Systems and methods for photometric normalization in array cameras

Information

  • Patent Grant
  • 9100586
  • Patent Number
    9,100,586
  • Date Filed
    Friday, March 14, 2014
    10 years ago
  • Date Issued
    Tuesday, August 4, 2015
    9 years ago
Abstract
Systems and methods for performing photometric normalization in an array camera in accordance with embodiments of this invention are disclosed. The image data of scene from a reference imaging component and alternate imaging components is received. The image data from each of the alternate imaging components is then translated to so that pixel information in the image data of each alternate imaging component corresponds to pixel information in the image data of the reference component. The shifted image data of each alternate imaging component is compared to the image data of the reference imaging component to determine gain and offset parameters for each alternate imaging component. The gain and offset parameters of each alternate imaging component is then applied to the image data of the associate imaging to generate corrected image data for each of the alternate imaging components.
Description
FIELD OF THE INVENTION

The present invention generally relates to digital cameras and more specifically to systems and methods for evaluating imaging conditions.


BACKGROUND

The quality of an image captured by a digital camera can be influenced by factors including the exposure and focal plane settings of the camera and the dynamic range within a scene. The exposure (duration of time which light is sampled by pixels in an image sensor) impacts the color shades and tone and the focal plane settings impact a captured image's sharpness.


The dynamic range within a scene is the difference in brightness from the darkest to brightest sections of the scene. Likewise, the dynamic range of an image sensor is the difference in brightness from the darkest to brightest sections that the image sensor is able to capture. Depending on the dynamic range within a particular scene, the maximum dynamic range of an image sensor can be many times smaller than the scene's dynamic range. Thus, digital cameras may not be able to accurately capture the full range of brightness in any given scene. Various techniques including auto-exposure, autofocus and high dynamic range imaging have been developed to improve the quality of images captured using digital cameras.


In many image capture devices the sensitivity of the device to light intensity can be adjusted by manipulating pixel integration time, pixel gain, and/or iris/lens aperture. Further, metering and auto-exposure algorithms can be used to optimize the above parameters (some of these parameters may be specified or fixed). Auto-exposure algorithms utilize methods to capture images at optimal mean brightness levels by adjusting the exposure time (or focal plane settings). Such algorithms generally perform an iterative process that captures an image at a known exposure time and based on the characteristics of the captured image, sets the exposure time (or focal plane settings) to capture following images at more optimal mean brightness levels.


Most surfaces reflect incident light with some amount of scattering. Thus, the light intercepted by a camera is roughly isotropic with a small region around the vantage point of the camera. Thus, individual imaging components of an array camera should ideally provide the same numerical representation of an object in the individual images captured by each of the imaging components. However, non-idealities exist in an array camera and its individual imaging components due to manufacturing tolerances and other aberrations.


As such, the numerical representation for the same point in space as captured in the image data of each individual imaging component may differ. The differences may be subtle such as those differences caused by among other things, the differences in focal length, aperture ratios, and image sensor sensitivity in the individual imaging components. Some of these differences can be treated as constants and may be accounted for by correction factors determined through a calibration process.


However, there are some differences that are introduced by the scene being imaged that cannot be compensated for ahead of time by correction factors. One example is veiling glare. Veiling glare occurs when the image projected onto the pixels or sensors of an imaging component by a lens system includes the intended image and an erroneous internally scattered set of photons. The internally scattered set of photons may originate from anywhere in front of the imaging component including both within and outside the Field of View (FoV) of the imaging component. This causes the image projected onto the pixels or sensors of the imaging component at a given point to have more than or less than the expected photons. Additional non-idealities may also exist including, but not limited to, contaminants on a protective window over the array camera installed in a device. The contaminants may change the photo-response function for each of the individual imaging components by scattering or absorbing some of the photons entering the optical system.


It is a problem if the individual imaging components of the array camera do not report the same value for a given point in scene space in their image data. If the values for the same point in space differ in the image data of individual imaging components, the parallax detection between the different images may fail or become erroneous. Also, a noise signal may be introduced into fused images from the local differences in the numerical values of the image data from different imaging components.


SUMMARY OF THE INVENTION

The above and other problems are solved an advance in the art is made by systems and methods for providing photometric normalization for an array camera in accordance with embodiments of this invention. In accordance with embodiments of this invention, one or more of the imaging components of the array camera are designated as a reference imaging component and each of the remaining imaging components in the array camera is an alternate imaging component. Each of the alternate imaging components is associated with at least one of the reference imaging components. In accordance with embodiments of this invention, a photometric normalization process is performed after a scene has been captured by the array camera generating image data from each of the individual imaging components of the array camera.


