The present invention relates to the use of biofeedback devices, and more particularly to systems and methods for portable exergaming.
Biofeedback devices such as portable heart rate monitoring (HRM) devices are commonly used in fitness related activities for weight loss, goal heart rate (HR) training, and general HR monitoring. Such devices may sometimes be employed by healthcare professionals for chronic and/or acute heart condition monitoring and/or diagnosis.
Portable HRMs and other monitoring devices typically are expensive, and in some cases are cost prohibitive for many consumers. A need exists for inexpensive and/or simplified monitoring systems.
In a some aspects of the invention, a system for playing a video game is provided that includes (1) one or more sensors adapted to monitor one or more biometric parameters of a user and communicate the one or more monitored biometric parameters (MBPs); (2) a computing device adapted to communicate with the one or more sensors and to receive the one or more communicated MBPs; and (3) a video game having an avatar adapted to move an object on an incline, the video game adapted to execute on the computing device. The video game is adapted to control the avatar to perform an action in the video game based in part on the received one or more communicated MBPs.
In some aspects of the invention, a video game is provided that is operable on a computing device that communicates with one or more sensors that monitor one or more biometric parameters of an exerciser. The video game includes an avatar adapted to move an object on an incline, the video game adapted to control the avatar to perform an action relating to moving the object on the incline based in part on one or more biometric parameters communicated from the one or more sensors to the computing device.
In some aspects of the invention, a method is provided that includes (1) providing a video game on a computing device, the video game having an avatar that moves an object on an incline; (2) employing the computing device to receive one or more biometric parameters of an exerciser; and (3) selecting an action relating to moving the object on the incline based in part on one or more biometric parameters received by the computing device. Numerous other aspects are provided.
Other objects, features and aspects of the present invention will become more fully apparent from the following detailed description of the preferred embodiments, the appended claims and the accompanying drawings.
In one or more embodiments of the invention, wearable monitors and/or sensors are provided which may communicate wirelessly with a mobile device such as a cellular telephone, personal digital assistant (PDA) or other portable computing device. The monitor may be mounted on a user such that the monitor measures biometric information of the user. This information may be communicated to a portable computing device. Based on this information, the portable computing device may control and dynamically change a computer game to encourage exercise. The user may also directly control the game by controlling their biometrics.
In one example, a wrist, ankle, neck, thigh, back, head, hair, ear, eye, mouth, nose, finger, toe, or any other suitable body part/area band, strap, belt, bracelet, cover, shirt, pant, sock, glove, clip, or any other practicable securing mechanism may include one or more monitors or sensors adapted to sense biometric information from a user and to transmit this information to a cellular telephone, personal digital assistant or other portable device. Based on this information, the computing device may control aspects of a computer game. For instance, the user may control the actions of an avatar based on their biometric data.
If the user's biometric information is not within a predetermined range, the mobile computing device may modify the game play to encourage the user to keep their biometric data within the predetermined range. Exemplary biometric information that may be monitored includes, but is not limited to, heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, positions of body parts (e.g., relative position of hands and feet), etc. Based on this information, a computing device can determine the type of exercise the user is performing, the length of time the user is performing the exercise, the level of fatigue of the user, etc.
In some embodiments, a retaining mechanism (e.g., a band or bracelet) may be provided at any suitable monitoring location, such as arms, legs or head of a user, to monitor movements and/or other biometrics of the user. In some embodiments, a retaining mechanism may be provided for each arm and/or each ankle of a user to monitor arm and/or leg position during exercise, golf, tennis, running, pushups, sit-ups, callisthenic exercise, weightlifting workouts (e.g., kettlebell workouts, etc.) etc. Such a system may be used, for example, to determine if the user has correct form during exercise, stride length during running, body position during a golf or tennis swing, “hang time” during a basketball dunk, and the like. In some embodiments, bands or bracelets may be provided for the torso, abdominals and/or the head of a user.
In some embodiments, a camera or other imaging device may be used with or without a band or bracelet to determine the biometric data and/or movements of a user. In some embodiments the imaging device may be mounted on the user and/or be part of the mobile computing device. In some embodiments, exercise equipment, such as a kettlebell, may be equipped with a monitor that may be used with or without an imaging device, band or a bracelet to determine biometric data of the user.
