Systems and methods for pipeline rehabilitation

Information

  • Patent Grant
  • 7870874
  • Patent Number
    7,870,874
  • Date Filed
    Monday, December 22, 2008
    16 years ago
  • Date Issued
    Tuesday, January 18, 2011
    13 years ago
Abstract
The present disclosure is directed to methods and systems for pipeline rehabilitation. The methods and systems disclosed herein permit the rehabilitation of long lengths of previously installed pipe and minimize the need for creating multiple access points to the pipeline. The disclosed systems and methods are particularly suited for rehabilitating buried and undersea pipelines or pipelines installed in areas of restricted access.
Description
BACKGROUND

Pipelines for transporting fluids such as oil and natural gas may deteriorate over time potentially resulting in leakage of fluid from the pipeline. In the case of metal piping, for example, corrosion may be a significant cause of pipe deterioration. Repair of previously installed piping may be difficult and expensive, particularly in the case of buried or submerged pipelines where access to the pipeline is restricted. Successful repair of buried pipeline may require multiple access points, resulting in significant disturbances of the areas proximate the access points and potentially adverse environmental impact at each area. For these reasons, there is a need for improved systems and methods for rehabilitating pipelines.


SUMMARY

The present disclosure is directed to methods and systems for pipeline rehabilitation. The methods and systems disclosed herein permit the rehabilitation of long lengths of previously installed pipe and minimize the need for creating multiple access points to the pipeline. The disclosed systems and methods are particularly suited for rehabilitating buried and undersea pipelines or pipelines installed in areas of restricted access.


In one exemplary embodiment, a method of rehabilitating a pipeline comprising a first pipe comprises inserting a second pipe into the first pipe and pushing and pulling a length of the second pipe through the first pipe. The first pipe may act as a conduit for installing the second pipe and the second pipe, once installed, may be utilized to transport fluids in place of the first pipe, thereby rehabilitating the pipeline. The exemplary method may also include providing a first access point in the first pipe for insertion of the second pipe and providing a second access point in the first pipe that is spaced apart from the first access point and permits the second pipe to pulled through the first pipe. Pushing and pulling the second pipe through the first pipe may better control the position of the second pipe within the first pipe and may reduce tensile strain on the second pipe. The second pipe may be simultaneously pushed and pulled through the first pipe and/or alternatively pushed and pulled through the first pipe.


The exemplary method may also include flooding the first pipe with a fluid, such as water, prior to pushing and pulling the second pipe through the first pipe. The buoyancy of the second pipe in the flooded first pipe may be controlled to facilitate pushing and pulling of the second pipe through the first pipe. For example, in certain embodiments, the exemplary method may include adjusting the buoyancy of the second pipe to approximately neutral buoyancy or to minimal negative buoyancy, for example, to a weight of approximately 0.10 lbs. per ft. in water. The buoyancy of the second pipe may be adjusted by coupling a buoyancy control layer to the second pipe. The buoyancy control layer may be a layer of material(s) having a density selected to adjust the overall density of the second pipe to provide a desired buoyancy to the second pipe. The buoyancy control layer may be coupled to the pipe by extruding a material having the desired density onto the exterior of the second pipe, by wrapping a material having the desired density onto the exterior of the pipe, or by other methods of coupling a layer of material to the exterior or other portion of a pipe. The buoyancy control layer may be coupled to the second pipe during fabrication of the second pipe or in a post-fabrication process. The material of the buoyancy control layer may be selected to provide increased wear resistance to the second pipe and to reduce the coefficient of friction of the exterior of the second pipe.


In other exemplary embodiments, the method may include flooding the first pipe with a fluid having a density selected to provide a desired buoyancy to the second pipe. For example, a dense fluid, such as brine or water-based drilling mud, may be delivered to the first pipe to flood the first pipe such that the second pipe has neutral or minimal negative buoyancy within the dense fluid. In an exemplary embodiment, the buoyancy of the second pipe may be controlled by both flooding the first pipe with a fluid and coupling a buoyancy control layer to the second pipe.


The exemplary method may include introducing friction reducing fluids to the interior of the first pipe to reduce friction forces between the first pipe and the second pipe as the second pipe is pushed/pulled through the first pipe. The friction reducers may be fluids such as oils or other lubricants that are pumped into the first pipe before or during the pushing/pulling operation.


