All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
This application may be related to International Patent Application No. PCT/US2014/012388, filed Jan. 21, 2014, International Patent Application No. PCT/US2015/033809, filed Jun. 2, 2015, and International Patent Application No. PCT/US2016/037080, filed Jun. 10, 2016, each of which is herein incorporated by reference in its entirety.
Campero M, Serra J, Ochoa J L. Peripheral projections of sensory fascicles in the human superficial radial nerve. Brain 2005; 128:892-895.
Halonen J P, Jones S, Shawkat F. Contribution of cutaneous and muscle afferent fibres to cortical SEPs following median and radial nerve stimulation in man Electroenceph Clin Neurophysiol 1988; 71:331-335.
Laroy V, Spaans F, Reulen J. The sensory innervation pattern of the fingers. J Neurol 1998; 245:294-298.
Nardone A, Schieppati M. Influences of transcutaneous electrical stimulation of cutaneous and mixed nerves on subcortical and cortical somatosensory evoked potentials. Electroenceph Clin Neurophysiol 1989; 74:24-35.
Takanashi M, Abe K, Yanagihara T, Sakoda S, Tanaka H, Hirabuki N, Nakamura H, Fujita N. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum. Neuroradiology 2003; 45:149-152.
Wardman D L, Gandevia S C, Colebatch J G. Cerebral, subcortical, and cerebellar acivation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study. Physiol Rep, 2014; 2(4):1-16.
Wiestler T, McGonigle D J, Diedrichsen J. Integration of sensory and motor representations of single fingers in the human cerebellum. J Neurophysiol 2011; 105:3042-305.
Embodiments of the invention relate generally to systems, devices, and methods for treating tremor using peripheral nerve stimulation, and more specifically to systems, devices, and methods for stimulating peripheral nerves in the fingers or hand to treat tremor.
Essential tremor (ET) is the most common movement disorder in the United States and currently affects an estimated 10 million individuals. Its prevalence increases with age, making it a growing concern for the U.S. aging population. ET affects 6.3% of the population over 65, but over 20% of people over the age of 95. It is characterized by 4-7 Hz oscillatory movement in the distal limbs, especially the hands. Unlike Parkinsonian tremor, which predominantly occurs during rest, essential tremor is postural (induced by holding a limb against gravity) and kinetic (present during movement).
Tremor is also a significant problem for patients with orthostatic tremor, multiple sclerosis, dystonia and Parkinson's disease. Although the underlying etiology of tremor in these conditions differs from that of ET, treatment options are similarly limited.
A number of conditions, such as tremors, can be treated through some form of transcutaneous peripheral nerve stimulation. Previous work and patent applications (e.g., PCT/US2014/012388, PCT/US2015/033809, PCT/US2016/037080) have focused on applying stimulation to the median, radial, and/or ulnar nerves on the arm or wrist. However, applying stimulation to the arm or wrist remains challenging because of natural variation in wrist diameter, nerve locations, nerve depolarization characteristics, and skin conduction. This leads to significant challenges in designing a device to comfortably, safely, and reliably stimulate the peripheral nerves across a broad population of potential users. For example, variation in the size and location of the ulnar styloid process (i.e., a bony formation on the wrist) may prevent the comfortable application of a wrist-worn stimulator that requires an electrode to conform to the wearer's skin. Additionally, as the wrist has a large range of motion with many tendons, there may be greater variability in stimulation sensation of a wrist worn stimulator due to normal hand motion.
The present invention relates generally to systems, devices, and methods for treating tremor using peripheral nerve stimulation, and more specifically to systems, devices, and methods for stimulating peripheral nerves in the fingers or hand to treat tremor.
Prior neurophysiology research studies have demonstrated that electrical stimulation of the digits in the hand can activate similar pathways in the brain and spine as stimulation of individual mixed nerves at the wrist (Halonen et al., 1988; Nardone et al., 1990; Takanashi et al., 2003; Wiestler et al., 2011; Wardman et al., 2014). The sensory innervation of the hand has been mapped out in detail (Laroy et al., 1998; Campero et al., 2005), providing a rationale for selective targeting of individual nerves by applying focal cutaneous stimulation of digits.
To overcome challenges with anatomical sizing, variation in nerve location, and comfort, this application describes devices and methods for applying electrical stimulation to the nerves that innervate the hand and fingers. As shown in
As a proof of concept, two patients with tremor have been stimulated on their index finger to assess the effect of electrical stimulation of the finger on reduction of hand tremors. Patient 01 was a 69 year old male. The top and middle segments of the index finger were stimulated on the palmar side of the finger with a 1 cm×2 cm electrode pair, as shown in
Additionally, social stigma and embarrassment greatly affect the quality of life of people with ET and other types of hand tremor. A hand-worn device or ring can have a form that is more discreet than an arm or wrist-worn device. This is relevant during social and other public situations when it is desired to keep the tremor reduction therapy discreet. Additionally, compared to the arm or wrist, less power is required to stimulate the branches of the median, radial, and ulnar nerves in the hand and fingers. This would allow for a smaller power source and stimulator.
Additionally, a peripheral nerve stimulator worn on the finger, such as a ring, provides better contact with the wearer's skin. This is due in part to the tissue composition in the finger, which includes malleable fatty tissue, and reduced patient to patient size variation in the finger as compared to other body parts, such as the wrist. Movement of the finger is less likely to move the device relative to the locations of the median, radial, and ulnar nerves. This allows a hand or finger-worn device to maintain strong contact with the skin throughout the range of normal motion. This contact enables the use of dry- or wetted-electrodes instead of sticky gels and adhesives.
Additionally, there are advantages to measuring upper extremity tremor motion at the hand and/or fingers, as opposed to the arm and/or wrist. While it is possible to generate data and measure tremor motion at the arm and/or wrist, it is more accurate to do so at the hand and/or fingers. Tremor at the hand and/or fingers is a better representation of the functional impact that tremor has on a patient's ability to perform activities of daily living.
In some embodiments, a wearable ring device for treating hand tremors by electrically stimulating one or more sensory nerves on a finger of a patient's hand is provided. The device includes an annular member defining an aperture that is sized to receive a finger of the patient; a first electrode, a second electrode, and a third electrode housed on an inside surface of the annular member and configured to be in contact with the patient's skin when worn on the finger; and a stimulation unit that is configured to connect to the annular member, wherein when the unit is connected to the annular member the unit is in electrical communication to the first electrode, the second electrode, and the third electrode, wherein the unit houses a power source and a pulse generator configured to deliver pulsed electrical stimulation to the one or more sensory nerves in the finger.
In some embodiments, when worn the first electrode is configured to be positioned on the dorsal side of the finger, the second electrode is configured to be positioned on the palmar side of the finger, and the third electrode is configured to be positioned between the first and second electrodes.
In some embodiments, the third electrode is a common ground electrode.
In some embodiments, the finger is the index finger, middle finger, or the ringer finger.
In some embodiments, the device further includes a fourth electrode housed on the inside surface of the annular member.
In some embodiments, the power source is a capacitor.
In some embodiments, the power source is a rechargeable battery.
In some embodiments, the stimulation unit is detachable.
In some embodiments, the third electrode is configured to be positioned approximately equidistant between the first and second electrodes when the device is worn.
In some embodiments, the first, second, and third electrodes comprise a dry conductive polymer or rubber with a textured surface configured to capture moisture from the skin, air, or other external sources.
In some embodiments, the first, second, and third electrodes comprise a wicking conductive fabric configured to capture moisture from the skin, air, or other external sources.
In some embodiments, the device further includes a wireless transceiver electrically connected to the pulse generator and configured to communicate with at least one external electronic device.
In some embodiments, the annular member comprises a flexible housing material, and the first, second, and third electrodes are electrically connected with flexible electronic circuitry that is configured to conform to a predetermined range of finger diameters and configured to accommodate variation in finger diameter over time.
In some embodiments, the annular member comprises one or more motion sensors, and wherein the pulse generator is configured to modulate the pulsed electrical stimulation based on measurements of tremor motion and activity from the one or more motion sensors, wherein the one or more motion sensors are selected from the group consisting of an inertial measurement unit, an accelerometer, a gyroscope, and a magnetometer.
In some embodiments, the one or more motion sensors in the annular member along with a processor located in the stimulation unit or at least one external device are configured to measure and detect one or more predetermined motions and to modulate the pulsed electrical stimulation based on the measurement and detection of the one or more predetermined motions.
In some embodiments, one or more predetermined motions is selected from the group consisting of knocking the hand of the patient on an object a predetermined number of times, raising the arm up, waving the hand, opening and closing the hand, tapping the finger on a table a predetermined number of times, snapping the fingers, clapping of hands, and pointing.
In some embodiments, the inside surface of the annular member is free from gels and adhesives.
In some embodiments, the device further includes a second annular member defining an aperture that is sized to receive the first finger of the patient, wherein the second annular member comprises one or more motion sensors configured to measure motion of the patient's hand.
In some embodiments, the second annular member is configured to communicate with the stimulation unit and/or the at least one external device.
In some embodiments, the second annular member is configured to detachably connect to the stimulation unit.
In some embodiments, the second annular member comprises a wireless transceiver.
In some embodiments, when worn the first electrode is configured to be positioned on the dorsal side of the first finger, the second electrode is configured to be positioned on the palmar side of the first finger, and the third electrode is a circumferential electrode configured to be positioned circumferentially on the inside surface of the annular member and proximal of first and second electrodes.
In some embodiments, a wearable ring device for treating hand tremors by electrically stimulating one or more sensory nerves on one or more fingers of a patient's hand is provided. The device includes a first annular member defining an aperture that is sized to receive a first finger of the patient, wherein the first finger is an index, middle, or ring finger; a second annular member defining an aperture that is sized to receive a second finger of the patient; a first electrode and a second electrode disposed on an inside surface of the first annular member and configured to be in contact with the patient's skin when worn on the first finger; a third electrode and a fourth electrode disposed on an inside surface of the annular member and configured to be in contact with the patient's skin when worn on the second finger; and a unit housing a power source and a pulse generator configured to deliver pulsed electrical stimulation to the one or more sensory nerves through the first electrode and the second electrode, and the third electrode and the fourth electrode.
In some embodiments, a method of reducing tremor in a patient's hand is provided. The method includes measuring motion in the patient's hand with a sensor worn on one of the patient's fingers; determining one or more characteristics of the tremor based on a signal generated by the motion sensor; and stimulating one or more sensory nerves in a first finger of the patient according to a set of stimulation parameters using a wearable stimulator, wherein the set of stimulation parameters is based in part on the one or more of the determined tremor characteristics, wherein the one or more sensory nerves is selected from the group consisting of the medial nerve, the radial nerve, and the ulnar nerve.
In some embodiments, the one or more characteristics of the tremor is selected from the group consisting of the tremor frequency, tremor amplitude, and tremor phase.
In some embodiments, the step of stimulating one or more sensory nerves comprises stimulating two sensory nerves.
In some embodiments, the method further includes isolating tremor based motion from non-tremor based motion in the measured motion.
In some embodiments, a system for treating hand tremors by electrically stimulating one or more sensory nerves on a finger of a patient's hand is provided. The system includes a ring device that includes an annular member defining an aperture that is sized to receive a first finger of the patient, wherein the first finger is an index or a middle finger; and a first electrode, a second electrode, and a third common ground electrode housed on an inside surface of the annular member and configured to be in contact with the patient's skin when worn on the first finger. The system further includes a wrist unit in electrical communication with the ring device that is configured to be worn around the patient's wrist, wherein the wrist unit houses a processor, a power source, and a pulse generator configured to deliver pulsed electrical stimulation to the one or more sensory nerves in the first finger through the ring device.