In one or more embodiments, an accelerometer may be provided within a retaining mechanism (e.g., a band or bracelet). The accelerometer may be employed to measure acceleration during a golf, tennis, hockey or other swing. Such acceleration information may be wirelessly transmitted to a computing device such as a cellular telephone, personal digital assistant or other portable device, and used to determine club, racquet or stick speed, club, racquet or stick velocity, swing tempo, or the like. In some embodiments, such acceleration information may be adjusted to compensate for the affects of gravity. In some embodiments, the accelerometer may be employed to measure acceleration during exercise, and the computing device may provide feedback to the user if the acceleration is within a range that may cause injury, or if the acceleration is outside of a predetermined range.
Software and/or one or more computer program products on the mobile computing device, such as a cellular telephone or other portable device, may be employed to calculate or otherwise determine any relevant information. A user can download the software using the internet, Bluetooth™, or any other suitable wireless protocol. A wireless or wired protocol may also be used to download software to the mobile computing device. The mobile computing device may store any information or software on a tangible, computer readable medium.
Each cellular telephone 104a-b, or any other mobile computing device receiving information from the band 102, may be programmed to process the biometric information received from the band 102 (e.g., for general health monitoring, determining swing information, monitoring sleep patterns, enhancing video game performance by affecting a video game character or characteristic based on the biometric information, etc.).
In some embodiments, the band 102 may be flexible, continuous, sealed, adjustable, and/or water resistant.
In step 304, the user may exercise. By exercising, the user may control/manipulate and change his/her biometrics, and in turn control the avatar. As discussed above, biometric data may include heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, position(s) of body parts (e.g., hands and/or feet), etc.
In step 306, one or more biometrics of the user are monitored by one or more sensors coupled to the user (e.g., one or more bands 102 of
In step 308, the monitored biometric(s), referred to herein as monitored biometric parameter(s) (MBP(s)) or just biometric parameters, are communicated to a mobile or portable computing device, such as a cell phone or PDA (e.g., cell phone 104a and/or 104b in
In step 310, the mobile computing device may determine information relating to the exercise the user is performing (e.g., the type of the exercise the user is performing, duration of exercise, frequency of the exercise, etc.) based on the received MBP. The user may move differently during different exercises. If the user is wearing monitors on all four appendages, the relative motions and/or distances between appendages may be determined. For instance, during a pushup the user's hands and feet may remain mostly stationary, while during jumping jacks the users hands and feet move away from each other, and then towards each other. Based upon the relative motion and/or position of the appendages of the user, the mobile computing device may determine whether the user is performing jumping jacks or pushups. Thus, information relating to exercise may be determined by analyzing the relative positions and/or movements of the user's body parts. Of course, the computing device may also determine any number of other parameters such as heart rate, pulse rate, temperature, respiration, acceleration, skin resistivity, sweat, electrical impulses, etc.
In step 312, the computing device may determine if an action should be taken in the video game based upon the user's MBP. For instance, by performing a certain exercise (e.g., pushup, sit-up, jogging, pull-up, etc.), the avatar in the video game may perform an action (e.g., move up, down, left, right, etc.). In some embodiments, the user may be required to perform a certain amount of exercise, such as 10 pushups, before an action is performed in the video game. In some embodiments, the user must maintain his/her heart rate within a predetermined range or above/below a predetermined threshold before an action is performed in the game. In some embodiments, an exercise must be performed for a predetermined amount of time before an action is performed in the video game. If the computing device determines no action should be taken, the method returns to step 306 to repeat steps 306-312 (e.g., until the computing device determines an action should be taken in the video game, until a victory or fail condition is met in the video game, etc.). Note that some game actions may involve direct control of the avatar's actions (e.g., speed of the avatar, whether the avatar is standing or sitting, etc.) and some game actions may involve alteration of aspects of the game itself (e.g., the size of an object, the slope of an incline).
In step 314, if the computing device determines in step 312 that an action should be taken, the avatar performs an action in the video game (e.g., move the avatar, extend the life of the avatar, give the avatar additional powers, make the avatar larger and/or stronger, or otherwise allow the avatar to perform better in the game) or the game itself is otherwise altered.
Steps 302-314 may then repeat (e.g., until the user stops video game play and/or exercise).
