U.S. Patent Publication No. 2015/0321000, filed Jul. 21, 2015, and International Publication No. WO2015/187712, filed Jun. 2, 2015, and herein incorporated by reference in their entireties for all purposes.
All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Embodiments of the invention relate generally to systems and methods for treating a disease or disorder, and more specifically to systems and method for treating a disease or disorder, such as tremor, using a monitoring unit and a therapy unit.
Essential tremor (ET) is the most common movement disorder, affecting an estimated 10 million patients in the U.S., with growing numbers due to the aging population. The prevalence increases with age, increasing from 6.3% of the population over 65, to above 20% over 95. ET is characterized by oscillatory movement, for example between 4-12 Hz, affecting distal limbs, especially the hands. Unlike Parkinson's tremor, which exists at rest, essential tremor is postural and kinetic, meaning tremor is induced by holding a limb against gravity or during movement respectively.
Disability with ET is common, and varies from embarrassment to the inability to live independently as key tasks such as writing and self-feeding are not possible due to the uncontrolled movement. Despite the high disability and prevalence of ET, there are insufficient treatment options to address tremor. Drugs used to treat tremor (e.g., Propranolol and Primidone) have been found to be ineffective in 40% of patients and only reduces tremor by 50%. These drugs also have side effects that can be severe. The alternative treatment is surgical implantation of a deep brain stimulator, which can be effective in reducing tremor amplitude by 90%, but is a highly invasive surgical procedure that carries significant risks and cannot be tolerated by many ET patients. There is thus a great need for alternative treatments for ET patients.
Tremor is also a significant problem for patients with orthostatic tremor, multiple sclerosis and Parkinson's disease. The underlying etiology of tremor in these conditions differs from ET, however treatment options for these conditions are also limited and alternative treatment is warranted.
A number of conditions, such as tremors, can be treated through some form of transcutaneous peripheral nerve stimulation. People have a wide variation in wrist diameters, nerve locations, nerve depolarization characteristics, and skin conduction that leads to challenges in designing a device to comfortably, safely and reliably stimulate the peripheral nerves across a broad population of potential users. For instance, in a wrist-worn device targeting the median, ulnar, and radial nerves at the wrist, the amount of power needed for a given stimulation session can vary widely based on skin impedance and usage scenarios.
The present invention relates generally to systems and methods for treating a disease or disorder, and more specifically to systems and method for treating a disease or disorder, such as tremor, using a monitoring unit and a therapy unit.
The devices and methods of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein. The present application discloses devices and methods for reducing tremor in a subject. In some embodiments, a device is provided. The device can include a housing and one or more affectors, power sources, or controls. In some embodiments, the device further includes one or more sensors. Further aspects and embodiments of the present invention are set forth herein.
These and other aspects and embodiments of the invention are described in greater detail below, with reference to the drawing figures.
In some embodiments, a system for treating tremor of a patient is provided. The system can include a band and a detachable therapy unit. The band can have at least two electrodes, a receptacle, and a first electrical circuit in electrical communication with both the at least two electrodes and the receptacle. The detachable therapy unit can include a second electrical circuit; one or more sensors in electrical communication with the second electrical circuit, the one or more sensors configured to measure data from the patient; a stimulator configured to generate an electrical stimulation, the stimulator in electrical communication with the second electrical circuit; at least two electrodes that are configured to receive the electrical stimulation from the stimulator; a controller configured to control the generation of the electrical stimulation by the stimulator; and a power source in electrical communication with the second electrical circuit; wherein the detachable therapy unit is configured to be reversibly attached to the receptacle of the band such that the at least two electrodes are in electrical communication with the stimulator.
In some embodiments, the band further includes one or more identifiers.
In some embodiments, the one or more identifiers are associated with stimulation parameters and/or usage life information.
In some embodiments, the system further includes a base station configured to charge the power source. In some embodiments, the base station is further configured to receive and transmit data to and from the detachable therapy unit and to and from a cloud computing network.
In some embodiments, the system further includes an online portal, such as a physician web portal, configured to access the data stored on the cloud computing network.
In some embodiments, the system further includes an online portal, such as a physician web portal, configured to provide information and parameter changes back to the detachable therapy unit.
In some embodiments, the system further includes a portable computing device with a second user interface and a display, wherein the portable computing device is configured to wirelessly communicate with the detachable therapy unit and to receive data from the cloud computing network.
In some embodiments, the receptacle comprises a securement feature for reversibly attaching the detachable therapy unit to the receptacle.
In some embodiments, the securement feature is selected from the group consisting of a clip, a magnet, a snap fit mechanism, a twist fit mechanism, a screw mechanism, a latching mechanism, a sliding mechanism, a flexible lip, and a hook.
In some embodiments, the detachable therapy unit further comprises a user interface.
In some embodiments, the controller is configured to control the generation of the electrical stimulation by the stimulator based on data measured by the one or more sensors.
In some embodiments, a system for treating tremor of a patient is provided. The system can include a wearable monitoring unit and a first therapy unit. The wearable monitoring unit can include an electrical circuit; one or more sensors in electrical communication with the electrical circuit, the one or more sensors configured to measure data from the patient; at least two electrodes. The first therapy unit can include a power source; a stimulator powered by the power source, the stimulator configured to generate an electrical stimulation that is delivered through the at least two electrodes of the wearable monitoring unit; and a controller configured to control the generation of the electrical stimulation by the stimulator based on data measured by the one or more sensors; wherein the first therapy unit is reversibly attachable to the wearable monitoring unit.
In some embodiments, the system further includes a second therapy unit. The second therapy unit can include a second power source, wherein the second power source of the second therapy unit has more electrical capacity than the power source of the first therapy unit; a second stimulator powered by the second power source, the second stimulator configured to generate an electrical stimulation that is delivered through the at least two electrodes of the wearable monitoring unit; and a second controller configured to control the generation of the electrical stimulation by the stimulator based on data measured by the one or more sensors; wherein the second therapy unit is reversibly attachable to the wearable monitoring unit.
In some embodiments, the one or more sensors are configured to measure motion data. In some embodiments, the controller is configured to determine the tremor frequency, amplitude, and/or phase from the motion data; and control the generation of the electrical stimulation by the stimulator based on the determined tremor frequency, amplitude, and/or phase.
In some embodiments, the at least two electrodes are disposed on a band. In some embodiments, at least one of the at least two electrodes is disposed on a band that is attached to a housing of the wearable monitoring unit and at least one of the at least two electrodes is disposed on a skin facing side of the housing of the wearable monitoring unit.
In some embodiments, a system for treating tremor of a patient is provided. The system can include a wearable monitoring unit and a therapy unit. The wearable monitoring unit can include a user interface; an electrical circuit in electrical communication with the user interface; and one or more sensors in electrical communication with the electrical circuit, the one or more sensors configured to measure data from the patient. The therapy unit can include a stimulator configured to generate an electrical stimulation; at least two electrodes that are configured to receive the electrical stimulation from the stimulator; a controller configured to control the generation of the electrical stimulation by the stimulator based on data measured by the one or more sensors; and a power source disposed within the wearable monitoring unit or the therapy unit; wherein the therapy unit is reversibly attachable to the wearable monitoring unit.
In some embodiments, the wearable monitoring unit is a smart watch.
In some embodiments, the one or more sensors are configured to measure motion data. In some embodiments, the controller is configured to determine the tremor frequency, amplitude, and/or phase from the motion data; and control the generation of the electrical stimulation based on the determined tremor frequency, amplitude, and/or phase.
In some embodiments, the controller is configured to provide automatic and/or manual control of the electrical stimulation.
In some embodiments, the wearable monitoring unit further includes a controller configured to determine the tremor frequency, amplitude, and/or phase from the motion data, and the controller of the therapy unit is configured to control the generation of the electrical stimulation by the stimulator based on the determined tremor frequency, amplitude, and/or phase.
In some embodiments, the at least two electrodes are disposed on a band. In some embodiments, at least one of the at least two electrodes is disposed on a band that is attached to a housing of the therapy unit and at least one of the at least two electrodes is disposed on a skin facing side of the housing of the therapy unit.
In some embodiments, the therapy unit communicates wirelessly with the wearable monitoring unit.
In some embodiments, both the therapy unit and the wearable monitoring unit each have a power source.
In some embodiments, the at least two electrodes are covered with a porous, compressible material that is impregnated with a conductive gel, wherein the porous, compressible material is configured to release the conductive gel when pressure is applied to the porous, compressible material.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Embodiments of the invention include a device and system and method to measure and collect motion and biological data (e.g., heart rate, galvanic skin response, temperature, and characteristics of the motion disorder, such as tremor frequency, amplitude, and phase), analyze the data as to interpret how these measures may influence motion disorders such as tremor or freezing of gait, and provide peripheral nerve stimulation that targets one or more individual nerves to reduce tremor or initiate gait, where the stimulation applied may or may not be modified based on the measured data.
Embodiments of the therapy system can include three components: (1) a monitoring unit having sensors, circuitry, and optionally may have a power source and/or a microcontroller, (2) a therapy unit having a stimulator (e.g., a pulse generator), circuitry, a power source and a microcontroller, and (3) a skin interface having electrodes and electrical connections for electrically connecting the electrodes to the therapy unit. In some embodiments, all three components are separate components that can be reversibly attached to each other to form a wearable therapy system. In some embodiments, any two of the components can be combined or integrated together to form a wearable two part system that can be reversibly attached to each other. It should be noted that some functions can crossover, such as the electrodes of the skin interface being used as sensors to measure electrical activity (e.g. EMG and ECG) and impedance, for example. In some embodiments, any one of the detachable components can be disposable and/or can be sent back to the manufacturer for recycling.
One embodiment, as shown in
In some embodiments, the wearable monitor unit 12 can have a housing with a user interface 22 that encloses one or more sensors 24. In some embodiments, the wearable monitor 12 can be used to detect and/or measure tremor. In some embodiments, the wearable monitor 12 can have one or more electrodes 26 located on the base of the housing that makes contact with the patient's skin. In addition or alternatively, the wearable monitor 12 can have a band 28 or other securement feature with one or more electrodes on the skin facing side of the band 28. In some embodiments, the wearable monitor unit 12 has 2 or 3 electrodes, or at least 2 or 3 electrodes. In some embodiments, the wearable monitor unit 12 lacks a power source and relies on the power source 18 in the therapy unit 14 for power. In other embodiments, both the wearable monitor unit 12 and the therapy unit 14 have power sources. In some embodiments, only the wearable monitor unit 12 has a power source and the therapy unit relies on power from the monitoring unit.
In some embodiments, as shown in
In some embodiments, the sensors can be located in or on the therapy unit instead of the monitoring unit. In some embodiments, the sensors can be located on both the therapy unit and the monitoring unit.
In some embodiments, the monitor unit can instead be carried by the user in, for example, the user's hand or pocket, rather than be worn. For example, a monitor unit carried by the user can be a smart phone, such as an Android smartphone or iPhone.