In some embodiments, a system for treating hand tremors by electrically stimulating one or more sensory nerves on a finger of a patient's hand is provided. The system includes a ring device that includes an annular member defining an aperture that is sized to receive a first finger of the patient, wherein the first finger is an index or a middle finger; and a first electrode, a second electrode, and a third common ground electrode housed on an inside surface of the annular member and configured to be in contact with the patient's skin when worn on the first finger. The system further includes a mobile phone comprising a processor and a battery; and an adapter in electrical communication with both the ring device and the mobile phone, wherein the adapter comprises a pulse generator configured to deliver pulsed electrical stimulation to the one or more sensory nerves in the first finger through the ring device, wherein the mobile phone is configured to control the pulse generator.
The devices and methods of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein. The present application discloses devices and methods to reduce tremor in an individual. In some embodiments, a device is provided. The device can include a housing and one or more affectors, power sources, or controls. In some embodiments, the device additionally includes one or more sensors. Further aspects and embodiments of the present invention are set forth herein.
These and other aspects and embodiments of the invention are described in greater detail below, with reference to the drawing figures.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Our invention is a device and system to measure and collect motion data, analyze said data, as to interpret how these measures may influence motion disorders, and stimulate individual peripheral nerve targets to reduce tremor. The purpose of the data analysis is to see how the measured data may influence motion disorders. The applied stimulation may or may not be modified based on the measured data.
As shown in
In the above embodiment, the ring-like unit may contain sensors to measure tremor motion and activity using an inertial measurement unit (IMU), accelerometer, gyroscope, and/or magnetometer.
In any of the above embodiments, as shown in
In an extension of the above embodiment, as shown in
In the above embodiments, the ring unit 1000 and/or stimulation unit 1002 can be charged directly with a cable (e.g., micro USB), a contact dock 1006 with direct connection to the power source, inductive charging, direct contact with the stimulation electrodes (i.e., electrodes contact the charging station, which does not require a separate charging connection), and/or a separate carrying case, as shown in
Another embodiment as shown in
Another embodiment as shown in
In another related embodiment as shown in
In another embodiment as shown in
In another embodiment, the ring-like unit is a stand-alone device that has a motion monitor, electrodes, electrical stimulation signal generator, power source, and microprocessor to control the stimulation. The ring-like unit may provide transcutaneous stimulation to the branches of the median, radial, and/or ulnar nerves in the finger.
In another embodiment as shown in
In another embodiment of the configuration above as shown in
In one embodiment as shown in
In one embodiment as shown in
In one embodiment as shown in
In one embodiment as shown in
In one embodiment as shown in
In another embodiment as shown in
In another embodiment, the ring-like unit connects wirelessly (e.g., low-energy Bluetooth) or is physically tethered to an external device that contains an electrical stimulation signal generator, power source, and a microprocessor to control the stimulation, such as a smart phone or tablet. The ring-like unit would transcutaneously provide electrical stimulation to the branches of the median, radial, and/or ulnar nerves in the finger.
In some embodiments as shown in
In some embodiments as shown in
In some embodiments, the electrodes could be a wicking fabric impregnated with conductive fillers or fibers. The wicking fabric would draw moisture from the skin or from the surrounding air (e.g., humidity) to improve conductivity of the stimulation.
In some embodiments as shown in
In some embodiments, the wearable tremor monitor can use a plurality of sensors to collect, store, and analyze biological measures about the wearer including, but not limited to, motion (e.g., accelerometers, gyroscopes, magnetometer, bend sensors, barometer, altimeter), cardiovascular measures (e.g., heart rate, heart rate variability, blood pressure, cardiac output), skin conductance (e.g., skin conductance response, galvanic skin response), skin temperature, and sleep state (e.g., awake, light sleep, deep sleep, REM). In particular, studies have shown that increased stress levels can increase tremor in people with essential tremor, Parkinson's disease, and other diseases causing tremor. Thus, using statistical analysis and data mining techniques, including, but not limited to, logistic regression, linear regression, support vector machines, and Naïve Bayes classifiers, these biological measures can be analyzed to assess a person's state, including, but not limited to, stress level. This, in turn, can serve as a predictor for fluctuations in tremor level. In an early pilot study, patients were asked to perform activities prior to and after a stressful event. In this case, the stressful event was to take a timed math test. In preliminary studies, the patients' amplitude of tremor appeared to increase by about 20% after the stressful timed math test.
The wearable tremor monitor can have a microprocessor to analyze biological measures about the wearer to: determine or predict the onset of increased tremor activity, set parameters of the stimulation waveform applied by the stimulation unit, and/or adapt the stimulation waveform applied by the stimulation unit in real time. Parameters of the stimulation waveform that could be modified based on analysis of biological measures, include, but are not limited to, frequency, amplitude, shape, and burst sequence.
In one embodiment of the system, the wearable tremor monitor automatically detects and records stimulation usage to (1) track therapy compliance, (2) combine with the measurement of tremor activity to assess therapeutic effectiveness, and (3) determine or predict the onset of an increase or decrease in tremor activity.
In some embodiments, the wearable tremor monitor can have a visual, auditory, tactile (e.g., squeezing band), or vibrotactile cues to notify the wearer of key events based on analysis of biological measures, including, but not limited to, prediction of tremor onset, increase in tremor activity, and/or increase in stress level. The cuing system could also notify the wearer of other predetermined events or reminders set by the wearer. The cuing system is used to communicate information to the wearer, such as onset of increased tremor activity or other predetermined events in a more discreet, personalized way, without drawing attention from others in social situations.
In one embodiment, the wearable monitor can have a processing unit that collects, stores, processes, and analyzes the biological measures, along with other data input by the wearer.
In some embodiments, the wearable monitor can take user input about events, including diet history, medication history, caffeine intake, alcohol intake, etc. The monitor can use accelerometers to measure specific movements, gestures, or tapping patterns to record user inputs at specific prompts. Other touch sensors, such as resistive strips or pressure sensitive screens, or accelerometer and gyroscopes could be used to measure specific gestures, movements, or tapping to record user inputs. These gesture based measures to record user input minimized the complexity of steps required to input user data into the device. The data can be stored in memory and processed by the processing unit. In some embodiments, the data can be transmitted from the wearable monitor to an external computing device, such as a smartphone or a tablet.
In one embodiment, the wearable monitor can connect with other applications, such as calendars and activity logs to sync and track events, or a saved calendar can be saved and stored on the device. In some embodiments, the wearable monitor can communicate with a variety of computing devices, such as a smart phone, tablet, laptop, or desktop computer that have the appropriate software.
In one embodiment, the wearable monitor can have a GPS or similar device to track the location and assess activity of the wearer. GPS measures can be combined with mapping or location systems to determine context of the wearer's activity (e.g., gym versus office) or determine changes in elevation during specific activities, such as running or cycling. This may also be done by adding sensors to the wearable monitor such as barometers and altimeters
In one embodiment, the ring and stimulation unit have a unique power charging station that can simultaneously charge both devices units. The charging station could have a custom direct electrical connection to the power source of the stimulation units or could charge the units inductively (e.g., wirelessly) in a close proximity (
In one embodiment, the wearable monitor can track parameters about stimulation provided by the stimulation unit, including time of stimulation, duration of the stimulation session, and power used by the stimulation unit. This data can be stored on memory in the wearable monitor, processed by the wearable monitor, and/or transmitted to an external computing device, such as a smartphone, tablet, laptop, or desktop computer.
In some embodiments, the wearable monitor can communicate with an external computer or device (e.g., tablet, smartphone, smartwatch, or custom base station) to store data. Communication between the monitor and external device can be a direct, physical connection, or with a wireless communication connection such as Bluetooth, GSM, or cellular.