In some embodiments of the invention, a video game is provided that motivates a user to exercise harder, more vigorously, longer, within a target range (e.g., within a defined heart rate or pulse-ox range), to achieve a fitness goal, to exercise more, faster, slower, or the like. The game is adapted to provide gamming entertainment to the user during exercise so that the user may be distracted from the work of the exercise. As illustrated in
The video game 400 may start with the avatar 402 holding an object 404 (e.g., a boulder) on or near an incline 406 (e.g., a hill). One or more biometric parameters of the exerciser such as heart rate, pace, distance travelled, number of steps, etc., may be monitored (e.g., via a wrist band, chest strap, or the like, in communication with a game system such as a mobile computing device, cellphone, PDA, etc.). As the MBP of the exerciser changes, the avatar 402 may begin causing the object 404 to move up or down the incline 406. If the exerciser's MBP falls below a predetermined threshold, the movement of the object 404 up the incline 406, for example, may begin to slow down or reverse, for example. If the exerciser's MBP falls too low, the avatar 402 may lose control of the object 404 which may roll backward toward and/or crush the avatar 402. In some embodiments, if the exerciser's MBP falls above a predetermined threshold or outside a target range, the object 404 may slow down, stop rolling and/or begin to roll down the incline 406. In some embodiments, if the MBP falls above a predetermined threshold, the avatar 402 may reflect the fatigue of the exerciser by slowing down and/or by visually sweating or panting. In this manner, the exerciser is motivated to maintain his/her MBP within a desired range or to follow a defined pattern. A message (not shown) may flash on the video game screen and/or be audibly presented advising the exerciser to speed up, slow down or otherwise alter his/her exercise. The MBP also may be displayed along with an indication of the target range or predefined threshold required by the game.
In some embodiments, video game play or aspects of the game itself may dynamically change such that the slope/terrain of the incline 406 and/or the size/shape/type of the object 404 may change and may even be adjustable by the exerciser (e.g., by touching an input device such as a cellular phone running the video game, based on user heart rate or another biometric parameter, etc.). For instance, if the MBP is outside of a given range, the object 404 may increase in size or the incline 406 may become steeper. Sounds generated by the mobile computing device may be used to indicate the changes or other aspects of the game.
In some embodiments, the exerciser may design the characteristics of the incline 406 prior to or during exercise. In some embodiments, predefined incline 406 patterns may be selected that correspond to particular fitness or other goals. At the end or at some other milestone during an exercise routine, the avatar 402 may reach a summit of the incline 406, or roll the object 404 into one or more valleys. In some embodiments, the object 404 may roll down the other side of the incline 406 and crush a target such as trees, cars, a town, another player, or the like. In some embodiments, the object 404 may, for example, plug a crater of a volcano that is about to erupt (e.g., and failure to plug the crater within a predetermined time period may cause the demise of the avatar and/or other elements of the video game).
In some embodiments, the video game 400 may contain several challenges to motivate the exerciser to exercise. For instance, the characteristics of the incline 406 may change so that the exerciser has to control the avatar 402 to move the object 404 to the sides of the incline 406 (e.g., left or right) and/or let the object 404 move downhill to avoid obstacles, such as dead ends along a path or rocks that block the path of the avatar 402. Thus, the exerciser may control the avatar 402 to perform several different actions such as pushing the object 404 to the left, pushing the object 404 to the right, pushing the object 404 uphill, allowing the object 404 to move downhill, picking up the object 404, throwing the object 404, smashing the object 404 into smaller pieces, etc.
The exerciser may need to perform different physical exercises in the real world to control the avatar 402 to perform different actions in the game world. For instance, the exerciser may need to jog or run in the real world to cause the avatar 402 to push the object 404 up the incline 406 in the game, but perform pushups to push the object 404 to the left, perform sit-ups to move the object 404 to the right and perform jumping jacks to move the object 404 downhill. In some embodiments, the exerciser's MBP must stay within a desired range for a predetermined amount of time, such as 10 seconds, before an action, such as pushing the object 404, is performed.
The actions of the avatar may be controlled through any suitable MBP. In some embodiments, if the exerciser's heart rate is within a predetermined range, the avatar may perform a specific action. Several ranges may be selected so that different heart rates correspond to different actions the avatar may perform.