In other exemplary methods, sensors and/or transmitters may be affixed to or integral with the second pipe, affixed to the first device, affixed to the second device, or may be affixed to or integral with the first pipe to measure pipeline rehabilitation process parameters, such as, for example, the axial and radial location of the second pipe relative to the first pipe, fluid leakage within the first or second pipe, and strain on the second pipe. Exemplary sensors include, for example, load cells, displacement transducers, accelerometers, acoustic transmitters, clearance gauges, and imaging devices.


In one exemplary embodiment, a system for rehabilitating a pipeline comprising a first pipe comprises a first device adapted to be coupled to a first portion of a second pipe, the first device being configured to push a length of the second pipe into a first access point of the first pipe, and a second device adapted to be coupled to a second portion of the second pipe, the second device being configured to pull the second pipe through a second access point in the first pipe, the second access point being spaced apart a distance from the first access point. The first device may be an injector, a hydraulically or otherwise operated reel upon which the second pipe is mounted, and/or other devices suitable for deploying long lengths of pipe. The second device may be a capstan, a winch, a tractor, propulsion jets, and/or other devices suitable for pulling long lengths of pipe, cables, ropes, or cords. The first device and the second device may be operated simultaneously to affect the simultaneous pushing and pulling of the first pipe through the second pipe.


In one exemplary embodiment, a method of adjusting the buoyancy characteristics of a pipe includes providing a pipe and adding a layer of material having a density selected to modify the overall density of the pipe. The additional layer may be extruded onto an exterior layer of the pipe; deposited, for example, wrapped, wound or sprayed, onto the exterior of the pipe; or otherwise coupled to the pipe. In one embodiment, the additional layer may be a layer of thermoplastic foam extruded onto an exterior layer of the first pipe.





BRIEF DESCRIPTIONS OF THE DRAWINGS

These and other features and advantages of the systems and methods disclosed herein will be more fully understood by reference to the following detailed description in conjunction with the attached drawings in which like reference numerals refer to like elements throughout the different views. The drawings illustrate principals of systems and methods disclosed herein and, although not to scale, show relative dimensions.



FIG. 1 is a schematic view of a system for pipeline rehabilitation;



FIG. 2 is a side elevational view of a rehabilitated pipe having a second pipe that includes a buoyancy layer;



FIG. 3 is a side elevational view of a rehabilitated pipe having a buoyancy controlling fluid controlling the buoyancy of a second pipe; and



FIG. 4 is a side elevational view in cross-section of a composite pipe having a buoyancy control layer.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS


FIG. 1 illustrates an exemplary embodiment of a system 10 for rehabilitating a pipeline comprising a first pipe. The system 10 comprises a first device 12 that is configured to push a length of a second pipe 14 into a first access point 16 of the first pipe 18. The system 10 further includes a second device 20 that is configured to pull the second pipe 14 through a second access point 22 in the first pipe 18. The system 10 operates to push and/or pull the second pipe 14 through the first pipe 18. During operation, the first pipe 18 acts as a conduit for installing the second pipe 14. The second pipe 14, once installed, may be utilized to transport fluids in place of the first pipe 18, thereby rehabilitating the pipeline. The exemplary system 10 permits the rehabilitation of the pipeline with a minimum number of access points in the first pipe 18 comprising the pipeline. In the illustrated embodiment, for example, two access points 16, 22 are provided in the first pipe 18.


The systems and methods for pipeline rehabilitation described herein, including the exemplary system 10, are particularly suited for rehabilitation of buried and undersea pipeline and other pipelines in which access to the pipeline may be restricted. In the illustrated embodiment, for example, the first pipe 18 comprising the pipeline is buried underground. One skilled in the art will appreciate that the systems and methods described herein are not limited to buried or undersea pipelines but instead may be utilized to effect rehabilitation of any installed pipelines. Likewise, the orientation of the first device 12 and the orientation of the second device 20 relative to the first pipe 18, and in the exemplary embodiment, relative to the ground, may be varied. For example, the first device 12 and the second device 20 may be oriented to introduce the second pipe 14 at an angle proximate to 90° relative the first pipe 18 as illustrated in FIG. 1, at angle proximate to 0° (i.e., parallel) to the first pipe 18, or at any other angle.