In some embodiments, the power source can be a rechargeable battery, which can be housed in the ring or stimulation unit, or can be used as a detachable power source that can be inserted into a port or receptacle in the ring or stimulation unit. Recharging the rechargeable battery can done through a wired connection or wirelessly.
In other embodiments, the power source can be a capacitor or a supercapacitor. Use of a capacitor may allow the size of the power source to be substantially reduced, which is important for a device that is designed to be worn on the finger. The capacitor can be recharged by an external power source through a wired connection or wirelessly (e.g., inductively). Recharging the capacitor can be performed between stimulations, during stimulations, or both.
It is understood that this disclosure, in many respects, is only illustrative of the numerous alternative device embodiments of the present invention. Changes may be made in the details, particularly in matters of shape, size, material and arrangement of various device components without exceeding the scope of the various embodiments of the invention. Those skilled in the art will appreciate that the exemplary embodiments and descriptions thereof are merely illustrative of the invention as a whole. While several principles of the invention are made clear in the exemplary embodiments described above, those skilled in the art will appreciate that modifications of the structure, arrangement, proportions, elements, materials and methods of use, may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the scope of the invention. In addition, while certain features and elements have been described in connection with particular embodiments, those skilled in the art will appreciate that those features and elements can be combined with the other embodiments disclosed herein.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application claims the benefit as a continuation of U.S. patent application Ser. No. 15/762,043 filed on Mar. 21, 2018, now U.S. Pat. No. 10,603,482, which is the U.S. National Stage of PCT App. No. PCT/US2016/053513 which claims priority to U.S. Provisional Application No. 62/222,210, filed Sep. 23, 2015, and U.S. Provisional Application No. 62/251,617, filed Nov. 5, 2015, each of the foregoing of which is herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3204637 | Frank et al. | Sep 1965 | A |
3870051 | Brindley | Mar 1975 | A |
4300575 | Wilson | Nov 1981 | A |
4458696 | Larimore | Jul 1984 | A |
4461075 | Bailey | Jul 1984 | A |
4539996 | Engel | Sep 1985 | A |
4569351 | Tang | Feb 1986 | A |
4582049 | Ylvisaker | Apr 1986 | A |
4729377 | Granek et al. | Mar 1988 | A |
4739764 | Lue et al. | Apr 1988 | A |
4763659 | Dunseath, Jr. | Aug 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4981146 | Bertolucci | Jan 1991 | A |
4982432 | Clark et al. | Jan 1991 | A |
5003978 | Dunseath, Jr. | Apr 1991 | A |
5052391 | Silverstone et al. | Oct 1991 | A |
5070862 | Berlant | Dec 1991 | A |
5137507 | Park | Aug 1992 | A |
5330516 | Nathan | Jul 1994 | A |
5397338 | Grey et al. | Mar 1995 | A |
5514175 | Kim et al. | May 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5562707 | Prochazka et al. | Oct 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5573011 | Felsing | Nov 1996 | A |
5575294 | Perry et al. | Nov 1996 | A |
5606968 | Mang | Mar 1997 | A |
5643173 | Welles | Jul 1997 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5833709 | Rise et al. | Nov 1998 | A |
5833716 | Bar-Or et al. | Nov 1998 | A |
5899922 | Loos | May 1999 | A |
6016449 | Fischell et al. | Jan 2000 | A |
6076018 | Sturman | Jun 2000 | A |
6081744 | Loos | Jun 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6178352 | Gruzdowich et al. | Jan 2001 | B1 |
6351674 | Silverstone | Feb 2002 | B2 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6445955 | Michelson et al. | Sep 2002 | B1 |
6449512 | Boveja | Sep 2002 | B1 |
6505074 | Boveja et al. | Jan 2003 | B2 |
6546290 | Shloznikov | Apr 2003 | B1 |
6564103 | Fischer et al. | May 2003 | B2 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6652449 | Gross et al. | Nov 2003 | B1 |
6701185 | Burnett et al. | Mar 2004 | B2 |
6704603 | Gesotti | Mar 2004 | B1 |
6731987 | McAdams et al. | May 2004 | B1 |
6735474 | Loeb et al. | May 2004 | B1 |
6735480 | Giuntoli et al. | May 2004 | B2 |
6788976 | Gesotti | Sep 2004 | B2 |
6819956 | DiLorenzo | Nov 2004 | B2 |
6829510 | Nathan et al. | Dec 2004 | B2 |
6836684 | Rijkhoff et al. | Dec 2004 | B1 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6892098 | Ayal et al. | May 2005 | B2 |
6937905 | Carroll et al. | Aug 2005 | B2 |
6959215 | Gliner et al. | Oct 2005 | B2 |
6959216 | Faghri | Oct 2005 | B2 |
6988005 | McGraw et al. | Jan 2006 | B2 |
7010352 | Hogan | Mar 2006 | B2 |
7089061 | Grey | Aug 2006 | B2 |
7146220 | Dar et al. | Dec 2006 | B2 |
7162305 | Tong et al. | Jan 2007 | B2 |
7171266 | Gruzdowich et al. | Jan 2007 | B2 |
7177694 | Elbaum | Feb 2007 | B2 |
7177703 | Boveja et al. | Feb 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7228178 | Carroll et al. | Jun 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236830 | Gliner | Jun 2007 | B2 |
7254444 | Moore et al. | Aug 2007 | B2 |
7277758 | DiLorenzo | Oct 2007 | B2 |
7324851 | DiLorenzo | Jan 2008 | B1 |
7326235 | Edwards | Feb 2008 | B2 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7349739 | Harry et al. | Mar 2008 | B2 |
7353064 | Gliner et al. | Apr 2008 | B2 |
7369896 | Gesotti | May 2008 | B2 |
7499747 | Kieval et al. | Mar 2009 | B2 |
7529582 | DiLorenzo | May 2009 | B1 |
7558610 | Odderson | Jul 2009 | B1 |
7636602 | Baru Fassio et al. | Dec 2009 | B2 |
7643880 | Tanagho et al. | Jan 2010 | B2 |
7643882 | Boston | Jan 2010 | B2 |
7647112 | Tracey et al. | Jan 2010 | B2 |
7650190 | Zhou et al. | Jan 2010 | B2 |
7742820 | Wyler et al. | Jun 2010 | B2 |
7761166 | Giftakis et al. | Jul 2010 | B2 |
7769464 | Gerber et al. | Aug 2010 | B2 |
7857771 | Alwan et al. | Dec 2010 | B2 |
7899527 | Yun et al. | Mar 2011 | B2 |
7899556 | Nathan et al. | Mar 2011 | B2 |
7917201 | Gozani et al. | Mar 2011 | B2 |
7930034 | Gerber | Apr 2011 | B2 |
7949403 | Palermo et al. | May 2011 | B2 |
7957814 | Goetz et al. | Jun 2011 | B2 |
7974696 | DiLorenzo | Jul 2011 | B1 |
7974698 | Tass et al. | Jul 2011 | B2 |
7991476 | Nachum | Aug 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7998092 | Avni et al. | Aug 2011 | B2 |
8000796 | Tass et al. | Aug 2011 | B2 |
8025632 | Einarsson | Sep 2011 | B2 |
8046083 | Tegenthoff et al. | Oct 2011 | B2 |
8075499 | Nathan et al. | Dec 2011 | B2 |
8086318 | Strother et al. | Dec 2011 | B2 |
8121694 | Molnar et al. | Feb 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8165685 | Knutson et al. | Apr 2012 | B1 |
8170658 | Dacey, Jr. et al. | May 2012 | B2 |
8175718 | Wahlgren et al. | May 2012 | B2 |
8187209 | Guiffrida et al. | May 2012 | B1 |
8195287 | Dacey, Jr. et al. | Jun 2012 | B2 |
8209036 | Nathan et al. | Jun 2012 | B2 |
8219188 | Craig | Jul 2012 | B2 |
8233988 | Errico et al. | Jul 2012 | B2 |
8260439 | Diubaldi et al. | Sep 2012 | B2 |
8265763 | Fahey | Sep 2012 | B2 |
8301215 | Lee | Oct 2012 | B2 |
8306624 | Gerber et al. | Nov 2012 | B2 |
8308665 | Harry et al. | Nov 2012 | B2 |
8313443 | Tom | Nov 2012 | B2 |
8326432 | Kalisek | Dec 2012 | B2 |
8343026 | Gardiner et al. | Jan 2013 | B2 |
8364257 | Van Den Eerenbeemd et al. | Jan 2013 | B2 |
8374701 | Hyde et al. | Feb 2013 | B2 |
8380314 | Panken et al. | Feb 2013 | B2 |
8382688 | Dar et al. | Feb 2013 | B2 |
8391970 | Tracey et al. | Mar 2013 | B2 |
8396556 | Libbus et al. | Mar 2013 | B2 |
8409116 | Wang et al. | Apr 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8414507 | Asada | Apr 2013 | B2 |
8417351 | Kilger | Apr 2013 | B2 |
8428719 | Napadow | Apr 2013 | B2 |
8430805 | Burnett et al. | Apr 2013 | B2 |
8435166 | Burnett et al. | May 2013 | B2 |
8447411 | Skelton et al. | May 2013 | B2 |
8452410 | Emborg et al. | May 2013 | B2 |
8463374 | Hudson et al. | Jun 2013 | B2 |
8473064 | Castel et al. | Jun 2013 | B2 |
8548594 | Thimineur et al. | Oct 2013 | B2 |
8571687 | Libbus et al. | Oct 2013 | B2 |
8581731 | Purks et al. | Nov 2013 | B2 |
8583238 | Heldman et al. | Nov 2013 | B1 |
8588884 | Hegde et al. | Nov 2013 | B2 |
8588917 | Whitehurst et al. | Nov 2013 | B2 |
8608671 | Kinoshita et al. | Dec 2013 | B2 |
8626305 | Nielsen et al. | Jan 2014 | B2 |
8639342 | Possover | Jan 2014 | B2 |
8644904 | Chang et al. | Feb 2014 | B2 |
8644938 | Craggs | Feb 2014 | B2 |
8660656 | Moser et al. | Feb 2014 | B2 |
8666496 | Simon et al. | Mar 2014 | B2 |
8679038 | Giuffrida | Mar 2014 | B1 |
8682441 | De Ridder | Mar 2014 | B2 |
8688220 | Degiorgio et al. | Apr 2014 | B2 |
8694104 | Libbus et al. | Apr 2014 | B2 |
8694110 | Nathan et al. | Apr 2014 | B2 |
8702584 | Rigaux et al. | Apr 2014 | B2 |
8702629 | Giuffrida et al. | Apr 2014 | B2 |
8706241 | Firlik et al. | Apr 2014 | B2 |
8718780 | Lee | May 2014 | B2 |
8738143 | Tucker et al. | May 2014 | B2 |
8740825 | Ehrenreich et al. | Jun 2014 | B2 |
8744587 | Miesel et al. | Jun 2014 | B2 |
8755892 | Amurthur et al. | Jun 2014 | B2 |
8768452 | Gerber | Jul 2014 | B2 |
8788045 | Gross et al. | Jul 2014 | B2 |
8788049 | Lasko et al. | Jul 2014 | B2 |
8792977 | Kakei et al. | Jul 2014 | B2 |
8798698 | Kim et al. | Aug 2014 | B2 |
8821416 | Johansson et al. | Sep 2014 | B2 |
8825163 | Grill et al. | Sep 2014 | B2 |
8825165 | Possover | Sep 2014 | B2 |
8843201 | Heldman et al. | Sep 2014 | B1 |
8845494 | Whitall et al. | Sep 2014 | B2 |
8845557 | Giuffrida et al. | Sep 2014 | B1 |
8855775 | Leyde | Oct 2014 | B2 |
8862238 | Rahimi et al. | Oct 2014 | B2 |
8862247 | Schoendorf et al. | Oct 2014 | B2 |
8868177 | Simon et al. | Oct 2014 | B2 |