By having different exercises control different aspects of the video game 400, the exerciser may be encouraged to have a well balanced work out. For instance, the exerciser may exercise several muscle groups (e.g., pectorals, triceps, quadriceps, abdominals, biceps, etc.) and also use cardiovascular exercise to complete the video game.
In this manner a exerciser may have to complete one or more “circuits” to finish the video game or complete a level/portion of the video game. A circuit may be a combination of high-intensity aerobics and resistance training, for example. In some embodiments, a circuit is designed to be easy to follow and target fat loss, muscle building and/or heart fitness. An exercise circuit is one completion of all prescribed exercises. When one circuit is complete, the exerciser may stop exercising, begin the first exercise again for another circuit or start an entirely different exercise routine or circuit. In some embodiments, the time between exercises in circuit training may be short, often with rapid movement to the next exercise. An exemplary circuit may include:
A burpee is a full body exercise used in strength training and as aerobic exercise. It is performed in several steps and starts from a standing position: 1) the user drops into a squat position with their hands on the floor in front of them, 2) the user kicks their feet back, while simultaneously lowering themselves into a pushup 3) the user immediately returns their feet to the squat position, while simultaneously pushing up with their arms and 4) the user leaps up as high as possible from the squat position with their arms overhead. In some embodiments, more or fewer exercises may be used in a circuit. For instance, a user may be required to jog between different exercises.
As discussed above, the exerciser may be required to complete one or more circuits to finish the video game 400. Each exercise of the circuit may correspond to a different action of the avatar 402. For instance, sit-ups may correspond to pushing the object 404 uphill, while push-ups may correspond to pushing the object 404 to the left and so forth. The exerciser may be presented with several challenges or obstacles that require the avatar 402 to perform different actions, which in turn correspond to different exercises the exerciser must perform. Thus, the challenges or obstacles in the video game 400 may be selected such that the exerciser completes all of the exercises in a circuit, or several circuits, to finish the video game 400 or complete a level of the video game 400.
In some embodiments, the computing device used to execute the video game 400 may be portable and may be transported by the exerciser during exercise. Thus, the exerciser may not necessarily be tied to a specific location during video game play. For instance, the exerciser may be required to do pushups at a first location, and then jog a predetermined distance away from the first location and arrive at a second location. The exerciser may then be required to perform another exercise at the second location and then jog another predetermined distance away and arrive at a third location. The exerciser may then perform another exercise at the third location. This may repeat until the game is completed. Accordingly, the exerciser is not tied to a specific location during game play. For instance, a exerciser may play the video game 400 outside of his/her home at any number of locations (e.g., park, track, gym, etc.), and transport the computing device during exercise.
User location, including user location over time, may be determined using GPS data and a mobile user device as described in previously incorporated U.S. patent application Ser. No. 12/538,862, for example.
Multiplayer embodiments may be employed in which the avatars of players compete against one another or work together to move an object. For example,
In some embodiments, different users can network their devices together via the internet. The users' computing devices may be connected to a server, or directly to each other. Any wired or wireless protocol may be used to connect the users' computing devices for multiplayer game play.
Any software discussed in this application may be implemented on a computing device or system, and saved onto a tangible, computer readable medium of the computing device or system.
In some embodiments, the object 404 may grow in size and/or weight as it rolls up the incline 406 (e.g., if the incline is snow covered). Alternatively, the object may erode or otherwise shrink in size and/or weight as it rolls up the incline 406.
While the present invention has been described primarily with regarding to video games operating on portable computing devices such as cellular telephones, PDAs, MP3 players, tablet computers, etc., it will be understood that other computing devices may be employed for similar exercise-controlled video game play such as desktop computers, non-portable video game players, etc.
Any methods or processes described herein may be implemented in software as a computer program product. Each computer program product may be carried by a medium readable by a computer (e.g., a carrier wave signal, a floppy disc, a hard drive, a random access memory, etc.).
Accordingly, while the present invention has been disclosed in connection with the exemplary embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.