Continuing to refer to FIG. 1, the first device 12 of the exemplary system 10 may comprise an injector 23 that operates to engage the exterior surface of the second pipe 14 and push the second pipe 14 into the first access point 16 of the first pipe 18. The second pipe 14 may be fed to the injector 23 by a hydraulically or otherwise operated reel 24 onto which the second pipe 14 may be spooled. The reel 24 may cooperate with the injector 23 to push the second pipe 14 into the first pipe 18. Alternatively, the injector 23 or the reel 24 may independently operate to push the second pipe 14 into the first pipe 18. One skilled in the art will appreciate that the first device 12 is not limited to the injector 23 and or the reel 24 illustrated in FIG. 1. Any device suitable for displacing pipe, rope, cords, or other lengthy products may be utilized as the first device. A push control station 25 coupled to the injector 23 and/or the reel 24 may be provided to control the operation of the injector and the reel.


In the exemplary system 10, the second device 20 may be a hydraulically or otherwise operated capstan 26 that is connected to an end of the second pipe 14 by a rope 28. The capstan 26 operates to pull the rope 28, and, thus, the second pipe 14, through the first pipe 18. The rope 28 is preferably a lightweight, high tensile strength rope or cord. Suitable ropes and/or cords include for example wires, wirelines, chains, fiber ropes, wire ropes, tubing and the like. Ropes may be, for example, constructed from kevlar, polypropylene, metals, or other lightweight, high strength materials. In one exemplary embodiment, the rope 28 has a tensile strength of at least 40,000 lbs. An end connector 31 may be provided at the leading end of the second pipe 14 to permit connection of the pipe to the rope 28. The rope 28 may be wound onto a hydraulically or otherwise operated reel 30. The reel 30 may operate to assist the capstan 26 in pulling the second pipe 14 through the first pipe 18. The capstan 26 and the reel 30 may independently operate to affect pulling of the rope 26 and the second pipe 14. One skilled in the art will appreciate that other devices suitable for pulling pipe, rope, cords, wires, etc, including, for example an injector or a winch, may be utilized in conjunction with or in place of the capstan 26 and/or the reel 30. A pull control station 32 coupled to the capstan 26 and/or the reel 30 may be provided to control the operation of the capstan and the reel. The pull control station 32 may also be in wireless or wired communication with the push control station 25 to coordinate the operation of the first device 12 and the second device 20. Alternatively, a single control station may be provided to control operation of the first device 12 and the second device 20.


In certain embodiments, the buoyancy of the rope 28 may be adjusted to provide the rope 28 with neutral or minimal negative buoyancy within a fluid provided in the first pipe 18. Neutral or minimal negative buoyancy may provide extended reach pulling capabilities for the rope 28. Coupling a buoyant material to the rope 28 or constructing the rope 28 from a material having the desired buoyancy characteristics may adjust the buoyancy of the rope 28. For example, a jacket of low-density foam may be extruded onto or otherwise coupled to the rope 28.


The first device 12 and the second device 20 may be operated simultaneously to affect simultaneous pushing and pulling of the second pipe 14 through the first pipe 18. Alternatively, the first device 12 and the second device 20 may be operated separately and independently to introduce the second pipe 14 into the first pipe 18.


Depending on the length of the pipeline being rehabilitated, it may be necessary to connect two or more lengths of pipe for insertion into the pipeline. Thus, in certain embodiments, the second pipe 14 may comprise two or more lengths of pipe connected by one or more pipe-to-pipe connectors 34. Each pipe-to-pipe connector 34 may be fitted with one or more devices, such as a centralizer, for positioning the second pipe 14 radially within the first pipe 18 to minimize instances of the second pipe 14 becoming snagged on obstructions, such as welds or pipe joints, in the first pipe 18. In addition, each pipe-to-pipe connector may be fitted with one or more mechanical rollers or other similar device and may be covered with a material having a low coefficient of friction to facilitate transport of the connector within the first pipe 18.


In certain embodiments, the second pipe 14 may be marked at predetermined spaced-apart distances to permit measurement of the length of the second pipe 14 installed into the first pipe. In the event the second pipe 14 becomes obstructed, the markings may be useful in identifying the location of an obstruction in the first pipe 18. In addition, a magnetic device or an RF transmitter or other type of transmitter may be provided at the leading end or other locations of the second pipe 14 to monitor the advancement of the second pipe 14 through the first pipe 18. In certain embodiments, a relief pin or other similar load relieving device may be coupled to the rope 28 and/or capstan 26 proximate the second device 20. The relief pin may be designed to yield at an axial load less than the maximum tensile load allowable for the second pipe 14.


