Portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosures, as it appears in the Patent and Trademark Office patent files or records, but otherwise expressly reserves all other rights to copyright protection.
This application is related to the following patents and pending applications, each of which is hereby incorporated herein by reference in its entirety:
U.S. Pat. No. 6,418,478, titled PIPELINED HIGH SPEED DATA TRANSFER MECHANISM, issued Jul. 9, 2002;
U.S. application Ser. No. 09/610,738, titled MODULAR BACKUP AND RETRIEVAL SYSTEM USED IN CONJUNCTION WITH A STORAGE AREA NETWORK, filed Jul. 6, 2000, now U.S. Pat. No. 7,035,880, issued Apr. 25, 2006;
U.S. Pat. No. 6,542,972, titled LOGICAL VIEW AND ACCESS TO PHYSICAL STORAGE IN MODULAR DATA AND STORAGE MANAGEMENT SYSTEM, issued Apr. 1, 2003;
U.S. application Ser. No. 10/658,095, titled DYNAMIC STORAGE DEVICE POOLING IN A COMPUTER SYSTEM, filed Sep. 9, 2003, now U.S. Pat. No. 7,130,970, issued Oct. 31, 2006; and
U.S. application Ser. No. 10/818,749, titled SYSTEM AND METHOD FOR PERFORMING STORAGE OPERATIONS IN A COMPUTER NETWORK, filed Apr. 3, 2004, now U.S. Pat. No. 7,246,207, issued Jul. 17, 2007.
The present invention relates generally to performing storage operations on electronic data in a computer network, and more particularly, to data storage systems that employ primary and secondary storage devices wherein certain electronic data from the primary storage device is relocated to the secondary storage device pursuant to a storage policy and electronic data from the second storage device may retrieved directly or through the primary storage device.
The storage of electronic data has evolved over time. During the early development of the computer, storage of electronic data was limited to individual computers. Electronic data was stored in the Random Access Memory (RAM) or some other storage medium such as a magnetic tape or hard drive that was a part of the computer itself.
Later, with the advent of network computing, the storage of electronic data gradually migrated from the individual computer to stand-alone storage devices accessible via a network. These individual network storage devices soon evolved into networked tape drives, optical libraries, Redundant Arrays of Inexpensive Disks (RAID), CD-ROM jukeboxes, and other devices. Common architectures also include network attached storage devices (NAS devices) that are coupled to a particular network (or networks) that are used to provide dedicated storage for various storage operations that may be required by a particular network (e.g., backup operations, archiving, and other storage operations including the management and retrieval of such information).
A NAS device may include a specialized file server or network attached storage system that connects to the network. A NAS device often contains a reduced capacity or minimized operating and file management system (e.g., a microkernel) and normally processes only input/output (I/O) requests by supporting common file sharing protocols such as the Unix network file system (NFS), DOS/Windows, and server message block/common Internet file system (SMB/CIFS). Using traditional local area network protocols such as Ethernet and transmission control protocol/internet protocol (TCP/IP), a NAS device typically enables additional storage to be quickly added by connecting to a network hub or switch.
Hierarchical storage management (HSM) provides for the automatic movement of files from hard disk to slower, less-expensive storage media, or secondary storage. As shown in
A stub file may contain some basic information to identify the file itself and also include information indicating the location of the data on the secondary storage device. When the stub file is accessed with the intention of performing a certain storage operation, such as a read or write operation, the file system call (or a read/write request) is trapped by software and a data retrieval process (sometimes referred to as de-migration or restore) is completed prior to satisfying the request. De-migration is often accomplished by inserting specialized software into the I/O stack to intercept read/write requests. The data is usually copied back to the original primary storage location from secondary storage, and then the read/write request is processed as if the file had not been moved. The effect is that the user sees and manipulates the file as the user normally would, except experiencing a small latency initially when the de-migration occurs.
Currently, however, HSM is not commonly practiced in NAS devices. One reason for this is because it is very difficult, if not impossible, to intercept file system calls in NAS devices. Moreover, there are many different types of NAS devices, such as WAFL by Network Appliance of Sunnyvale, Calif., the EMC Celera file system by the EMC Corporation of Hopkinton, Mass., the Netware file system by Novell of Provo, Utah, and other vendors. Most of these systems export their file systems to host computers such as the common Internet file system (CIFS) or the network file system (NFS), but provide no mechanism to run software on their operating systems or reside on the file system stack to intercept read/write or other data requests. Further, many NAS devices are proprietary, which may require a significant reverse-engineering effort to determine how to insert software into the I/O stack to perform HSM operations, reducing portability of an HSM implementation.
Accordingly, what is needed are systems and methods that overcome these and other deficiencies.
The present invention provides, among other things, systems and methods for performing storage operations for electronic data in a computer network on a network attached storage device (NAS). Some of the steps involved in one aspect of the invention may include receiving electronic data from a network device for writing to the NAS device; writing the electronic data to the NAS device in a first location (i.e., primary storage); subsequently storing the electronic data to a second location (i.e., secondary storage); and storing a stub file at the first location, the stub file including a pointer to the second location that may redirect the network device to the second location if an access request for the electronic data is received from the network device. In some embodiments, when the NAS device receives an electronic data request from a network device, the operating system of the network device may recognize the stub file as a stub file. In this case, the network device may use the pointer to find the actual location of the stored electronic data, where the electronic data may be accessed and processed over the network by the network device itself.
In accordance with some aspects of the present invention, computerized methods are provided for archiving data that is written to a first location in a NAS device to a second location, and storing a stub file at the first location, the stub file having a pointer pointing to the second location, the stub file for redirecting a network device to the second location if a read request for the file is received from the network device.
The system may include a NAS device connected to a network. The network may interconnect several network devices, including, for example, several client computers, host computers, server computers, mainframe computers or mid-range computers, all sending file system requests to the NAS. The NAS device may receive the file request from the network devices and process them.
An example of a method for processing a request for storing data on the NAS device may include receiving the data from a network device for writing to the NAS device; writing the data to the NAS device in a first location known to the network device; storing the data to a second location; and storing a stub file at the first location, the stub file having a pointer pointing to the second location, the stub file for redirecting the network device to the second location if a read request for the data is received from the network device. In some embodiments, the stub file may be named the same as the data that was stored in the first location before archiving. However, when the network attached storage device provides a read request to read the data, the operating system of the network device may recognize the stub file as a stub file. The network device may then perform the task of following the pointer to the actual location of the archived data, where the data may be read from and processed over the network by the network device itself. This relieves the NAS device from excess processing of the read request, including having to de-migrate the data from secondary storage.