This application is a continuation of and claims priority from U.S. patent application Ser. No. 16/056,780 filed Aug. 7, 2018, and titled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 10,569,170, which is a continuation of and claims priority from U.S. patent application Ser. No. 15/394,634 filed Dec. 29, 2016, and titled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 10,039,981, which is a continuation of and claims priority from U.S. patent application Ser. No. 14/517,845 filed Oct. 18, 2014, and titled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 9,566,515, which is a continuation of and claims priority from U.S. patent application Ser. No. 13/898,437 filed May 20, 2013, and titled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 8,888,583, which is a continuation of and claims priority from U.S. patent application Ser. No. 12/839,098, filed Jul. 19, 2010 and entitled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, now U.S. Pat. No. 8,454,437, which claims priority to U.S. Provisional Patent Application Ser. No. 61/226,624, filed Jul. 17, 2009 and entitled “SYSTEMS AND METHODS FOR PORTABLE EXERGAMING”, each of which is hereby incorporated by reference herein in its entirety for all purposes. The present application is related to the following U.S. Patent Applications, which are hereby incorporated herein by reference in their entirety for all purposes: U.S. patent application Ser. No. 12/426,193, filed Apr. 17, 2009 and entitled “SYSTEMS AND METHODS FOR PROVIDING AUTHENTICATED BIOFEEDBACK INFORMATION TO A MOBILE DEVICE AND FOR USING SUCH INFORMATION”; and U.S. patent application Ser. No. 12/538,862, filed Aug. 10, 2009 and entitled “SYSTEMS AND METHODS FOR PROVIDING BIOFEEDBACK INFORMATION TO A CELLULAR TELEPHONE AND FOR USING SUCH INFORMATION”.
Number | Name | Date | Kind |
---|---|---|---|
3834702 | Bliss | Sep 1974 | A |
4484743 | Williams | Nov 1984 | A |
4542897 | Melton et al. | Sep 1985 | A |
4735410 | Nobuta | Apr 1988 | A |
4817938 | Nakao et al. | Apr 1989 | A |
4858930 | Sato | Aug 1989 | A |
4976435 | Shatford et al. | Dec 1990 | A |
5001632 | Hall-Tipping | Mar 1991 | A |
5142358 | Jason | Aug 1992 | A |
RE34728 | Hall-Tipping | Sep 1994 | E |
5362069 | Hall-Tipping | Nov 1994 | A |
5377100 | Pope et al. | Dec 1994 | A |
5462504 | Trulaske et al. | Oct 1995 | A |
5515865 | Scanlon | May 1996 | A |
5527239 | Abbondanza | Jun 1996 | A |
5591104 | Andrus et al. | Jan 1997 | A |
5592401 | Kramer | Jan 1997 | A |
5624316 | Roskowski et al. | Apr 1997 | A |
5645513 | Haydocy et al. | Jul 1997 | A |
5667459 | Su | Sep 1997 | A |
5672107 | Clayman | Sep 1997 | A |
5702323 | Poulton | Dec 1997 | A |
5781698 | Teller et al. | Jul 1998 | A |
5885156 | Toyohara et al. | Mar 1999 | A |
5902250 | Verrier et al. | May 1999 | A |
5918603 | Brown | Jul 1999 | A |
5928133 | Halyak | Jul 1999 | A |
5947868 | Dugan | Sep 1999 | A |
6024675 | Kashiwaguchi | Feb 2000 | A |
6062216 | Corn | May 2000 | A |
6066075 | Poulton | May 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6179713 | James et al. | Jan 2001 | B1 |
D439981 | Kasabach et al. | Apr 2001 | S |
6213872 | Harada et al. | Apr 2001 | B1 |
6244988 | Delman | Jun 2001 | B1 |
6251010 | Tajiri et al. | Jun 2001 | B1 |
6267677 | Tajiri et al. | Jul 2001 | B1 |