8874227 | Simon et al. | Oct 2014 | B2 |
8880175 | Simon | Nov 2014 | B2 |
8886321 | Rohrer et al. | Nov 2014 | B2 |
8892200 | Wagner et al. | Nov 2014 | B2 |
8897870 | De Ridder | Nov 2014 | B2 |
8903494 | Goldwasser et al. | Dec 2014 | B2 |
8920345 | Greenberg et al. | Dec 2014 | B2 |
8923970 | Bar-Yoseph et al. | Dec 2014 | B2 |
8948876 | Gozani et al. | Feb 2015 | B2 |
8961439 | Yang et al. | Feb 2015 | B2 |
8972017 | Dar et al. | Mar 2015 | B2 |
8989861 | Su et al. | Mar 2015 | B2 |
9002477 | Burnett | Apr 2015 | B2 |
9005102 | Burnett et al. | Apr 2015 | B2 |
9008781 | Ahmed | Apr 2015 | B2 |
9011310 | Ahmed | Apr 2015 | B2 |
9017273 | Burbank et al. | Apr 2015 | B2 |
9026216 | Rossi et al. | May 2015 | B2 |
9042988 | Dilorenzo | May 2015 | B2 |
9060747 | Salorio | Jun 2015 | B2 |
9089691 | Libbus et al. | Jul 2015 | B2 |
9095351 | Sachs et al. | Aug 2015 | B2 |
9095417 | Dar et al. | Aug 2015 | B2 |
9107614 | Halkias et al. | Aug 2015 | B2 |
9119964 | Marnfeldt | Sep 2015 | B2 |
9155885 | Wei et al. | Oct 2015 | B2 |
9155890 | Guntinas-Lichius et al. | Oct 2015 | B2 |
9162059 | Lindenthaler | Oct 2015 | B1 |
9168374 | Su | Oct 2015 | B2 |
9174045 | Simon et al. | Nov 2015 | B2 |
9186095 | Machado et al. | Nov 2015 | B2 |
9192763 | Gerber et al. | Nov 2015 | B2 |
9220431 | Holzhacker | Dec 2015 | B2 |
9220895 | Siff et al. | Dec 2015 | B2 |
9227056 | Heldman et al. | Jan 2016 | B1 |
9238137 | Einav et al. | Jan 2016 | B2 |
9238142 | Heldman et al. | Jan 2016 | B2 |
9242085 | Hershey et al. | Jan 2016 | B2 |
9248285 | Haessler | Feb 2016 | B2 |
9248286 | Simon et al. | Feb 2016 | B2 |
9248297 | Hoyer et al. | Feb 2016 | B2 |
9254382 | Ahmad et al. | Feb 2016 | B2 |
9259577 | Kaula et al. | Feb 2016 | B2 |
9265927 | Yonce et al. | Feb 2016 | B2 |
9282928 | Giffrida | Mar 2016 | B1 |
9289607 | Su et al. | Mar 2016 | B2 |
9301712 | McNames et al. | Apr 2016 | B2 |
9302046 | Giuffrida et al. | Apr 2016 | B1 |
9311686 | Roush et al. | Apr 2016 | B2 |
9314190 | Giuffrida et al. | Apr 2016 | B1 |
9314622 | Embrey et al. | Apr 2016 | B2 |
9332918 | Buckley et al. | May 2016 | B1 |
9339213 | Otsamo et al. | May 2016 | B2 |
9339641 | Rajguru et al. | May 2016 | B2 |
9345872 | Groteke | May 2016 | B2 |
9364657 | Kiani et al. | Jun 2016 | B2 |
9364672 | Marnfeldt | Jun 2016 | B2 |
9375570 | Kiani et al. | Jun 2016 | B2 |
9387338 | Burnett | Jul 2016 | B2 |
9393430 | Demers et al. | Jul 2016 | B2 |
9408683 | St. Anne et al. | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9415205 | Lasko et al. | Aug 2016 | B2 |
9452287 | Rosenbluth et al. | Sep 2016 | B2 |
9468753 | Fisher et al. | Oct 2016 | B2 |
9474898 | Gozani et al. | Oct 2016 | B2 |
9549872 | Chen et al. | Jan 2017 | B2 |
9586038 | Kosierkiewicz | Mar 2017 | B1 |
9597509 | Hoffer et al. | Mar 2017 | B2 |
9610442 | Yoo et al. | Apr 2017 | B2 |
9610459 | Burnett et al. | Apr 2017 | B2 |
9615797 | John | Apr 2017 | B2 |
9630004 | Rajguru et al. | Apr 2017 | B2 |
9649486 | Holzhacker | May 2017 | B2 |
9656070 | Gozani | May 2017 | B2 |
9669211 | Wijting et al. | Jun 2017 | B2 |
9675800 | Li et al. | Jun 2017 | B2 |
9675801 | Kong et al. | Jun 2017 | B2 |
9707393 | Hsueh et al. | Jul 2017 | B2 |
9731126 | Ferree et al. | Aug 2017 | B2 |
9757584 | Burnett | Sep 2017 | B2 |
9782584 | Cartledge et al. | Oct 2017 | B2 |
9861283 | Giuffrida | Jan 2018 | B1 |
9877679 | Giuffrida | Jan 2018 | B1 |
9877680 | Giuffrida et al. | Jan 2018 | B1 |
9884179 | Bouton et al. | Feb 2018 | B2 |
9924899 | Pracar et al. | Mar 2018 | B2 |
9956395 | Bikson et al. | May 2018 | B2 |
9974478 | Brokaw et al. | May 2018 | B1 |
9980659 | Sadeghian-Motahar et al. | May 2018 | B2 |
10004900 | Kent et al. | Jun 2018 | B2 |
10016600 | Creasey et al. | Jul 2018 | B2 |
10022545 | Giuffrida | Jul 2018 | B1 |
10028695 | Machado et al. | Jul 2018 | B2 |
10045740 | John | Aug 2018 | B2 |
10046161 | Biasiucci et al. | Aug 2018 | B2 |
10076656 | Dar et al. | Sep 2018 | B2 |
10080885 | Nathan et al. | Sep 2018 | B2 |
10112040 | Herb et al. | Oct 2018 | B2 |
10118035 | Perez et al. | Nov 2018 | B2 |
10130809 | Cartledge et al. | Nov 2018 | B2 |
10130810 | Ferree et al. | Nov 2018 | B2 |
10137025 | Fior et al. | Nov 2018 | B2 |
10173060 | Wong et al. | Jan 2019 | B2 |
10179238 | Wong et al. | Jan 2019 | B2 |
10213593 | Kaplan et al. | Feb 2019 | B2 |
10213602 | Ironi et al. | Feb 2019 | B2 |
10232174 | Simon et al. | Mar 2019 | B2 |
10252053 | Page et al. | Apr 2019 | B2 |
10286210 | Yoo et al. | May 2019 | B2 |
10293159 | Kong et al. | May 2019 | B2 |
10335594 | Lin et al. | Jul 2019 | B2 |
10335595 | Ferree et al. | Jul 2019 | B2 |
10342977 | Raghunathan | Jul 2019 | B2 |
10398896 | Lin et al. | Sep 2019 | B2 |
10456573 | Feinstein et al. | Oct 2019 | B1 |
10463854 | Perez | Nov 2019 | B2 |
10500396 | Tamaki et al. | Dec 2019 | B2 |
10537732 | Nachum et al. | Jan 2020 | B2 |
10549093 | Wong et al. | Feb 2020 | B2 |
10556107 | Yoo et al. | Feb 2020 | B2 |
10561839 | Wong et al. | Feb 2020 | B2 |
10603482 | Hamner et al. | Mar 2020 | B2 |
10610114 | Buckley et al. | Apr 2020 | B2 |
10625074 | Rosenbluth et al. | Apr 2020 | B2 |
10632312 | Ziv | Apr 2020 | B2 |
10661082 | Kerselaers | May 2020 | B2 |
10722709 | Yoo et al. | Jul 2020 | B2 |
10765856 | Wong et al. | Sep 2020 | B2 |
10773079 | Keller et al. | Sep 2020 | B2 |
10780269 | Gozani et al. | Sep 2020 | B2 |
10786669 | Rajguru et al. | Sep 2020 | B2 |
10814130 | Wong et al. | Oct 2020 | B2 |
10814131 | Goldwasser et al. | Oct 2020 | B2 |
10835736 | Horter et al. | Nov 2020 | B2 |
10850090 | Rosenbluth et al. | Dec 2020 | B2 |
10870002 | Wybo et al. | Dec 2020 | B2 |
10905879 | Wong et al. | Feb 2021 | B2 |
10918853 | Creasey et al. | Feb 2021 | B2 |
10940311 | Gozani et al. | Mar 2021 | B2 |
10945879 | Black et al. | Mar 2021 | B2 |
10960207 | Wong et al. | Mar 2021 | B2 |
10967177 | Lee | Apr 2021 | B2 |
11026835 | Black et al. | Jun 2021 | B2 |
11033206 | Roh | Jun 2021 | B2 |
11033731 | Jeffery et al. | Jun 2021 | B2 |
11033736 | Edgerton et al. | Jun 2021 | B2 |
11058867 | Nathan et al. | Jul 2021 | B2 |
11077300 | McBride | Aug 2021 | B2 |
11077301 | Creasey et al. | Aug 2021 | B2 |
11141586 | Campean et al. | Oct 2021 | B2 |
11141587 | Campean et al. | Oct 2021 | B2 |
11160971 | Sharma et al. | Nov 2021 | B2 |
11213681 | Raghunathan | Jan 2022 | B2 |
11224742 | Burnett | Jan 2022 | B2 |
11247040 | Ferree et al. | Feb 2022 | B2 |
11247053 | Rajguru et al. | Feb 2022 | B2 |
11266836 | Charlesworth et al. | Mar 2022 | B2 |
11331480 | Hamner et al. | May 2022 | B2 |
11344722 | Wong et al. | May 2022 | B2 |
11357981 | Moaddeb et al. | Jun 2022 | B2 |
20010020177 | Gruzdowich | Sep 2001 | A1 |
20020161415 | Cohen et al. | Oct 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020177882 | DiLorenzo | Nov 2002 | A1 |
20030032992 | Thacker et al. | Feb 2003 | A1 |
20030045922 | Northrop | Mar 2003 | A1 |
20030088294 | Gesotti | May 2003 | A1 |
20030093098 | Heitzmann et al. | May 2003 | A1 |
20030149457 | Tcheng et al. | Aug 2003 | A1 |
20030181959 | Dobak, III | Sep 2003 | A1 |
20030187483 | Grey et al. | Oct 2003 | A1 |
20030195583 | Gruzdowich et al. | Oct 2003 | A1 |
20040015094 | Manabe et al. | Jan 2004 | A1 |
20040088025 | Gesotti | May 2004 | A1 |
20040093093 | Andrews | May 2004 | A1 |
20040127939 | Grey | Jul 2004 | A1 |
20040133249 | Gesotti | Jul 2004 | A1 |
20040167588 | Bertolucci | Aug 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040267331 | Koeneman et al. | Dec 2004 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050055063 | Loeb et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050075502 | Shafer | Apr 2005 | A1 |
20050171577 | Cohen et al. | Aug 2005 | A1 |
20050234309 | Klapper | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20060047326 | Wheeler | Mar 2006 | A1 |
20060052726 | Weisz et al. | Mar 2006 | A1 |
20060095088 | De Ridder | May 2006 | A1 |
20060161218 | Danilov | Jul 2006 | A1 |
20060173509 | Lee et al. | Aug 2006 | A1 |
20060184059 | Jadidi | Aug 2006 | A1 |
20060217781 | John | Sep 2006 | A1 |
20060224191 | DiLorenzo | Oct 2006 | A1 |
20060229678 | Lee | Oct 2006 | A1 |
20060253167 | Kurtz et al. | Nov 2006 | A1 |
20060276853 | Tass | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070073361 | Goren et al. | Mar 2007 | A1 |
20070123951 | Boston | May 2007 | A1 |
20070123952 | Strother et al. | May 2007 | A1 |
20070142862 | DiLorenzo | Jun 2007 | A1 |
20070156179 | Karashurov | Jul 2007 | A1 |
20070156182 | Castel et al. | Jul 2007 | A1 |
20070156183 | Rhodes | Jul 2007 | A1 |
20070156200 | Kornet et al. | Jul 2007 | A1 |
20070173899 | Levin et al. | Jul 2007 | A1 |
20070173903 | Goren et al. | Jul 2007 | A1 |
20070203533 | Goren et al. | Aug 2007 | A1 |
20070207193 | Zasler et al. | Sep 2007 | A1 |
20070282228 | Einav et al. | Dec 2007 | A1 |
20080004672 | Dalal et al. | Jan 2008 | A1 |
20080009772 | Tyler et al. | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080027507 | Bijelic et al. | Jan 2008 | A1 |
20080033259 | Manto et al. | Feb 2008 | A1 |
20080033504 | Bertolucci | Feb 2008 | A1 |
20080051839 | Libbus et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080058871 | Libbus et al. | Mar 2008 | A1 |
20080058893 | Noujokat | Mar 2008 | A1 |
20080147146 | Wahlgren et al. | Jun 2008 | A1 |
20080177398 | Gross et al. | Jul 2008 | A1 |
20080195007 | Podrazhansky et al. | Aug 2008 | A1 |
20080208288 | Gesotti | Aug 2008 | A1 |
20080216593 | Jacobsen et al. | Sep 2008 | A1 |
20080288016 | Amurthur et al. | Nov 2008 | A1 |
20080300449 | Gerber et al. | Dec 2008 | A1 |
20080312520 | Rowlandson et al. | Dec 2008 | A1 |
20090018609 | DiLorenzo | Jan 2009 | A1 |
20090076565 | Surwit | Mar 2009 | A1 |
20090105785 | Wei et al. | Apr 2009 | A1 |
20090112133 | Deisseroth et al. | Apr 2009 | A1 |
20090157138 | Errico et al. | Jun 2009 | A1 |
20090187121 | Evans | Jul 2009 | A1 |
20090216294 | Ewing et al. | Aug 2009 | A1 |
20090222053 | Gaunt et al. | Sep 2009 | A1 |