In some embodiments, the two part system or the monitor unit may instruct the user to perform an action, such as draw, write, or hold an object, or to remain still or to attempt to remain still while the wearable monitor unit takes a measurement with one of the sensors.
In some embodiments, the user interface can include a display. In some embodiments, the display can be a touch screen display. In some embodiments, the user interface can include one or more buttons and/or a keyboard.
In some embodiments, the electrodes can be dry-contact (e.g., fabric, metal, silicone or any other plastic impregnated with conductive fillers, or a combination), use a conductive gel (e.g., hydrogels), or have a wet electrode surface (e.g., a sponge with water or conductive liquids or gels), or have fine micro needles, for example. In some embodiments, the electrodes can have a foam backing as further described below.
In one embodiment of the system, the stimulation is provided by implanted electrodes that stimulate nerves in the wrist, such as the median nerve or radial nerve, or other nerves in a plurality of other locations, such as nerves in the leg like the tibial nerve, or nerves in the back like the sacral nerve. The implantable electrode may be powered by a rechargeable battery housed within the implant and recharged wirelessly from an external power source.
In another embodiment of an implanted electrode that stimulates the nerve, the implanted electrode is powered by an external therapy unit, and the stimulation pulse is directly coupled to the electrode and nerve using capacitive or inductive coupling.
In some embodiments, the monitor unit can be a wearable tremor monitor having a housing with a user interface. The housing use a plurality of sensors to collect, store, and analyze biological measures about the wearer including, but not limited to, motion (e.g., accelerometers, gyroscopes, magnetometer, bend sensors), muscle activity (e.g., EMG using electrodes), cardiovascular measures (e.g., heart rate, heart rate variability using electrodes to measure ECG, heart rhythm abnormalities), skin conductance (e.g., skin conductance response, galvanic skin response, using electrodes), respiratory rate, skin temperature, and sleep state (e.g., awake, light sleep, deep sleep, REM). In particular, studies have shown that increased stress levels can increase tremor in people with Essential Tremor, Parkinson's Disease, and other diseases causing tremor. Thus, using standard statistical analysis techniques, such as a logistical regression or Naïve Bayes classifier, these biological measures can be analyzed to assess a person's state, such as level of stress, which in turn, can serve as a predictor for increases in tremor level. In an early pilot study, patients were asked to perform activities prior to and after a stressful event. In this case, the stressful event was to take a timed math test. In preliminary studies, the patients' amplitude of tremor appeared to increase by about 20% after the stressful timed math test.
In one embodiment of the wearable monitor, the skin interface has an array of microneedles. Microneedles have been shown to measure blood chemistry using electrochemical sensors that can be used to detect specific molecules or ptI levels. Thus the monitoring unit could incorporate microneedles with elcctrochemical sensors to measure specific chemicals in the blood stream that may affect tremor, such as stress hormones, caffeine, or medications.
In one embodiment of the monitor, a saliva sample is taken with a paper strip placed in the mouth, and saliva chemistry is analyzed by sensors in the wearable monitor or in a standalone analysis unit, for substances that may affect tremor, including stress hormones (e.g., cortisol), caffeine, or medications. The unit could have a light source and photo detectors to analyze the chemistry of the strip. The unit could also communicate with an external processing device, such as a cell phone. The strips could be visually coded to record and store information about the measurement (e.g., time, location, etc).
The wearable tremor monitor can have a microprocessor to analyze biological measures about the wearer to: determine or predict the onset of increased tremor activity, set parameters of the stimulation waveform applied by the therapy unit, and/or adapt the stimulation waveform applied by the therapy unit in real time. Parameters of the stimulation waveform that could be modified based on analysis of biological measures are frequency, amplitude, shape, burst sequence. In some embodiments, the analysis can be performed by a microprocessor on the therapy unit or an external computing device.
One embodiment of the system could centrally store biological measures from multiple wearers on a server system (e.g., the cloud), along with other relevant demographic data about each user, include age, weight, height, gender, ethnicity, etc. Data collected from multiple wearers is analyzed using standard statistical techniques, such as a logistic regression or Naïve Bayes classifier (or other classifiers), to improve prediction of tremor onset by determining correlations between biological measures and other recorded events and onset of increased tremor activity. These correlations are used to set parameters of the stimulation waveform applied by the therapy unit, determine best time to apply stimulation therapy, and/or adapt the stimulation waveform applied by the therapy unit in real time.
In one embodiment of the system, the wearable tremor monitor that automatically detects and records the dosage and consumption of medications to (1) track compliance of the patient; (2) combine with the measurement of tremor activity to assess therapeutic effectiveness, and (3) determine or predict the onset of an increase or decrease in tremor activity. The dosage and consumption of medications can be detected and record in multiple ways, including (1) using visual scanner to record a marking on the pill pack or bottle each time medication is consumed, (2) a smart pill cap with force sensors and a wireless transmitter to detect each time the medication is consumed from a pill bottle, (3) an RFID chip that is of similar size and shape as a pill that is consumed with each dosage of medication that is activated by digestion and communicates with the monitor device, (4) an RFID chip embedded in a sugar pill that is consumed with each dosage of medication that is activated by digestion and communicates with the monitor device, and (5) a pill with a visual encoding that is scanned and recorded by a camera on the monitor unit each time medication is consumed.
In some embodiments, the wearable tremor monitor can have a visual, auditory, tactile (e.g., squeezing band), or vibrotactile cues to notify the wearer of key events based on analysis of biological measures, including, but not limited to, prediction of tremor onset, increase in tremor activity, and/or increase in stress level. The cuing system could also notify the wearer of other predetermined events or reminders set by the wearer. Cuing system is used to (1) communicate information to the wearer, such as onset of increased tremor activity or other predetermined events, in a more discreet, personalized way, without drawing attention from others in social situations.
In some embodiments, the form of the wearable monitor and/or therapy unit could be a wrist band or watch, a ring, a glove, an arm sleeve or arm band, an ear piece/headphone, head band, a necklace or neck band, or a compliant patch.
In one embodiment, the wearable monitor can have a processing unit and memory that collects, stores, processes, and analyzes the biological measures, along with other data input by the wearer.
In some embodiments, the wearable monitor can take user input about events, including diet history, medication history, caffeine intake, alcohol intake, etc. The monitor can use accelerometers to measure specific movements, gestures, or tapping patterns to record user inputs at specific prompts. Other touch sensors, such as resistive strips or pressure sensitive screens, could be used to measure specific gestures to record user inputs. These gesture based measures to record user input minimize the complexity of steps required to input user data into the device. The data can be stored in memory and processed by the processing unit. In some embodiments, the data can be transmitted from the wearable monitor to an external computing device.
In one embodiment, the wearable monitor and/or the therapy unit can connect with other applications, such as calendars and activity logs, to sync and track events or a saved calendar can be saved and stored on the device. In some embodiments, the wearable monitor and/or the therapy unit can communicate with a variety of computing devices, such as a smart phone, a smart watch, a tablet, a laptop computer, or a desktop computer, for example, that have these applications.
In one embodiment, the monitor unit and/or therapy unit can have a OPS or similar device to track the location and assess activity of the wearer. GPS measures can be combined with mapping or location systems to determine context of the wearer's activity (e.g., gym, office, home) or determine changes in elevation during specific activities, such as running or cycling.
In some embodiments as shown in
In one embodiment, the therapy units have a unique charging station that can simultaneously charge multiple therapy units. The charging station could have a custom direct electrical connection to the therapy units or could charge the therapy units wirelessly in a close proximity. Similarly, in some embodiments, the charging station can charge the monitoring units in a similar manner.
In one embodiment, the wearable monitor can track parameters about stimulation provided by the therapy unit, including time of stimulation, duration of the stimulation session, and power used by the therapy unit. This data can be stored on memory in the wearable monitor, processed by the wearable monitor, and/or transmitted to an external computing device.
In one embodiment, the therapy unit can use switches or an electrical sensor to detect connection of electrodes: (1) to ensure proper and unique electrodes are being installed (i.e., not using a different or incorrect type of electrode) communicating a unique code, for example via RFID, an encoded EEPROM chip, a resistance or capacitance based ID, a binary identifier, or a surface pattern (2) to regulate the number of uses for each electrode to prevent over use, and (3) to prevent the usage of the device without an electrode to prevent small shock. In some embodiments, the therapy unit and/or the monitor unit can have an identifier that can be transmitted to and be received by each other or to an external computing device. The identifier can allow one unit to determine the features, capabilities, and/or configuration of the other device, including the electrode configuration described above, so that the appropriate treatment parameters can be used, and also the usage life or expiration of the component, which can be based on voltage measurements, time, number of therapy sessions, or other parameters. In some embodiments, instead of using an identifier, the features, capabilities, and/or configuration of one device can be transmitted to the other device, either directly from one device to the other device, or through entry into the user interface, or through an external computing device.
Other components of the therapy system, including the band, the therapy unit, the monitoring unit, the skin interface, can each have one or more identifiers that performs the functions described above. These identifiers can encode a variety of information as described herein, as well as predetermined dosing regimens, initialization routines, calibration routines, or specific parameters. The identifiers may be associated with a lookup table that stores the encoded information.
In some embodiments, the wearable monitor and/or the therapy unit can communicate with an external computer or device (e.g., tablet, smartphone, smartwatch, or custom base station) to store data. Communication between the monitor and external device can be a direct, physical connection, or with a wireless communication connection such as Bluetooth or GSM or cellular.
In one embodiment of the device, the therapy unit has an array of electrodes and one or more sensors, such as pressure sensors, between the therapy unit and the wearer's wrist to measure pressure of contact of the skin interface at and/or around the electrodes. This pressure data can be analyzed to determine which electrodes in the array to stimulate to target the appropriate nerves or to detect changes in skin contact due to motion or other conditions and switch stimulation of the electrode array to the optimal location. These methods are used to (1) assess poor contact of electrodes, and (2) adjust amplitude of stimulation based on pressure measurement.
Increasing contact pressure between the device and the wearer's skin and/or stimulating with electrodes with an adequate contact pressure or above a contact pressure threshold could: (1) increase the surface area of contact, which reduces discomfort, (2) activate deep somatic pain (i.e., type C) peripheral nerve fibers, which could reduce discomfort from stimulation, which activates superficial pain (i.e., type A delta) fibers, (3) reduce the stimulation amplitude needed because it improves stimulation of the targeted nerve (e.g., the electrode is physically closer to the nerve by pressing it), or (4) reduce the effect of skin motion.
In one embodiment, the therapy unit has the form of an inflatable wrist band, which is made of a pliable, airtight material. A small pump is actuated or activated by the user to fill the bladder with air and increase pressure to increase the surface area of contact, which reduces discomfort. In some embodiments, the pump is integrated into the wrist band and can be either mechanically actuated by the user or electrically powered by a battery. In other embodiments, the pump can be separate from the wrist band.