The second pipe 14 preferably has a high tensile strength to weight ratio to facilitate displacement through the first pipe 18, in particular to facilitate the pulling of the second pipe 14 through the first pipe 18. The desired tensile strength of the second pipe 14 will vary depending on the length and weight of pipe being deployed. In certain exemplary embodiments, the tensile strength of the second pipe 14 may be at least 10,000 lbs. In an embodiment, the tensile strength of the second pipe 14 may have sufficient tensile strength to facilitate displacement through the first pipe 18. The second pipe 14 may be constructed of any material suitable for transporting fluids and having the requisite tensile strength for displacement through the first pipe 18. Other characteristics of the second pipe may include high strength and stiffness in the axial, hoop, and radial direction to carry loads that may be imposed on the second pipe in service, in place of the first pipe, preferably without receiving support from the first pipe. Suitable pipes include metal pipes, for example, steel pipes, pipes constructed from plastics, for example, thermoplastic and thermoset materials, and composite pipes such as fiber reinforced plastic pipes and metal/composite pipes, and composite hoses constructed from reinforces elastomers and plastics. In certain exemplary embodiments, the second pipe 14 is a composite pipe constructed of a fluid impervious inner liner and a composite layer as described in detail below, such as, spoolable composite line pipe available from Fiberspar Corporation of West Wareham, Mass.


In an exemplary method of rehabilitating a pipeline, the second pipe 14 may be inserted into the first pipe 18 and the second pipe 14 may be pushed and/or pulled through the first pipe 18. Initially, the first access point 16 and the second access point 22 may be formed in the pipeline, i.e., the first pipe 18. A pig, plug, or other suitable device may be used to transport the rope 28 or a messenger line between the first access point 22 and the second access point 16. The rope 28 may then be connected to an end of the second pipe 14. The second pipe 14 may then be pushed by the first device 12 and the pulled by the second device 10, through rope 28, to displace the second pipe 14 through the first pipe 18.


The exemplary method may also include flooding the first pipe 18 with a fluid, such as water, prior to and/or during displacement of the second pipe 14 through the first pipe 18. The buoyancy of the second pipe 14 within the fluid of the flooded first pipe 18 may be controlled to facilitate displacement of the second pipe 14 through the first pipe 18. In an embodiment, a rope 28 may then be connected to an end of the second pipe 14 to facilitate displacement through the flooded first pipe 18. As described in detail below, a buoyancy control layer may be provided to the second pipe 14 to adjust the buoyancy of the second pipe 14. FIG. 2 illustrates a second pipe 14 through a first pipe 18, where the second pipe includes a composite tube 50 having an interior liner 52, a composite layer 54, and buoyancy layer 56. In this illustration, the first pipe 18 is flooded with a fluid 19.


Alternatively, the first pipe may be flooded with a fluid having a density selected to provide a desired buoyancy to the second pipe 14 to thereby control the buoyancy of the second pipe 14. For example, a dense fluid, such as brine or water-based drilling mud, may be delivered to the first pipe 18 to flood the first pipe 18 such that the second pipe 14 has neutral buoyancy within the dense fluid. FIG. 3 illustrates a second pipe 14 having an interior liner 52 and a composite layer 54 through a first pipe 18, where the first pipe is flooded with a fluid 19 selected to control the buoyancy of the second pipe 14.


The exemplary method may include introducing friction-reducing fluids to the interior of the first pipe 18 to reduce friction forces between the first pipe 18 and the second pipe 14 as the second pipe is displaced through the first pipe 18. The friction reducers may be fluids such as oils or other lubricants that are pumped into the first pipe 18 before or during the pushing/pulling operation.


Another exemplary method may include additional fluids introduced to the interior of the first pipe 18. Examples of additional fluids may include viscofiers, lubricants, stabilizers, anti-foaming agents, and the like.


In certain embodiments, the second pipe 14 may be filled with a fluid, such as water, to allow hydro-testing of the second pipe 14 and any pipe-to-pipe connectors 34 during deployment.