20090247910 | Klapper | Oct 2009 | A1 |
20090299435 | Gliner et al. | Dec 2009 | A1 |
20090318986 | Alo et al. | Dec 2009 | A1 |
20090326595 | Brockway et al. | Dec 2009 | A1 |
20090326607 | Castel et al. | Dec 2009 | A1 |
20100004715 | Fahey | Jan 2010 | A1 |
20100010381 | Skelton et al. | Jan 2010 | A1 |
20100010572 | Skelton et al. | Jan 2010 | A1 |
20100057154 | Dietrich et al. | Mar 2010 | A1 |
20100099963 | Kilger | Apr 2010 | A1 |
20100107657 | Vistakula | May 2010 | A1 |
20100125220 | Seong | May 2010 | A1 |
20100152817 | Gillbe | Jun 2010 | A1 |
20100174342 | Boston et al. | Jul 2010 | A1 |
20100222630 | Mangrum et al. | Sep 2010 | A1 |
20100227330 | Fink et al. | Sep 2010 | A1 |
20100249637 | Walter et al. | Sep 2010 | A1 |
20100292527 | Schneider et al. | Nov 2010 | A1 |
20100298905 | Simon | Nov 2010 | A1 |
20100324611 | Deming et al. | Dec 2010 | A1 |
20110009920 | Whitehurst et al. | Jan 2011 | A1 |
20110021899 | Arps et al. | Jan 2011 | A1 |
20110040204 | Ivorra et al. | Feb 2011 | A1 |
20110054358 | Kim et al. | Mar 2011 | A1 |
20110071590 | Mounaim et al. | Mar 2011 | A1 |
20110098780 | Graupe et al. | Apr 2011 | A1 |
20110118805 | Wei et al. | May 2011 | A1 |
20110125212 | Tyler | May 2011 | A1 |
20110137375 | McBride | Jun 2011 | A1 |
20110184489 | Nicolelis et al. | Jul 2011 | A1 |
20110202107 | Sunagawa et al. | Aug 2011 | A1 |
20110208444 | Solinky | Aug 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110224571 | Pascual-Leone et al. | Sep 2011 | A1 |
20110230701 | Simon et al. | Sep 2011 | A1 |
20110245734 | Wagner et al. | Oct 2011 | A1 |
20110250297 | Gronsky et al. | Oct 2011 | A1 |
20110282412 | Glukhovsky et al. | Nov 2011 | A1 |
20110288615 | Armstrong et al. | Nov 2011 | A1 |
20110301663 | Wang et al. | Dec 2011 | A1 |
20120010492 | Thramann et al. | Jan 2012 | A1 |
20120053491 | Nathan et al. | Mar 2012 | A1 |
20120078319 | De Ridder | Mar 2012 | A1 |
20120088986 | David et al. | Apr 2012 | A1 |
20120092178 | Callsen et al. | Apr 2012 | A1 |
20120101326 | Simon et al. | Apr 2012 | A1 |
20120109013 | Everett et al. | May 2012 | A1 |
20120136410 | Rezai et al. | May 2012 | A1 |
20120158094 | Kramer et al. | Jun 2012 | A1 |
20120184801 | Simon et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120220812 | Mishelevich | Aug 2012 | A1 |
20120239112 | Muraoka | Sep 2012 | A1 |
20120245483 | Lundqvist | Sep 2012 | A1 |
20120259255 | Tomlinson et al. | Oct 2012 | A1 |
20120277621 | Gerber et al. | Nov 2012 | A1 |
20120302821 | Burnett | Nov 2012 | A1 |
20120310298 | Besio et al. | Dec 2012 | A1 |
20120310303 | Popovic et al. | Dec 2012 | A1 |
20120330182 | Alberts et al. | Dec 2012 | A1 |
20130006322 | Tai | Jan 2013 | A1 |
20130053817 | Yun et al. | Feb 2013 | A1 |
20130060124 | Zietsma | Mar 2013 | A1 |
20130066388 | Bernhard et al. | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130085317 | Feinstein | Apr 2013 | A1 |
20130090519 | Tass | Apr 2013 | A1 |
20130116606 | Cordo | May 2013 | A1 |
20130123568 | Hamilton et al. | May 2013 | A1 |
20130123666 | Giuffrida et al. | May 2013 | A1 |
20130131484 | Pernu | May 2013 | A1 |
20130131770 | Rezai | May 2013 | A1 |
20130158624 | Bain et al. | Jun 2013 | A1 |
20130158627 | Gozani et al. | Jun 2013 | A1 |
20130211471 | Libbus et al. | Aug 2013 | A1 |
20130231713 | De Ridder et al. | Sep 2013 | A1 |
20130236867 | Avni et al. | Sep 2013 | A1 |
20130238049 | Simon et al. | Sep 2013 | A1 |
20130245486 | Simon et al. | Sep 2013 | A1 |
20130245713 | Tass | Sep 2013 | A1 |
20130253299 | Weber et al. | Sep 2013 | A1 |
20130267759 | Jin | Oct 2013 | A1 |
20130281890 | Mishelevich | Oct 2013 | A1 |
20130289647 | Bhadra et al. | Oct 2013 | A1 |
20130296967 | Skaribas et al. | Nov 2013 | A1 |
20130297022 | Pathak | Nov 2013 | A1 |
20130331907 | Sumners et al. | Dec 2013 | A1 |
20130333094 | Rogers et al. | Dec 2013 | A1 |
20130338726 | Machado | Dec 2013 | A1 |
20140025059 | Kerr | Jan 2014 | A1 |
20140031605 | Schneider | Jan 2014 | A1 |
20140039573 | Jindra | Feb 2014 | A1 |
20140039575 | Bradley | Feb 2014 | A1 |
20140046423 | Rajguru et al. | Feb 2014 | A1 |
20140058189 | Stubbeman | Feb 2014 | A1 |
20140067003 | Vase et al. | Mar 2014 | A1 |
20140078694 | Wissmar | Mar 2014 | A1 |
20140081345 | Hershey | Mar 2014 | A1 |
20140094675 | Luna et al. | Apr 2014 | A1 |
20140094873 | Emborg et al. | Apr 2014 | A1 |
20140128939 | Embrey et al. | May 2014 | A1 |
20140132410 | Chang | May 2014 | A1 |
20140142654 | Simon et al. | May 2014 | A1 |
20140148872 | Goldwasser | May 2014 | A1 |
20140148873 | Kirn | May 2014 | A1 |
20140163444 | Ingvarsson | Jun 2014 | A1 |
20140171834 | DeGoede et al. | Jun 2014 | A1 |
20140200573 | Deem et al. | Jul 2014 | A1 |
20140214119 | Greiner et al. | Jul 2014 | A1 |
20140228927 | Ahmad et al. | Aug 2014 | A1 |
20140236258 | Carroll et al. | Aug 2014 | A1 |
20140249452 | Marsh et al. | Sep 2014 | A1 |
20140257047 | Sillay et al. | Sep 2014 | A1 |
20140257129 | Choi et al. | Sep 2014 | A1 |
20140276194 | Osorio | Sep 2014 | A1 |
20140277220 | Brennan et al. | Sep 2014 | A1 |
20140296752 | Edgerton et al. | Oct 2014 | A1 |
20140296934 | Gozani et al. | Oct 2014 | A1 |
20140296935 | Ferree et al. | Oct 2014 | A1 |
20140300490 | Kotz et al. | Oct 2014 | A1 |
20140309709 | Gozanl et al. | Oct 2014 | A1 |
20140316484 | Edgerton et al. | Oct 2014 | A1 |
20140324118 | Simon et al. | Oct 2014 | A1 |
20140330068 | Partsch et al. | Nov 2014 | A1 |
20140330335 | Errico et al. | Nov 2014 | A1 |
20140336003 | Franz et al. | Nov 2014 | A1 |
20140336722 | Rocon De Lima et al. | Nov 2014 | A1 |
20140343462 | Burnet | Nov 2014 | A1 |
20140350436 | Nathan et al. | Nov 2014 | A1 |
20140358040 | Kim et al. | Dec 2014 | A1 |
20140364678 | Harry et al. | Dec 2014 | A1 |
20150004656 | Tang et al. | Jan 2015 | A1 |
20150005852 | Hershey et al. | Jan 2015 | A1 |
20150012067 | Bradley et al. | Jan 2015 | A1 |
20150038886 | Snow | Feb 2015 | A1 |
20150044656 | Eichhorn et al. | Feb 2015 | A1 |
20150057506 | Luna et al. | Feb 2015 | A1 |
20150073310 | Pracar et al. | Mar 2015 | A1 |
20150080979 | Lasko et al. | Mar 2015 | A1 |
20150100004 | Goldman et al. | Apr 2015 | A1 |
20150100104 | Kiani et al. | Apr 2015 | A1 |
20150100105 | Kiani et al. | Apr 2015 | A1 |
20150148866 | Bulsen et al. | May 2015 | A1 |
20150148878 | Yoo et al. | May 2015 | A1 |
20150157274 | Ghassemzadeh et al. | Jun 2015 | A1 |
20150164377 | Nathan et al. | Jun 2015 | A1 |
20150164401 | Toth et al. | Jun 2015 | A1 |
20150190085 | Nathan et al. | Jul 2015 | A1 |
20150190634 | Rezai et al. | Jul 2015 | A1 |
20150196767 | Zaghloul | Jul 2015 | A1 |
20150202444 | Franke et al. | Jul 2015 | A1 |
20150208955 | Smith | Jul 2015 | A1 |
20150216475 | Luna et al. | Aug 2015 | A1 |
20150230733 | Heo et al. | Aug 2015 | A1 |
20150230756 | Luna et al. | Aug 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150335882 | Gross et al. | Nov 2015 | A1 |
20160001096 | Mishelevich | Jan 2016 | A1 |
20160008620 | Stubbeman | Jan 2016 | A1 |
20160016014 | Wagner et al. | Jan 2016 | A1 |
20160022987 | Zschaeck et al. | Jan 2016 | A1 |
20160022989 | Pfeifer | Jan 2016 | A1 |
20160038059 | Asada et al. | Feb 2016 | A1 |
20160045140 | Kitamura et al. | Feb 2016 | A1 |
20160089045 | Sadeghian-Motahar et al. | Mar 2016 | A1 |
20160106344 | Nazari | Apr 2016 | A1 |
20160121110 | Kent et al. | May 2016 | A1 |
20160128621 | Machado et al. | May 2016 | A1 |
20160129248 | Creasey et al. | May 2016 | A1 |
20160158542 | Ahmed | Jun 2016 | A1 |
20160158565 | Lee | Jun 2016 | A1 |
20160198998 | Rahimi et al. | Jul 2016 | A1 |
20160213924 | Coleman et al. | Jul 2016 | A1 |
20160220836 | Parks | Aug 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160263376 | Yoo et al. | Sep 2016 | A1 |
20160287879 | Denison et al. | Oct 2016 | A1 |
20160339239 | Yoo et al. | Nov 2016 | A1 |
20170014625 | Rosenbluth et al. | Jan 2017 | A1 |
20170027812 | Hyde et al. | Feb 2017 | A1 |
20170042467 | Herr et al. | Feb 2017 | A1 |
20170056238 | Yi et al. | Mar 2017 | A1 |
20170056643 | Herb et al. | Mar 2017 | A1 |
20170079597 | Horne | Mar 2017 | A1 |
20170080207 | Perez et al. | Mar 2017 | A1 |
20170132067 | Wong et al. | Aug 2017 | A1 |
20170266443 | Rajguru et al. | Sep 2017 | A1 |
20170274208 | Nagel et al. | Sep 2017 | A1 |
20170287146 | Pathak et al. | Oct 2017 | A1 |
20170312505 | Ahmed | Nov 2017 | A1 |
20170312512 | Creasey et al. | Nov 2017 | A1 |
20170361093 | Yoo et al. | Dec 2017 | A1 |
20180001086 | Bartholomew et al. | Jan 2018 | A1 |
20180042654 | Ingvarsson et al. | Feb 2018 | A1 |
20180049676 | Griffiths et al. | Feb 2018 | A1 |
20180064344 | Nguyen | Mar 2018 | A1 |
20180064362 | Hennings et al. | Mar 2018 | A1 |
20180064944 | Grill et al. | Mar 2018 | A1 |
20180132757 | Kong et al. | May 2018 | A1 |
20180140842 | Olaighin et al. | May 2018 | A1 |
20180168905 | Goodall et al. | Jun 2018 | A1 |
20180214694 | Parramon | Aug 2018 | A1 |
20180221620 | Metzger | Aug 2018 | A1 |
20180235500 | Lee et al. | Aug 2018 | A1 |
20180236217 | Hamner et al. | Aug 2018 | A1 |
20180345020 | Ironi et al. | Dec 2018 | A1 |
20190001117 | Ben-David et al. | Jan 2019 | A1 |
20190126047 | Kassiri Bidhendi et al. | May 2019 | A1 |
20190134393 | Wong et al. | May 2019 | A1 |
20190143098 | Kaplan et al. | May 2019 | A1 |
20190167976 | Byers et al. | Jun 2019 | A1 |
20190321636 | Law et al. | Oct 2019 | A1 |
20190374771 | Simon et al. | Dec 2019 | A1 |
20200023183 | Ollerenshaw et al. | Jan 2020 | A1 |
20200038654 | Doskocil et al. | Feb 2020 | A1 |
20200046968 | Herr et al. | Feb 2020 | A1 |
20200061378 | Ganguly et al. | Feb 2020 | A1 |
20200139118 | John et al. | May 2020 | A1 |
20200147373 | Tamaki et al. | May 2020 | A1 |
20200155847 | Perez | May 2020 | A1 |
20200171269 | Hooper et al. | Jun 2020 | A1 |
20200171304 | Simon et al. | Jun 2020 | A1 |
20200215324 | Mantovani et al. | Jul 2020 | A1 |
20200221975 | Basta et al. | Jul 2020 | A1 |
20200254247 | Brezel et al. | Aug 2020 | A1 |