In one embodiment, the pressure is provided by a compliant material within the band, such a soft open cell foam or an array of mini springs (e.g., pogo pins).
In one embodiment of the device as shown in
In one embodiment as shown in
In some embodiments as shown in
In one embodiment of the above, the therapy unit wirelessly powers the monitoring patch.
In some embodiments as shown in
In some embodiments as shown in
In some embodiments as shown in
In one embodiment, the system helps the wearer relax—by using a cuing system to remind the wearer to relax or practice relaxation techniques. The cuing can be auditory, visual, or tactile. Also, the system can provide feedback about the wearer's stress level that gives reinforcement that relaxation techniques are working.
In some embodiments, the therapy unit 902 can include a battery, which may be rechargeable, and electronics to deliver electrical stimulation through the electrodes to the patient's nerves. The electronics can include a stimulator and a microcontroller, and may also include memory and one or more sensors, such as one or more accelerometers and gyroscopes as described herein. In some embodiments, the device is able to sense the impedance of the electrodes in order to assess the integrity of the electrode to skin interface. In some embodiments, there can be an electrical indication (e.g. reading of a chip, pushing in of a sensor on the connector, etc.) to detect integrity of the connection between the band and the therapy unit. In some embodiments, the therapy unit 902 can have one or more LEDs, mini OLED screens, LCS, or indicators 901 that can indicate the status of the therapy unit 902, such as whether the therapy unit 902 is connected to the band 900, the power remaining in the battery of the therapy unit 902, whether a stimulation is being delivered, the stimulation level, whether data is being transmitted, whether a sensor measurement is being taken, whether a calibration routine is being performed, whether the therapy unit 902 is initializing, whether the therapy unit 902 is paired with another device such as a smart watch and/or smart phone, whether the battery is being charged, and the like. In some embodiments, the therapy unit 902 may also include a user interface 903, such as one or more buttons.
In some embodiments, the kit illustrated in
Following the data collection phase, the patient can turn on the therapy function on the therapy unit and perform patient-directed tasks after and/or while being given one or more therapy treatments, which may be stored on the therapy unit, in order to identify how well the patient is responding to the various treatments. The patient response data can also be stored on memory and/or transmitted through a network or to another computing device, which can be accessed by the patient's physician.
In some embodiments, the patient can return the kit to the physician or manufacturer of the kit, and data can be retrieved from the system and transmitted to the patient's physician.
Using the data from system, the physician can characterize the patient's tremor or other disease, generate a diagnosis, and determine the appropriate treatment for the patient, which may include selection of the appropriate therapy system and stimulation parameters.
In some embodiments, the base station 1000 is used to receive and transmit relatively large amounts of data that may require a high bandwidth, such as the transmission of raw data from the therapy device, which may be about 10 to 100 Mb/day, or about 10, 20, 30, 40, or 50 Mb/day. In some embodiments, the data may be stored in memory in the base station 1000 and transmitted at another interval, such as weekly or twice weekly, with a scaling up of the bandwidth of transmission. The high bandwidth transmission of the raw data can occur daily while the therapy device is being charged, such as at night during a regular charging period. In some embodiments, the raw data can be processed by the cloud and/or the physician into processed data and sent back to the therapy device.
In some embodiments, the system may optionally include a portable computing device 1006, such as a smart phone or tablet, to provide a secondary display and user interface for the patient and to run applications to more easily control the therapy device and view the raw and processed data. The portable computing device can be used to make patient or physician adjustments to the therapy device, such as adjusting the stimulation parameters and dosing, and can receive device state data from the therapy device, which includes data relating to the device, such as when the device was used, errors, therapy parameters such as amplitude and when they were set and delivered. In some embodiments, the portable computing device 1006 can receive processed data from the cloud 1002 through a cellular network and/or through an internet connection using WiFi, for example.
The band 1102 can have electrodes 1124 and may also include memory to store identification information or may include some other form of identifier 1126 as described herein.
The base station 1104 can include charging circuitry 1128, which may also be inductive and can transmit power to the complementary charging circuitry 1114 on the therapy unit 1100. The base station 1104 can also have a processor and memory for storing and executing instructions and programs. The base station 1104 can further include a communication module 1132, which may be cellular, to communicate with the cloud, and another communication module 1134, which may be wireless and used to communicate with the therapy unit.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
It is understood that this disclosure, in many respects, is only illustrative of the numerous alternative device embodiments of the present invention. Changes may be made in the details, particularly in matters of shape, size, material and arrangement of various device components without exceeding the scope of the various embodiments of the invention. Those skilled in the art will appreciate that the exemplary embodiments and descriptions thereof are merely illustrative of the invention as a whole. While several principles of the invention are made clear in the exemplary embodiments described above, those skilled in the art will appreciate that modifications of the structure, arrangement, proportions, elements, materials and methods of use, may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the scope of the invention. In addition, while certain features and elements have been described in connection with particular embodiments, those skilled in the art will appreciate that those features and elements can be combined with the other embodiments disclosed herein.
This application is the U.S. National Stage under 35 U.S.C. § 371 of PCT Applications. No. PCT/US2016/037080 filed on Jun. 10, 2016, which in turn claims priority to U.S. Provisional Application No. 62/173,894, filed Jun. 10, 2015, each of the foregoing of which are herein incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/037080 | 6/10/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/201366 | 12/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3204637 | Frank et al. | Sep 1965 | A |
3870051 | Brindley | Mar 1975 | A |
4300575 | Wilson | Nov 1981 | A |
4458696 | Larimore | Jul 1984 | A |
4461075 | Bailey | Jul 1984 | A |
4539996 | Engel | Sep 1985 | A |
4569351 | Tang | Feb 1986 | A |
4582049 | Ylvisaker | Apr 1986 | A |
4729377 | Granek et al. | Mar 1988 | A |
4739764 | Lue et al. | Apr 1988 | A |
4763659 | Dunseath, Jr. | Aug 1988 | A |
4771779 | Tanagho et al. | Sep 1988 | A |
4981146 | Bertolucci | Jan 1991 | A |
4982432 | Clark et al. | Jan 1991 | A |
5003978 | Dunseath, Jr. | Apr 1991 | A |
5052391 | Silverstone et al. | Oct 1991 | A |
5070862 | Berlant | Dec 1991 | A |
5137507 | Park | Aug 1992 | A |
5330516 | Nathan | Jul 1994 | A |
5397338 | Grey et al. | Mar 1995 | A |
5514175 | Kim et al. | May 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5562707 | Prochazka et al. | Oct 1996 | A |
5562717 | Tippey et al. | Oct 1996 | A |
5573011 | Felsing | Nov 1996 | A |
5575294 | Perry et al. | Nov 1996 | A |
5606968 | Mang | Mar 1997 | A |
5643173 | Welles | Jul 1997 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5833709 | Rise et al. | Nov 1998 | A |
5833716 | Bar-Or et al. | Nov 1998 | A |
5899922 | Loos | May 1999 | A |
6016449 | Fischell et al. | Jan 2000 | A |
6081744 | Loos | Jun 2000 | A |
6161044 | Silverstone | Dec 2000 | A |
6178352 | Gruzdowich et al. | Jan 2001 | B1 |
6351674 | Silverstone | Feb 2002 | B2 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6445955 | Michelson et al. | Sep 2002 | B1 |
6449512 | Boveja | Sep 2002 | B1 |
6505074 | Boveja et al. | Jan 2003 | B2 |
6546290 | Shloznikov | Apr 2003 | B1 |
6564103 | Fischer et al. | May 2003 | B2 |
6579270 | Sussman et al. | Jun 2003 | B2 |
6652449 | Gross et al. | Nov 2003 | B1 |
