2006 A1
20060010154 Prahlad et al. Jan 2006 A1
20060010227 Atluri Jan 2006 A1
20060010341 Kodama Jan 2006 A1
20060020616 Hardy et al. Jan 2006 A1
20060034454 Damgaard et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060047805 Byrd et al. Mar 2006 A1
20060047931 Saika Mar 2006 A1
20060092861 Corday et al. May 2006 A1
20060107089 Jansz et al. May 2006 A1
20060120401 Harada et al. Jun 2006 A1
20060129537 Torii et al. Jun 2006 A1
20060136685 Griv et al. Jun 2006 A1
20060155946 Ji Jul 2006 A1
20060171315 Choi et al. Aug 2006 A1
20060174075 Sutoh Aug 2006 A1
20060215564 Breitgand et al. Sep 2006 A1
20060230244 Amarendran et al. Oct 2006 A1
20060242371 Shono et al. Oct 2006 A1
20060242489 Brockway et al. Oct 2006 A1
20070033437 Kawamura Feb 2007 A1
20070043956 El Far et al. Feb 2007 A1
20070050547 Sano Mar 2007 A1
20070055737 Yamashita et al. Mar 2007 A1
20070094467 Yamasaki Apr 2007 A1
20070100867 Celik et al. May 2007 A1
20070112897 Asano et al. May 2007 A1
20070113006 Elliott et al. May 2007 A1
20070124347 Vivian et al. May 2007 A1
20070124348 Claborn et al. May 2007 A1
20070130373 Kalwitz Jun 2007 A1
20070143371 Kottomtharayil Jun 2007 A1
20070143756 Gokhale Jun 2007 A1
20070179990 Zimran et al. Aug 2007 A1
20070183224 Erofeev Aug 2007 A1
20070185852 Erofeev Aug 2007 A1
20070185937 Prahlad et al. Aug 2007 A1
20070185938 Prahlad et al. Aug 2007 A1
20070185939 Prahlad et al. Aug 2007 A1
20070185940 Prahlad et al. Aug 2007 A1
20070186042 Kottomtharayil et al. Aug 2007 A1
20070186068 Agrawal Aug 2007 A1
20070226438 Erofeev Sep 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070244571 Wilson et al. Oct 2007 A1
20070260609 Tulyani Nov 2007 A1
20070276848 Kim Nov 2007 A1
20070288536 Sen et al. Dec 2007 A1
20080016126 Kottomtharayil et al. Jan 2008 A1
20080016293 Saika Jan 2008 A1
20080059515 Fulton Mar 2008 A1
20080077634 Quakenbush Mar 2008 A1
20080077636 Gupta et al. Mar 2008 A1
20080103916 Camarador et al. May 2008 A1
20080104357 Kim et al. May 2008 A1
20080114815 Sutoh May 2008 A1
20080147878 Kottomtharayil et al. Jun 2008 A1
20080183775 Prahlad et al. Jul 2008 A1
20080205301 Burton et al. Aug 2008 A1
20080208933 Lyon Aug 2008 A1
20080228987 Yagi Sep 2008 A1
20080229037 Bunte et al. Sep 2008 A1
20080243914 Prahlad et al. Oct 2008 A1
20080243957 Prahlad et al. Oct 2008 A1
20080243958 Prahlad et al. Oct 2008 A1
20080244205 Amano et al. Oct 2008 A1
20080250178 Haustein et al. Oct 2008 A1
20080306954 Hornqvist Dec 2008 A1
20080313497 Hirakawa Dec 2008 A1
20090013014 Kern Jan 2009 A1
20090044046 Yamasaki Feb 2009 A1
20090113056 Tameshige et al. Apr 2009 A1
20090150462 McClanahan et al. Jun 2009 A1
20090182963 Prahlad et al. Jul 2009 A1
20090187944 White et al. Jul 2009 A1
20090300079 Shitomi Dec 2009 A1
20090319534 Gokhale Dec 2009 A1
20090319585 Gokhale Dec 2009 A1
20100005259 Prahlad Jan 2010 A1
20100049753 Prahlad et al. Feb 2010 A1