The following process is performed for each reference imaging component and the alternate imaging components associated with each of the reference imaging components in accordance with embodiments of this invention. A nominal parallax shift is determined to translate pixel information in the imaging data of each alternate imaging component to corresponding pixel information in the imaging data of the associated reference imaging component. A low pass filter is then applied to image data of the reference camera and each of the associated translated imaging components. For each associate imaging device, the pixel information from the translated and low-pass filtered image data of the associate imaging device is compared to the corresponding pixel information of the low-pass filtered reference image to compute a gain and offset parameter transformation, which, when applied to the alternate images will photometrically match the two images, thereby reducing or eliminating the photometric imbalance among the images in the array. The computed gain and offset parameters may then applied to the image data of the associate imaging device to photometrically normalize the image data with respect to the reference imaging device.


One embodiment of the method of the invention includes: receiving image data for a scene captured by the reference imaging component; receiving image data for a scene captured by each of plurality of alternate imaging components; determining a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component; applying the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component; applying a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component; and computing gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.


A further embodiment also includes applying the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.


Another embodiment also includes determining regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.


A still further embodiment includes storing determined the regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.


In still another embodiment, the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.


In a yet further embodiment, the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.


Yet another embodiment also includes: comparing each gain parameter and each offset parameter for each of the plurality of alternate imaging component to a threshold value; and setting each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.


An embodiment of a system of the invention includes: an array camera including a plurality of imaging components that capture image data of a scene including a reference imaging component and plurality of alternate imaging components; a memory; and a processor that is configured by instructions stored in the memory to: receive image data for a scene captured by the reference imaging component, receive image data for a scene captured by each of plurality of alternate imaging components, determine a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component, apply the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component, apply a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component, and compute gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.


In a further embodiment, the processor is further configured by the instructions to apply the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.


In another embodiment, the processor is further configured by the instructions to determine regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.


In a still further embodiment, the processor is further configured by the instructions to store the determined regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.


In still another embodiment, the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.


In a yet further embodiment, the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.


In yet another embodiment, the processor is further configured by the instructions to: compare each gain parameter and each offset parameter for each of the plurality of alternate imaging component to a threshold value; and set each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.


Another further embodiment of the invention includes: receiving image data for a scene captured by the reference imaging component; receiving image data for a scene captured by each of plurality of alternate imaging components; determining a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component; applying the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component; applying a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component; and computing gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.


In still another further embodiment, the method further comprises applying the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.


In yet another further embodiment, the method further comprises determining regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.


In another further embodiment again, the method further comprises storing determined the regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.


In another further additional embodiment, the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.


In still yet another further embodiment, the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.


In still another further embodiment again, the method further comprises: comparing each gain parameter and each offset parameter for each of the plurality of alternate imaging components to a threshold value; and setting each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an array camera in accordance with an embodiment of the invention.



FIG. 2 conceptually illustrates an optic array and an imager array in an array camera module in accordance with an embodiment of the invention.



FIG. 3 is an architecture diagram of an imager array in accordance with an embodiment of the invention.



FIG. 4 is a high level circuit diagram of pixel control and readout circuitry for a plurality of focal planes in an imager array in accordance with an embodiment of the invention.



FIG. 5 conceptually illustrates a layout of color filters and the location of a reference imaging component and an alternate imaging component in an array camera module in accordance with an embodiment of the invention.



FIG. 6 is a flow chart illustrating a process for performing photometric normalization for an array camera in accordance with embodiments of the invention.





DETAILED DISCLOSURE OF THE INVENTION

Turning now to the drawings, systems and methods for measuring scene information while capturing images using array cameras in accordance with embodiments of the invention are illustrated. Array cameras including camera modules that can be utilized to capture image data from different viewpoints (i.e. light field images) are disclosed in U.S. patent application Ser. No. 12/935,504 entitled “Capturing and Processing of Images using Monolithic Camera Array with Heterogeneous Imagers” to Venkataraman et al. In many instances, fusion and super-resolution processes such as those described in U.S. patent application Ser. No. 12/967,807 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al., can be utilized to synthesize a higher resolution 2D image or a stereo pair of higher resolution 2D images from the lower resolution images in the light field captured by an array camera. The terms high or higher resolution and low or lower resolution are used here in a relative sense and not to indicate the specific resolutions of the images captured by the array camera. The disclosures of U.S. patent application Ser. No. 12/935,504 and U.S. patent application Ser. No. 12/967,807 are hereby incorporated by reference in their entirety.


In accordance with embodiments of this invention, a photometric normalization is performed on image data captured by an array camera. The photometric normalization is performed to determine local offset and gain coefficients for the image data from alternate imaging components with respect to a reference imaging component. The gain and offset coefficients correct the image data of the alternate imaging component to account for differences introduced by the scene being imaged. In particular, the gain coefficient corrects for the resultant attenuation of photons caused by veiling glare and other scene related issues and the offset coefficient corrects for the resultant spurious or additional photons introduced by veiling glare or other scene independent issues. Systems and methods for performing photometric normalization of image data captured by an array camera in accordance with embodiments of the invention are discussed further below.