6302789 | Harada et al. | Oct 2001 | B2 |
D451604 | Kasabach et al. | Dec 2001 | S |
6347993 | Kondo et al. | Feb 2002 | B1 |
6354940 | Itou et al. | Mar 2002 | B1 |
6375572 | Masuyama et al. | Apr 2002 | B1 |
D460971 | Sica et al. | Jul 2002 | S |
6456749 | Kasabach et al. | Sep 2002 | B1 |
6482092 | Tajiri et al. | Nov 2002 | B1 |
6494830 | Wessel | Dec 2002 | B1 |
6513160 | Dureau | Jan 2003 | B2 |
6514199 | Alessandri | Feb 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6585622 | Shum et al. | Jul 2003 | B1 |
6595858 | Tajiri et al. | Jul 2003 | B1 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6605038 | Teller et al. | Aug 2003 | B1 |
6628847 | Kasabach et al. | Sep 2003 | B1 |
6641482 | Masuyama et al. | Nov 2003 | B2 |
6652383 | Sonoda et al. | Nov 2003 | B1 |
6705972 | Takano et al. | Mar 2004 | B1 |
6720983 | Massaro et al. | Apr 2004 | B1 |
6746371 | Brown et al. | Jun 2004 | B1 |
6758746 | Hunter et al. | Jul 2004 | B1 |
6786825 | Kawazu | Sep 2004 | B2 |
6796927 | Toyama | Sep 2004 | B2 |
6881176 | Oishi et al. | Apr 2005 | B2 |
6888779 | Mollicone et al. | May 2005 | B2 |
6902513 | McClure | Jun 2005 | B1 |
6966837 | Best | Nov 2005 | B1 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7041049 | Raniere | May 2006 | B1 |
7057551 | Vogt | Jun 2006 | B1 |
7068860 | Kasabach et al. | Jun 2006 | B2 |
7153262 | Stivoric et al. | Dec 2006 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7628730 | Watterson et al. | Dec 2009 | B1 |
7749056 | Ando et al. | Jul 2010 | B2 |
7931563 | Shaw et al. | Apr 2011 | B2 |
7934983 | Eisner | May 2011 | B1 |
7946959 | Shum et al. | May 2011 | B2 |
8188868 | Case, Jr. | May 2012 | B2 |
8287436 | Shum et al. | Oct 2012 | B2 |
8313416 | Ellis et al. | Nov 2012 | B2 |
9084933 | Pope | Jul 2015 | B1 |
10569170 | Dugan | Feb 2020 | B2 |
20020022516 | Forden | Feb 2002 | A1 |
20020080035 | Youdenko | Jun 2002 | A1 |
20020082065 | Fogel et al. | Jun 2002 | A1 |
20020082077 | Johnson et al. | Jun 2002 | A1 |
20020090985 | Tochner et al. | Jul 2002 | A1 |
20020151992 | Hoffberg et al. | Oct 2002 | A1 |
20020160883 | Dugan | Oct 2002 | A1 |
20020163495 | Doynov | Nov 2002 | A1 |
20030224337 | Shum et al. | Dec 2003 | A1 |
20040023761 | Emery | Feb 2004 | A1 |
20040053690 | Fogel et al. | Mar 2004 | A1 |
20050068169 | Copley et al. | Mar 2005 | A1 |
20050101845 | Nihtila | May 2005 | A1 |
20050177051 | Almen | Aug 2005 | A1 |
20050275541 | Sengupta et al. | Dec 2005 | A1 |
20060025282 | Redmann | Feb 2006 | A1 |
20060031102 | Teller et al. | Feb 2006 | A1 |
20060089543 | Kim et al. | Apr 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060224051 | Teller et al. | Oct 2006 | A1 |
20060264730 | Stivoric et al. | Nov 2006 | A1 |
20060281543 | Sutton | Dec 2006 | A1 |
20060287083 | Ofek | Dec 2006 | A1 |
20070004482 | Ando et al. | Jan 2007 | A1 |
20070038038 | Stivoric et al. | Feb 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070111858 | Dugan | May 2007 | A1 |
20070167204 | Lyle et al. | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070197274 | Dugan | Aug 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070260482 | Nurmela et al. | Nov 2007 | A1 |
20080027337 | Dugan et al. | Jan 2008 | A1 |
20080094226 | O'Shea et al. | Apr 2008 | A1 |