Thus, one way to process a read request in accordance with an embodiment of the present invention includes opening the stub file stored in place of the data by the NAS device at a first location, the first location being where the data was stored before the file was archived to a second location by the network attached storage system; reading a pointer stored in the stub file, the pointer pointing to the second location; and reading the data from the second storage location.
The invention is illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts throughout, and in which:
An embodiment of a system 50 constructed in accordance with the principles of the present invention is shown in
One or more network devices 85 may be coupled to network 90. Each network device 85 may include a client application, a client computer, a host computer, a mainframe computer, a mid-range computer, or any other type of device capable of being connected in a network and running applications which produce electronic data that is periodically stored. Such data may be sometimes referred to as “production level” data. In some embodiments, a network device 85 may have the ability to generate electronic data requests, such as file requests and system requests to NAS device 100 through the network 90.
NAS device 100 may include, and/or be connected to, a primary storage device 102 such as a hard disk or other memory that provides relatively high-speed data access (as compared to secondary storage systems). Primary storage device 102 may include additional storage for NAS device 100 (which may itself include some internal storage), and may be the first network storage device accessed by network devices 85.
As shown in
A storage policy (or criteria) is generally a data structure or other information that includes a set of preferences and other storage criteria for performing a storage operation. The preferences and storage criteria may include, but are not limited to: a storage location, relationships between system components, network pathway(s) to utilize, retention policies, data characteristics, compression or encryption requirements, preferred system components to utilize in a storage operation, and other criteria relating to a storage operation. A storage policy may be stored to a storage manager index, to archive media as metadata for use in restore operations or other storage operations, or to other locations or components of the system.
Storage operations, which may generally include data migration and archiving operations may involve some or all of the following operations, but are not limited thereto, including creation, storage, retrieval, migration, deletion, and tracking of primary or production volume data, secondary volume data, primary copies, secondary copies, auxiliary copies, snapshot copies, backup copies, incremental copies, differential copies, synthetic copies, HSM copies, archive copies, Information Lifecycle Management (“mM”) copies, and other types of copies and versions of electronic data.
De-migration as used herein generally refers to data retrieval-type operations and may occur when electronic data that has been previously transferred from a first location to a second location is transferred back or otherwise restored to the first location. For example, data stored on NAS 100 and migrated to in secondary storage and then returned to NAS 100 may be considered de-migrated. De-migration may also occur in other contexts, for example, when data is migrated from one tier of storage to another tier of storage (e.g., from RAID storage to tape storage) based on aging policies in an ILM context, etc. Thus, if it was desired to access data that had been migrated to a tape, that data could be de-migrated from the tape back to RAID, etc.
In some embodiments, data migrators 95 may also monitor or otherwise keep track of electronic data stored in primary storage 102 for possible archiving in secondary storage devices 120 and 130. In such embodiments, some or all data migrators 95 may periodically scan primary storage device 102 searching for data that meet a set storage or archiving criteria. If certain data on device 102 satisfies a set of established archiving criteria, data migrator 95 may “discover” certain information regarding that data and then migrate it (i.e., coordinate the transfer the data or compressed versions of the data) to secondary storage devices, which may include tape libraries, magnetic media, optical media, or other storage devices. Moreover, is some embodiments archiving criteria, which generally may be a subset set of storage criteria (or policies), may specify criteria for archiving data or for moving data from primary to secondary storage devices.
As shown in
In some embodiments, data migrators 95 may generally communicate with the secondary storage devices 120 and 130 via a local bus such as a SCSI adaptor or an HBA (host bus adaptor). In some embodiments, secondary storage devices 120 and 130 may be communicatively coupled to the NAS device 100 or data migrators 95 via a storage area network (SAN) 70.
Certain hardware and software elements of system 50 may be the same as those described in the three-tier backup system commercially available as the CommVault QiNetx backup system from CommVault Systems, Inc. of Oceanport, N.J., and further described in application Ser. No. 09/610,738 which is incorporated herein by reference in its entirety.
In some embodiments, rather than using a dedicated SAN 70 to connect NAS 100 to secondary storage devices 120 and 130, the secondary storage devices may be directly connected to the network 90. In this case, the data migrators 95 may store or archive the files over the network 90 directly to the secondary storage devices 120 and 130. In the case where stand-alone versions of the data migrators 95 are used without a dedicated SAN 70, data migrators 95 may be connected to the network 90, with each stand-alone data migrator 95 performing its tasks on the NAS device 100 over the network.
In some embodiments, system 50 may include a storage manager 180 and one or more of the following: a media agent 98, an index cache 97, and another information storage device 140 that may be a redundant array of independent disks (RAID) or other storage system. These elements are exemplary of a three-tier backup system such as the CommVault QiNetx backup system, available from CommVault Systems, Inc. of Oceanport, N.J., and further described in application Ser. No. 09/610,738 which is incorporated herein by reference in its entirety.
Storage manager 180 may generally be a software module or application that coordinates and controls system 50. Storage manager 180 may communicate with some or all elements of system 50 including client network devices 85, media agents 97, and storage devices 120, 130 and 140, to initiate and manage system storage operations, backups, migrations, and recoveries.
A media agent 97 may generally be a software module that conveys data, as directed by the storage manager 180, between network device 85, data migrator 95, and one or more of the secondary storage devices 120, 130 and 140 as necessary. Media agent 97 is coupled to and may control the secondary storage devices 120, 130 and 140 and may communicate with the storage devices 120, 130 and 140 either via a local bus such as a SCSI adaptor, an HBA or SAN 70.
Each media agent 97 may maintain an index cache 98 that stores index data system 50 generates during, store backup, migration, archive and restore operations. For example, storage operations for Microsoft Exchange data may generate index data. Such index data may provide system 50 with an efficient mechanism for locating stored data for recovery or restore operations. This index data is generally stored with the data backed up on storage devices 120, 130 and 140 as a header file or other local indicia and media agent 97 (that typically controls a storage operation) may also write an additional copy of the index data to its index cache 98. The data in the media agent index cache 98 is thus generally readily available to system 50 for use in storage operations and other activities without having to be first retrieved from a storage device 120, 130 or 140.
Storage manager 180 may also maintain an index cache 98. The index data may be used to indicate logical associations between components of the system, user preferences, management tasks, and other useful data. For example, the storage manager 180 may use its index cache 98 to track logical associations between several media agents 97 and storage devices 120, 130 and 140.