Array Cameras


Array cameras in accordance with embodiments of the invention can include a camera module and a processor. An array camera in accordance with an embodiment of the invention is illustrated in FIG. 1. The array camera 100 includes a camera module 102 with an array of individual imaging components 104 where an array of individual imaging components refers to a plurality of imaging components in a particular arrangement, such as (but not limited to) the square arrangement utilized in the illustrated embodiment. The camera module 102 is connected to the processor 106 and the processor 106 is connected to a memory 108. Although a specific array camera is illustrated in FIG. 1, any of a variety of different array camera configurations can be utilized in accordance with many different embodiments of the invention.


Array Camera Modules


Camera modules in accordance with embodiments of the invention can be constructed from an imager array and an optic array. A camera module in accordance with an embodiment of the invention is illustrated in FIG. 2. The camera module 200 includes an imager array 230 including an array of focal planes 240 along with a corresponding optic array 210 including an array of lens stacks 220. Within the array of lens stacks, each lens stack 220 creates an optical channel that forms an image of the scene on an array of light sensitive pixels within a corresponding focal plane 240. Each pairing of a lens stack 220 and focal plane 240 forms a single camera 104 within the camera module. Each pixel within a focal plane 240 of a camera 104 generates image data that can be sent from the camera 104 to the processor 108. In many embodiments, the lens stack within each optical channel is configured so that pixels of each focal plane 240 sample the same object space or region within the scene. In several embodiments, the lens stacks are configured so that the pixels that sample the same object space do so with sub-pixel offsets to provide sampling diversity that can be utilized to recover increased resolution through the use of super-resolution processes.


In several embodiments, color filters in individual imaging components can be used to pattern the camera module with π filter groups as further discussed in U.S. Provisional Patent Application No. 61/641,165 entitled “Camera Modules Patterned with pi Filter Groups” filed May 1, 2012, the disclosure of which is incorporated by reference herein in its entirety. The use of a color filter pattern incorporating π filter groups in a 4×4 array is illustrated in FIG. 5. These imaging components can be used to capture data with respect to different colors, or a specific portion of the spectrum. In contrast to applying color filters to the pixels of the individual imaging components, color filters in many embodiments of the invention are included in the lens stack. For example, a green color imaging component can include a lens stack with a green light filter that allows green light to pass through the optical channel. In many embodiments, the pixels in each focal plane are the same and the light information captured by the pixels is differentiated by the color filters in the corresponding lens stack for each filter plane. Although a specific construction of a camera module with an optic array including color filters in the lens stacks is described above, camera modules including π filter groups can be implemented in a variety of ways including (but not limited to) by applying color filters to the pixels of the focal planes of the camera module similar to the manner in which color filters are applied to the pixels of a conventional color camera. In several embodiments, at least one of the imaging components in the camera module can include uniform color filters applied to the pixels in its focal plane. In many embodiments, a Bayer filter pattern is applied to the pixels of one of the imaging components in a camera module. In a number of embodiments, camera modules are constructed in which color filters are utilized in both the lens stacks and on the pixels of the imager array.


In several embodiments, an array camera generates image data from multiple focal planes and uses a processor to synthesize one or more images of a scene. In certain embodiments, the image data captured by a single focal plane in the sensor array can constitute a low resolution image (the term low resolution here is used only to contrast with higher resolution images), which the processor can use in combination with other low resolution image data captured by the camera module to construct a higher resolution image through Super Resolution processing.


Although specific array cameras are discussed above, many different array cameras are capable of utilizing π filter groups in accordance with embodiments of the invention. Imager arrays in accordance with embodiments of the invention are discussed further below.


Imager Arrays


An imager array in which the image capture settings of a plurality of focal planes or imaging components can be independently configured in accordance with an embodiment of the invention is illustrated in FIG. 3. The imager array 300 includes a focal plane array core 302 that includes an array of focal planes 304 and all analog signal processing, pixel level control logic, signaling, and analog-to-digital conversion (ADC) circuitry. The imager array also includes focal plane timing and control circuitry 306 that is responsible for controlling the capture of image information using the pixels. In a number of embodiments, the focal plane timing and control circuitry utilizes reset and read-out signals to control the integration time of the pixels. In other embodiments, any of a variety of techniques can be utilized to control integration time of pixels and/or to capture image information using pixels. In many embodiments, the focal plane timing and control circuitry 306 provides flexibility of image information capture control, which enables features including (but not limited to) high dynamic range imaging, high speed video, and electronic image stabilization. In various embodiments, the imager array includes power management and bias generation circuitry 308. The power management and bias generation circuitry 308 provides current and voltage references to analog circuitry such as the reference voltages against which an ADC would measure the signal to be converted against. In many embodiments, the power management and bias circuitry also includes logic that turns off the current/voltage references to certain circuits when they are not in use for power saving reasons. In several embodiments, the imager array includes dark current and fixed pattern (FPN) correction circuitry 310 that increases the consistency of the black level of the image data captured by the imager array and can reduce the appearance of row temporal noise and column fixed pattern noise. In several embodiments, each focal plane includes reference pixels for the purpose of calibrating the dark current and FPN of the focal plane and the control circuitry can keep the reference pixels active when the rest of the pixels of the focal plane are powered down in order to increase the speed with which the imager array can be powered up by reducing the need for calibration of dark current and FPN.