20080129518 | Carlton-Foss | Jun 2008 | A1 |
20080146892 | LeBoeut et al. | Jun 2008 | A1 |
20080167861 | Inoue et al. | Jul 2008 | A1 |
20080191864 | Wolfson | Aug 2008 | A1 |
20080218310 | Alten et al. | Sep 2008 | A1 |
20080281633 | Burdea et al. | Nov 2008 | A1 |
20080318679 | Tran et al. | Dec 2008 | A1 |
20090005140 | Rose et al. | Jan 2009 | A1 |
20090048526 | Aarts | Feb 2009 | A1 |
20090121894 | Wilson et al. | May 2009 | A1 |
20090270743 | Dugan et al. | Oct 2009 | A1 |
20100033303 | Dugan et al. | Feb 2010 | A1 |
20100160041 | Grant | Jun 2010 | A1 |
20100240458 | Gaiba | Sep 2010 | A1 |
20100287011 | Muchkaev | Nov 2010 | A1 |
20110065504 | Dugan et al. | Mar 2011 | A1 |
20110082008 | Cheung et al. | Apr 2011 | A1 |
20110190055 | Leyvand et al. | Aug 2011 | A1 |
20110260830 | Weising | Oct 2011 | A1 |
20110275483 | Dugan et al. | Nov 2011 | A1 |
20120208676 | Shum et al. | Aug 2012 | A1 |
20120252580 | Dugan | Oct 2012 | A1 |
20120253487 | Dugan | Oct 2012 | A1 |
20120253489 | Dugan | Oct 2012 | A1 |
20120306643 | Dugan | Dec 2012 | A1 |
20130252731 | Dugan | Sep 2013 | A1 |
20140011555 | McGhee | Jan 2014 | A1 |
20140011640 | Dugan | Jan 2014 | A1 |
20150038204 | Dugan et al. | Feb 2015 | A1 |
20150258429 | Pope | Sep 2015 | A1 |
20170106282 | Dugan | Apr 2017 | A1 |
20170286641 | Dugan | Oct 2017 | A1 |
20180339228 | Dugan et al. | Nov 2018 | A1 |
20190209891 | Fung | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
1 292 217 | Nov 2005 | EP |
1 639 939 | Mar 2006 | EP |
1 292 218 | Apr 2006 | EP |
1 702 560 | Sep 2006 | EP |
1 743 571 | Jan 2007 | EP |
59-170173 | Sep 1984 | JP |
08103568 | Apr 1996 | JP |
WO 9605766 | Feb 1996 | WO |
WO 0196986 | Dec 2001 | WO |
WO 0200111 | Jan 2002 | WO |
WO 02078538 | Oct 2002 | WO |
WO 03015005 | Feb 2003 | WO |
WO 2004019172 | Mar 2004 | WO |
WO 2004032715 | Apr 2004 | WO |
WO 2004034221 | Apr 2004 | WO |
WO 2005016124 | Feb 2005 | WO |
WO 2005027720 | Mar 2005 | WO |
WO 2005029242 | Mar 2005 | WO |
WO 2005092177 | Oct 2005 | WO |
Entry |
---|
Dugan et al., U.S. Appl. No. 12/426,193, filed Apr. 17, 2009 Now Publication No. 2009-0270743. |
Dugan et al., U.S. Appl. No. 12/538,862, filed Aug. 10, 2009 Now Publication No. 2010-0033303. |
Busch, Fritz “Diabetes Institute Brings Dakota, New Ulm Together” Jun. 10, 2001. Ogden Newspapers, Inc. |
“Bluetooth.” Wikipedia: The Free Encyclopedia. Aug. 10, 2009 <http://en.wikipedia.org/wiki/Bluetooth>. |
Dugan et al., U.S. Appl. No. 12/839,098, filed Jul. 19, 2010 Now Publication No. 2011-0065504. |
Dugan, U.S. Appl. No. 13/183,405, filed Jul. 14, 2011 Now Publication 2011-0275483. |
Ichinoseki-Sekine et al., “Improving the Accuracy of Pedometer Used by the Elderly with the FFT Algorithm,” Medicine & Science in Sports & Exercise 2006,1674-1681. |
Mann, W. et al., “Smart Phones for the Elders: Boosting the Intelligence of Smart Homes,” Am. Assoc. for Artificial Intell., (AAAI), Jul. 2002. |
Dugan, U.S. Appl. No. 13/433,285, filed Mar. 28, 2012 Now Publication 2012-0253487. |
Dugan, U.S. Appl. No. 13/440,987, filed Apr. 5, 2012 Now Publication 2012-0252580. |
Dugan, U.S. Appl. No. 13/456,196, filed Apr. 25, 2012 Now Publication 2012-0253489. |
Dugan, U.S. Appl. No. 13/488,436, filed Jun. 4, 2012 Now Publication 2012-0306643. |