Index caches 98 may reside on their corresponding storage component's hard disk or other fixed storage device. In one embodiment, system 50 may manage index cache 98 on a least recently used (“LRU”) basis as known in the art. When the capacity of the index cache 98 is reached, system 50 may overwrite those files in the index cache 98 that have been least recently accessed with new index data. In some embodiments, before data in the index cache 98 is overwritten, the data may be copied t a storage device 120, 130 or 140 as a “cache copy.” If a recovery operation requires data that is no longer stored in the index cache 98, such as in the case of a cache miss, system 50 may recover the index data from the index cache copy stored in the storage device 120, 130 or 140.
In some embodiments, other components of system 50 may reside and execute on the storage manager 180. For example, one or more data migrators 95 may execute on the storage manager 180.
Referring now to
Referring now to
With reference to
In other embodiments, when a network device issues a save command after the data edited in step 500, instead of being stored to the stub file location, the data may be stored back to the archive location, leaving the stub file intact, except that if the stub file may keep track of data information, such information may be changed according to the edited data.
In an embodiment that stores files that can be read by a network device using the Windows operating system, for example, the data migrator may produce a Windows shortcut file of the same name as the archived file. Other operating systems may provide for use of shortcut files similar to Windows shortcuts that can be used as stub files in the present system, including, for example, Mac OS by Apple Computer, Inc. of Cupertino, Calif.
Also, in embodiments which store files that can be read by a network device using Unix type file systems, such as Linux, Solaris, or the like, a softlink is used for re-direction, which is similar to a Windows shortcut. For example, a typical command to create a softlink in Unix systems is as follows: [0054] In -s/primary_storage_location/stubfile/secondary_storage_location/archivefile wherein primary_storage_location is the location in the primary storage device, the stubfile is the name of the stub file containing the softlink, the secondary_storage_location is the location to which the file is archived, and the archivefile is the name of the file stored in the secondary location.
In some Unix-based systems, such as Solaris, when a network device needs to read a file, the network directory and drive where the file resides may need to be mounted if the directory and file are not already mounted. When the network device issues a read request to a NAS device to read an archived file in such a system, the Softlink stored in the data's primary storage location may have been archived to a drive or directory that is not already mounted for file access.
One way to resolve this issue of unmounted drives or directories is to trap the read request, either by the NAS device or the network device, to interrupt processing and to mount the drive and/or directory to which the Softlink is pointing to the archived data so the network device may then read the data from the secondary location.
However, many Unix file systems do not provide a ready infrastructure to trap an input/output request before the request is usually propagated to the file system. Using Solaris as an example, many Unix systems typically provide a generic file system interface called a virtual file system (vfs). Vfs supports use by various file systems such as the Unix file system (ufs), Unix network file system (nfs), the Veritas file system (vxfs), etc. Similarly, directories in these file systems may need to be mounted on the individual network devices in Unix based systems. Vfs can act as a bridge to communicate with different file systems using a stackable file system.
Otherwise, if the request is for an archived file,
Option two, step 606B, involves changing the trap handler for the open( ) system call. Trap handlers are implemented in assembly and are typically specific to the various Unix architectures. Solaris systems usually include a generic trap handler for system calls and other traps and may be implemented, if desired.
Option three, step 606C, may be used for implementing a stackable loopback file system. This option uses a loopback file system that propagates the normal operations to the underlying file System like ufs, vxfs and also provides a facility to trap the required calls. The stackable loopback file system provides the various vfs operations. The stackable loopback file system also provides vnode operations typically used by other file systems. A vnode may be a virtual node comprising a data structure used within Unix-based operating systems to represent an open file, directory, device, or other entity (e.g., socket) that can appear in the file system name-space. The stackable loopback file system provides a mount option to mount the existing file directory to some other location that is used as the secondary location for storing the file. The special mount operation may search through the underlying file system, store the necessary information of the underlying file system, and assign the path as its starting root. Example commands to accomplish this operation follows:
mount_cxfs/etc/etc
mount_cxfs/etc/tmp/etc_temp
Where /etc/tmp/etc_temp does not appear in a mounted path already. This mount option is used for those file directories, which are not already mounted.
One way to implement the additional functionality of stackable loopback file system is to make the stackable loopback file system a loadable module or driver. Unix systems, such as Solaris, usually support file system drivers such as the loadable modules. The stackable loopback file system module may support both normal file system and driver functionalities. The stackable loopback file system driver may use input-output controls (ioctls), which are special request device drivers above and beyond calls to the read or write entry points, to provide the capability to mount the file directories. Vnode operations may simply pass through the driver to the underlying file system, except that read/write/mmap operations are trapped to handle data migration of the relocated files, and performs a lookup operation to resolve recursions of the files mounted to some other location.
The driver may be included in the migrator, preferably in an embodiment where the migrator resides on the NAS. The migrator may include a relocate daemon that triggers the data migration for the files to be migrated if user defined policies are met. The relocate daemon may then creates the stub file. A redirect/restore daemon may be triggered by the stackable loopback file system when a stub file is accessed. The restore daemon may mount the drive and/or secondary drive or directory where the file was archived if the drive and directory are not already mounted. The stackable loopback file system may then re-directs the network device to the directory where the file is stored as described above. In an alternative embodiment, after mounting the drive and directory, the file may be restored to the primary location. The driver may generate an event for the restore daemon to complete restoration. Restore daemon may send an ioctl for the completion of the restoration and deletes the stub file.
Thus, as can be seen from the above, systems and methods for recovering electronic information from a storage medium are provided. It will be understood that the foregoing is merely illustrative of the principles of the present invention and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. Accordingly, such embodiments will be recognized as within the scope of the present invention.
Systems and modules described herein may comprise software, firmware, hardware, or any combination(s) of software, firmware, or hardware suitable for the purposes described herein. Software and other modules may reside on servers, workstations, personal computers, computerized tablets, PDAs, and other devices suitable for the purposes described herein. Software and other modules may be accessible via local memory, via a network, via a browser or other application in an ASP context, or via other means suitable for the purposes described herein. Data structures described herein may comprise computer files, variables, programming arrays, programming structures, or any electronic information storage schemes or methods, or any combinations thereof, suitable for the purposes described herein. User interface elements described herein may comprise elements from graphical user interfaces, command line interfaces, and other interfaces suitable for the purposes described herein. Screenshots presented and described herein can be displayed differently as known in the art to input, access, change, manipulate, modify, alter, and work with information.
