Systems and methods for positioning implanted devices in a patient

Information

  • Patent Grant
  • 11382531
  • Patent Number
    11,382,531
  • Date Filed
    Wednesday, February 27, 2019
    5 years ago
  • Date Issued
    Tuesday, July 12, 2022
    a year ago
Abstract
Systems and methods for positioning implanted devices in a patient are disclosed. A method in accordance with a particular embodiment includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord. The method further includes implanting a signal delivery device within a vertebral foramen of each patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location, without the use of fluoroscopy. The method can still further include, for each of the plurality of patients, activating the electrical contact to modulate neural activity at the spinal cord. In further particular embodiments, RF signals, ultrasound, magnetic fields, and/or other techniques are used to locate the signal delivery device.
Description
TECHNICAL HELD

The present technology is directed generally to systems and methods for positioning implanted devices in a patient.


BACKGROUND

Neurological stimulators have been developed to treat pain, movement disorders, functional disorders, spasticity, cancer, cardiac disorders, and various other medical conditions. Implantable neurological stimulation systems generally have an implantable pulse generator and one or more leads that deliver electrical pulses to neurological tissue or muscle tissue. For example, several neurological stimulation systems for spinal cord stimulation (SCS) have cylindrical leads that include a lead body with a circular cross-sectional shape and multiple conductive rings spaced apart from each other at the distal end of the lead body. The conductive rings operate as individual electrodes and the SCS leads are typically implanted either surgically or percutaneously through a large needle inserted into the epidural space, with or without the assistance of a stylet.


Once implanted, the pulse generator applies electrical pulses to the electrodes, which in turn modify the function of the patient's nervous system, such as by altering the patient's responsiveness to sensory stimuli and/or altering the patient's motor-circuit output. During pain treatment, the pulse generator applies electrical pulses to the electrodes, which in turn can generate sensations that mask or otherwise alter the patient's sensation of pain. For example, in many cases, patients report a tingling or paresthesia that is perceived as more pleasant and/or less uncomfortable than the underlying pain sensation. In other cases, the patients can report pain relief without paresthesia or other sensations.


In any of the foregoing systems, it is important for the practitioner to accurately position the stimulator in order to provide effective therapy. One approach to accurately positioning the stimulator is to implant the stimulator in a surgical procedure so that the practitioner has a clear visual access to the implantation site. However, many patients and practitioners wish to avoid the invasiveness and associated likelihood for complications typical of a surgical procedure. Accordingly, many patients and practitioners prefer a less invasive (e.g., percutaneous) implantation technique. With a percutaneous approach, the practitioner typically is unable to see exactly where the device is positioned because the device is beneath the patient's skin and in most SCS cases, within the patient's spinal column. In addition, the process typically requires the patient to provide feedback to the practitioner based on that patient's sensations. Accordingly, the industry has developed a variety of techniques for visualizing medical devices and anatomical features below the patient's skin as the device is implanted. Such techniques include fluoroscopy, which is commonly used to aid the practitioner when implanting SCS leads. However, a drawback with fluoroscopy is that it results in added expense to the SCS implantation procedure, it may be cumbersome to implement, it limits the implantation procedure to sites with fluoroscopy equipment, and it exposes the patient to unwanted x-ray radiation. Accordingly, there remains a need in the art for improved visualization techniques that can be used to implant patient devices with greater ease, accuracy, and lower cost.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a partially schematic illustration of an implantable spinal cord modulation system positioned at a patient's spine to deliver therapeutic signals in accordance with several embodiments of the present disclosure.



FIG. 1B is a partially schematic, cross-sectional illustration of a patient's spine, illustrating representative locations for an implanted lead in accordance with an embodiment of the disclosure.



FIG. 2 is a partially schematic illustration of a representative signal delivery device, signal transmission device, and signal detection device, configured in accordance with an embodiment of the disclosure.



FIG. 3 is a partially schematic illustration of a signal detector system positioned over the patient's spine in accordance with an embodiment of the disclosure.



FIG. 4 is an enlarged illustration of a portion of the patient's spinal cord and a representative signal detector device.



FIG. 5 is a schematic illustration of a signal detector system and display for presenting results obtained during procedures in accordance with embodiments of the disclosure.



FIG. 6 is a schematic illustration of an intrathecal penetration detector configured in accordance with an embodiment of the disclosure.



FIGS. 7A-7D illustrate processes for implanting patient devices in accordance with several embodiments of the disclosure.





DETAILED DESCRIPTION

The present technology is directed generally to systems and methods for positioning implanted devices in a patient. In at least some contexts, the systems and methods are used to implant leads proximate to the patient's spinal cord to deliver high frequency signals that modulate neural activity at the patient's spine, in particular embodiments, to address chronic pain. In other embodiments, however, the systems and associated methods can have different configurations, components, and/or procedures. Still other embodiments may eliminate particular components or procedures. A person of ordinary skill in the relevant art, therefore, will understand that the present technology may include other embodiments with additional elements, and/or may include other embodiments without several of the features shown and described below with reference to FIGS. 1A-7D.