Dugan et al., U.S. Appl. No. 13/898,437, filed May 20, 2013 (Now published as 2013-0252731). |
Dugan, U.S. Appl. No. 13/942,605, titled: System and Method for Improving Fitness Equipment and Exercise, filed Jul. 15, 2013. |
Dugan, U.S. Appl. No. 14/023,892, titled: System and Method for Improving Fitness Equipment and Exercise, filed Sep. 11, 2013 (Now Published as 2014-0011640). |
Office Action of U.S. Appl. No. 12/839,098 dated May 22, 2012. |
Sep. 24, 2012 Response to Office Action of U.S. Appl. No. 12/839,098. |
Final Office Action of U.S. Appl. No. 12/839,098 dated Jan. 4, 2013. |
Mar. 4, 2013 Reply to Jan. 4, 2013 Final Office Action of U.S. Appl. No. 12/839,098. |
Notice of Allowance of U.S. Appl. No. 12/839,098 dated Mar. 22, 2013. |
Office Action of U.S. Appl. No. 13/898,437 dated Dec. 4, 2013. |
May 5, 2014 Reply to Office Action and Terminal Disclaimer of U.S. Appl. No. 13/898,437. |
Terminal Disclaimer of U.S. Appl. No. 13/898,437, filed May 16, 2014. |
Notice of Allowance of U.S. Appl. No. 13/898,437 dated Aug. 12, 2014. |
Jovanov et al., “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” Journal of NeuroEngineering and Rehabilitation, 2005,2:6; pp. 1-10. |
Aug. 28, 2014 Reply to Apr. 28, 2014 Office Action of U.S. Appl. No. 12/538,862. |
Non-Final Office Action of U.S. Appl. No. 12/426,193 dated Jun. 30, 2014. |
Non-Final Office Action of U.S. Appl. No. 14/517,845 dated Feb. 20, 2015. |
Aug. 20, 2015 Reply to Feb. 20, 2015 Non-Final Office Action of U.S. Appl. No. 14/517,845. |
Final Office Action of U.S. Appl. No. 14/517,845 dated Nov. 23, 2015. |
Feb. 23, 2016 Reply and Terminal Disclaimer to Nov. 23, 2015 Final Office Action of U.S. Appl. No. 14/517,845. |
Ex Parte Quayle Office Action of U.S. Appl. No. 14/517,845 dated Mar. 25, 2016. |
May 25, 2016 Reply to Mar. 25, 2016 Ex Parte Quayle Office Action of U.S. Appl. No. 14/517,845. |
Notice of Allowability of U.S. Appl. No. 14/517,845 dated Sep. 29, 2016. |
Dugan, U.S. Appl. No. 15/394,634, titled: Systems and Methods for Portable Exergaming, filed Dec. 29, 2016 (Now Published as 2017-0106282). |
Non-Final Office Action of U.S. Appl. No. 15/394,634 dated Mar. 20, 2017. |
Sep. 20, 2017 Reply to Mar. 20, 2017 Non-Final Office Action of U.S. Appl. No. 15/394,634. |
Final Office Action of U.S. Appl. No. 15/394,634 dated Nov. 3, 2017. |
Mar. 5, 2018 Reply to Nov. 3, 2017 Final Office Action of U.S. Appl. No. 15/394,634. |
Notice of Allowance of U.S. Appl. No. 15/394,634 dated Apr. 5, 2018. |
Comments on Examiner's Statement of Reasons for Allowance of U.S. Appl. No. 15/394,634, filed Jul. 5, 2018. |
Non-Final Office Action of U.S. Appl. No. 16/056,780 dated Apr. 23, 2019. |
Aug. 23, 2019 Reply to Apr. 23, 2019 Final Office Action of U.S. Appl. No. 16/056,780. |
Notice of Allowance of U.S. Appl. No. 16/056,780 dated Oct. 16, 2019. |
Number | Date | Country | |
---|---|---|---|
20200188783 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61226624 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16056780 | Aug 2018 | US |
Child | 16799778 | US | |
Parent | 15394634 | Dec 2016 | US |
Child | 16056780 | US | |
Parent | 14517845 | Oct 2014 | US |
Child | 15394634 | US | |
Parent | 13898437 | May 2013 | US |
Child | 14517845 | US | |
Parent | 12839098 | Jul 2010 | US |
Child | 13898437 | US |