20200269046 | Page et al. | Aug 2020 | A1 |
20200276442 | Owen | Sep 2020 | A1 |
20200282201 | Doskocil | Sep 2020 | A1 |
20200289813 | Ito et al. | Sep 2020 | A1 |
20200289814 | Hamner et al. | Sep 2020 | A1 |
20200297999 | Pal | Sep 2020 | A1 |
20200316379 | Yoo et al. | Oct 2020 | A1 |
20200324104 | Labuschagne et al. | Oct 2020 | A1 |
20200367775 | Buckley et al. | Nov 2020 | A1 |
20200405188 | Sharma et al. | Dec 2020 | A1 |
20200406022 | Sharma et al. | Dec 2020 | A1 |
20210016079 | Ekelem et al. | Jan 2021 | A1 |
20210031026 | Simon et al. | Feb 2021 | A1 |
20210031036 | Sharma et al. | Feb 2021 | A1 |
20210052897 | Bhadra et al. | Feb 2021 | A1 |
20210060337 | Wybo et al. | Mar 2021 | A1 |
20210069507 | Gozani et al. | Mar 2021 | A1 |
20210162212 | Kern et al. | Jun 2021 | A1 |
20210169684 | Black et al. | Jun 2021 | A1 |
20210187279 | Bouton et al. | Jun 2021 | A1 |
20210205619 | Wong et al. | Jul 2021 | A1 |
20210213283 | Yoo et al. | Jul 2021 | A1 |
20210220650 | Kassiri Bidhendi et al. | Jul 2021 | A1 |
20210244940 | Liberatore et al. | Aug 2021 | A1 |
20210244950 | Ironi et al. | Aug 2021 | A1 |
20210252278 | Hamner et al. | Aug 2021 | A1 |
20210260379 | Charlesworth et al. | Aug 2021 | A1 |
20210283400 | Hamner et al. | Sep 2021 | A1 |
20210289814 | Hamner et al. | Sep 2021 | A1 |
20210299445 | Rajguru et al. | Sep 2021 | A1 |
20210330547 | Moaddeb et al. | Oct 2021 | A1 |
20210353181 | Roh | Nov 2021 | A1 |
20210379374 | Hamner et al. | Dec 2021 | A1 |
20210379379 | Campean et al. | Dec 2021 | A1 |
20210402172 | Ross et al. | Dec 2021 | A1 |
20220001164 | Sharma et al. | Jan 2022 | A1 |
20220016413 | John et al. | Jan 2022 | A1 |
20220031245 | Bresler | Feb 2022 | A1 |
20220054820 | Turner | Feb 2022 | A1 |
20220054831 | McBride | Feb 2022 | A1 |
20220088373 | Burnett | Mar 2022 | A1 |
20220126095 | Rajguru et al. | Apr 2022 | A1 |
20220212007 | Rajguru et al. | Jul 2022 | A1 |
20220218991 | Moaddeb et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
2019250222 | Jun 2021 | AU |
2017211048 | Mar 2022 | AU |
1135722 | Nov 1996 | CN |
103517732 | Jan 2014 | CN |
103889503 | Jun 2014 | CN |
104144729 | Nov 2014 | CN |
105142714 | Dec 2015 | CN |
108348746 | Oct 2021 | CN |
108778411 | Jun 2022 | CN |
102008042373 | Apr 2010 | DE |
102009004011 | Jul 2010 | DE |
0000759 | Feb 1979 | EP |
0725665 | Jan 1998 | EP |
1062988 | Dec 2000 | EP |
1558333 | May 2007 | EP |
1727591 | Apr 2009 | EP |
2383014 | Nov 2011 | EP |
2291115 | Sep 2013 | EP |
2801389 | Nov 2014 | EP |
3020448 | May 2016 | EP |
2029222 | Mar 2017 | EP |
2780073 | Sep 2017 | EP |
1951365 | Oct 2017 | EP |
3154627 | Apr 2018 | EP |
2827771 | May 2018 | EP |
3184143 | Jul 2018 | EP |
3075412 | Dec 2018 | EP |
3349712 | Jul 2019 | EP |
3503960 | Mar 2020 | EP |
3352846 | Jul 2020 | EP |
3493874 | Aug 2020 | EP |
3409200 | Sep 2020 | EP |
3427793 | Nov 2020 | EP |
3641876 | Apr 2021 | EP |
3352843 | Jun 2021 | EP |
3679979 | Jun 2021 | EP |
3402404 | Jul 2021 | EP |
3562541 | Jul 2021 | EP |
3675795 | Aug 2021 | EP |
3100765 | Jan 2022 | EP |
2222819 | Mar 2006 | ES |
2272137 | Jun 2008 | ES |
2496449 | May 2013 | GB |
2002-200178 | Jul 2002 | JP |
2003-501207 | Jan 2003 | JP |
2004-512104 | Apr 2004 | JP |
2006-503658 | Feb 2006 | JP |
2008-018235 | Jan 2008 | JP |
2009-34328 | Feb 2009 | JP |
2009-529352 | Aug 2009 | JP |
2010-506618 | Mar 2010 | JP |
2010-512926 | Apr 2010 | JP |
2010-527256 | Aug 2010 | JP |
2012-005596 | Jan 2012 | JP |
2012-055650 | Mar 2012 | JP |
2012-217565 | Nov 2012 | JP |
2013-017609 | Jan 2013 | JP |
2013-094305 | May 2013 | JP |
54-39921 | Mar 2014 | JP |
2016-511651 | Apr 2016 | JP |
WO 1994000187 | Jan 1994 | WO |
WO 1994017855 | Aug 1994 | WO |
WO 1996032909 | Oct 1996 | WO |
WO 1998043700 | Oct 1998 | WO |
WO 1999019019 | Apr 1999 | WO |
WO 2000015293 | Mar 2000 | WO |
WO 2002017987 | Mar 2002 | WO |
WO 2002034327 | May 2002 | WO |
WO 2005122894 | Dec 2005 | WO |
WO 2007112092 | Oct 2007 | WO |
WO 2009153730 | Dec 2009 | WO |
WO 2010111321 | Sep 2010 | WO |
WO 2010141155 | Dec 2010 | WO |
WO 2011119224 | Sep 2011 | WO |
WO 2011144883 | Nov 2011 | WO |
WO 2012040243 | Mar 2012 | WO |
WO 2013071307 | May 2013 | WO |
WO 2013074809 | May 2013 | WO |
WO 2014043757 | Mar 2014 | WO |
WO 2014053041 | Apr 2014 | WO |
WO 2014093964 | Jun 2014 | WO |
WO 2014113813 | Jul 2014 | WO |
WO 2014146082 | Sep 2014 | WO |
WO 2014151431 | Sep 2014 | WO |
WO 2014153201 | Sep 2014 | WO |
WO 2014207512 | Dec 2014 | WO |
WO 2015033152 | Mar 2015 | WO |
WO 2015039206 | Mar 2015 | WO |
WO 2015039244 | Mar 2015 | WO |
WO 2015042365 | Mar 2015 | WO |
WO 2015079319 | Jun 2015 | WO |
WO 2015095880 | Jun 2015 | WO |
WO 2015128090 | Sep 2015 | WO |
WO 2015164706 | Oct 2015 | WO |
WO 2015187712 | Dec 2015 | WO |
WO 2016007093 | Jan 2016 | WO |
WO 2016019250 | Feb 2016 | WO |
WO 2016094728 | Jun 2016 | WO |
WO 2016102958 | Jun 2016 | WO |
WO 2016110804 | Jul 2016 | WO |
WO 2016128985 | Aug 2016 | WO |
WO 2016149751 | Sep 2016 | WO |
WO 2016166281 | Oct 2016 | WO |
WO 2016179407 | Nov 2016 | WO |
WO 2016189422 | Dec 2016 | WO |
WO 2016195587 | Dec 2016 | WO |
WO 2016201366 | Dec 2016 | WO |
WO 2017004021 | Jan 2017 | WO |
WO 2017010930 | Jan 2017 | WO |
WO 2017023864 | Feb 2017 | WO |
WO 2017053847 | Mar 2017 | WO |
WO 2017062994 | Apr 2017 | WO |
WO 2017086798 | May 2017 | WO |
WO 2017088573 | Jun 2017 | WO |
WO 2017132067 | Aug 2017 | WO |
WO 2017199026 | Nov 2017 | WO |
WO 2017208167 | Dec 2017 | WO |
WO 2017209673 | Dec 2017 | WO |
WO 2017210729 | Dec 2017 | WO |
WO 2017221037 | Dec 2017 | WO |
WO 2018009680 | Jan 2018 | WO |
WO 2018028170 | Feb 2018 | WO |
WO 2018028220 | Feb 2018 | WO |
WO 2018028221 | Feb 2018 | WO |
WO 2018039458 | Mar 2018 | WO |
WO 2018093765 | May 2018 | WO |
WO 2018112164 | Jun 2018 | WO |
WO 2018187241 | Oct 2018 | WO |
WO 2019005774 | Jan 2019 | WO |
WO 2019014250 | Jan 2019 | WO |
WO 2019028000 | Feb 2019 | WO |
WO 2019082180 | Jun 2019 | WO |
WO 2019143790 | Jul 2019 | WO |
WO 2019169240 | Sep 2019 | WO |
WO 2019202489 | Oct 2019 | WO |
WO 2019213433 | Nov 2019 | WO |
WO 2020006048 | Jan 2020 | WO |
WO 2020068830 | Apr 2020 | WO |
WO 2020069219 | Apr 2020 | WO |
WO 2020086726 | Apr 2020 | WO |
WO 2020131857 | Jun 2020 | WO |
WO 2020185601 | Sep 2020 | WO |
WO 2021005584 | Jan 2021 | WO |
WO 2021055716 | Mar 2021 | WO |
WO 2021062345 | Apr 2021 | WO |
WO 2021127422 | Jun 2021 | WO |
WO 2021228128 | Nov 2021 | WO |
WO 2021252292 | Dec 2021 | WO |
Entry |
---|
APARTIS; Clinical neurophysiology in movement disorders. Handb Clin Neurol; 111; Pediatric Neurology Pt. 1; pp. 87-92;Apr. 2013. |
Barbaud et al.; Improvement in essential tremor after pure sensory stroke due to thalamic infarction; European neurology; 46; pp. 57-59; Jul. 2001. |
Barrios et al.: BCI algorithms for tremor identification, characterization and tracking; Seventh Framework Programme, EU; Contract No. FP7-ICT-2007-224051 (v3.0); 57 pgs.; Jul. 10, 2011. |
Bartley et al.; Neuromodulation for overactive bladder; Nature Reviews Urology; 10; pp. 513-521; Sep. 2013. |
Benabid et al.; A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system; Acta Neural Belg; 105(3); pp. 149-157; Sep. 2005. |
Bergquist et al.: Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris, Journal of Applied Physiology; vol. 113, No. 1, pp. 78-89; Jul. 2012. |
Bergquist et al.; Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae, Journal of Applied Physiology; vol. 110, No. 3, pp. 627-637; Mar. 2011. |
Bijelic et al.: E Actitrode®: The New Selective Stimulation Interface for Functional Movements in Hemiplegic Patients; Serbian Journal of Electrical Engineering; 1(3); pp. 21-28; Nov. 2004. |
Birdno et al.; Pulse-to-pulse changes in the frequency of deep brain stimulation affect tremor and modeled neuronal activity.; Journal of Neurophysiology; 98; pp. 1675-1684; Jul. 2007. |
Birdno et al.; Response of human thalamic neurons to high-frequency stimulation.; PloS One; 9(5); 10 pgs.; May 2014. |
Birgersson et al.; Non-invasive bioimpedance of intact skin: mathematical modeling and experiments; Physiological Measurement; 32(1); pp. 1-18; Jan. 2011. |
Bohling et al.; Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy; Skin research and Technology; 20(1); pp. 50-47; Feb. 2014. |
Bonaz, B., V. Sinniger, and S. Pellissier. “Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.” Journal of internal medicine 282.1 (2017): 46-63. |
Bowman et al.; Effects of waveform parameters on comfort during transcutaneous neuromuscular electrical stimulation; Annals of Biomedical Engineering; 13(1); pp. 59-74; Jan. 1985. |
Bratton et al.; Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons; Exp Physiol 97.11 (2012); pp. 1180-1185. |
Brittain et al.; Tremor suppression by rhythmic transcranial current stimulation; Current Biology; 23; pp. 436-440; Mar. 2013. |
Britton et al.; Modulation of postural tremors at the wrist by supramaximal electrical median nerve shocks in ET, PD, and normal subjects mimicking tremor; J Neurology, Neurosurgery, and Psychiatry; 56(10); pp. 1085-1089; Oct. 1993. |
Buschbacher et al.; Manual of nerve conduction series; 2nd edition; Demos Medical Publishing, LLC; 2006 (part 1, Title to pg. #142). |
Buschbacher et al.; Manual of nerve conduction series; 2nd edition; Demos Medical Publishing, LLC; 2006 (part 2, pg. #143 to #299). |
Cagnan et al.; Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation; Brain; 136(10); pp. 3062-3075; Oct. 2013. |
Campero et al.; Peripheral projections of sensory fasicles in the human superificial radial nerve; Brain; 128(Pt 4); pp. 892-895; Apr. 2005. |
Chen et al.; A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors; IEEE Trans on Bio-Medical Engineering; 58(3); pp. 831-836; Mar. 2011. |
Choi, Jong Bo, et al. “Analysis of heart rate variability in female patients with overactive bladder.” Urology 65.6 (2005): 1109-1112. |
Clair et al.; Postactivation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve, Journal of Neurophysiology; vol. 106, No. 1; pp. 184-192; Jul. 2011. |
