1. Technical Field
The disclosure generally relates to gas turbine engines.
2. Description of the Related Art
A gas turbine engine typically includes an annular gas path that generally extends between an inlet and an exhaust. The structure used to define the gas path is oftentimes supported by struts and/or fairings that extend across the gas path, with corresponding ends of the struts and/or fairings typically supporting one or more rotating shafts of the engine and the opposing ends supporting the engine casing.
Systems and methods for positioning fairing sheaths of gas turbine engines are provided. In this regard, an exemplary embodiment of a system for positioning a fairing sheath of a gas turbine engine comprises: a tool having a clamp and opposing gripping members; the clamp being operative to clamp about a leading edge portion of a fairing sheath; the gripping members being pivotally attached to the clamp, a first of the gripping members having a first contact face and a first seal positioned on the first contact face, a second of the gripping members having a second contact face and a second seal positioned on the second contact face, the first contact face opposing the second contact face, the first contact face and the first seal being operative to form a first vacuum chamber, the second contact face and the second seal being operative to form a second vacuum chamber.
An exemplary embodiment of a method for positioning a fairing sheath of a gas turbine engine comprising: using vacuum pressure to assist in moving opposing portions of a fairing sheath away from each other.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Systems and methods for positioning fairing sheaths of gas turbine engines are provided, several exemplary embodiments of which will be described in detail. In this regard, fairing sheaths form portions of the exterior surfaces of gas turbine engine struts that extend across gas paths of the engines. Removal and/or installation of such a fairing sheath typically involve deforming the fairing sheath. Notably, the deformation should be accomplished in a manner that provides sufficient clearance for permitting positioning about adjacent components, while preventing damage to the fairing sheath. In some embodiments, a tool is provided that uses vacuum pressure to facilitate gripping the exterior of the fairing sheath in order to perform the deformation.
Inlet case strut assembly 110 includes multiple struts 112 that extend about an axis 114. Note that strut 112 includes a longitudinal axis 115 that is generally parallel to the leading edge of the strut. As will be described in more detail with respect to
As shown in
In the embodiment of
Various materials can be used to form a fairing sheath. By way of example, composite materials such as carbon, glass, aramid, or similar materials can be used. In the embodiment of
An embodiment of a system for positioning a fairing sheath is depicted schematically in
A handle 208 extends from gripping member 202 and a handle 212 extends from gripping member 204. A mechanical stop 214 is located between the handles. Specifically, a stop member 216 is positioned on handle 202 and a stop member 218 is positioned on handle 204 in this embodiment. Additionally, a vacuum pressure source 220 provides vacuum pressure to the gripping members, such as via pneumatic line 221.
Each of the gripping members includes a contact face with a corresponding seal that is used to create an airtight (vacuum) seal between the gripping member and an exterior surface of a fairing sheath. In particular, gripping member 202 includes a contact face 221 with a seal 222. Seal 222 is used to create a vacuum chamber 224 that can provide adequate suction for gripping the exterior surface of a fairing sheath. For instance, in some embodiments, a suction force of approximately 120 lbf can be applied. Notably, the major axis of the seal generally corresponds to the length of the fairing sheath to ensure adequate distribution of the pressure forces along the length of the fairing sheath. The use of vacuum, versus mechanical type grips, mitigates the potential for damage to the fairing sheath by distributing the opening force and providing a soft interface via the vacuum seal.
Operation of system 200 is depicted schematically in
After the leading edge portion of the fairing sheath is positioned within channel 250 and the clamp members are adequately biased together, the contact faces 221, 261 of the gripping members are moved to positions that enable vacuum seals to be formed with the exterior of the fairing sheath. Moving of the contact faces involves positioning the handles until the corresponding seals of the gripping members contact the exterior of the fairing sheath. Vacuum pressure is then applied to the vacuum chambers 224, 264. Thereafter, movement of the gripping members away from each other by pivoting the contact faces about the hinges deforms the fairing sheath (depicted by dashed lines).
Movement of the gripping members in the aforementioned manner is accomplished by positioning the handles. Such movement is restricted by stops 216, 218, which contact each other at a limit position. Although varying depending upon the physical characteristics of the fairing sheath, the limit position can correspond to the contact faces of the gripping members exhibiting an included angle (θ) of between approximately 4 and approximately 10 degrees, preferably between approximately 5 and approximately 7 degrees. The minimum angle being determined by the clearance necessary to install the fairing (116) over the inner strut (120) without disturbing the uncured adhesive material (152) in the process. The maximum angle being determined by the stress limits of the sheath material and/or strength of the interface between fairing (116) and locating feature (118). Regardless of the location of the limit position, movement of the gripping members and fairing sheath should provide adequate clearance between the fairing sheath and other components of the fairing thereby enabling removal and/or installation of the fairing sheath.
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
The U.S. Government may have an interest in the subject matter of this disclosure as provided for by the terms of contract number N00019-02-C-3003 awarded by the United States Navy.
Number | Name | Date | Kind |
---|---|---|---|
4119863 | Kelly | Oct 1978 | A |
4993918 | Myers et al. | Feb 1991 | A |
5020318 | Vdoviak | Jun 1991 | A |
5272869 | Dawson et al. | Dec 1993 | A |
5704599 | Slothower | Jan 1998 | A |
5992836 | Howe | Nov 1999 | A |
6401646 | Masters et al. | Jun 2002 | B1 |
6792758 | Dowman | Sep 2004 | B2 |
6799756 | Degen | Oct 2004 | B2 |
6983608 | Allen, Jr. et al. | Jan 2006 | B2 |
7100358 | Gekht et al. | Sep 2006 | B2 |
7118331 | Shahpar | Oct 2006 | B2 |
7137255 | Schmotolocha et al. | Nov 2006 | B2 |
7431189 | Shelton et al. | Oct 2008 | B2 |
7448525 | Shelton et al. | Nov 2008 | B2 |
20060260127 | Gekht et al. | Nov 2006 | A1 |
20070162056 | Gerbi et al. | Jul 2007 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080232953 | Guimbard et al. | Sep 2008 | A1 |
20080296346 | Shelton et al. | Dec 2008 | A1 |
20080300580 | Shelton et al. | Dec 2008 | A1 |
20100224669 | Shelton et al. | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090243176 A1 | Oct 2009 | US |