6704603 | Gesotti | Mar 2004 | B1 |
6731987 | McAdams et al. | May 2004 | B1 |
6735474 | Loeb et al. | May 2004 | B1 |
6735480 | Giuntoli et al. | May 2004 | B2 |
6788976 | Gesotti | Sep 2004 | B2 |
6819956 | DiLorenzo | Nov 2004 | B2 |
6829510 | Nathan et al. | Dec 2004 | B2 |
6836684 | Rijkhoff et al. | Dec 2004 | B1 |
6862480 | Cohen et al. | Mar 2005 | B2 |
6892098 | Ayal et al. | May 2005 | B2 |
6937905 | Carroll et al. | Aug 2005 | B2 |
6959215 | Gliner et al. | Oct 2005 | B2 |
6959216 | Faghri | Oct 2005 | B2 |
6988005 | McGraw et al. | Jan 2006 | B2 |
7010352 | Hogan | Mar 2006 | B2 |
7089061 | Grey | Aug 2006 | B2 |
7146220 | Dar et al. | Dec 2006 | B2 |
7162305 | Tong et al. | Jan 2007 | B2 |
7171266 | Gruzdowich et al. | Jan 2007 | B2 |
7177694 | Elbaum | Feb 2007 | B2 |
7177703 | Boveja et al. | Feb 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7228178 | Carroll et al. | Jun 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7236830 | Gliner | Jun 2007 | B2 |
7254444 | Moore et al. | Aug 2007 | B2 |
7277758 | DiLorenzo | Oct 2007 | B2 |
7324851 | DiLorenzo | Jan 2008 | B1 |
7326235 | Edwards | Feb 2008 | B2 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7349739 | Harry et al. | Mar 2008 | B2 |
7353064 | Gliner et al. | Apr 2008 | B2 |
7369896 | Gesotti | May 2008 | B2 |
7499747 | Kieval et al. | Mar 2009 | B2 |
7529582 | DiLorenzo | May 2009 | B1 |
7558610 | Odderson | Jul 2009 | B1 |
7636602 | Baru Fassio et al. | Dec 2009 | B2 |
7643880 | Tanagho et al. | Jan 2010 | B2 |
7643882 | Boston | Jan 2010 | B2 |
7647112 | Tracey et al. | Jan 2010 | B2 |
7650190 | Zhou et al. | Jan 2010 | B2 |
7742820 | Wyler et al. | Jun 2010 | B2 |
7761166 | Giftakis et al. | Jul 2010 | B2 |
7769464 | Gerber et al. | Aug 2010 | B2 |
7857771 | Alwan et al. | Dec 2010 | B2 |
7899556 | Nathan et al. | Mar 2011 | B2 |
7917201 | Gozani et al. | Mar 2011 | B2 |
7930034 | Gerber | Apr 2011 | B2 |
7949403 | Palermo et al. | May 2011 | B2 |
7957814 | Goetz et al. | Jun 2011 | B2 |
7974696 | DiLorenzo | Jul 2011 | B1 |
7974698 | Tass et al. | Jul 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7998092 | Avni | Aug 2011 | B2 |
8000796 | Tass | Aug 2011 | B2 |
8025632 | Einarsson | Sep 2011 | B2 |
8046083 | Tegenthoff et al. | Oct 2011 | B2 |
8075499 | Nathan et al. | Dec 2011 | B2 |
8086318 | Strother et al. | Dec 2011 | B2 |
8121694 | Molnar et al. | Feb 2012 | B2 |
8145316 | Deem et al. | Mar 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8175718 | Wahlgren et al. | May 2012 | B2 |
8187209 | Guiffrida et al. | May 2012 | B1 |
8219188 | Craig | Jul 2012 | B2 |
8233988 | Errico et al. | Jul 2012 | B2 |
8260439 | Diubaldi et al. | Sep 2012 | B2 |
8301215 | Lee | Oct 2012 | B2 |
8306624 | Gerber et al. | Nov 2012 | B2 |
8313443 | Tom | Nov 2012 | B2 |
8343026 | Gardiner et al. | Jan 2013 | B2 |
8364257 | Van Den Eerenbeemd et al. | Jan 2013 | B2 |
8374701 | Hyde et al. | Feb 2013 | B2 |
8380314 | Panken et al. | Feb 2013 | B2 |
8382688 | Dar et al. | Feb 2013 | B2 |
8391970 | Tracey et al. | Mar 2013 | B2 |
8396556 | Libbus et al. | Mar 2013 | B2 |
8409116 | Wang et al. | Apr 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8414507 | Asada | Apr 2013 | B2 |
8428719 | Napadow | Apr 2013 | B2 |
8435166 | Burnett et al. | May 2013 | B2 |
8447411 | Skelton et al. | May 2013 | B2 |
8452410 | Emborg et al. | May 2013 | B2 |
8463374 | Hudson et al. | Jun 2013 | B2 |
8473064 | Castel et al. | Jun 2013 | B2 |
8548594 | Thimineur et al. | Oct 2013 | B2 |
8571687 | Libbus et al. | Oct 2013 | B2 |
8581731 | Purks et al. | Nov 2013 | B2 |
8583238 | Heldman et al. | Nov 2013 | B1 |
8588884 | Hegde et al. | Nov 2013 | B2 |
8588917 | Whitehurst et al. | Nov 2013 | B2 |
8608671 | Kinoshita et al. | Dec 2013 | B2 |
8626305 | Nielsen et al. | Jan 2014 | B2 |
8639342 | Possover | Jan 2014 | B2 |
8644904 | Chang et al. | Feb 2014 | B2 |
8644938 | Craggs | Feb 2014 | B2 |
8660656 | Moser et al. | Feb 2014 | B2 |
8666496 | Simon et al. | Mar 2014 | B2 |
8679038 | Giuffrida | Mar 2014 | B1 |
8682441 | De Ridder | Mar 2014 | B2 |
8688220 | Degiorgio et al. | Apr 2014 | B2 |
8694104 | Libbus et al. | Apr 2014 | B2 |
8694110 | Nathan et al. | Apr 2014 | B2 |
8702584 | Rigaux et al. | Apr 2014 | B2 |
8702629 | Giuffrida et al. | Apr 2014 | B2 |
8706241 | Firlik et al. | Apr 2014 | B2 |
8718780 | Lee | May 2014 | B2 |
8740825 | Ehrenreich et al. | Jun 2014 | B2 |
8744587 | Miesel et al. | Jun 2014 | B2 |
8755892 | Amurthur et al. | Jun 2014 | B2 |
8768452 | Gerber | Jul 2014 | B2 |
8788045 | Gross et al. | Jul 2014 | B2 |
8788049 | Lasko et al. | Jul 2014 | B2 |
8792977 | Kakei et al. | Jul 2014 | B2 |
8798698 | Kim et al. | Aug 2014 | B2 |
8821416 | Johansson et al. | Sep 2014 | B2 |
8825163 | Grill et al. | Sep 2014 | B2 |
8825165 | Possover | Sep 2014 | B2 |
8843201 | Heldman et al. | Sep 2014 | B1 |
8845494 | Whitall et al. | Sep 2014 | B2 |
8845557 | Giuffrida et al. | Sep 2014 | B1 |
8855775 | Leyde | Oct 2014 | B2 |
8862238 | Rahimi et al. | Oct 2014 | B2 |
8862247 | Schoendorf et al. | Oct 2014 | B2 |
8868177 | Simon et al. | Oct 2014 | B2 |
8874227 | Simon et al. | Oct 2014 | B2 |
8880175 | Simon | Nov 2014 | B2 |
8886321 | Rohrer et al. | Nov 2014 | B2 |
8892200 | Wagner et al. | Nov 2014 | B2 |
8897870 | De Ridder | Nov 2014 | B2 |
8903494 | Goldwasser et al. | Dec 2014 | B2 |
8920345 | Greenberg et al. | Dec 2014 | B2 |
8923970 | Bar-Yoseph et al. | Dec 2014 | B2 |
8948876 | Gozani et al. | Feb 2015 | B2 |
8961439 | Yang et al. | Feb 2015 | B2 |
8972017 | Dar et al. | Mar 2015 | B2 |
8989861 | Su et al. | Mar 2015 | B2 |
9002477 | Burnett | Apr 2015 | B2 |
9005102 | Burnett et al. | Apr 2015 | B2 |
9008781 | Ahmed | Apr 2015 | B2 |
9011310 | Ahmed | Apr 2015 | B2 |
9017273 | Burbank et al. | Apr 2015 | B2 |
9026216 | Rossi et al. | May 2015 | B2 |
9042988 | Dilorenzo | May 2015 | B2 |
9060747 | Salorio | Jun 2015 | B2 |
9089691 | Libbus et al. | Jul 2015 | B2 |
9095351 | Sachs et al. | Aug 2015 | B2 |
9095417 | Dar et al. | Aug 2015 | B2 |
9107614 | Halkias et al. | Aug 2015 | B2 |
9119964 | Marnfeldt | Sep 2015 | B2 |
9155885 | Wei et al. | Oct 2015 | B2 |
9155890 | Guntinas-Lichius et al. | Oct 2015 | B2 |
9162059 | Lindenthaler | Oct 2015 | B1 |
9168374 | Su | Oct 2015 | B2 |
9174045 | Simon et al. | Nov 2015 | B2 |
9186095 | MacHado et al. | Nov 2015 | B2 |
9192763 | Gerber et al. | Nov 2015 | B2 |
9220895 | Siff et al. | Dec 2015 | B2 |
9227056 | Heldman et al. | Jan 2016 | B1 |
9238142 | Heldman et al. | Jan 2016 | B2 |
9242085 | Hershey et al. | Jan 2016 | B2 |
9248285 | Haessler | Feb 2016 | B2 |
9248286 | Simon et al. | Feb 2016 | B2 |
9248297 | Hoyer et al. | Feb 2016 | B2 |
9254382 | Ahmad et al. | Feb 2016 | B2 |
9259577 | Kaula et al. | Feb 2016 | B2 |
9265927 | Yonce et al. | Feb 2016 | B2 |
9282928 | Giffrida | Mar 2016 | B1 |
9289607 | Su et al. | Mar 2016 | B2 |
9301712 | McNames et al. | Apr 2016 | B2 |
9302046 | Giuffrida et al. | Apr 2016 | B1 |
9314190 | Giuffrida et al. | Apr 2016 | B1 |
9314622 | Embrey et al. | Apr 2016 | B2 |
9332918 | Buckley et al. | May 2016 | B1 |
9339641 | Rajguru et al. | May 2016 | B2 |
9345872 | Groteke | May 2016 | B2 |
9364657 | Kiani et al. | Jun 2016 | B2 |
9364672 | Marnfeldt | Jun 2016 | B2 |
9375570 | Kiani et al. | Jun 2016 | B2 |
9408683 | St Anne et al. | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9452287 | Rosenbluth et al. | Sep 2016 | B2 |
9468753 | Fisher et al. | Oct 2016 | B2 |
9474898 | Gozani et al. | Oct 2016 | B2 |
9549872 | Chen et al. | Jan 2017 | B2 |
9586038 | Kosierkiewicz | Mar 2017 | B1 |
9597509 | Hoffer et al. | Mar 2017 | B2 |
9675800 | Li et al. | Jun 2017 | B2 |
9782584 | Cartledge et al. | Oct 2017 | B2 |
9802041 | Wong et al. | Oct 2017 | B2 |
9861283 | Giuffrida | Jan 2018 | B1 |
9877679 | Giuffrida | Jan 2018 | B1 |
9877680 | Giuffrida et al. | Jan 2018 | B1 |
9924899 | Pracar et al. | Mar 2018 | B2 |
9974478 | Brokaw et al. | May 2018 | B1 |
9980659 | Sadeghian-Motahar et al. | May 2018 | B2 |
10004900 | Kent et al. | Jun 2018 | B2 |
10022545 | Giuffrida | Jul 2018 | B1 |
10028695 | Machado et al. | Jul 2018 | B2 |
10130809 | Cartledge et al. | Nov 2018 | B2 |
10173060 | Wong et al. | Jan 2019 | B2 |
10179238 | Wong et al. | Jan 2019 | B2 |
10213602 | Ironi et al. | Feb 2019 | B2 |
10549093 | Wong et al. | Feb 2020 | B2 |
10561839 | Wong et al. | Feb 2020 | B2 |
10603482 | Hamner et al. | Mar 2020 | B2 |
10625074 | Rosenbluth et al. | Apr 2020 | B2 |
20020161415 | Cohen et al. | Oct 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020177882 | DiLorenzo | Nov 2002 | A1 |
20030032992 | Thacker et al. | Feb 2003 | A1 |
20030045922 | Northrop | Mar 2003 | A1 |
20030088294 | Gesotti | May 2003 | A1 |
20030093098 | Heitzmann et al. | May 2003 | A1 |
20030149457 | Tcheng et al. | Aug 2003 | A1 |
20030181959 | Dobak, III | Sep 2003 | A1 |
20030187483 | Grey et al. | Oct 2003 | A1 |
20030195583 | Gruzdowich et al. | Oct 2003 | A1 |
20040015094 | Manabe et al. | Jan 2004 | A1 |