Clar et al.; Skin impedance and moisturization; J. Soc. Cosmet. Chem.; 26; pp. 337-353; 1975; presented at IFSCC Vilith Int'l Congresson Cosmetics Quality and Safety in London on Aug. 26-30, 1974. |
Constandinou et al.; A Partial-Current-Steering Biphasic Stimulation Driver for Vestibular Prostheses; IEEE Trans on Biomedical Circuits and Systems; 2(2); pp. 106-113; Jun. 2008. |
Daneault et al.; Using a smart phone as a standalone platform for detection and monitoring of pathological tremors; Frontiers in Human Neuroscience; vol. 6, article 357; 12 pgs.; Jan. 2012. |
Deuschl et at; Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee., Movement Disorders, vol. 13 Suppl 3, pp. 2-23; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date)1998. |
Di Giovangiulio et al.; The Neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease; Fronteir's in Immunology; vol. 6; Article 590; Nov. 2015. |
Dideriksen et al.; EMG-based characterization of pathological tremor using the iterated Hilbert transform; IEEE transactions on Bio-medical Engineering; 58(10); pp. 2911-2921; Oct. 2011. |
Dosen et al.: Tremor suppression using electromyography and surface sensory electrical stimulation; Converging Clinical and Engineering Research on Neurorehabilitation; vol. 1 (Siosystems & Biorobotics Series); pp. 539-543; Feb. 2013. |
Doucet et al.; Neuromuscular electrical stimulation for skeletal muscle function; The Yale Journal of Biology and Medicine; 85(2); pp. 201-215; Jun. 2012. |
Fiorentino, M., A. E. Uva, and M. M. Foglia. “Self calibrating wearable active running asymmetry measurement and correction.” Journal of Control Engineering and Applied Informatics 13.2 (2011 ): 3-8. (Year: 2011). |
Fuentes et al.; Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: mechanistic approach, Eur J Neurosci, vol. 32, pp. 1100-1108; Oct. 2010 (author manuscript; 19 pgs.). |
Fuentes et al.; Spinal cord stimulation restores locomotion in animal models of Parkinson's disease; Science; 323; pp. 1578-1582; Mar. 2009. |
Gallego et al.; A neuroprosthesis for tremor management through the control of muscle co-contraction; Journal of Neuroengineering and Rehabilitation; vol. 10; 36; (13 pgs); Apr. 2013. |
Gallego et al.; A soft wearable robot for tremor assessment and suppression; 2011 IEEE International Conference on Robotics and Automation; Shanghai International Conference Center; pp. 2249-2254; May 9-13, 2011. |
Gallego et al.; Real-time estimation of pathological tremor parameters from gyroscope data.; Sensors; 10(3); pp. 2129-2149; Mar. 2010. |
Gao; Analysis of amplitude and frequency variations of essential and Parkinsonian tremors; Medical & Biological Engineering & Computing; 42(3); pp. 345-349; May 2004. |
Garcia et al.; Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients; PAIN; International Association for the Study of Pain; 2017. |
Garcia-Rill, E., et al. “Arousal, motor control, and Parkinson's disease.” Translational neuroscience 6.1 pp. 198-207 (2015). |
Giuffridda et al.; Clinically deployable Kinesia technology for automated tremor assessment.; Movement Disorders; 24(5); pp. 723-730; Apr. 2009. |
Gracanin et al.; Optimal stimulus parameters for minimum pain in the chronic stimulatin of innervated muscle; Archives of Physical Medicine and Rehabilitation; 56(6); pp. 243-249; Jun. 1975. |
Haeri et al.; Modeling the Parkinson's tremor and its treatments; Journal of Theorectical Biology; 236(3); pp. 311-322; Oct. 2005. |
Halon En et al.; Contribution of cutaneous and muscle afferent fibres to cortical SEPs following median and radial nerve stimulation in man; Electroenceph. Clin. Neurophysiol.; 71(5); pp. 331-335; Sept.-Oct. 1988. |
Hao et al.; Effects of electrical stimulation of cutaneous afferents on corticospinal transmission of tremor signals in patients with Parkinson's disease; 6th International Conference on Neural Engineering; San Diego, CA; pp. 355-358; Nov. 2013. |
Hauptmann et al.; External trial deep brain stimulation device for the application of desynchronizing stimulation techniques; Journal of Neural Engineering; 6; 12 pgs.; Oct. 2009. |
Heller et al.; Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: Results from a gait-lab based study; Medical Engineering & Physic; 35(1); pp. 74-81; Jan. 2013. |
Henry Dreyfuss Associates; The Measure of Man and Woman: Human Factors in Design (Revised Edition); John Wiley & Sons, New York; pp. 10-11 and 22-25; Dec. 2001. |
Hernan, Miguel, et al. “Alcohol Consumption and the Incidence of Parkinson's Disease.” May 15, 2003. Annals of Neurology. vol. 54. pp. 170-175. |
Hua et al.; Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits; J Neurophysiol; 93(1); pp. 117-127; Jan. 2005. |
Huang, et al.; Theta burst stimulation report of the human motor cortex; Neuron, vol. 45, 201-206, Jan. 20, 2005. |
Hubeaux, Katelyne, et al. “Autonomic nervous system activity during bladder filling assessed by heart rate variability analysis in women with idiopathic overactive bladder syndrome or stress urinary incontinence.” The Journal of urology 178.6 (2007): 2483-2487. |
Hubeaux, Katelyne, et al. “Evidence for autonomic nervous system dysfunction in females with idiopathic overactive bladder syndrome.” Neurourology and urodynamics 30.8 (2011): 1467-1472. |
Inoue, Masahiro, Katsuaki Suganuma, and Hiroshi Ishiguro. “Stretchable human interface using a conductive silicone elastomer containing silver fillers.” Consumer Electronics, 2009. ISCE'09. IEEE 13th International Symposium on. IEEE, 2009. |
Jacks et al.; Instability in human forearm movements studied with feed-back-controlled electrical stimulation of muscles; Journal of Physiology; 402; pp. 443-461; Aug. 1988. |
Jobges et al.; Vibratory proprioceptive stimulation affects Parkinsonian tremor; Parkinsonism & Related Disorders; 8(3); pp. 171-176; Jan. 2002. |
Joundi et al.; Rapid tremor frequency assessment with the iPhone accelerometer.; Parkinsonism & Related Disorders; 17(4); pp. 288-290; May 2011. |
Kim et al.: Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model; IEEE Trans on Biomedical Engineering,; 56(2); pp. 452-461; Feb. 2009. |
Krauss et al.; Chronic spinal cord stimulation in medically intractable orthostatic tremor; J Neurol Neurosurg Psychiatry; 77(9); pp. 1013-1016; Sep. 2006. |
Krishnamoorthy et al.; Gait Training After Stroke: A pilot study combining a gravity balanced orthosis, functional electrical stimulation and visual feedback, Journal of Neurologic Physical Therapy, vol. 32, No. 4, pp. 192-202, 2008. |
Kuhn et al.; Array electrode design for transcutaneous electrical stimulation a simulation study; Medical Engineering & Physics; 31 (8); pp. 945-951; Oct. 2009. |
Kuhn et al.; The Influence of Electrode Size on Selectivity and Comfort in Transcutaneous Electrical Stimulation of the Forearm; Neural Systems and Rehabilitation Engineering, IEEE Transactions on; 18(3); pp. 255-262; Jun. 2010. |
Kunz, Patrik, et al. “5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern.” Frontiers in Human Neuroscience 10 (2016): 683. |
Lagerquist et al.: Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation, Muscle & Nerve, 42(6), pp. 886-893; Dec. 2010. |
Laroy et al.; The sensory innervation pattern of the fingers; J. Neurol.; 245 (5); pp. 294-298; May 1998. |
Lee et al.; Resetting of tremor by mechanical perturbations: A comparison of essential tremor and parkinsonian tremor; Annals of Nuerology; 10(6); pp. 523-531; Dec. 1981. |
Legon et al.; Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and fMRI; PLoS ONE; 7(12); e51177; 14 pgs.; Dec. 2012. |
Liao, Wen-Chien, et al. “A noninvasive evaluation of autonomic nervous system dysfunction in women with an overactive bladder.” International Journal of Gynecology & Obstetrics 110.1 (2010): 12-17. |
Lourenco et al.; Effects produced in human arm and forearm motoneurones after electrical stimulation of ulnar and median nerves at wrist level; Experimental Brain Research; 178(2); pp. 267-284; Apr. 2007. |
Malek et al.; The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach; Phys Med Rehabil in N Am; 23(1); pp. 23-32; Feb. 2012. |
Mamorita et al.; Development of a system for measurement and analysis of tremor using a three-axis accelerometer; Methods Inf Med; 48(6); pp. 589-594; epub Nov. 2009. |
Maneski et al.; Electrical Stimulation for suppression of pathological tremor; Med Biol Eng Comput; 49(10); pp. 1187-1193; Oct. 2011. |
Marsden et al.; Coherence between cerebellar thalamus, cortex and muscle in man; Brain; 123; pp. 1459-1470; Jul. 2000. |
Marshall, Ryan, et al. “Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease.” Clinical Medicine Insights: Gastroenterology 8 (2015): CGast-S31779. |
McAuley et al.; Physiological and pathological tremors and rhythmic central motor control; Brain; 123(Pt 8); pp. 1545-1567; Aug. 2000. |
McIntyre et al.; Finite element analysis of current-density and electric field generated by metal microelectrodes; Annals of Biomedical Engineering; 29(3); pp. 227-235; Mar. 2001. |
Meekins et al.; American Association of Neuromuscular & Electrodiagnostic Medicine evidenced-based review: use of surface electromyography in the diagnosis and study of neuromuscular disorders; Muscle Nerve 38(4); pp. 1219-1224; Oct. 2008. |
Mehnert, Ulrich, et al. “Heart rate variability: an objective measure of autonomic activity and bladder sensations during urodynamics.” Neurourology and urodynamics 28.4 (2009): 313-319. |
Miguel et al.; Alcohol consumption and the incidence of Parkinson's disease; Ann. Neurol.; 54(2); pp. 170-175; May 15, 2003. |
Miller et al.; Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis; Talanta; 88; pp. 739-742; Jan. 2012 (author manuscript; 13 pgs.). |
Miller et al.; Neurostimulation in the treatment of primary headaches; Pract Neurol; Apr. 11, 2016;16:pp. 362-375. |
Milne et al.; Habituation to repeated in painful and non-painful cutaneous stimuli: A quantitative psychophysical study; Experimental Brain Research; 87(2); pp. 438-444; Nov. 1991. |