20100094808 Erofeev Apr 2010 A1
20100100529 Erofeev Apr 2010 A1
20100131461 Prahlad et al. May 2010 A1
20100131467 Prahlad et al. May 2010 A1
20100145909 Ngo Jun 2010 A1
20100153338 Ngo et al. Jun 2010 A1
20100179941 Agrawal et al. Jul 2010 A1
20100205150 Prahlad et al. Aug 2010 A1
20100211571 Prahlad et al. Aug 2010 A1
20110066599 Prahlad et al. Mar 2011 A1
20120011336 Saika Jan 2012 A1
20130006942 Prahlad et al. Jan 2013 A1
20140067764 Prahlad et al. Mar 2014 A1
20140164327 Ngo et al. Jun 2014 A1
20140181022 Ngo Jun 2014 A1
20140181029 Erofeev Jun 2014 A1
20140244586 Ngo Aug 2014 A1
20140324772 Prahlad et al. Oct 2014 A1
20150199375 Prahlad et al. Jul 2015 A1
20150205853 Ngo Jul 2015 A1
20150248444 Prahlad et al. Sep 2015 A1
Foreign Referenced Citations (34)
Number Date Country
2006331932 Dec 2006 AU
2632935 Dec 2006 CA
0259912 Mar 1988 EP
0405926 Jan 1991 EP
0467546 Jan 1992 EP
0774715 May 1997 EP
0809184 Nov 1997 EP
0862304 Sep 1998 EP
0899662 Mar 1999 EP
0981090 Feb 2000 EP
1174795 Feb 2000 EP
1349089 Jan 2003 EP
1349088 Oct 2003 EP
1579331 Sep 2005 EP
1974296 Oct 2008 EP
2256952 Dec 1992 GB
2411030 Aug 2005 GB
05189281 Jul 1993 JP
06274605 Sep 1994 JP
09016463 Jan 1997 JP
11259348 Sep 1999 JP
2000347811 Dec 2000 JP
WO 9303549 Feb 1993 WO
WO 9513580 May 1995 WO
WO 9839707 Sep 1998 WO
WO 9912098 Mar 1999 WO
WO 9914692 Mar 1999 WO
WO 02095632 Nov 2002 WO
WO 03028183 Apr 2003 WO
WO 2004034197 Apr 2004 WO
WO 2005055093 Jun 2005 WO
WO 2005086032 Sep 2005 WO
WO 2007053314 May 2007 WO
WO 2010068570 Jun 2010 WO
Non-Patent Literature Citations (46)
Entry
U.S. Appl. No. 14/038,540, filed Sep. 26, 2013, Erofeev.
Armstead et al., “Implementation of a Campus-Wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199.
Arneson, “Development of Omniserver; Mass Storage Systems,” Control Data Corporation, 1990, pp. 88-93.
Arneson, “Mass Storage Archiving in Network Environments” IEEE, 1998, pp. 45-50.
Ashton, et al., “Two Decades of policy-based storage management for the IBM mainframe computer”, www.research.ibm.com, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009, www.research.ibm.com, Apr. 10, 2003, pp. 19.
Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA.
Calvert, Andrew, “SQL Server 2005 Snapshots”, published Apr. 3, 2006, http:/www.simple-talk.com/contnet/print.aspx?article=137, 6 pages.
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126.
Gait, “The Optical File Cabinet: A Random-Access File system for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988).
Gray, et al. “Transaction processing: concepts and techniques” 1994, Morgan Kaufmann Publishers, USA, 646-655.B7.
Harrington, “The RFP Process: How to Hire a Third Party”, Transportation & Distribution, Sep. 1988, vol. 39, Issue 9, in 5 pages.
http://en.wikipedia.org/wiki/Naive—Bayes—classifier, printed on Jun. 1, 2010, in 7 pages.