While the invention has been described and illustrated in connection with preferred embodiments, many variations and modifications as will be evident to those skilled in this art may be made without departing from the spirit and scope of the invention, and the invention is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the invention.
Persons skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration rather than of limitation and that the present invention is limited only by the claims that follow.
While the invention has been described and illustrated in connection with preferred embodiments, many variations and modifications as will be evident to those skilled in this art may be made without departing from the spirit and scope of the invention, and the invention is thus not to be limited to the precise details of methodology or construction set forth above as such variations and modification are intended to be included within the scope of the invention.
This application is a continuation of U.S. application Ser. No. 13/293,975, filed Nov. 10, 2011, entitled SYSTEMS AND METHODS FOR PERFORMING STORAGE OPERATIONS USING NETWORK ATTACHED STORAGE, which is a continuation of U.S. application Ser. No. 12/467,596, filed May 18, 2009, entitled SYSTEMS AND METHODS FOR PERFORMING STORAGE OPERATIONS USING NETWORK ATTACHED STORAGE, now U.S. Pat. No. 8,078,583, issued Dec. 13, 2011, which is a division of U.S. application Ser. No. 10/990,360, filed Nov. 15, 2004, entitled SYSTEMS AND METHODS FOR PERFORMING STORAGE OPERATIONS USING NETWORK ATTACHED STORAGE, now U.S. Pat. No. 7,546,324, issued Jun. 9, 2009, which claims the benefit of U.S. Provisional Patent Application No. 60/519,949, filed Nov. 13, 2003, entitled PERFORMING STORAGE OPERATIONS USING NETWORK ATTACHED STORAGE, each of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4296465 | Lemak | Oct 1981 | A |
4686620 | Ng | Aug 1987 | A |
4751639 | Corcoran et al. | Jun 1988 | A |
4995035 | Cole et al. | Feb 1991 | A |
5005122 | Griffin et al. | Apr 1991 | A |
5093912 | Dong et al. | Mar 1992 | A |
5125075 | Goodale et al. | Jun 1992 | A |
5133065 | Cheffetz et al. | Jul 1992 | A |
5193154 | Kitajima et al. | Mar 1993 | A |
5204958 | Cheng et al. | Apr 1993 | A |
5212772 | Masters | May 1993 | A |
5226157 | Nakano et al. | Jul 1993 | A |
5239647 | Anglin et al. | Aug 1993 | A |
5241668 | Eastridge et al. | Aug 1993 | A |
5241670 | Eastridge et al. | Aug 1993 | A |
5265159 | Kung | Nov 1993 | A |
5276860 | Fortier et al. | Jan 1994 | A |
5276867 | Kenley et al. | Jan 1994 | A |
5287500 | Stoppani, Jr. | Feb 1994 | A |
5301351 | Jippo | Apr 1994 | A |
5311509 | Heddes et al. | May 1994 | A |
5321816 | Rogan et al. | Jun 1994 | A |
5333251 | Urabe et al. | Jul 1994 | A |
5333315 | Saether et al. | Jul 1994 | A |
5347653 | Flynn et al. | Sep 1994 | A |
5410700 | Fecteau et al. | Apr 1995 | A |
5426284 | Doyle | Jun 1995 | A |
5448724 | Hayashi et al. | Sep 1995 | A |
5455926 | Keele et al. | Oct 1995 | A |
5491810 | Allen | Feb 1996 | A |
5495607 | Pisello et al. | Feb 1996 | A |
5504873 | Martin et al. | Apr 1996 | A |
5544345 | Carpenter et al. | Aug 1996 | A |
5544347 | Yanai et al. | Aug 1996 | A |
5555404 | Torbjornsen et al. | Sep 1996 | A |
5559957 | Balk | Sep 1996 | A |
5559991 | Kanfi | Sep 1996 | A |
5574898 | Leblang et al. | Nov 1996 | A |
5598546 | Blomgren | Jan 1997 | A |
5613134 | Lucus et al. | Mar 1997 | A |
5615392 | Harrison et al. | Mar 1997 | A |
5619644 | Crockett et al. | Apr 1997 | A |
5638509 | Dunphy et al. | Jun 1997 | A |
5642496 | Kanfi | Jun 1997 | A |
5649185 | Antognini et al. | Jul 1997 | A |
5659614 | Bailey | Aug 1997 | A |
5673381 | Huai et al. | Sep 1997 | A |
5675511 | Prasad et al. | Oct 1997 | A |
5677900 | Nishida et al. | Oct 1997 | A |
5682513 | Candelaria et al. | Oct 1997 | A |
5687343 | Fecteau et al. | Nov 1997 | A |
5699361 | Ding et al. | Dec 1997 | A |
5719786 | Nelson et al. | Feb 1998 | A |
5729743 | Squibb | Mar 1998 | A |
5734817 | Roffe et al. | Mar 1998 | A |
5737747 | Vishlitsky et al. | Apr 1998 | A |
5740405 | DeGraaf | Apr 1998 | A |
5742807 | Masinter | Apr 1998 | A |
5751997 | Kullick et al. | May 1998 | A |
5758359 | Saxon | May 1998 | A |
5758649 | Iwashita et al. | Jun 1998 | A |
5761677 | Senator et al. | Jun 1998 | A |
5761734 | Pfeffer et al. | Jun 1998 | A |
5764972 | Crouse et al. | Jun 1998 | A |
5778395 | Whiting et al. | Jul 1998 | A |
5790828 | Jost | Aug 1998 | A |
5805920 | Sprenkle et al. | Sep 1998 | A |
5806058 | Mori et al. | Sep 1998 | A |
5812398 | Nielsen | Sep 1998 | A |
5812748 | Ohran et al. | Sep 1998 | A |
5813009 | Johnson et al. | Sep 1998 | A |