20040088025 | Gessotti | May 2004 | A1 |
20040093093 | Andrews | May 2004 | A1 |
20040127939 | Grey et al. | Jul 2004 | A1 |
20040133249 | Gesotti | Jul 2004 | A1 |
20040167588 | Bertolucci | Aug 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040267331 | Koeneman et al. | Dec 2004 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050055063 | Loeb et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050075502 | Shafer | Apr 2005 | A1 |
20050171577 | Cohen et al. | Aug 2005 | A1 |
20050234309 | Klapper | Oct 2005 | A1 |
20060047326 | Wheeler | Mar 2006 | A1 |
20060052726 | Weisz et al. | Mar 2006 | A1 |
20060095088 | De Ridder | May 2006 | A1 |
20060161218 | Danilov | Jul 2006 | A1 |
20060173509 | Lee et al. | Aug 2006 | A1 |
20060184059 | Jadidi | Aug 2006 | A1 |
20060217781 | John | Sep 2006 | A1 |
20060224191 | DiLorenzo | Oct 2006 | A1 |
20060229678 | Lee | Oct 2006 | A1 |
20060253167 | Kurtz et al. | Nov 2006 | A1 |
20060276853 | Tass | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070073361 | Goren et al. | Mar 2007 | A1 |
20070123951 | Boston | May 2007 | A1 |
20070123952 | Strother et al. | May 2007 | A1 |
20070142862 | DiLorenzo | Jun 2007 | A1 |
20070156179 | Karashurov | Jul 2007 | A1 |
20070156182 | Castel et al. | Jul 2007 | A1 |
20070156183 | Rhodes | Jul 2007 | A1 |
20070156200 | Kornet et al. | Jul 2007 | A1 |
20070173899 | Levin et al. | Jul 2007 | A1 |
20070173903 | Goren et al. | Jul 2007 | A1 |
20070203533 | Goren et al. | Aug 2007 | A1 |
20070207193 | Zasler et al. | Sep 2007 | A1 |
20070282228 | Einav et al. | Dec 2007 | A1 |
20080004672 | Dalal et al. | Jan 2008 | A1 |
20080009772 | Tyler et al. | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080027507 | Bijelic et al. | Jan 2008 | A1 |
20080033259 | Manto et al. | Feb 2008 | A1 |
20080033504 | Bertolucci | Feb 2008 | A1 |
20080051839 | Libbus et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080058893 | Noujokat | Mar 2008 | A1 |
20080147146 | Wahlgren et al. | Jun 2008 | A1 |
20080177398 | Gross et al. | Jul 2008 | A1 |
20080195007 | Podrazhansky et al. | Aug 2008 | A1 |
20080208288 | Podrazhansky et al. | Aug 2008 | A1 |
20080216593 | Jacobsen et al. | Sep 2008 | A1 |
20080288016 | Amurthur et al. | Nov 2008 | A1 |
20080312520 | Rowlandson et al. | Dec 2008 | A1 |
20090018609 | DiLorenzo | Jan 2009 | A1 |
20090076565 | Surwit | Mar 2009 | A1 |
20090105785 | Wei et al. | Apr 2009 | A1 |
20090112133 | Deisseroth et al. | Apr 2009 | A1 |
20090157138 | Errico et al. | Jun 2009 | A1 |
20090187121 | Evans | Jul 2009 | A1 |
20090216294 | Ewing et al. | Aug 2009 | A1 |
20090247910 | Klapper | Oct 2009 | A1 |
20090299435 | Gliner et al. | Dec 2009 | A1 |
20090318986 | Alo et al. | Dec 2009 | A1 |
20090326595 | Brockway et al. | Dec 2009 | A1 |
20090326607 | Castel et al. | Dec 2009 | A1 |
20100010381 | Skelton et al. | Jan 2010 | A1 |
20100010572 | Skelton et al. | Jan 2010 | A1 |
20100057154 | Dietrich et al. | Mar 2010 | A1 |
20100099963 | Kilger | Apr 2010 | A1 |
20100107657 | Vistakula | May 2010 | A1 |
20100125220 | Seong | May 2010 | A1 |
20100152817 | Gillbe | Jun 2010 | A1 |
20100174342 | Boston et al. | Jul 2010 | A1 |
20100222630 | Mangrum et al. | Sep 2010 | A1 |
20100227330 | Fink et al. | Sep 2010 | A1 |
20100249637 | Walter et al. | Sep 2010 | A1 |
20100292527 | Schneider et al. | Nov 2010 | A1 |
20100298905 | Simon | Nov 2010 | A1 |
20100324611 | Deming et al. | Dec 2010 | A1 |
20110009920 | Whitehurst et al. | Jan 2011 | A1 |
20110021899 | Arps et al. | Jan 2011 | A1 |
20110040204 | Ivorra et al. | Feb 2011 | A1 |
20110054358 | Kim et al. | Mar 2011 | A1 |
20110071590 | Mounaim et al. | Mar 2011 | A1 |
20110098780 | Graupe et al. | Apr 2011 | A1 |
20110118805 | Wei et al. | May 2011 | A1 |
20110125212 | Tyler | May 2011 | A1 |
20110137375 | McBride | Jun 2011 | A1 |
20110184489 | Nicolelis et al. | Jul 2011 | A1 |
20110202107 | Sunagawa et al. | Aug 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110224571 | Pascual-Leone et al. | Sep 2011 | A1 |
20110230701 | Simon et al. | Sep 2011 | A1 |
20110245734 | Wagner et al. | Oct 2011 | A1 |
20110250297 | Oronsky et al. | Oct 2011 | A1 |
20110282412 | Glukhovsky et al. | Nov 2011 | A1 |
20110301663 | Wang et al. | Dec 2011 | A1 |
20120010492 | Thramann et al. | Jan 2012 | A1 |
20120053491 | Nathan et al. | Mar 2012 | A1 |
20120078319 | De Ridder | Mar 2012 | A1 |
20120088986 | David et al. | Apr 2012 | A1 |
20120092178 | Callsen et al. | Apr 2012 | A1 |
20120109013 | Everett et al. | May 2012 | A1 |
20120136410 | Rezai et al. | May 2012 | A1 |
20120158094 | Kramer et al. | Jun 2012 | A1 |
20120184801 | Simon et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120220812 | Mishelevich | Aug 2012 | A1 |
20120239112 | Muraoka | Sep 2012 | A1 |
20120259255 | Tomlinson et al. | Oct 2012 | A1 |
20120277621 | Gerber et al. | Nov 2012 | A1 |
20120302821 | Burnett | Nov 2012 | A1 |
20120310298 | Besio et al. | Dec 2012 | A1 |
20120310303 | Popovic et al. | Dec 2012 | A1 |
20120330182 | Alberts et al. | Dec 2012 | A1 |
20130006322 | Tai | Jan 2013 | A1 |
20130060124 | Zietsma | Mar 2013 | A1 |
20130066388 | Bernhard et al. | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130085317 | Feinstein | Apr 2013 | A1 |
20130090519 | Tass | Apr 2013 | A1 |
20130116606 | Cordo | May 2013 | A1 |
20130123568 | Hamilton et al. | May 2013 | A1 |
20130123666 | Giuffrida et al. | May 2013 | A1 |
20130131484 | Pernu | May 2013 | A1 |
20130158624 | Bain et al. | Jun 2013 | A1 |
20130158627 | Gozani et al. | Jun 2013 | A1 |
20130231713 | De Ridder et al. | Sep 2013 | A1 |
20130236867 | Avni et al. | Sep 2013 | A1 |
20130238049 | Simon et al. | Sep 2013 | A1 |
20130245486 | Simon et al. | Sep 2013 | A1 |
20130245713 | Tass | Sep 2013 | A1 |
20130253299 | Weber et al. | Sep 2013 | A1 |
20130267759 | Jin | Oct 2013 | A1 |
20130281890 | Mishelevich | Oct 2013 | A1 |
20130289647 | Bhadra et al. | Oct 2013 | A1 |
20130296967 | Skaribas et al. | Nov 2013 | A1 |
20130297022 | Pathak | Nov 2013 | A1 |
20130331907 | Sumners et al. | Dec 2013 | A1 |
20130333094 | Rogers et al. | Dec 2013 | A1 |
20130338726 | Machado | Dec 2013 | A1 |
20140025059 | Kerr | Jan 2014 | A1 |
20140031605 | Schneider | Jan 2014 | A1 |
20140039573 | Jindra | Feb 2014 | A1 |
20140039575 | Bradley | Feb 2014 | A1 |
20140046423 | Rajguru et al. | Feb 2014 | A1 |
20140058189 | Stubbeman | Feb 2014 | A1 |
20140067003 | Vase et al. | Mar 2014 | A1 |
20140078694 | Wissmar | Mar 2014 | A1 |
20140081345 | Hershey | Mar 2014 | A1 |
20140094675 | Luna et al. | Apr 2014 | A1 |
20140094873 | Emborg et al. | Apr 2014 | A1 |
20140128939 | Embrey et al. | May 2014 | A1 |
20140132410 | Chang | May 2014 | A1 |
20140142654 | Simon et al. | May 2014 | A1 |
20140148873 | Kirn | May 2014 | A1 |
20140163444 | Ingvarsson | Jun 2014 | A1 |
20140171834 | DeGoede et al. | Jun 2014 | A1 |
20140214119 | Greiner et al. | Jul 2014 | A1 |
20140228927 | Ahmad et al. | Aug 2014 | A1 |
20140236258 | Carroll | Aug 2014 | A1 |
20140249452 | Marsh et al. | Sep 2014 | A1 |
20140257047 | Sillay et al. | Sep 2014 | A1 |
20140257129 | Choi et al. | Sep 2014 | A1 |
20140276194 | Osorio | Sep 2014 | A1 |
20140277220 | Brennan et al. | Sep 2014 | A1 |
20140296752 | Edgerton et al. | Oct 2014 | A1 |
20140296934 | Gozani et al. | Oct 2014 | A1 |
20140296935 | Ferree et al. | Oct 2014 | A1 |
20140300490 | Kotz et al. | Oct 2014 | A1 |
20140309709 | Gozanl et al. | Oct 2014 | A1 |
20140316484 | Edgerton et al. | Oct 2014 | A1 |
20140324118 | Simon et al. | Oct 2014 | A1 |
20140330068 | Partsch et al. | Nov 2014 | A1 |
20140330335 | Errico et al. | Nov 2014 | A1 |
20140336003 | Franz et al. | Nov 2014 | A1 |
20140336722 | Rocon De Lima et al. | Nov 2014 | A1 |
20140343462 | Burnet | Nov 2014 | A1 |
20140350436 | Nathan et al. | Nov 2014 | A1 |
20140358040 | Kim et al. | Dec 2014 | A1 |
20140364678 | Harry et al. | Dec 2014 | A1 |
20150004656 | Tang et al. | Jan 2015 | A1 |
20150005852 | Hershey et al. | Jan 2015 | A1 |
20150012067 | Bradley et al. | Jan 2015 | A1 |
20150038886 | Snow | Feb 2015 | A1 |
20150044656 | Eichhorn et al. | Feb 2015 | A1 |
20150057506 | Luna et al. | Feb 2015 | A1 |
20150073310 | Pracar et al. | Mar 2015 | A1 |
20150080979 | Lasko et al. | Mar 2015 | A1 |
20150100004 | Goldman et al. | Apr 2015 | A1 |
20150100104 | Kiani et al. | Apr 2015 | A1 |
20150100105 | Kiani et al. | Apr 2015 | A1 |
20150148866 | Bulsen et al. | May 2015 | A1 |
20150148878 | Yoo et al. | May 2015 | A1 |
20150157274 | Ghassemzadeh et al. | Jun 2015 | A1 |
20150164377 | Nathan et al. | Jun 2015 | A1 |
20150164401 | Toth et al. | Jun 2015 | A1 |
20150190085 | Nathan et al. | Jul 2015 | A1 |
20150190634 | Rezai et al. | Jul 2015 | A1 |
20150202444 | Franke et al. | Jul 2015 | A1 |
20150208955 | Smith | Jul 2015 | A1 |
20150216475 | Luna et al. | Aug 2015 | A1 |
20150230733 | Heo et al. | Aug 2015 | A1 |
20150230756 | Luna et al. | Aug 2015 | A1 |
20150277559 | Vescovi et al. | Oct 2015 | A1 |