In many embodiments, a single self-contained chip imager includes focal plane framing circuitry 312 that packages the data captured from the focal planes into a container file and can prepare the captured image data for transmission. In several embodiments, the focal plane framing circuitry includes information identifying the focal plane and/or group of pixels from which the captured image data originated. In a number of embodiments, the imager array also includes an interface for transmission of captured image data to external devices. In the illustrated embodiment, the interface is a MIPI CSI 2 output interface (as specified by the non-profit MIPI Alliance, Inc.) supporting four lanes that can support read-out of video at 30 fps from the imager array and incorporating data output interface circuitry 318, interface control circuitry 316 and interface input circuitry 314. Typically, the bandwidth of each lane is optimized for the total number of pixels in the imager array and the desired frame rate. The use of various interfaces including the MIPI CSI 2 interface to transmit image data captured by an array of imagers within an imager array to an external device in accordance with embodiments of the invention is described in U.S. Pat. No. 8,305,456, entitled “Systems and Methods for Transmitting Array Camera Data”, issued Nov. 6, 2012, the disclosure of which is incorporated by reference herein in its entirety.


Although specific components of an imager array architecture are discussed above with respect to FIG. 3, any of a variety of imager arrays can be constructed in accordance with embodiments of the invention that enable the capture of images of a scene at a plurality of focal planes in accordance with embodiments of the invention. Independent focal plane control that can be included in imager arrays in accordance with embodiments of the invention are discussed further below.


Independent Focal Plane Control


Imager arrays in accordance with embodiments of the invention can include an array of focal planes or imaging components that can independently be controlled. In this way, the image capture settings for each focal plane in an imager array can be configured differently. As is discussed further below, the ability to configure active focal planes using difference image capture settings can enable different cameras within an array camera to make independent measurements of scene information that can be combined for use in determining image capture settings for use more generally within the camera array.


An imager array including independent control of image capture settings and independent control of pixel readout in an array of focal planes in accordance with an embodiment of the invention is illustrated in FIG. 4. The imager array 400 includes a plurality of focal planes or pixel sub-arrays 402. Control circuitry 403, 404 provides independent control of the exposure timing and amplification gain applied to the individual pixels within each focal plane. Each focal plane 402 includes independent row timing circuitry 406, 408, and independent column readout circuitry 410, 412. In operation, the control circuitry 403, 404 determines the image capture settings of the pixels in each of the active focal planes 402. The row timing circuitry 406, 408 and the column readout circuitry 410, 412 are responsible for reading out image data from each of the pixels in the active focal planes. The image data read from the focal planes is then formatted for output using an output and control interface 416.


Although specific imager array configurations are discussed above with reference to FIG. 4, any of a variety of imager array configurations including independent and/or related focal plane control can be utilized in accordance with embodiments of the invention including those outlined in U.S. patent application Ser. No. 13/106,797, entitled “Architectures for Imager Arrays and Array Cameras”, filed May 12, 2011, the disclosure of which is incorporated by reference herein in its entirety. The use of independent focal plane control to capture image data using array cameras is discussed further below.


Photometric Normalization for an Array Camera


In accordance with many embodiments of this invention, a photometric normalization is performed on image data captured by an array camera. The photometric normalization is performed to determine local offset and gain coefficients for the image data from alternate imaging components with respect to a reference imaging component. The gain and offset coefficients correct the image data of the alternate imaging component to account for differences introduced by the scene being imaged. In particular, the gain coefficient corrects for the resultant attenuation of photons caused by veiling glare and other scene related issues and the offset coefficient corrects for the resultant spurious or additional photons introduced by veiling glare or other scene independent issues.


The normalization performed is based on the fact the one of the properties of the veiling glare phenomenon and other scene related errors is that its effect on the photo-response of each of the individual imaging components is typically low in spatial frequency. Thus, the photo-response of the imaging component does not change rapidly within an image area. Instead, the photo-response is relatively slow changing. As the scene related errors may cause the image projected on the imaging components to include either more or less photons than predicted by a flat-field calibration, some areas of the image of the individual image sensor may be brighter or darker versus the image from other imaging components.