5813013 | Shakib et al. | Sep 1998 | A |
5813017 | Morris | Sep 1998 | A |
5829046 | Tzelnic et al. | Oct 1998 | A |
5835953 | Ohran | Nov 1998 | A |
5845257 | Fu et al. | Dec 1998 | A |
5860073 | Ferrel et al. | Jan 1999 | A |
5860104 | Witt et al. | Jan 1999 | A |
5864871 | Kitain et al. | Jan 1999 | A |
5875478 | Blumenau | Feb 1999 | A |
5875481 | Ashton et al. | Feb 1999 | A |
5878230 | Weber et al. | Mar 1999 | A |
5884067 | Storm et al. | Mar 1999 | A |
5887134 | Ebrahim | Mar 1999 | A |
5896531 | Curtis et al. | Apr 1999 | A |
5897642 | Capossela et al. | Apr 1999 | A |
5898431 | Webster et al. | Apr 1999 | A |
5901327 | Ofek | May 1999 | A |
5924102 | Perks | Jul 1999 | A |
5926836 | Blumenau | Jul 1999 | A |
5933104 | Kimura | Aug 1999 | A |
5933601 | Fanshier et al. | Aug 1999 | A |
5950205 | Aviani, Jr. | Sep 1999 | A |
5956519 | Wise et al. | Sep 1999 | A |
5956733 | Nakano et al. | Sep 1999 | A |
5958005 | Thorne et al. | Sep 1999 | A |
5970233 | Liu et al. | Oct 1999 | A |
5970255 | Tran et al. | Oct 1999 | A |
5974563 | Beeler, Jr. | Oct 1999 | A |
5978841 | Berger | Nov 1999 | A |
5987478 | See et al. | Nov 1999 | A |
5991753 | Wilde | Nov 1999 | A |
5995091 | Near et al. | Nov 1999 | A |
6000020 | Chin et al. | Dec 1999 | A |
6003089 | Shaffer et al. | Dec 1999 | A |
6009274 | Fletcher et al. | Dec 1999 | A |
6012090 | Chung et al. | Jan 2000 | A |
6012415 | Linseth | Jan 2000 | A |
6016553 | Schneider et al. | Jan 2000 | A |
6018744 | Mamiya et al. | Jan 2000 | A |
6021415 | Cannon et al. | Feb 2000 | A |
6023710 | Steiner et al. | Feb 2000 | A |
6026414 | Anglin | Feb 2000 | A |
6026437 | Muschett et al. | Feb 2000 | A |
6052735 | Ulrich et al. | Apr 2000 | A |
6070228 | Belknap et al. | May 2000 | A |
6073137 | Brown et al. | Jun 2000 | A |
6073220 | Gunderson | Jun 2000 | A |
6076148 | Kedem et al. | Jun 2000 | A |
6078934 | Lahey et al. | Jun 2000 | A |
6085030 | Whitehead et al. | Jul 2000 | A |
6088694 | Burns et al. | Jul 2000 | A |
6091518 | Anabuki | Jul 2000 | A |
6094416 | Ying | Jul 2000 | A |
6101585 | Brown et al. | Aug 2000 | A |
6105037 | Kishi | Aug 2000 | A |
6105129 | Meier et al. | Aug 2000 | A |
6108640 | Slotznick | Aug 2000 | A |
6108712 | Hayes, Jr. | Aug 2000 | A |
6112239 | Kenner et al. | Aug 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6131095 | Low et al. | Oct 2000 | A |
6131190 | Sidwell | Oct 2000 | A |
6137864 | Yaker | Oct 2000 | A |
6148377 | Carter et al. | Nov 2000 | A |
6148412 | Cannon et al. | Nov 2000 | A |
6154787 | Urevig et al. | Nov 2000 | A |
6154852 | Amundson et al. | Nov 2000 | A |
6161111 | Mutalik et al. | Dec 2000 | A |
6161192 | Lubbers et al. | Dec 2000 | A |
6167402 | Yeager | Dec 2000 | A |
6175829 | Li et al. | Jan 2001 | B1 |
6189051 | Oh et al. | Feb 2001 | B1 |
6212512 | Barney et al. | Apr 2001 | B1 |
6212521 | Minami et al. | Apr 2001 | B1 |
6230164 | Rikieta et al. | May 2001 | B1 |
6249795 | Douglis | Jun 2001 | B1 |
6253217 | Dourish et al. | Jun 2001 | B1 |
6260069 | Anglin | Jul 2001 | B1 |
6263368 | Martin | Jul 2001 | B1 |
6269382 | Cabrera et al. | Jul 2001 | B1 |
6269431 | Dunham | Jul 2001 | B1 |
6275953 | Vahalia et al. | Aug 2001 | B1 |
6292783 | Rohler | Sep 2001 | B1 |
6295541 | Bodnar | Sep 2001 | B1 |
6301592 | Aoyama et al. | Oct 2001 | B1 |
6304880 | Kishi | Oct 2001 | B1 |
6314439 | Bates et al. | Nov 2001 | B1 |
6314460 | Knight et al. | Nov 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6328766 | Long | Dec 2001 | B1 |
6330570 | Crighton | Dec 2001 | B1 |
6330572 | Sitka | Dec 2001 | B1 |
6330589 | Kennedy | Dec 2001 | B1 |
6330642 | Carteau | Dec 2001 | B1 |
6343287 | Kumar et al. | Jan 2002 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6350199 | Williams et al. | Feb 2002 | B1 |
6351763 | Kawanaka | Feb 2002 | B1 |
6351764 | Voticky et al. | Feb 2002 | B1 |
RE37601 | Eastridge et al. | Mar 2002 | E |
6353878 | Dunham | Mar 2002 | B1 |
6356801 | Goodman et al. | Mar 2002 | B1 |
6356863 | Sayle | Mar 2002 | B1 |
6360306 | Bergsten | Mar 2002 | B1 |
6367029 | Mayhead et al. | Apr 2002 | B1 |
6374336 | Peters et al. | Apr 2002 | B1 |
6389432 | Pothapragada et al. | May 2002 | B1 |
6396513 | Helfman et al. | May 2002 | B1 |
6397308 | Ofek et al. | May 2002 | B1 |
6418478 | Ignatius et al. | Jul 2002 | B1 |
6421709 | McCormick et al. | Jul 2002 | B1 |
6421711 | Blumenau et al. | Jul 2002 | B1 |
6438595 | Blumenau et al. | Aug 2002 | B1 |
6442600 | Anderson | Aug 2002 | B1 |
6453325 | Cabrera et al. | Sep 2002 | B1 |
6466592 | Chapman | Oct 2002 | B1 |
6470332 | Weschler | Oct 2002 | B1 |
6473794 | Guheen et al. | Oct 2002 | B1 |
6487561 | Ofek et al. | Nov 2002 | B1 |