Mommaerts et al.; Excitation and nerve conduction; in Comprehensive Human Physiology; Springer Berlin Heidelberg; Chap. 13; pp. 283-294; Mar. 1996. |
Mones et al.; The response of the tremor of patients with Parkinsonism to peripheral nerve stimulation; J Neurology, Neurosurgery, and Psychiatry; 32(6); pp. 512-518; Dec. 1969. |
Morgante et al.: How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus?; Results of a Questionnaire, Partkinsonism Relat Disord; 13; pp. 528-531; Dec. 2007. |
Munhoz et al.; Acute effect of transcutaneous electrical nerve stimulation on tremor; Movement Disorders; 18(2); pp. 191-194; Feb. 2003. |
Nardone et al.; Influences of transcutaneous electrical stimulation of cutaneous and mixed nerves on subcortical somatosensory evoked potentials; Electroenceph. Clin. Neurophysiol.; 74(1); pp. 24-35; Jan.-Feb. 1989. |
Nonis et al.; Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers; Cephalalgia; pp. 1285-1293; vol. 37(13); Mar. 28, 2017. |
Perez et al.; Patterned Sensory Stimulation Induces Plasticity in Reciprocal la Inhibition in Humans; The Journal of Neuroscience; 23(6); pp. 2014-2018; Mar. 2003. |
Perlmutter et al.; Deep brain stimulation; Ann Rev Neurosci; 29; pp. 229-257; Jul. 2006. |
Popović-Bijelić, Ana, et al. “Multi-field surface electrode for selective electrical stimulation.” Artificial organs 29.6 (2005): 448-452. |
Prochazka et al.; Attenuation of pathological tremors by functional electrical stimulation I: Method; Annals of Biomedical Engineering; 20(2); pp. 205-224; Mar. 1992. |
Pulliam et al.; Continuous in-home monitoring of essential tremor; Parkinsonism Relat Disord; 20(1); pp. 37-40; Jan. 2014. |
Quattrini et al.; Understanding the impact of painful diabetic neuropathy; Diabetes/Metabolism Research and Reviews; 19, Suppl. 1; pp. S2-8; Jan-Feb. 2003. |
Rocon et al.; Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression; IEEE Trans Neural Sys and Rehab Eng.; 15(3); pp. 367-378; Sep. 2007. |
Sigrist et al.; Augmented visual, auditory, haptic and multimodal feedback in motor learning; A review. Psychonomic Bulletin & Review, 20(1), pp. 21-53 (2012). |
Silverstone et al.; Non-invasive Neurostimulation In The Control of Familial Essential Tremor Using The Synaptic Neuromodulator; Conference Proceedings, International Functional Electrical Stimulation Society (IFES); Ed. Paul Meadows; 3 pgs.; May 1999. |
Singer et al.; The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits; Restor Neurol Neurosci; 31(6); pp. 681-691; Oct. 2013. |
Solomonow, Met al. “Studies Toward Spasticity Suppression With High Frequency Electrical Stimulation”. Orthopedics, vol. 7, No. 8, 1984, pp. 1284-1288. SLACK, Inc., https://dol.org/10.3928/0147-7447-19840801-11 (Year: 1998). |
Straube et al.; Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial; The Journal of Headache and Pain (2015) 16:63. |
Takanashi et al.; A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum; Neuroradiology; 45(3); pp. 149-152; Mar. 2003. |
Tass et al.; Coordinated reset has sustained aftereffects in Parkinsonian monkeys; Ann Neurol; 72(5); pp. 816-820; Nov. 2012. |
Tass et al.; Counteracting tinnitus by acoustic coordinated reset neuromodulation; Restorative neurology and Neuroscience; 30(2); pp. 137-159; Apr. 2012. |
Tass; A Model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations; Bioi Cybern; 89(2); pp. 81-88; Aug. 2003. |
Thomas et al.; A review of posterior tibial nerve stimulation for faecal incontinence; Colorectal Disease; 2012 The Association of Coloproctology of Great Britain and Ireland. 15, pp. 519-526; Jun. 25, 2012. |
Toloso et al.; Essential tremor: treatment with propranolol; Neurology; 25(11); p. 1041; Nov. 1975. |
TRACEY; The inflammatory reflex; Nature; vol. 420; pp. 853-859; 19/26 Dec. 2002. |
Treager; Interpretation of skin impedance measurements; Nature; 205; pp. 600-601; Feb. 1965. |
Valente; Novel methods and circuits for field shaping in deep brain stimulation; Doctoral thesis, UCL (University College London); 222 pp. 2011. |
Vitton et al.; Transcutaneous posterior tibial nerve stimulation for fecallncontinence in inflammatory bowel disease patients: a therapeutic option?; Inflamm Bowel Dis; vol. 15, No. 3, Mar. 2009; pp. 402-405. |
Von Lewinski et al.; Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients; Restor Neurol Neurosci; 27(3); pp. 189-197; Jun. 2009. |
Wardman et al.; Subcortical, and cerebellar activation evoked by selective stimulation of muscle and cataneous afferents: an fMRI study; Physiol. Rep.; 2(4); pp. 1-16; Apr. 2014. |
Wiestler et al.; Integration of sensory and motor representations of single fingers in the human; J. Neurophysiol.; 105(6); pp. 3042-3053; Jun. 2011. |
Woldag et al.; Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients R A review; J Neurol; 249(5); pp. 518-528; May 2002. |
Woolf et al.; Peripheral nerve injury triggers central sprouting of myelinated afferents; Nature; 355(6355); pp. 75-78; Jan. 1992. |
Yarnitsky et al.; Nonpainful remote electrical stimulation alleviates episodic migraine pain; Neurology 88; pp. 1250-1255; Mar. 28, 2017. |
Yeh, Kuei-Lin, Po-Yu Fong, and Ying-Zu Huang. “Intensity sensitive modulation effect of theta burst form of median nerve stimulation on the monosynaptic spinal reflex.” Neural plasticity 2015 (2015) in 8 pages. |
Yilmaz, Ozlem O., et al. “Efficacy of EMG-biofeedback in knee osteoarthritis.” Rheumatology international 30.7 (2010): 887-892. |
Zhang et al.; Neural oscillator based control for pathological tremor suppression via functional electrical stimulation; Control Engineering Practice; 19(1); pp. 74-88; Jan. 2011. |
Zorba et al.; Overactive bladder and the pons; Rize University, Medical Faculty, Department of Urology; 123-124; Undated. |
Zwarts et al.; Multichannel surface EMG: basic aspects and clinical utility; Muscle Nerve; 28(1); pp. 1-17; Jul. 2003. |
PCT, PCT/US2014/012388 (published as WO 2014/113813, filed Jan. 21, 2014. |
U.S., U.S. Appl. No. 14/805,385 (now U.S. Pat. No. 9,452,287), filed Jul. 21, 2015. |
U.S., U.S. Appl. No. 15/277,946 (now U.S. Pat. No. 10,850,090), filed Sep. 27, 2016. |
U.S. U.S. Appl. No. 15/983,024 (now U.S. Pat. No. 10,625,074), filed May 17, 2018. |
U.S., U.S. Appl. No. 17/107,435 (published as U.S. Pub. No. 2021/0100999), filed Nov. 30, 2020. |
PCT, PCT/US2019/039193 (published as PCT Pub. No. WO 2020/006048), filed Jun. 26, 2019. |
U.S., U.S. Appl. No. 14/271,669 (published as U.S. Pub. No. 2014/0336722), filed Nov. 13, 2014. |
PCT, PCT/US2015/033809 (published as WO 2015/187712), filed Jun. 2, 2015. |
U.S., U.S. Appl. No. 15/354,943 (now U.S. Pat. No. 9,802,041), filed Nov. 17, 2016. |
U.S., U.S. Appl. No. 15/721,475 (now U.S. Pat. No. 10,179,238), filed Sep. 29, 2017. |
U.S., U.S. Appl. No. 15/721,480 (now U.S. Pat. No. 10,173,060), filed Sep. 29, 2017. |
U.S., U.S. Appl. No. 16/242,983 (now U.S. Pat. No. 10,549,093), filed Jan. 8, 2019. |
U.S., U.S. Appl. No. 16/247,310 (now U.S. Pat. No. 10,561,839), filed Jan. 14, 2019. |
U.S., U.S. Appl. No. 16/780,758 (now U.S. Pat. No. 10,905,879), filed Feb. 3, 2020. |
U.S., U.S. Appl. No. 16/792,100 (now U.S. Pat. No. 10,960,207), filed Feb. 14, 2020. |
U.S., U.S. Appl. No. 17/164,576 (published as U.S. Pub. No. 2021/0330974), filed Feb. 1, 2021. |
U.S., U.S. Appl. No. 17/216,372 (published as U.S. Pub. No. 2021/0308460), filed Mar. 29, 2021. |
PCT, PCT/US2016/037080 (published as WO 2016/201366), filed Jun. 10, 2016. |
U.S., U.S. Appl. No. 15/580,631 (now U.S. Pat. No. 10,765,856), filed Dec. 7, 2017. |
U.S., U.S. Appl. No. 17/013,396 (published as U.S. Pub. No. 2021/0052883), filed Sep. 4, 2020. |
PCT, PCT/US2017/014431 (published as WO 2017/132067), filed Jan. 20, 2017. |
U.S., U.S. Appl. No. 16/071,056, (now U.S. Pat. No. 11,344,722), filed Jul. 18, 2018. |
U.S., U.S. Appl. No. 17/633,004, filed May 11, 2022. |
PCT, PCT/US2018/025752 (published as WO 2018/187241), filed Apr. 2, 2018. |
U.S., U.S. Appl. No. 16/500,377 (now U.S. Pat. No. 11,331,480), filed Apr. 2, 2018. |
U.S., U.S. Appl. No. 17,663,010, filed May 11, 2022. |
PCT, PCT/US2016/045038 (published as WO 2017/023864), filed Aug. 1, 2016. |
U.S., U.S. Appl. No. 15/748,616 (published as U.S. Publ No. 2020/0093400), filed Jan. 29, 2018. |
PCT, PCT/US2016/053513 (published as WO 2017/053847), filed Sep. 23, 2016. |
U.S., U.S. Appl. No. 15/762,043 (now U.S. Pat. No. 10,603,482), filed Mar. 21, 2018. |
U.S., U.S. Appl. No. 16/833,388 (published as U.S. Pub. No. 2020/0289814), filed Mar. 27, 2020. |
PCT, PCT/US2017/040920 (published as WO 2018/009680), filed Jul. 6, 2017. |
U.S., U.S. Appl. No. 16/241,846 (now U.S. Pat. No. 10,814,130), filed Jan. 7, 2019. |
U.S., U.S. Appl. No. 17/080,544 (published as U.S. Pub. No. 2021/0113834), filed Oct. 26, 2020. |
PCT, PCT/US2017/048424 (published as WO 2018/039458), filed Aug. 24, 2017. |
U.S., U.S. Appl. No. 16/327,780 (published as U.S. Pub. No. 2021/0283400), filed Feb. 22, 2019. |
PCT, PCT/US2019/013966 (publihsed as WO 2019/143790), filed Jan. 17, 2019. |
U.S., U.S. Appl. 16/962,810 (published as U.S. Pub. No. 2021/0252278), filed Jan. 17, 2019. |
PCT, PCT/US2019/030458 (published as WO 2019/213433), filed May 2, 2019. |
U.S., U.S. Appl. No. 17/052,483 (published as U.S. Pub. No. 2021/0244940), filed Jan. 17, 2019. |
PCT, PCT/US2019/053297 (published as WO 2020/069219), filed Sep. 26, 2019. |
U.S., U.S. Appl. No. 17/279,048 (published as U.S. Pub. No. 2021/0402172), filed Mar. 23, 2021. |
PCT, PCT/US2019/057674 (published as WO 2020/086726), filed Oct. 23, 2019. |
U.S., U.S. Appl. No. 17/287,471 (published as U.S. Pub. No. 2021/0379374), filed Apr. 21, 2021. |
Number | Date | Country | |
---|---|---|---|
20200289814 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62251617 | Nov 2015 | US | |
62222210 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15762043 | US | |
Child | 16833388 | US |