An exemplary method of adjusting the buoyancy of a pipe, such as the second pipe 14 described above, may comprise coupling a buoyancy control layer to the pipe. FIG. 4 illustrates an exemplary composite tube 50 having an interior liner 52, a composite layer 54 and a buoyancy control layer 56. The composite tube 50 is generally formed along a longitudinal axis and can have a variety of cross-sectional shapes, including circular, oval, rectangular, square, polygonal, and the like. The illustrated tube 50 has a circular cross-section. The composite tube 50 can generally be constructed in manner analogous to one or more of the composite tubes described in commonly owned U.S. patents and patent applications: U.S. Pat. Nos. 6,016,845, 5,921,285, 6,148,866, 6,004,639, and 6,286,558, U.S. patent application Ser. No. 10/134,071 filed Apr. 29, 2002, U.S. patent application Ser. No. 10/134,660 filed Apr. 29, 2002, and U.S. patent application Ser. No. 10/288,600 filed Nov. 5, 2002. Each of the aforementioned patents and patent applications is incorporated herein by reference. Although the following description is in connection with a composite pipe, one skilled in the art will recognize that the buoyancy control layer described herein may be used in connection with any type of pipe, including, for example, steel pipes.


The buoyancy control layer 56 may be a layer of material(s) having a density selected to adjust the overall density of the pipe 50 to provide a desired buoyancy to the pipe. The buoyancy control layer 56 may be coupled to the pipe by extruding a material having the desired density onto the composite layer 54 or other layer of the pipe 50, by wrapping a material having the desired density onto the composite layer 54 or other layer of the pipe 50, or by other methods of coupling a layer of material to layer of the pipe. The buoyancy control layer 56 may be coupled to the pipe 50 during fabrication of the pipe or post-fabrication. The buoyancy control layer 54 may be bonded or un-bonded to the pipe.


In certain embodiments, the buoyancy control layer 56 may be a layer of low density material incorporated within the composite tube to provide buoyancy to at least a longitudinal segment of the composite tube 50. An optional pressure barrier layer as well as other additional layers including additional layers of low-density material and additional composite layers, may be provided external to the layer of low-density material. Although the layer 56 is illustrated as being disposed external to the composite layer 54, the exemplary layer 56 of low density material may be disposed at any point throughout the cross-section of the composite tube 50 including, for example, between the inner liner 52 and the composite layer 54. The layer 56 of low density material may extend along the entire length of the composite tube 50 or may be disposed along one or more discrete lengths of the composite tube 50. The layer 56 of low density material may allow selected longitudinal segments or the entire length of the composite tube to have approximately neutral or minimal negative buoyancy. For pipe rehabilitation as described above, the buoyancy of the second pipe 14 is preferably adjusted to less than a specific gravity of 1.5 grams/cm3 in water.


In an exemplary embodiment, the low-density material for the layer 56 is selected to have a specific gravity of less than or equal to about 1.25 grams/cm3 in water. Suitable low density materials may include, for example, syntactic foams, foamed thermoset or thermoplastic materials such as epoxy, urethane, phenolic, vinylester, polypropylene, polyethylene, polyvinylchlorides, nylons, thermoplastic or thermoset materials filled with particles (such as glass, plastic, micro-spheres, ceramics), filled rubber or other elastic materials, or composites of these materials. In certain embodiments, the buoyancy control layer 54 may be a thermoplastic foam jacket that may be extruded onto the exterior layer of the pipe 50.


The material of the buoyancy control layer 56 may also be selected to provide increased wear resistance to the pipe 50 and to reduce the coefficient of friction of the exterior of the pipe.


REFERENCES

All publications and patents mentioned herein, including those items listed below, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