These scene related errors may be corrected for or normalized out by computing the above described gain and offset coefficients. These coefficients can be determined because the response of an imaging component in the raw domain is designed to be linear. Thus, the typical y=mx+c formula may be used to define the response in the following manner:

yi,j=mi,jxi,j+c


Where:

    • yi,j=numerical output value of the sensor for a given position in the image;
    • xi,j=photon input to the sensor at a given position;
    • mi,j=conversion gain of the sensor at a given position as determined by calibration; and
    • c=pedestal black level of the sensor.


Scene related errors can be thought of as resulting in the following modification to the formula:

yi,j=mi,jxi,j(Gvgi,j)+C+(Ovgi,j)


Where:

    • Gvg is the gain coefficient representing the resultant attenuation of photons; and
    • Ovg is the offset coefficient representing the resultant spurious or additional photons.


To normalize the image data from alternate imaging components with respect to the image data of a reference imaging component, the gain and offset coefficients for the alternate imaging components with respect to the reference imaging component can be computed and applied to the imaging data of the alternate imaging component to negate their effects. The use of a color filter pattern incorporating it filter groups in a 4×4 array is illustrated in FIG. 5. In the array camera 500, a first imaging component 504 configured to capture green light can be selected as a reference imaging component and a second imaging component 506 configured to capture green light can be selected as an alternate imaging component. As can readily be appreciated, any pair of cameras configured to capture the same frequency of light can be selected as a reference imaging component and an associate imaging component. A process for performing this photometric normalization in accordance with embodiments of this invention is illustrated in FIG. 6.


Process 600 includes obtaining the image data for a scene from a reference imaging component and the alternate imaging components associated with the reference imaging component (605). This may be done by capturing an image of the scene with an array camera causing the reference and alternate imaging components to each generate image data of the scene. Alternatively, the image data may have been previously captured and is read from a memory.


If the array camera includes more than one reference imaging component, a reference imaging component is selected to perform the normalization (605). A low pass filter is then applied to the image data of the reference imaging component (610). The low pass filter removes any high frequency components in the reference image data.


The following process is then performed to normalize the image data from each of the alternate imaging components associated with reference imaging component. An alternate imaging component is selected (615) and the image data for the alternate imaging component is retrieved. A nominal parallax between the selected alternate imaging component and the reference imaging component is determined (620). The nominal parallax may be read from memory if it was previously stored or may be computed at the time of use.


In accordance with some embodiments of this invention, the nominal parallax may be determined by metering a region-of-interest within the field of view and performing a coarse parallax estimate to determine a parallax shift that satisfies the metered region-of-interest. In accordance with some other embodiments, a nominal parallax shift corresponding to typical shooting distances may be used. In accordance with still other embodiments, the depth map from a previously fully computed frame may be used to specify the nominal parallax shift.


The nominal parallax shift is then applied to the image data of the alternate camera to translate the pixel information in the image data to correspond with corresponding pixel information in the image data of the reference imaging component (625). A low pass filter is then applied to the shifted image data of the alternate imaging component (630). The shifted, low passed filtered image data of the alternate image component is aligned with the low passed filtered image data from the reference imaging component in a “strong” blurred alignment. A “strong” blurred alignment is when the images are aligned on surviving high-gradient edges in low frequency such that the images appear be aligned even if there some spatial misalignment due to error in the alignment information. Errors in alignment information may be due to many factors, including, but not limited tom, taking the parallax at an incorrect fixed distance.


In accordance with some embodiments, high contrast components in the image data from the alternate imaging component may be detected. The high contrast components in the shifted image data are typically in areas where alignment errors caused by using the nominal parallax shift between the shifted image data from the alternate imaging component and the image data from the reference imaging component are apparent. These high-contrast edges may still cause differences even after the low pass filter is applied. Thus, these high contrast components are optionally detected and stored as a data set, map, or other data structure (635). As these components have a greater probability of being erroneous even after the subsequent correction values are applied, the data set or map may be used to indicate components of the shifted image data from the alternate imaging component where later correction processes can be applied modulate the corrected data if needed and/or desired.


The low pass filtered shifted image data of the alternate imaging component is then compared to the low pass filtered image data of the reference imaging component to compute the gain and offset parameters for the image data from the alternate imaging component (640). The low passed filtered shifted image data is used to determine the gain and offset parameter because most photometric imbalances occur in low frequency. Thus, the gain and offset parameters to locally correct the photometric imbalance determined using the low pass filtered image data will correct photometric imbalance in the original image data as the photometric imbalance if in the lower frequency.