6487644 | Huebsch et al. | Nov 2002 | B1 |
6493811 | Blades et al. | Dec 2002 | B1 |
6519679 | Devireddy et al. | Feb 2003 | B2 |
6535910 | Suzuki et al. | Mar 2003 | B1 |
6538669 | Lagueux, Jr. et al. | Mar 2003 | B1 |
6542909 | Tamer et al. | Apr 2003 | B1 |
6542972 | Ignatius et al. | Apr 2003 | B2 |
6546545 | Honarvar et al. | Apr 2003 | B1 |
6549918 | Probert et al. | Apr 2003 | B1 |
6553410 | Kikinis | Apr 2003 | B2 |
6557039 | Leong et al. | Apr 2003 | B1 |
6564219 | Lee et al. | May 2003 | B1 |
6564228 | O'Connor | May 2003 | B1 |
6581143 | Gagne et al. | Jun 2003 | B2 |
6593656 | Ahn et al. | Jul 2003 | B2 |
6604149 | Deo et al. | Aug 2003 | B1 |
6615241 | Miller et al. | Sep 2003 | B1 |
6631493 | Ottesen et al. | Oct 2003 | B2 |
6647396 | Parnell et al. | Nov 2003 | B2 |
6647409 | Sherman et al. | Nov 2003 | B1 |
6654825 | Clapp et al. | Nov 2003 | B2 |
6658436 | Oshinsky et al. | Dec 2003 | B2 |
6658526 | Nguyen et al. | Dec 2003 | B2 |
6704933 | Tanaka et al. | Mar 2004 | B1 |
6721767 | De Meno et al. | Apr 2004 | B2 |
6728733 | Tokui | Apr 2004 | B2 |
6732124 | Koseki et al. | May 2004 | B1 |
6742092 | Huebsch et al. | May 2004 | B1 |
6757794 | Cabrera et al. | Jun 2004 | B2 |
6760723 | Oshinsky et al. | Jul 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6789161 | Blendermann et al. | Sep 2004 | B1 |
6868424 | Jones et al. | Mar 2005 | B2 |
6871163 | Hiller et al. | Mar 2005 | B2 |
6874023 | Pennell et al. | Mar 2005 | B1 |
6886020 | Zahavi et al. | Apr 2005 | B1 |
6912645 | Dorward et al. | Jun 2005 | B2 |
6941304 | Gainey et al. | Sep 2005 | B2 |
6952758 | Chron et al. | Oct 2005 | B2 |
6968351 | Butterworth | Nov 2005 | B2 |
6973553 | Archibald, Jr. et al. | Dec 2005 | B1 |
6978265 | Schumacher | Dec 2005 | B2 |
6983351 | Gibble et al. | Jan 2006 | B2 |
7003519 | Biettron et al. | Feb 2006 | B1 |
7003641 | Prahlad et al. | Feb 2006 | B2 |
7035880 | Crescenti et al. | Apr 2006 | B1 |
7039860 | Gautestad | May 2006 | B1 |
7062761 | Slavin et al. | Jun 2006 | B2 |
7076685 | Pillai et al. | Jul 2006 | B2 |
7082441 | Zahavi et al. | Jul 2006 | B1 |
7085904 | Mizuno et al. | Aug 2006 | B2 |
7096315 | Takeda et al. | Aug 2006 | B2 |
7103731 | Gibble et al. | Sep 2006 | B2 |
7103740 | Colgrove et al. | Sep 2006 | B1 |
7107298 | Prahlad et al. | Sep 2006 | B2 |
7107395 | Ofek et al. | Sep 2006 | B1 |
7120757 | Tsuge | Oct 2006 | B2 |
7130970 | Devassy et al. | Oct 2006 | B2 |
7134041 | Murray et al. | Nov 2006 | B2 |
7149893 | Leonard et al. | Dec 2006 | B1 |
7155465 | Lee et al. | Dec 2006 | B2 |
7155481 | Prahlad et al. | Dec 2006 | B2 |
7155633 | Tuma et al. | Dec 2006 | B2 |
7174312 | Harper et al. | Feb 2007 | B2 |
7194454 | Hansen et al. | Mar 2007 | B2 |
7246140 | Therrien et al. | Jul 2007 | B2 |
7246207 | Kottomtharayil et al. | Jul 2007 | B2 |
7269612 | Devarakonda et al. | Sep 2007 | B2 |
7272606 | Borthakur et al. | Sep 2007 | B2 |
7278142 | Bandhole et al. | Oct 2007 | B2 |
7287047 | Kavuri | Oct 2007 | B2 |
7293133 | Colgrove et al. | Nov 2007 | B1 |
7315923 | Retnamma et al. | Jan 2008 | B2 |
7315924 | Prahlad et al. | Jan 2008 | B2 |
7328225 | Beloussov et al. | Feb 2008 | B1 |
7343356 | Prahlad et al. | Mar 2008 | B2 |
7343365 | Farnham et al. | Mar 2008 | B2 |
7343453 | Prahlad et al. | Mar 2008 | B2 |
7343459 | Prahlad et al. | Mar 2008 | B2 |
7346623 | Prahlad et al. | Mar 2008 | B2 |
7346751 | Prahlad et al. | Mar 2008 | B2 |
7356657 | Mikami | Apr 2008 | B2 |
7359917 | Winter et al. | Apr 2008 | B2 |
7380072 | Kottomtharayil et al. | May 2008 | B2 |
7386552 | Kitamura et al. | Jun 2008 | B2 |
7389311 | Crescenti et al. | Jun 2008 | B1 |
7395282 | Crescenti et al. | Jul 2008 | B1 |
7409509 | Devassy et al. | Aug 2008 | B2 |
7430587 | Malone et al. | Sep 2008 | B2 |
7433301 | Akahane et al. | Oct 2008 | B2 |
7434219 | De Meno et al. | Oct 2008 | B2 |
7447692 | Oshinsky et al. | Nov 2008 | B2 |
7454569 | Kavuri et al. | Nov 2008 | B2 |
7467167 | Patterson | Dec 2008 | B2 |
7472238 | Gokhale | Dec 2008 | B1 |
7484054 | Kottomtharayil et al. | Jan 2009 | B2 |
7490207 | Amarendran | Feb 2009 | B2 |
7496589 | Jain et al. | Feb 2009 | B1 |
7500053 | Kavuri et al. | Mar 2009 | B1 |
7500150 | Sharma et al. | Mar 2009 | B2 |
7509316 | Greenblatt et al. | Mar 2009 | B2 |
7512601 | Cucerzan et al. | Mar 2009 | B2 |
7519726 | Palliyll et al. | Apr 2009 | B2 |
7523483 | Dogan | Apr 2009 | B2 |
7529748 | Wen et al. | May 2009 | B2 |
7532340 | Koppich et al. | May 2009 | B2 |
7536291 | Retnamma et al. | May 2009 | B1 |
7543125 | Gokhale | Jun 2009 | B2 |
7546324 | Prahlad et al. | Jun 2009 | B2 |
7581077 | Ignatius et al. | Aug 2009 | B2 |