EQUIVALENTS

While the systems, methods, and tubes disclosed herein have been particularly shown and described with references to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the disclosure. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the exemplary embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the present disclosure, and such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A method of rehabilitating a pipeline comprising a first pipe, the method comprising: flooding the first pipe with a fluid;inserting a second pipe having a buoyancy control layer into said first pipe; and pushing and pulling a length of said second pipe through said first pipe, wherein the fluid is selected such that said second pipe has about neutral or minimal negative buoyancy in said fluid.
  • 2. The method of claim 1, wherein providing said second pipe with a buoyancy control layer includes extruding a layer on the exterior of said second pipe.
  • 3. The method of claim 2, wherein providing said second pipe with a buoyancy control layer includes wrapping a layer about the exterior of said second pipe.
  • 4. The method of claim 2, wherein said buoyancy control layer comprises a thermoplastic foam.
  • 5. The method of claim 1, further comprising selecting a fluid from the group consisting of brine and water-based drilling mud.
  • 6. The method of claim 1, further comprising providing a first access point in said first pipe for insertion of said second pipe.
  • 7. The method of claim 6, further comprising providing an injector that operates to push said second pipe into said first access point.
  • 8. The method of claim 7, further comprising providing a second access point in said first pipe wherein said second access point is spaced apart from said first access point.
  • 9. The method of claim 8, further comprising connecting a capstan to an end of said second pipe by a rope.
  • 10. The method of claim 9, further comprising operating said capstan to pull said second pipe through said first pipe.
  • 11. A method of rehabilitating a pipeline comprising a first pipe, the method comprising: flooding the first pipe with a fluid;inserting a second pipe having a buoyancy control layer into said first pipe, said buoyancy layer comprising a layer of material having a density selected to provide a neutral or minimal negative buoyancy to said second pipe in said fluid; andpushing and pulling a length of said second pipe through said first pipe.
  • 12. The method of claim 11, wherein said buoyancy control layer has a specific gravity in water of less than about 1.25 g/cm3.
  • 13. The method of claim 11, wherein said buoyancy control layer is deposited on the exterior of said pipe.
  • 14. The method of claim 11, wherein said buoyancy control layer comprises thermoplastic foam.
  • 15. The method of claim 11, further comprising flooding the first pipe with a fluid.
RELATED APPLICATION INFORMATION

This application is a continuation application of co-pending U.S. Ser. No. 11/640,536, filed Dec. 15, 2006, which is a continuation application of U.S. Ser. No. 11/305,876, filed Dec. 16, 2005, and issued on Dec. 26, 2006 as U.S. Pat. No. 7,152,632, which is a divisional application of U.S. Ser. No. 10/402,857, filed Mar. 28, 2003, and issued on Dec. 27, 2005 as U.S. Pat. No. 6,978,804, which claims priority to provisional U.S. Patent Application 60/368,503 filed Mar. 29, 2002, all of which are hereby incorporated by reference in their entirety.