In accordance with some embodiments, the gain and offset parameters are calculated on a per pixel basis. In accordance with these embodiments, the gain and offset parameters are calculated based on a region surrounding each pixel. For example, a region of 9×9 pixels surrounding a pixel may be analyzed to determine the distribution of values within the region. In other embodiments, any of a variety of fixed or adaptive regions can be utilized including regions that have different shapes in different regions of the image. A level of contrast exists in the region within the image data of the alternate imaging component. The goal of the computation is to determine gain and offset parameters for the pixel in shifted image data that matches the value of the pixel data to the value of the pixel data of the reference imaging component. This may be achieved by comparing the mean and variance of the data for the pixel area to the mean and variance of the data for a corresponding pixel area in the reference image data.


In accordance with some embodiments of this invention, the following equation may be used to perform the comparisons and determine the gain and offset parameters:








a
^

=



[



i





j




y


(

i
,
j

)




x


(

i
,
j

)





]

-


N
1



N
2



y
_







x
_





[



i





j




x
2



(

i
,
j

)




]

-


N
1



N
2




x
_

2





,






b
^

=


y
_

-


a
^







x
_




,




where








x
_

=


1


N
1



N
2







i





j



x


(

i
,
j

)






,






y
_

=


1


N
1



N
2







i





j



y


(

i
,
j

)






,




Where:


x=the image to be corrected


y=the reference image


N1, N2=number of pixels horizontally and vertically of the analyzed region around the pixel being computed.


i,j are indices into the images within the bounds defined by N1 and N2.


â=Gvgi,j, gain coefficient computed for a specific value of i and j.


{circumflex over (b)}=Ovgi,j, offset term computed for a specific value of i and j.


In accordance with some embodiments, limits may be applied to the computation such that values computed for the gain and offset parameters are constrained in some way. In accordance with some of these embodiments, the gain and offset parameters may be prevented from being too large by being compared to a threshold and being set to a predetermined value if the threshold is at least met.


In accordance with other embodiments, the gain and offset parameters may be determined for regions of the associate image data instead of a per pixel basis by using a sparse grid. The subsequent spatially varying values of the gain and offset parameters may be interpolated to yield the correct value for each pixel. One skilled in the art will recognize that still other methods of determining the gain and offset parameters may be used without departing from the embodiments of this invention.


The determined gain and offset parameters for each pixel are then applied to the corresponding information for each pixel in the original image data of the associate reference component (645). In accordance with some embodiments, the map or data set of high contrast regions may be used to determine regions where the calculations may be erroneous and additional processes may need to be performed to normalize the data.


The process (615-645) for alternate imaging components associated the selected reference is then repeated until normalization is performed for each alternate imaging component associated with the selected reference imaging component (650). The process is likewise repeated for each reference imaging component in the array camera (655).


While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as an example of one embodiment thereof. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. A method performed by a processing system to provide a photometric normalization in an array camera having a reference imaging component and a plurality of alternate imaging components associated with the reference imaging component, the method comprising: receiving image data for a scene captured by the reference imaging component;receiving image data for a scene captured by each of plurality of alternate imaging components;determining a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component;applying the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component;applying a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component; andcomputing gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.
  • 2. The method of claim 1 further comprising applying the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.
  • 3. The method of claim 2 further comprising determining regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.
  • 4. The method of claim 3 further comprising storing determined the regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.
  • 5. The method of claim 1 wherein the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.
  • 6. The method of claim 1 wherein the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.
  • 7. The method of claim 1 further comprising: comparing each gain parameter and each offset parameter for each of the plurality of alternate imaging component to a threshold value; andsetting each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.
  • 8. A system for providing a photometric normalization in an array camera having a reference imaging component and a plurality of alternate imaging components associated with the reference imaging component comprising: an array camera including a plurality of imaging components that capture image data of a scene including a reference imaging component and plurality of alternate imaging components;a memory; anda processor that is configured by instructions stored in the memory to: receive image data for a scene captured by the reference imaging component,receive image data for a scene captured by each of plurality of alternate imaging components,determine a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component,apply the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component,apply a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component, andcompute gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.
  • 9. The system of claim 8 wherein the processor is further configured by the instructions to apply the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.
  • 10. The system of claim 8 wherein the processor is further configured by the instructions to determine regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.
  • 11. The system of claim 10 wherein the processor is further configured by the instructions to store the determined regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.
  • 12. The system of claim 8 wherein the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.
  • 13. The system of claim 9 wherein the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.
  • 14. The system of claim 8 wherein the processor is further configured by the instructions to: compare each gain parameter and each offset parameter for each of the plurality of alternate imaging component to a threshold value; andset each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.
  • 15. A non-transitory medium readable by a processor that stores instructions that when read by the processor configure the processor to perform the method comprising: receiving image data for a scene captured by the reference imaging component;receiving image data for a scene captured by each of plurality of alternate imaging components;determining a nominal parallax for image data of each of the plurality of alternate imaging components that translate information for a particular pixel in the image data of a particular alternate imaging component to a corresponding pixel in the reference imaging component;applying the nominal parallax of each particular alternate imaging component to the image data of the particular alternate imaging component;applying a low pass filter to the image data from the reference imaging component and the shifted image data of each particular alternate imaging component; andcomputing gain and offset parameters for each particular alternate imaging components from the low pass filtered shifted image data of the particular alternate imaging component and the low pass filtered image data of the reference imaging component.
  • 16. The non-transitory medium of claim 15 wherein the method further comprises applying the gain and offset parameters of each particular alternate imaging component to the image data captured by the particular alternate imaging component to form photometrically normalized image data for each particular alternate imaging component.
  • 17. The non-transitory medium of claim 16 wherein the method further comprises determining regions of high contrast in the low pass filtered shifted image data of each particular alternate imaging component.
  • 18. The non-transitory medium of claim 17 wherein the method further comprises storing determined the regions of high contrast in the low pass filtered image data of each particular alternate imaging component for further correction processing.
  • 19. The non-transitory medium of claim 15 wherein the computing of the gain and offset parameters is performed on a pixel by pixel basis for the image data of each of the plurality of alternate imaging components.
  • 20. The non-transitory medium of claim 15 wherein the computing of the gain and offset parameters is performed on regions of pixels for the image data of each of the plurality of alternate imaging components.
  • 21. The non-transitory medium of claim 15 wherein the method further comprises: comparing each gain parameter and each offset parameter for each of the plurality of alternate imaging components to a threshold value; andsetting each gain parameter and each offset parameter determined to at least meet the threshold value to a predetermined value.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application claims priority to U.S. Provisional Patent Application No. 61/785,797, filed Mar. 14, 2013, the disclosure of which is incorporated herein by reference.