20150321000 | Rosenbluth et al. | Nov 2015 | A1 |
20150335882 | Gross et al. | Nov 2015 | A1 |
20160001096 | Mishelevich | Jan 2016 | A1 |
20160008620 | Stubbeman | Jan 2016 | A1 |
20160016014 | Wagner et al. | Jan 2016 | A1 |
20160022987 | Zschaeck et al. | Jan 2016 | A1 |
20160022989 | Pfeifer | Jan 2016 | A1 |
20160038059 | Asada et al. | Feb 2016 | A1 |
20160045140 | Kitamura et al. | Feb 2016 | A1 |
20160089045 | Sadeghian-Motahar et al. | Mar 2016 | A1 |
20160106344 | Nazari | Apr 2016 | A1 |
20160121110 | Kent et al. | May 2016 | A1 |
20160128621 | Machado et al. | May 2016 | A1 |
20160129248 | Creasey et al. | May 2016 | A1 |
20160158542 | Ahmed | Jun 2016 | A1 |
20160158565 | Lee | Jun 2016 | A1 |
20160198998 | Rahimi et al. | Jul 2016 | A1 |
20160220836 | Parks | Aug 2016 | A1 |
20160262685 | Wagner et al. | Sep 2016 | A1 |
20160287879 | Denison et al. | Oct 2016 | A1 |
20160039239 | Yoo et al. | Nov 2016 | A1 |
20160339239 | Yoo et al. | Nov 2016 | A1 |
20170014625 | Rosenbluth et al. | Jan 2017 | A1 |
20170027812 | Hyde et al. | Feb 2017 | A1 |
20170056238 | Yi et al. | Mar 2017 | A1 |
20170079597 | Horne | Mar 2017 | A1 |
20170080207 | Perez et al. | Mar 2017 | A1 |
20170266443 | Rajguru et al. | Sep 2017 | A1 |
20170274208 | Nagel et al. | Sep 2017 | A1 |
20170287146 | Pathak et al. | Oct 2017 | A1 |
20170312505 | Ahmed | Nov 2017 | A1 |
20180049676 | Griffiths et al. | Feb 2018 | A1 |
20180064344 | Nguyen | Mar 2018 | A1 |
20180064944 | Grill et al. | Mar 2018 | A1 |
20180168905 | Goodall et al. | Jun 2018 | A1 |
20180214694 | Parramon | Aug 2018 | A1 |
20180221620 | Metzger | Aug 2018 | A1 |
20180235500 | Lee et al. | Aug 2018 | A1 |
20180264263 | Rosenbluth et al. | Sep 2018 | A1 |
20190001117 | Ben-David et al. | Jan 2019 | A1 |
20190001129 | Rosenbluth et al. | Jan 2019 | A1 |
20190134393 | Wong et al. | May 2019 | A1 |
20200093400 | Hamner et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
102008042373 | Apr 2010 | DE |
102009004011 | Jul 2010 | DE |
0000759 | Feb 1979 | EP |
0725665 | Jan 1998 | EP |
1062988 | Dec 2000 | EP |
1558333 | May 2007 | EP |
2383014 | Nov 2011 | EP |
2801389 | Nov 2014 | EP |
3020448 | May 2016 | EP |
2222819 | Mar 2006 | ES |
2272137 | Jun 2008 | ES |
2496449 | May 2013 | GB |
2002200178 | Jul 2002 | JP |
2003-501207 | Jan 2003 | JP |
2006-503658 | Feb 2006 | JP |
2008018235 | Jan 2008 | JP |
200934328 | Feb 2009 | JP |
2009529352 | Aug 2009 | JP |
2010506618 | Mar 2010 | JP |
2010512926 | Apr 2010 | JP |
2012005596 | Jan 2012 | JP |
2012055650 | Mar 2012 | JP |
2013017609 | Jan 2013 | JP |
2013094305 | May 2013 | JP |
54-39921 | Mar 2014 | JP |
WO1994000187 | Jan 1994 | WO |
WO1994017855 | Aug 1994 | WO |
WO1996032909 | Oct 1996 | WO |
WO1998043700 | Oct 1998 | WO |
WO1999019019 | Apr 1999 | WO |
WO2000015293 | Mar 2000 | WO |
WO2002017987 | Mar 2002 | WO |
WO2005122894 | Dec 2005 | WO |
WO2007112092 | Oct 2007 | WO |
WO2009153730 | Dec 2009 | WO |
WO2010111321 | Sep 2010 | WO |
WO2010141155 | Dec 2010 | WO |
WO2011119224 | Sep 2011 | WO |
WO2011144883 | Nov 2011 | WO |
WO2012040243 | Mar 2012 | WO |
WO2013071307 | May 2013 | WO |
WO2013074809 | May 2013 | WO |
WO2014043757 | Mar 2014 | WO |
WO2014053041 | Apr 2014 | WO |
WO2014113813 | Jul 2014 | WO |
WO2014146082 | Sep 2014 | WO |
WO2014151431 | Sep 2014 | WO |
WO2014153201 | Sep 2014 | WO |
WO2014207512 | Dec 2014 | WO |
WO2015033152 | Mar 2015 | WO |
WO2015039206 | Mar 2015 | WO |
WO2015039244 | Mar 2015 | WO |
WO2015042365 | Mar 2015 | WO |
WO2015079319 | Jun 2015 | WO |
WO2015095880 | Jun 2015 | WO |
WO2015128090 | Sep 2015 | WO |
WO2015164706 | Oct 2015 | WO |
WO2015187712 | Dec 2015 | WO |
WO2016007093 | Jan 2016 | WO |
WO2016019250 | Feb 2016 | WO |
WO2016094728 | Jun 2016 | WO |
WO2016102958 | Jun 2016 | WO |
WO2016110804 | Jul 2016 | WO |
WO2016128985 | Aug 2016 | WO |
WO2016149751 | Sep 2016 | WO |
WO2016166281 | Oct 2016 | WO |
WO2016179407 | Nov 2016 | WO |
WO2016189422 | Dec 2016 | WO |
WO2016195587 | Dec 2016 | WO |
WO2016201366 | Dec 2016 | WO |
WO2017004021 | Jan 2017 | WO |
WO2017010930 | Jan 2017 | WO |
WO2017023864 | Feb 2017 | WO |
WO2017053847 | Mar 2017 | WO |
WO2017062994 | Apr 2017 | WO |
WO2017086798 | May 2017 | WO |
WO2017088573 | Jun 2017 | WO |
WO2017132067 | Aug 2017 | WO |
WO2017199026 | Nov 2017 | WO |
WO2017208167 | Dec 2017 | WO |
WO2017209673 | Dec 2017 | WO |
WO2017210729 | Dec 2017 | WO |
WO2017221037 | Dec 2017 | WO |
WO2018009680 | Jan 2018 | WO |
WO2018028170 | Feb 2018 | WO |
WO2018028220 | Feb 2018 | WO |
WO2018028221 | Feb 2018 | WO |
WO2018039458 | Mar 2018 | WO |
WO2018093765 | May 2018 | WO |
WO2018112164 | Jun 2018 | WO |
WO2018187241 | Oct 2018 | WO |
WO2019005774 | Jan 2019 | WO |
WO2019014250 | Jan 2019 | WO |
WO 2019143790 | Jul 2019 | WO |
WO 2019213433 | Nov 2019 | WO |
WO 2020006048 | Jan 2020 | WO |
WO 2020069219 | Apr 2020 | WO |
WO 2020086726 | Apr 2020 | WO |
Entry |
---|
U.S. Appl. No. 16/071,056, filed Jul. 18, 2018, Wong et al. |
U.S. Appl. No. 16/327,780, filed Feb. 22, 2019, Hamner et al. |
U.S. Appl. No. 16/780,758, filed Feb. 3, 2020, Hamner et al. |
U.S. Appl. No. 16/792,100, filed Feb. 14, 2020, Hamner et al. |
Apartis; Clinical neurophysiology in movement disorders. Handb Clin Neurol; 111; Pediatric Neurology Pt. 1; pp. 87-92;Apr. 2013. |
Barbaud et al.; Improvement in essential tremor after pure sensory stroke due to thalamic infarction; European neurology; 46; pp. 57-59; Jul. 2001. |
Barrios et al.: BCI algorithms for tremor identification, characterization and tracking; Seventh Framework Programme, EU; Contract No. FP7-ICT-2007-224051 (v3.0); 57 pgs.; Jul. 10, 2011. |
Bartley et al.; Neuromodulation for overactive bladder; Nature Reviews Urology; 10; pp. 513-521; Sep. 2013. |
Benabid et al.; A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system; Acta Neural Belg; 105(3); pp. 149-157; Sep. 2005. |
Bergquist et al.: Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: quadriceps femoris, Journal of Applied Physiology; vol. 113, No. 1, pp. 78-89; Jul. 2012. |
Bergquist et al.; Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared with a muscle belly: triceps surae, Journal of Applied Physiology; vol. 110, No. 3, pp. 627-637; Mar. 2011. |
Bijelic et al.: E Actitrode®: The New Selective Stimulation Interface for Functional Movements in Hemiplegic Patients; Serbian Journal of Electrical Engineering; 1(3); pp. 21-28; Nov. 2004. |
Birdno et al.; Pulse-to-pulse changes in the frequency of deep brain stimulation affect tremor and modeled neuronal activity.; Journal of Neurophysiology; 98; pp. 1675-1684; Jul. 2007. |
Birdno et al.; Response of human thalamic neurons to high-frequency stimulation.; PloS One; 9(5); 10 pgs.; May 2014. |
Birgersson et al.; Non-invasive bioimpedance of intact skin: mathematical modeling and experiments; Physiological Measurement; 32(1); pp. 1-18; Jan. 2011. |
Bohling et al.; Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy; Skin research and Technology; 20(1); pp. 50-47; Feb. 2014. |
Bonaz, B., V. Sinniger, and S. Pellissier. “Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease.” Journal of internal medicine 282.1 (2017): 46-63. |
Bowman et al.; Effects of waveform parameters on comfort during transcutaneous neuromuscular electrical stimulation; Annals of Biomedical Engineering; 13(1); pp. 59-74; Jan. 1985. |
Bratton et al.; Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons; Exp Physiol 97.11 (2012); pp. 1180-1185. |
Brittain et al.; Tremor suppression by rhythmic transcranial current stimulation; Current Biology; 23; pp. 436-440; Mar. 2013. |
Britton et al.; Modulation of postural tremors at the wrist by supramaximal electrical median nerve shocks in ET, PD, and normal subjects mimicking tremor; J Neurology, Neurosurgery, and Psychiatry; 56(10); pp. 1085-1089; Oct. 1993. |
Buschbacher et al.; Manual of nerve conduction series; 2nd edition; Demos Medical Publishing, LLC; 2006—Part 1. |
Buschbacher et al.; Manual of nerve conduction series; 2nd edition; Demos Medical Publishing, LLC; 2006—Part 2. |
Cagnan et al.; Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation; Brain; 136(10); pp. 3062-3075; Oct. 2013. |
Campero et al.; Peripheral projections of sensory fasicles in the human superificial radial nerve; Brain; 128(Pt 4); pp. 892-895; Apr. 2005. |
Chen et al.; A web-based system for home monitoring of patients with Parkinson's disease using wearable sensors; IEEE Trans on Bio-Medical Engineering; 58(3); pp. 831-836; Mar. 2011. |
Choi, Jong Bo, et al. “Analysis of heart rate variability in female patients with overactive bladder.” Urology 65.6 (2005): 1109-1112. |
Clair et al.; Postactivation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve, Journal of Neurophysiology; vol. 106, No. 1; pp. 184-192; Jul. 2011. |
Clar et al.; Skin impedance and moisturization; J. Soc. Cosmet. Chem.; 26; pp. 337-353; 1975; presented at IFSCC Vilith Int'l Congresson Cosmetics Quality and Safety in London on Aug. 26-30, 1974. |