US Referenced Citations (119)
Number Name Date Kind
646887 Stowe et al. Apr 1900 A
1930285 Robinson Oct 1933 A
2648720 Alexander Aug 1953 A
2690769 Brown Oct 1954 A
2725713 Blanchard Dec 1955 A
2810424 Swartswelter et al. Oct 1957 A
3116760 Matthews Jan 1964 A
3277231 Downey et al. Oct 1966 A
3334663 Peterson Aug 1967 A
3379220 Kiuchi et al. Apr 1968 A
3477474 Mesler Nov 1969 A
3507412 Carter Apr 1970 A
3522413 Chrow Aug 1970 A
3554284 Nystrom Jan 1971 A
3579402 Goldsworthy et al. May 1971 A
3589135 Ede et al. Jun 1971 A
3604461 Matthews Sep 1971 A
3606402 Medney Sep 1971 A
3677978 Dowbenko et al. Jul 1972 A
3692601 Goldsworthy et al. Sep 1972 A
3700519 Carter Oct 1972 A
3701489 Goldsworthy et al. Oct 1972 A
3734421 Karlson et al. May 1973 A
3738637 Goldsworthy et al. Jun 1973 A
3740285 Goldsworthy et al. Jun 1973 A
3744016 Davis Jul 1973 A
3769127 Goldsworthy et al. Oct 1973 A
3783060 Goldsworthy et al. Jan 1974 A
3828112 Johansen et al. Aug 1974 A
3856052 Feucht Dec 1974 A
3860742 Medney Jan 1975 A
3933180 Carter Jan 1976 A
3956051 Carter May 1976 A
3957410 Goldsworthy et al. May 1976 A
3960629 Goldsworthy Jun 1976 A
RE29112 Carter Jan 1977 E
4048807 Ellers et al. Sep 1977 A
4053343 Carter Oct 1977 A
4057610 Goettler et al. Nov 1977 A
4108701 Stanley Aug 1978 A
4125423 Goldsworthy Nov 1978 A
4133972 Andersson et al. Jan 1979 A
4137949 Linko, III et al. Feb 1979 A
4139025 Carlstrom et al. Feb 1979 A
4190088 Lalikos et al. Feb 1980 A
4200126 Fish Apr 1980 A
4220381 van der Graaf et al. Sep 1980 A
4241763 Antal et al. Dec 1980 A
4248062 McLain et al. Feb 1981 A
4261390 Belofsky Apr 1981 A
4303457 Johansen et al. Dec 1981 A
4308999 Carter Jan 1982 A
4336415 Walling Jun 1982 A
4446892 Maxwell et al. May 1984 A
4463779 Wink et al. Aug 1984 A
4507019 Thompson Mar 1985 A
4515737 Karino et al. May 1985 A
4522235 Kluss et al. Jun 1985 A
4530379 Policelli Jul 1985 A
4556340 Morton Dec 1985 A
4578675 MacLeod Mar 1986 A
4627472 Goettler et al. Dec 1986 A
4657795 Foret et al. Apr 1987 A
4681169 Brookbank, III Jul 1987 A
4728224 Salama et al. Mar 1988 A
4789007 Cretel et al. Dec 1988 A
4849668 Crawley et al. Jul 1989 A
4859024 Rahman Aug 1989 A
4941774 Harmstorf et al. Jul 1990 A
4992787 Helm Feb 1991 A
4995761 Barton Feb 1991 A
5097870 Williams Mar 1992 A
5170011 Martucci Dec 1992 A
5172765 Sas-Jaworsky et al. Dec 1992 A
5176180 Williams et al. Jan 1993 A
5182779 D'Agostino et al. Jan 1993 A
5184682 Delacour et al. Feb 1993 A
5209136 Williams May 1993 A
5222769 Kaempen Jun 1993 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5285204 Sas-Jaworsky Feb 1994 A
5330807 Williams Jul 1994 A
5334801 Mohn et al. Aug 1994 A
5346658 Gargiulo Sep 1994 A
5348096 Williams Sep 1994 A
5351752 Wood et al. Oct 1994 A
5394488 Fernald et al. Feb 1995 A
5395913 Bottcher et al. Mar 1995 A
5426297 Dunphy et al. Jun 1995 A
5428706 Lequeux et al. Jun 1995 A
5435867 Wolfe et al. Jul 1995 A
5443099 Chaussepied et al. Aug 1995 A
RE35081 Quigley Nov 1995 E
5469916 Sas-Jaworsky et al. Nov 1995 A
5499661 Odru et al. Mar 1996 A
5525698 Bottcher et al. Jun 1996 A
5551484 Charboneau Sep 1996 A
5641956 Vengsarkar et al. Jun 1997 A
5730188 Kalman et al. Mar 1998 A
5755266 Aanonsen et al. May 1998 A
5828003 Thomeer et al. Oct 1998 A
5875792 Campbell, Jr. et al. Mar 1999 A
5908049 Williams et al. Jun 1999 A
5913337 Williams et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5933945 Thomeer et al. Aug 1999 A
5951812 Gilchrist, Jr. Sep 1999 A
6004639 Quigley et al. Dec 1999 A
6016845 Quigley et al. Jan 2000 A
6093752 Park et al. Jul 2000 A
6136216 Fidler et al. Oct 2000 A
6148866 Quigley et al. Nov 2000 A
6209587 Hsich et al. Apr 2001 B1
6286558 Quigley et al. Sep 2001 B1
6361299 Quigley et al. Mar 2002 B1
20020081083 Griffioen et al. Jun 2002 A1
20020119271 Quigley et al. Aug 2002 A1
20030008577 Quigley et al. Jan 2003 A1
20030087052 Wideman et al. May 2003 A1
Foreign Referenced Citations (17)
Number Date Country
3601597 Jul 1987 DE
4214383 Sep 1993 DE
0024512 Mar 1981 EP
0024512 Mar 1981 EP
352148 Jan 1990 EP
505815 Sep 1992 EP
505815 Sep 1992 EP
0854029 Apr 1998 EP
0854029 Jul 1998 EP
0970980 Jan 2000 EP
553110 May 1943 GB
2255994 Nov 1992 GB
2270099 Mar 1994 GB
WO-9113925 Sep 1991 WO
WO-9221908 Dec 1992 WO
WO-9319927 Oct 1993 WO
WO-0031458 Jun 2000 WO
Related Publications (1)
Number Date Country
20090217500 A1 Sep 2009 US
Provisional Applications (1)
Number Date Country
60368503 Mar 2002 US
Divisions (1)
Number Date Country
Parent 10402857 Mar 2003 US
Child 11305876 US
Continuations (2)
Number Date Country
Parent 11640536 Dec 2006 US
Child 12341076 US
Parent 11305876 Dec 2005 US
Child 11640536 US