US Referenced Citations (493)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
5005083 Grage Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker Sep 1992 A
5327125 Iwase et al. Jul 1994 A
5629524 Stettner et al. May 1997 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5933190 Dierickx et al. Aug 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery et al. Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6358862 Ireland et al. Mar 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6563537 Kawamura et al. May 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6635941 Suda Oct 2003 B2
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6795253 Shinohara Sep 2004 B2
6819358 Kagle et al. Nov 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6958862 Joseph Oct 2005 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7606484 Richards et al. Oct 2009 B1
7633511 Shum et al. Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8077245 Adamo et al. Dec 2011 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8164629 Zhang Apr 2012 B1
8180145 Wu et al. May 2012 B2
8189089 Georgiev May 2012 B1
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8294099 Blackwell, Jr. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8446492 Nakano et al. May 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8692893 McMahon Apr 2014 B2
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino Jan 2002 A1
20020027608 Johnson Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020063807 Margulis May 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Suda Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020163054 Suda et al. Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20030025227 Daniell Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040100570 Shizukuishi May 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179834 Szajewski Sep 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219363 Kohler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070024614 Tam Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070126898 Feldman Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070228256 Mentzer Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296835 Olsen et al. Dec 2007 A1
20080019611 Larkin Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080112635 Kondo et al. May 2008 A1
20080118241 Tekolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090128833 Yahav May 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone Oct 2009 A1
20090274387 Jin Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100053342 Hwang et al. Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100141802 Knight et al. Jun 2010 A1
20100142839 Lakus-Becker Jun 2010 A1
20100157073 Kondo et al. Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein Gunnewiek et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100220212 Perlman et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100244165 Lake et al. Sep 2010 A1
20100265385 Knight et al. Oct 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110032370 Ludwig Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110176020 Chang Jul 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic et al. Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110317766 Lim, II et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côté et al. Feb 2012 A1
20120069235 Imai Mar 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120287291 McMahon Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130088637 Duparre Apr 2013 A1
20130113888 Koguchi May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130335598 Gustavsson et al. Dec 2013 A1
20140009586 McNamer et al. Jan 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
Foreign Referenced Citations (63)
Number Date Country
840502 May 1998 EP
1201407 May 2002 EP
1734766 Dec 2006 EP
2336816 Jun 2011 EP
11142609 May 1999 JP
11223708 Aug 1999 JP
2002205310 Jul 2002 JP
2003094445 Apr 2003 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2008055908 Mar 2008 JP
2009132010 Jun 2009 JP
2011109484 Jun 2011 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
1020110097647 Aug 2011 KR
2007083579 Jul 2007 WO
2008108271 Sep 2008 WO
2009151903 Dec 2009 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014150856 Sep 2014 WO
2014153098 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
Non-Patent Literature Citations (152)
Entry
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Source unknown, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 1998, 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, Jun. 2003, 5016, 12 pgs.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, 1998. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame MAP Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Capel, “Image Mosaicing and Super-resolution”, [online], Retrieved on Nov. 10, 2012. Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.2643&rep=rep1 &type=pdf>, Title pg., abstract, table of contents, pp. 1-263 (269 total pages).
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, 2007, vol. 18, pp. 83-101.
Chen et al., “Interactive deformation of light fields”, In Proceedings of SIGGRAPH I3D 2005, pp. 139-146.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, 8 pgs.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 8 pgs.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 2009, vol. 83, Issue 3, 8 pgs.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposistion Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012. Retrieved from the Internet at URL:<http://www.site.uottawa.ca/-edubois/theses/Fanaswala—thesis.pdf>, 163 pgs.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, pp. 141-159.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, pp. 43-54.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, 30, 4, 2011, pp. 70:1-70:10.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, Computational Photography (ICCP) 2010, pp. 1-8.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Joshi et al., “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication [online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet: http:I/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4409032&isnumber=4408819>; pp. 1-8.