Constandinou et al.; A Partial-Current-Steering Biphasic Stimulation Driver for Vestibular Prostheses; IEEE Trans on Biomedical Circuits and Systems; 2(2); pp. 106-113; Jun. 2008. |
Daneault et al.; Using a smart phone as a standalone platform for detection and monitoring of pathological tremors; Frontiers in Human Neuroscience; vol. 6, article 357; 12 pgs.; Jan. 2012. |
Deuschl et al; Consensus statement of the Movement Disorder Society on Tremor. Ad Hoc Scientific Committee., Movement Disorders, vol. 13 Suppl 3, pp, 2-23; (year of pub. sufficiently earlier than effective US filed and any foreign priority date)1998. |
Di Giovangiulio et al.; The Neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease; Fronteir's in Immunology; vol. 6; Article 590; Nov. 2015. |
Dideriksen et al.; EMG-based characterization of pathological tremor using the iterated Hilbert transform; IEEE transactions on Bio-medical Engineering; 58(10); pp. 2911-2921; Oct. 2011. |
Dosen et al.: Tremor suppression using electromyography and surface sensory electrical stimulation; Converging Clinical and Engineering Research on Neurorehabilitation; vol. 1 (Siosystems & Biorobotics Series); pp. 539-543; Feb. 2013. |
Doucet et al.; Neuromuscular electrical stimulation for skeletal muscle function; The Yale Journal of Biology and Medicine; 85(2); pp. 201-215; Jun. 2012. |
Extended European Search Report dated Oct. 12, 2018 in European Application No. 16808473.9 in 6 pages. |
Fuentes et al.; Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: mechanistic approach, Eur J Neurosci, vol. 32, pp. 1100-1108; Oct. 2010 (author manuscript; 19 pgs.). |
Fuentes et al.; Spinal cord stimulation restores locomotion in animal models of Parkinson's disease; Science; 323; pp. 1578-1582; Mar. 2009. |
Gallego et al.; A neuroprosthesis for tremor management through the control of muscle co-contraction; Journal of Neuroengineering and Rehabilitation; vol. 10; 36; (13 pgs); Apr. 2013. |
Gallego et al; A soft wearable robot for tremor assessment and suppression; 2011 IEEE International Conference on Robotics and Automation; Shanghai International Conference Center; pp. 2249-2254; May 9-13, 2011. |
Gallego et al.; Real-time estimation of pathological tremor parameters from gyroscope data.; Sensors; 10(3); pp. 2129-2149; Mar. 2010. |
Gao; Analysis of amplitude and frequency variations of essential and Parkinsonian tremors; Medical & Biological Engineering & Computing; 42(3); pp. 345-349; May 2004. |
Garcia et al.; Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients; Pain; International Association for the Study of Pain; 2017. |
Garcia-Rill, E., et al. “Arousal, motor control, and Parkinson's disease.” Translational neuroscience 6.1 pp. 198-207 (2015). |
Giuffridda et al.; Clinically deployable Kinesia technology for automated tremor assessment.; Movement Disorders; 24(5); pp. 723-730; Apr. 2009. |
Gracanin et al.; Optimal stimulus parameters for minimum pain in the chronic stimulatin of innervated muscle; Archives of Physical Medicine and Rehabilitation; 56(6); pp. 243-249; Jun. 1975. |
Haeri et al.; Modeling the Parkinson's tremor and its treatments; Journal of Theorectical Biology; 236(3); pp. 311-322; Oct. 2005. |
Halon EN et al.; Contribution of cutaneous and muscle afferent fibres to cortical SEPs following median and radial nerve stimulation in man; Electroenceph. Clin. Neurophysiol.; 71(5); pp. 331-335; Sep.-Oct. 1988. |
Hao et al.; Effects of electrical stimulation of cutaneous afferents on corticospinal transmission of tremor signals in patients with Parkinson's disease; 6th International Conference on Neural Engineering; San Diego, CA; pp. 355-358; Nov. 2013. |
Hauptmann et al.; External trial deep brain stimulation device for the application of desynchronizing stimulation techniques; Journal of Neural Engineering; 6; 12 pgs.; Oct. 2009. |
Heller et al.; Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: Results from a gait-lab based study; Medical Engineering & Physic; 35(1); pp. 74-81; Jan. 2013. |
Henry Dreyfuss Associates; The Measure of Man and Woman: Human Factors in Design (Revised Edition); John Wiley & Sons, New York; pp. 10-11 and 22-25; Dec. 2001. |
Hernan, Miguel, et al. “Alcohol Consumption and the Incidence of Parkinson's Disease.” May 15, 2003. Annals of Neurology. Vol. 54. pp. 170-175. |
Hua et al.; Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits; J Neurophysiol; 93(1); pp. 117-127; Jan. 2005. |
Huang, et al.; Theta burst stimulation report of the human motor cortex; Neuron, vol. 45, 201-206, Jan. 20, 2005. |
Hubeaux, Katelyne, et al. “Autonomic nervous system activity during bladder filling assessed by heart rate variability analysis in women with idiopathic overactive bladder syndrome or stress urinary incontinence.” The Journal of urology 178.6 (2007): 2483-2487. |
Hubeaux, Katelyne, et al. “Evidence for autonomic nervous system dysfunction in females with idiopathic overactive bladder syndrome.” Neurourology and urodynamics 30.8 (2011): 1467-1472. |
Inoue, Masahiro, Katsuaki Suganuma, and Hiroshi Ishiguro. “Stretchable human interface using a conductive silicone elastomer containing silver fillers.” Consumer Electronics, 2009. ISCE'09. IEEE 13th International Symposium on. IEEE, 2009. |
Jacks et al.; Instability in human forearm movements studied with feed-back-controlled electrical stimulation of muscles; Journal of Physiology; 402; pp. 443-461; Aug. 1988. |
Jobges et al.; Vibratory proprioceptive stimulation affects Parkinsonian tremor; Parkinsonism & Related Disorders; 8(3); pp. 171-176; Jan. 2002. |
Joundi et al.; Rapid tremor frequency assessment with the iPhone accelerometer.; Parkinsonism & Related Disorders; 17(4); pp. 288-290; May 2011. |
Kim et al.: Adaptive control of movement for neuromuscular stimulation-assisted therapy in a rodent model; IEEE Trans on Biomedical Engineering,; 56(2); pp. 452-461; Feb. 2009. |
Krauss et al.; Chronic spinal cord stimulation in medically intractable orthostatic tremor; J Neurol Neurosurg Psychiatry; 77(9); pp. 1013-1016; Sep. 2006. |
Kuhn et al.; Array electrode design for transcutaneous electrical stimulation a simulation study; Medical Engineering & Physics; 31 (8); pp. 945-951; Oct. 2009. |
Kuhn et al.; The Influence of Electrode Size on Selectivity and Comfort in Transcutaneous Electrical Stimulation of the Forearm; Neural Systems and Rehabilitation Engineering, IEEE Transactions on; 18(3); pp. 255-262; Jun. 2010. |
Kunz, Patrik, et al. “5 kHz transcranial alternating current stimulation: lack of cortical excitability changes when grouped in a theta burst pattern.” Frontiers in Human Neuroscience 10 (2016): 683. |
Lagerquist et al.: Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation, Muscle & Nerve, 42(6), pp. 886-893; Dec. 2010. |
Laroy et al.; The sensory innervation pattern of the fingers; J. Neurol.; 245 (5); pp. 294-298; May 1998. |
Lee et al.; Resetting of tremor by mechanical perturbations: A comparison of essential tremor and parkinsonian tremor; Annals of Nuerology; 10(6); pp. 523-531; Dec. 1981. |
Legon et al.; Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and fMRI; PLoS One; 7(12); e51177; 14 pgs.; Dec. 2012. |
Liao, Wen□Chien, et al. “A noninvasive evaluation of autonomic nervous system dysfunction in women with an overactive bladder.” International Journal of Gynecology & Obstetrics 110.1 (2010): 12-17. |
Lourenco et al.; Effects produced in human arm and forearm motoneurones after electrical stimulation of ulnar and median nerves at wrist level; Experimental Brain Research; 178(2); pp. 267-284; Apr. 2007. |
Malek et al.; The utility of electromyography and mechanomyography for assessing neuromuscular function: a noninvasive approach; Phys Med Rehabil in N Am; 23(1); pp. 23-32; Feb. 2012. |
Mamorita et al.; Development of a system for measurement and analysis of tremor using a three-axis accelerometer; Methods Inf Med; 48(6); pp. 589-594; epub Nov. 2009. |
Maneski et al.; Electrical Stimulation for suppression of pathological tremor; Med Biol Eng Comput; 49(10); pp. 1187-1193; Oct. 2011. |
Marsden et al.; Coherence between cerebellar thalamus, cortex and muscle in man; Brain; 123; pp. 1459-1470; Jul. 2000. |
Marshall, Ryan, et al. “Bioelectrical stimulation for the reduction of inflammation in inflammatory bowel disease.” Clinical Medicine Insights: Gastroenterology 8 (2015): CGast-S31779. |
McAuley et al.; Physiological and pathological tremors and rhythmic central motor control; Brain; 123(Pt 8); pp. 1545-1567; Aug. 2000. |
McIntyre et al.; Finite element analysis of current-density and electric field generated by metal microelectrodes; Annals of Biomedical Engineering; 29(3); pp. 227-235; Mar. 2001. |
Meekins et al.; American Association of Neuromuscular & Electrodiagnostic Medicine evidenced-based review: use of surface electromyography in the diagnosis and study of neuromuscular disorders; Muscle Nerve 38(4); pp. 1219-1224; Oct. 2008. |