7596586 | Gokhale et al. | Sep 2009 | B2 |
7613748 | Brockway et al. | Nov 2009 | B2 |
7617253 | Prahlad et al. | Nov 2009 | B2 |
7617262 | Prahlad et al. | Nov 2009 | B2 |
7617541 | Plotkin et al. | Nov 2009 | B2 |
7627598 | Burke | Dec 2009 | B1 |
7627617 | Kavuri et al. | Dec 2009 | B2 |
7636743 | Erofeev | Dec 2009 | B2 |
7651593 | Prahlad et al. | Jan 2010 | B2 |
7661028 | Erofeev | Feb 2010 | B2 |
7668798 | Scanlon et al. | Feb 2010 | B2 |
7685126 | Patel et al. | Mar 2010 | B2 |
7716171 | Kryger | May 2010 | B2 |
7734715 | Hyakutake et al. | Jun 2010 | B2 |
7757043 | Kavuri et al. | Jul 2010 | B2 |
7802067 | Prahlad et al. | Sep 2010 | B2 |
7840537 | Gokhale et al. | Nov 2010 | B2 |
7844676 | Prahlad et al. | Nov 2010 | B2 |
7870355 | Erofeev | Jan 2011 | B2 |
7873808 | Stewart | Jan 2011 | B2 |
7877351 | Crescenti et al. | Jan 2011 | B2 |
7890718 | Gokhale | Feb 2011 | B2 |
7890719 | Gokhale | Feb 2011 | B2 |
7962455 | Erofeev | Jun 2011 | B2 |
8041673 | Crescenti et al. | Oct 2011 | B2 |
8046331 | Sanghavi et al. | Oct 2011 | B1 |
8078583 | Prahlad et al. | Dec 2011 | B2 |
8086809 | Prahlad et al. | Dec 2011 | B2 |
8103670 | Oshinsky et al. | Jan 2012 | B2 |
8103829 | Kavuri et al. | Jan 2012 | B2 |
8121983 | Prahlad et al. | Feb 2012 | B2 |
8166263 | Prahlad | Apr 2012 | B2 |
8204859 | Ngo | Jun 2012 | B2 |
8214444 | Prahlad et al. | Jul 2012 | B2 |
8219524 | Gokhale | Jul 2012 | B2 |
8271830 | Erofeev | Sep 2012 | B2 |
20020004883 | Nguyen et al. | Jan 2002 | A1 |
20020040376 | Yamanaka et al. | Apr 2002 | A1 |
20020042869 | Tate et al. | Apr 2002 | A1 |
20020049626 | Mathias et al. | Apr 2002 | A1 |
20020049778 | Bell et al. | Apr 2002 | A1 |
20020069324 | Gerasimov et al. | Jun 2002 | A1 |
20020103848 | Giacomini et al. | Aug 2002 | A1 |
20020107877 | Whiting et al. | Aug 2002 | A1 |
20020161753 | Inaba et al. | Oct 2002 | A1 |
20030061491 | Jaskiewicz et al. | Mar 2003 | A1 |
20030097361 | Huang et al. | May 2003 | A1 |
20030163399 | Harper et al. | Aug 2003 | A1 |
20030172158 | Pillai et al. | Sep 2003 | A1 |
20040107199 | Dairymple et al. | Jun 2004 | A1 |
20040193953 | Callahan et al. | Sep 2004 | A1 |
20040205206 | Naik et al. | Oct 2004 | A1 |
20040230829 | Dogan et al. | Nov 2004 | A1 |
20050033800 | Kavuri et al. | Feb 2005 | A1 |
20050044114 | Kottomtharayil et al. | Feb 2005 | A1 |
20050246510 | Retnamma et al. | Nov 2005 | A1 |
20050268068 | Ignatius et al. | Dec 2005 | A1 |
20060005048 | Osaki et al. | Jan 2006 | A1 |
20060010227 | Atluri | Jan 2006 | A1 |
20070043956 | El Far et al. | Feb 2007 | A1 |
20070078913 | Crescenti et al. | Apr 2007 | A1 |
20070100867 | Celik et al. | May 2007 | A1 |
20070143756 | Gokhale | Jun 2007 | A1 |
20070183224 | Erofeev | Aug 2007 | A1 |
20070288536 | Sen et al. | Dec 2007 | A1 |
20080059515 | Fulton | Mar 2008 | A1 |
20080229037 | Bunte et al. | Sep 2008 | A1 |
20080243914 | Prahlad et al. | Oct 2008 | A1 |
20080243957 | Prahlad et al. | Oct 2008 | A1 |
20080243958 | Prahlad et al. | Oct 2008 | A1 |
20080244177 | Crescenti et al. | Oct 2008 | A1 |
20090228894 | Gokhale | Sep 2009 | A1 |
20090248762 | Prahlad et al. | Oct 2009 | A1 |
20090271791 | Gokhale | Oct 2009 | A1 |
20090319534 | Gokhale | Dec 2009 | A1 |
20100049753 | Prahlad et al. | Feb 2010 | A1 |
20100094808 | Erofeev | Apr 2010 | A1 |
20100100529 | Erofeev | Apr 2010 | A1 |
20100122053 | Prahlad et al. | May 2010 | A1 |
20100131461 | Prahlad et al. | May 2010 | A1 |
20100138393 | Crescenti et al. | Jun 2010 | A1 |
20100145909 | Ngo | Jun 2010 | A1 |
20100179941 | Agrawal et al. | Jul 2010 | A1 |
20100205150 | Prahlad et al. | Aug 2010 | A1 |
20110066817 | Kavuri et al. | Mar 2011 | A1 |
20110072097 | Prahlad et al. | Mar 2011 | A1 |
20120030177 | Crescenti et al. | Feb 2012 | A1 |
20120059797 | Prahlad et al. | Mar 2012 | A1 |
20120089800 | Prahlad et al. | Apr 2012 | A1 |
20120124042 | Oshinsky et al. | May 2012 | A1 |
20120124289 | Kavuri et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
0259912 | Mar 1988 | EP |
0341230 | Nov 1989 | EP |
0381651 | Aug 1990 | EP |
0405926 | Jan 1991 | EP |
0467546 | Jan 1992 | EP |
0599466 | Jun 1994 | EP |
0670543 | Sep 1995 | EP |
0717346 | Jun 1996 | EP |
0774715 | May 1997 | EP |
0809184 | Nov 1997 | EP |
0862304 | Sep 1998 | EP |
0899662 | Mar 1999 | EP |
0981090 | Feb 2000 | EP |
0986011 | Mar 2000 | EP |
1174795 | Jan 2002 | EP |
H11-102314 | Apr 1999 | JP |
H11-259459 | Sep 1999 | JP |
2001-60175 | Mar 2001 | JP |
WO 9417474 | Aug 1994 | WO |
WO 9513580 | May 1995 | WO |
WO 9839707 | Sep 1998 | WO |
WO 9912098 | Mar 1999 | WO |
WO 9914692 | Mar 1999 | WO |
WO 9923585 | May 1999 | WO |
WO 0104756 | Jan 2001 | WO |