Kang et al., “Handling Occlusions inn Dense Multi-View Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
LensVector, “How LensVector Autofocus Works”, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Feb. 2008, vol. 30, 8 pgs.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Aug. 2006, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution,” Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab—research/08/deblur-feng.pdf on Feb. 5, 2014.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, 2007, 12 pgs.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, 2008, pp. 1-19.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Jan. 2009, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2007, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995, pp. 93-96.
Shum et al., “Pop-Up Light Field: An Interactive Image-Based Modeling and Rendering System,” Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField—TOG.pdf on Feb. 5.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps Via Joint-Segmentation”, 20th European Signal Processing Conference, Aug. 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, Proceeding, CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park-Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fall06/ccd—theory.pdf, 5 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, 2005, 5674, 12 pgs.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 765-776.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceeding, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C-11.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), pp. 1-10.
Zhang et al., Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, 2004, 12 pgs.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
US 8,957,977, 02/2015, Venkataraman et al. (withdrawn).
US 8,964,053, 02/2015, Venkataraman et al. (withdrawn).
US 8,965,058, 02/2015, Venkataraman et al. (withdrawn).
Extended European Search Report for European Application EP12782935.6, report completed Aug. 28, 2014 Mailed Sep. 4, 2014, 6 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, Mailed Feb. 3, 2015, 6 Pgs.
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, Mailed Feb. 4, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, Search Completed Apr. 15, 2014, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/024987, Mailed Aug. 21, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146, Completed Apr. 2, 2013, Issued Aug. 26, 2014, 10 pages.
International Preliminary Report on Patentability for International Application PCT/US2013/039155, completed Nov. 4, 2014, Mailed Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/046002, completed Dec. 31, 2014, Mailed Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, completed Dec. 31, 2014, Mailed Jan. 8, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/46002, completed Nov. 13, 2013, Mailed Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Completed Nov. 25, 2013, Mailed Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Completed Feb. 6, 2014, Mailed Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/044687, date completed Jan. 5, 2010, date mailed Jan. 13, 2010, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/64921, Completed Feb. 25, 2011, mailed Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Completed Mar. 27, 2013, Mailed Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, Search completed Jul. 1, 2013, Mailed Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Search Completed Oct. 21, 2013, Mailed Nov. 8, 2013, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Completed Feb. 18, 2014, Mailed Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, Completed Mar. 14, 2014, Mailed Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US11/36349, mailed Aug. 22, 2011, 11 pgs.
International Search Report and Written Opinion for International Application PCT/US13/62720, completed Mar. 25, 2014, Mailed Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/024903 completed Jun. 12, 2014, Mailed, Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US14/17766, completed May 28, 2014, Mailed Jun. 18, 2014, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18084, completed May 23, 2014, Mailed Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18116, Report completed May 13, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/22118, completed Jun. 9, 2014, Mailed, Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US14/22774 report completed Jun. 9, 2014, Mailed Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/24407, completed Jun. 11, 2014, Mailed Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, Mailed Aug. 7, 2014 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, Mailed Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, Report completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/37670, Mailed Jul. 18, 2012, Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/58093, Report completed Nov. 15, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, completed Jun. 9, 2014, Mailed Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Completed Jul. 8, 2014, Mailed Aug. 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, completed Jun. 30, 2014, Mailed Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, completed Jul. 28, 2014, Mailed Aug. 27, 2014, 7 Pages.
International Search Report and Written Opinion for International Application PCT/US2014/23762, Completed May 30, 2014, Mailed Jul. 3, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/029052, completed Jun. 30, 2014, Mailed Jul. 24, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US13/56065, Issued Feb. 24, 2015, Mailed Mar. 5, 2015, 4 Pgs4 Pages.
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Report Issued Feb. 24, 2015, Mailed Mar 5, 2015, 7.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Bertero et al., “Super-resolution in computational imaging”, Micron, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, pp. 972-986.
Related Publications (1)
Number Date Country
20140267829 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61785797 Mar 2013 US