Mehnert, Ulrich, et al. “Heart rate variability: an objective measure of autonomic activity and bladder sensations during urodynamics.” Neurourology and urodynamics 28.4 (2009): 313-319. |
Miguel et al.; Alcohol consumption and the incidence of Parkinson's disease; Ann. Neurol.; 54(2); pp. 170-175; May 15, 2003. |
Miller et al.; Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis; Talanta; 88; pp. 739-742; Jan. 2012 (author manuscript; 13 pgs.). |
Miller et al.; Neurostimulation in the treatment of primary headaches; Pract Neurol; Apr. 11, 2016;16:pp. 362-375. |
Milne et al.; Habituation to repeated in painful and non-painful cutaneous stimuli: A quantitative psychophysical study; Experimental Brain Research; 87(2); pp. 438-444; Nov. 1991. |
Mommaerts et al.; Excitation and nerve conduction; in Comprehensive Human Physiology; Springer Berlin Heidelberg; Chap. 13; pp. 283-294; Mar. 1996. |
Mones et al.; The response of the tremor of patients with Parkinsonism to peripheral nerve stimulation; J Neurology, Neurosurgery, and Psychiatry; 32(6); pp. 512-518; Dec. 1969. |
Morgante et al.: How many parkinsonian patients are suitable candidates for deep brain stimulation of subthalamic nucleus?; Results of a Questionnaire, Partkinsonism Relat Disord; 13; pp, 528-531; Dec. 2007. |
Munhoz et al; Acute effect of transcutaneous electrical nerve stimulation on tremor; Movement Disorders; 18(2); pp. 191-194; Feb. 2003. |
Nardone et al.; Influences of transcutaneous electrical stimulation of cutaneous and mixed nerves on subcortical somatosensory evoked potentials; Electroenceph. Clin. Neurophysiol.; 74(1); pp. 24-35; Jan.-Feb. 1989. |
Nonis et al.; Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers; Cephalalgia; pp. 1285-1293; vol. 37(13); Mar. 28, 2017. |
PCT Search Report and Written Opinion in PCT Application No. PCT/US2016/037080 dated Sep. 13, 2016 in 11 pages. |
Perez et al.; Patterned Sensory Stimulation Induces Plasticity in Reciprocal la Inhibition in Humans; The Journal of Neuroscience; 23(6); pp. 2014-2018; Mar. 2003. |
Perlmutter et al.; Deep brain stimulation; Ann Rev Neurosci; 29; pp. 229-257; Jul. 2006. |
Popović□Bijelić, Ana, et al. “Multi□field surface electrode for selective electrical stimulation.” Artificial organs 29.6 (2005): 448-452. |
Popovi Maneski et al.; Electrical stimulation for the suppression of pathological tremor; Medical & Biological Engineering & Computing; 49(10); pp. 1187-1193; Oct. 2011. |
Prochazka et al.; Attenuation of pathological tremors by functional electrical stimulation I: Method; Annals of Biomedical Engineering; 20(2); pp. 205-224; Mar. 1992. |
Pulliam et al.; Continuous in-home monitoring of essential tremor; Parkinsonism Relat Disord; 20(1); pp. 37-40; Jan. 2014. |
Quattrini et al.; Understanding the impact of painful diabetic neuropathy; Diabetes/Metabolism Research and Reviews; 19, Suppl. 1; pp. S2-S8; Jan.-Feb. 2003. |
Rocon et al.; Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression; IEEE Trans Neural Sys and Rehab Eng.; 15(3); pp. 367-378; Sep. 2007. |
Silverstone et al.; Non-Invasive Neurostimulation in the Control of Familial Essential Tremor Using the Synaptic Neuromodulator; Conference Proceedings, International Functional Electrical Stimulation Society (IFES); Ed. Paul Meadows; 3 pgs.; May 1999. |
Singer et al.; The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits; Restor Neurol Neurosci; 31(6); pp. 681-691; Oct. 2013. |
Straube et al.; Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): a randomized, monocentric clinical trial; The Journal of Headache and Pain (2015) 16:63. |
Takanashi et al.; A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum; Neuroradiology; 45(3); pp. 149-152; Mar. 2003. |
Tass et al.; Coordinated reset has sustained aftereffects in Parkinsonian monkeys; Ann Neurol; 72(5); pp. 816-820; Nov. 2012. |
Tass et al.; Counteracting tinnitus by acoustic coordinated reset neuromodulation; Restorative neurology and Neuroscience; 30(2); pp. 137-159; Apr. 2012. |
Tass; A Model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations; Bioi Cybern; 89(2); pp. 81-88; Aug. 2003. |
Thomas et al.; A review of posterior tibial nerve stimulation for faecal incontinence; Colorectal Disease; 2012 The Association of Coloproctology of Great Britain and Ireland. 15, pp. 519-526; Jun. 25, 2012. |
Toloso et al.; Essential tremor: treatment with propranolol; Neurology; 25(11); pp. 1041; Nov. 1975. |
Tracey; The inflammatory reflex; Nature; vol. 420; pp. 853-859; Dec. 19/26, 2002. |
Treager; Interpretation of skin impedance measurements; Nature; 205; pp. 600-601; Feb. 1965. |
Valente; Novel methods and circuits for field shaping in deep brain stimulation; Doctoral thesis, UCL (University College London); 222 pgs.; 2011. |
Vitton et al.; Transcutaneous posterior tibial nerve stimulation for fecallncontinence in inflammatory bowel disease patients: a therapeutic option?; Inflamm Bowel Dis; vol. 15, No. 3, Mar. 2009; pp. 402-405. |
Von Lewinski et al.; Efficacy of EMG-triggered electrical arm stimulation in chronic hemiparetic stroke patients; Restor Neurol Neurosci; 27(3); pp. 189-197; Jun. 2009. |
Wardman et al.; Subcortical, and cerebellar activation evoked by selective stimulation of muscle and cataneous afferents: an fMRI study; Physiol. Rep.; 2(4); pp. 1-16; Apr. 2014. |
Wiestler et al.; Integration of sensory and motor representations of single fingers in the human; J. Neurophysiol.; 105(6); pp. 3042-3053; Jun. 2011. |
Woldag et al.; Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients R A review; J Neurol; 249(5); pp. 518-528; May 2002. |
Woolf et al.; Peripheral nerve injury triggers central sprouting of myelinated afferents; Nature; 355(6355); pp. 75-78; Jan. 1992. |
Yarnitsky et al.; Nonpainful remote electrical stimulation alleviates episodic migraine pain; Neurology 88; pp. 1250-1255; Mar. 28, 2017. |
Yeh, Kuei-Lin, Po-Yu Fong, and Ying-Zu Huang. “Intensity sensitive modulation effect of theta burst form of median nerve stimulation on the monosynaptic spinal reflex.” Neural plasticity 2015 (2015) in 8 pages. |
Yilmaz, Ozlem O., et al. “Efficacy of EMG-biofeedback in knee osteoarthritis.” Rheumatology international 30.7 (2010): 887-892. |
Zhang et al.; Neural oscillator based control for pathological tremor suppression via functional electrical stimulation; Control Engineering Practice; 19(1); pp. 74-88; Jan. 2011. |
Zorba et al.; Overactive bladder and the pons; Rize University, Medical Faculty, Department of Urology; 123-124; Undated. |
Zwarts et al.; Multichannel surface EMG: basic aspects and clinical utility; Muscle Nerve; 28(1); pp. 1-17; Jul. 2003. |
PCT/US2014/012388 (published as WO 2014/113813), Jan. 21, 2014. |
U.S. Appl. No. 14/805,385 (now U.S. Pat. No. 9,452,287), filed Jul. 21, 2015. |
U.S. Appl. No. 15/277,946 (published as U.S. Pub. No. 2017/0014625), filed Sep. 27, 2016. |
U.S. Appl. No. 15/983,024 (now U.S. Pat. No. 10,625,074), filed May 17, 2018. |
U.S. Appl. No. 16/020,876 (published as 2019/0001129), filed Jun. 27, 2018. |
PCT/US2019/039193 (published as PCT Pub. No. WO 2020/006048), Jun. 26, 2019. |
U.S. Appl. No. 14/271,669 (published as U.S. Pub. No. 2014/0336722), filed Nov. 13, 2014. |
PCT/US2015/033809 (published as WO 2015/187712), Jun. 2, 2015. |
U.S. Appl. No. 15/354,943 (now U.S. Pat. No. 9,802,041), filed Nov. 17, 2016. |
U.S. Appl. No. 15/721,475 (now U.S. Pat. No. 10,179,238), filed Sep. 29, 2017. |
U.S. Appl. No. 15/721,480 (now U.S. Pat. No. 10,173,060), filed Sep. 29, 2017. |
U.S. Appl. No. 16/242,983 (now U.S. Pat. No. 10,549,093), filed Jan. 8, 2019. |
U.S. Appl. No. 16/247,310 (now U.S. Pat. No. 10,561,839), filed Jan. 14, 2019. |
U.S. Appl. No. 16/780,758, filed Feb. 3, 2020. |
U.S. Appl. No. 16/792,100, filed Feb. 14, 2020. |
PCT/US2016/037080 (published as WO 2016/201366), Jun. 10, 2016. |
PCT/US2017/014431 (published as WO 2017/132067), Jan. 20, 2017. |
PCT/US2018/025752 (published as WO 2018/187241), Apr. 2, 2018. |
U.S. Appl. No. 16/071,056, filed Jul. 18, 2018. |
PCT/US2016/045038 (published as WO 2017/023864), Aug. 1, 2016. |
U.S. Appl. No. 15/748,616, filed Jan. 29, 2018. |
PCT/US2016/053513 (published as WO 2017/053847), Sep. 23, 2016. |
U.S. Appl. No. 15/762,043 (now U.S. Pat. No. 10,603,482), filed Mar. 21, 2018. |
U.S. Appl. No. 16/833,388, filed Mar. 27, 2020. |
PCT/US2017/040920 (published as WO 2018/009680), Jul. 6, 2017. |
U.S. Appl. No. 16/241,846 (published as U.S. Pub. No. 2019/0134393), filed Jan. 7, 2019. |
PCT/US2017/048424 (published as WO 2018/039458), Aug. 24, 2017. |
U.S. Appl. No. 16/327,780, filed Feb. 22, 2019. |
PCT/US2019/013966 (published as WO 2019/143790), Jan. 17, 2019. |
PCT/US2019/030458 (published as WO 2019/213433), May 2, 2019. |
PCT/US2019/053297 (published as WO 2020/069219), Sep. 26, 2019. |
PCT/US2019/057674 (published as WO 2020/086726), Oct. 23, 2019. |
Number | Date | Country | |
---|---|---|---|
20180169400 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62173894 | Jun 2015 | US |