WO 2005050381 | Jun 2005 | WO |
Entry |
---|
Armstead et al., “Implementation of a Campus-Wide Distributed Mass Storage Service: The Dream vs. Reality,” IEEE, 1995, pp. 190-199. |
Arneson, “Development of Omniserver; Mass Storage Systems,” Control Data Corporation, 1990, pp. 88-93. |
Arneson, “Mass Storage Archiving in Network Environments” IEEE, 1998, pp. 45-50. |
Ashton, et al., “Two Decades of policy-based storage management for the IBM mainframe computer”, www.research.ibm.com, 19 pages, published Apr. 10, 2003, printed Jan. 3, 2009., www.research.ibm.com, Apr. 10, 2003, pp. 19. |
Cabrera, et al. “ADSM: A Multi-Platform, Scalable, Back-up and Archive Mass Storage System,” Digest of Papers, Compcon '95, Proceedings of the 40th IEEE Computer Society International Conference, Mar. 5, 1995-Mar. 9, 1995, pp. 420-427, San Francisco, CA. |
Catapult, Inc., Microsoft Outlook 2000 Step by Step, Published May 7, 1999, “Collaborating with Others Using Outlook & Exchange”, p. 8 including “Message Timeline.” |
Eitel, “Backup and Storage Management in Distributed Heterogeneous Environments,” IEEE, 1994, pp. 124-126. |
Gait, “The Optical File Cabinet: A Random-Access File system for Write-Once Optical Disks,” IEEE Computer, vol. 21, No. 6, pp. 11-22 (1988). |
http://en.wikipedia.org/wiki/Naive—Bayes—classifier, printed on Jun. 1, 2010, in 7 pages. |
Jander, “Launching Storage-Area Net,” Data Communications, US, McGraw Hill, NY, vol. 27, No. 4(Mar. 21, 1998), pp. 64-72. |
Microsoft, about using Microsoft Excel 2000 files with earlier version Excel, 1985-1999, Microsoft, p1. |
Rosenblum et al., “The Design and Implementation of a Log-Structure File System,” Operating Systems Review SIGOPS, vol. 25, No. 5, New York, US, pp. 1-15 (May 1991). |
Szor, The Art of Virus Research and Defense, Symantec Press (2005) ISBN 0-321-30454-3, Part 1. |
Szor, The Art of Virus Research and Defense, Symantec Press (2005) ISBN 0-321-30454-3, Part 2. |
Toyoda, Fundamentals of Oracle 8i Backup and Recovery, DB Magazine, Japan, Shoeisha, Co., Ltd.; Jul. 2000; vol. 10, No. 4, 34 total pages. |
Weatherspoon H. et al., “Silverback: A Global-Scale Archival System,” Mar. 2001, pp. 1-15. |
Witten et al., Data Mining: Practical Machine Learning Tools and Techniques, Ian H. Witten & Eibe Frank, Elsevier (2005) ISBN 0-12-088407-0, Part 1. |
Witten et al., Data Mining: Practical Machine Learning Tools and Techniques, Ian H. Witten & Eibe Frank, Elsevier (2005) ISBN 0-12-088407-0, Part 2. |
Communication in European Application No. 02 747 883.3, mailed Jul. 20, 2007). |
European Communication, Application No. 01906806.3, dated Sep. 21, 2010, 6 pages. |
European Examination Report, Application No. 01906806.3-1244, dated Sep. 13, 2006, 3 pages. |
European Office Action dated Mar. 26, 2008, EP019068337. |
European Office Action dated Apr. 22, 2008, EP02778952.8. |
International Preliminary Report on Patentability dated May 15, 2006, PCT/US2004/038278 filed Nov. 15, 2004, (Publication No. WO2005/050381). |
International Search Report and Preliminary Report on Patentability dated Feb. 21, 2002, PCT/US2001/003183. |
International Search Report and Preliminary Report on Patentability dated Sep. 29, 2001, PCT/US2001/003209. |
International Search Report and Preliminary Report on Patentability dated Mar. 3, 2003, PCT/US2002/018169. |
International Search Report and Preliminary Report on Patentability dated May 4, 2001, PCT/US2000/019363. |
International Search Report dated Feb. 1, 2006, PCT/US2004/038278. |
International Search Report dated Aug. 22, 2002, PCT/US2002/017973. |
International Search Report dated Dec. 21, 2000, PCT/US2000/019324. |
International Search Report dated Dec. 21, 2000, PCT/US2000/019329. |
International Search Report dated Dec. 23, 2003, PCT/US2001/003088. |
International Search Report on Patentability dated Dec. 21, 2000 in PCT/US00/19364 filed Nov. 14, 2000, (Publication No. WO01/04756). |
Japanese Office Action dated Jul. 15, 2008, Application No. 2003/502696. |
Supplementary European Search Report dated Sep. 21, 2006, EP02778952.8. |
Supplementary European Search Report, European Patent Application No. 02747883, Sep. 15, 2006; 2 pages. |
Translation of Japanese Office Action dated Mar. 25, 2008, Application No. 2003-504235. |
Number | Date | Country | |
---|---|---|---|
20130006944 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
60519949 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10990360 | Nov 2004 | US |
Child | 12467596 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13293975 | Nov 2011 | US |
Child | 13607561 | US | |
Parent | 12467596 | May 2009 | US |
Child | 13293975 | US |