IBM, “Intelligent Selection of Logs Required During Recovery Processing”, ip.com, Sep. 16, 2002, 4 pages.
IBM, “Near Zero Impact Backup and Data Replication Appliance”, ip.com, Oct. 18, 2004, 5 pages.
Jander, “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 1998), pp. 64-72.
Kashyap, et al., “Professional Services Automation: A knowledge Management approach using LSI and Domain specific Ontologies”, FLAIRS-01 Proceedings, 2001, pp. 300-302.
Lyon, J., Design considerations in replicated database systems for disaster protection, COMPCON 1988, Feb. 29, 1988, pp. 428-430.
Microsoft Corporation, “Microsoft Exchange Server: Best Practices for Exchange Database Management,” 1998.
Park, et al., “An Efficient Logging Scheme for Recoverable Distributed Shared Memory Systems”, IEEE, 1997, 9 pages.
Rosenblum et al., “The Design and Implementation of a Log-Structure File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991).
The Oracle8 Replication Manual, Part No. A58245-01; Chapters 1-2; Dec. 1, 1997; obtained from website: http://download-west.oracle.com/docs/cd/A64702—01/doc/server.805/a58245/toc.htm on May 20, 2009.
Veritas Software Corporation, “Veritas Volume Manager 3.2, Administrator's Guide,” Aug. 2001, 360 pages.
Wiesmann, M, Database replication techniques: a three parameter classification, Oct. 16, 2000, pp. 206-215.
Final Office Action for Japanese Application No. 2003531581, mail date Mar. 24, 2009, 6 pages.
International Search Report and Written Opinion dated Nov. 13, 2009, PCT/US2007/081681.
First Office Action for Japanese Application No. 2003531581, mail date Jul. 8, 2008, 8 pages.
International Preliminary Report on Patentability, PCT Application No. PCT/US2009/066880, mailed Jun. 23, 2011, in 9 pages.
Canadian Office Action dated Sep. 24, 2012, Application No. 2,632,935, 2 pages.
European Examination Report; Application No. 06848901.2, Apr. 1, 2009, pp. 7.
Examiner's First Report; Application No. 2006331932, May 11, 2011 in 2 pages.
Canadian Office Action dated Dec. 29, 2010, Application No. CA2546304.
Examiner's Report for Australian Application No. 2003279847, dated Dec. 9, 2008, 4 pages.
First Office Action in Canadian application No. 2,632,935 dated Feb. 16, 2012, in 5 pages.
International Search Report dated May 15, 2007, PCT/US2006/048273.
Second Examination Report in EU Appl. No. 06 848 901.2-2201 dated Dec. 3, 2010.
International Search Report and Written Opinion dated Mar. 25, 2010, PCT/US2009/066880.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/030396, mailed Jul. 18, 2011, in 20 pages.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/030396 mailed Oct. 2, 2012.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2011/38436, mailed Sep. 21, 2011, in 18 pages.
International Preliminary Report on Patentability and Written Opinion in PCT/US2011/038436 mailed Dec. 4, 2012.
International Search Report dated Dec. 28, 2009, PCT/US204/038324.
International Search Report and Written Opinion dated Jan. 11, 2006, PCT/US2004/038455.
Exam Report in Australian Application No. 2009324800 dated Jun. 17, 2013.
U.S. Appl. No. 14/592,770, filed Jan. 8, 2015, Kottomtharayil.
U.S. Appl. No. 14/645,982, filed Mar. 12, 2015, Prahlad, et al.
U.S. Appl. No. 14/668,752, filed Mar. 25, 2015, Prahlad, et al.
Related Publications (1)
Number Date Country
20150186061 A1 Jul 2015 US
Continuations (5)
Number Date Country
Parent 14261789 Apr 2014 US
Child 14592770 US
Parent 13887103 May 2013 US
Child 14261789 US
Parent 13235292 Sep 2011 US
Child 13887103 US
Parent 12581297 Oct 2009 US
Child 13235292 US
Parent 11313257 Dec 2005 US
Child 12581297 US