Several aspects of the technology are embodied in computing devices, e.g., programmed pulse generators, controllers and/or other devices. The computing devices on which the described technology can be implemented may include one or more central processing units, memory, input devices (e.g., input ports), output devices (e.g., display devices), storage devices, and network devices (e.g., network interfaces). The memory and storage devices are computer-readable media that may store instructions that implement the technology. In many embodiments, the computer readable media are tangible media. In other embodiments, the data structures and message structures may be stored or transmitted via an intangible data transmission medium, such as a signal on a communications link. Various suitable communications links may be used, including but not limited to a local area network and/or a wide-area network.



FIG. 1A schematically illustrates a representative patient system 100 for providing relief from chronic pain and/or other conditions, arranged relative to the general anatomy of a patient's spinal cord 191. The overall patient system 100 can include a signal delivery system 110, which may be implanted within a patient 190, typically at or near the patient's midline 189, and coupled to a pulse generator 121. The signal delivery system 110 can provide therapeutic electrical signals to the patient during operation. The overall patient system 100 can further include a signal transmission system 130 and a signal detector system 140. The signals handled by the signal transmission system 130 and the signal detector system 140 can function primarily to identify the location of the signal delivery system 110, rather than to provide therapy to the patient. Accordingly, the signal transmission system 130 and signal detector system 140 can operate independently of the signal delivery system 110 to guide the practitioner as he/she positions elements of the signal delivery system 110 within the patient. Nevertheless, in particular embodiments, certain elements of the signal transmission system 130 can be shared with the signal delivery system 110. Aspects of the signal delivery system 110 are described immediately below, followed by a description of the signal transmission system 130 and the signal detector system 140.


In a representative example, the signal delivery system 110 includes a signal delivery device 111 that carries features for delivering therapy to the patient 190 after implantation. The pulse generator 121 can be connected directly to the signal delivery device 111, or it can be coupled to the signal delivery device 111 via a signal link 113 (e.g., an extension). In a further representative embodiment, the signal delivery device 111 can include an elongated lead or lead body 112. As used herein, the terms “lead” and “lead body” include any of a number of suitable substrates and/or support members that carry devices for providing therapy signals to the patient 190. For example, the lead 112 can include one or more electrodes or electrical contacts that direct electrical signals into the patient's tissue, such as to provide for patient relief. In other embodiments, the signal delivery device 111 can include structures other than a lead body (e.g., a paddle) that also direct electrical signals and/or other types of signals to the patient 190.


The pulse generator 121 can transmit signals (e.g., electrical signals) to the signal delivery device 111 that up-regulate (e.g., stimulate or excite) and/or down-regulate (e.g., block or suppress) target nerves. As used herein, and unless otherwise noted, the terms “modulate” and “modulation” refer generally to signals that have either type of the foregoing effects on the target nerves. The pulse generator 121 can include a machine-readable (e.g., computer-readable) medium containing instructions for generating and transmitting suitable therapy signals. The pulse generator 121 and/or other elements of the system 100 can include one or more processors 122, memories 123 and/or input/output devices. Accordingly, the process of providing modulation signals, providing guidance information for locating the signal delivery device 111, and/or executing other associated functions can be performed by computer-executable instructions contained by computer-readable media located at the pulse generator 121 and/or other system components. The pulse generator 121 can include multiple portions, elements, and/or subsystems (e.g., for directing signals in accordance with multiple signal delivery parameters), carried in a single housing, as shown in FIG. 1A, or in multiple housings.


In some embodiments, the pulse generator 121 can obtain power to generate the therapy signals from an external power source 118. The external power source 118 can transmit power to the implanted pulse generator 121 using electromagnetic induction (e.g., RF signals). For example, the external power source 118 can include an external coil 119 that communicates with a corresponding internal coil (not shown) within the implantable pulse generator 121. The external power source 118 can be portable for ease of use.


During at least some procedures, an external programmer 120 (e.g., a trial modulator) can be coupled to the signal delivery device 111 during an initial procedure, prior to implanting the pulse generator 121. For example, a practitioner (e.g., a physician and/or a company representative) can use the external programmer 120 to vary the modulation parameters provided to the signal delivery device 111 in real time, and select optimal or particularly efficacious parameters. These parameters can include the location from which the electrical signals are emitted, as well as the characteristics of the electrical signals provided to the signal delivery device 111. In a typical process, the practitioner uses a cable assembly 114 to temporarily connect the external programmer 120 to the signal delivery device 111. The practitioner can test the efficacy of the signal delivery device 111 in an initial position. The practitioner can then disconnect the cable assembly 114 (e.g., at a connector 117), reposition the signal delivery device 111, and reapply the electrical modulation. This process can be performed iteratively until the practitioner obtains the desired position for the signal delivery device 111. Optionally, the practitioner may move the partially implanted signal delivery element 111 without disconnecting the cable assembly 114.


After a trial period with the external programmer 120, the practitioner can implant the implantable pulse generator 121 within the patient 190 for longer term treatment. The signal delivery parameters provided by the pulse generator 121 can still be updated after the pulse generator 121 is implanted, via a wireless physician's programmer 125 (e.g., a physician's remote) and/or a wireless patient programmer 124 (e.g., a patient remote). Generally, the patient 190 has control over fewer parameters than does the practitioner.



FIG. 1B is a cross-sectional illustration of the spinal cord 191 and an adjacent vertebra 195 (based generally on information from Crossman and Neary, “Neuroanatomy,” 1995 (published by Churchill Livingstone)), along with multiple signal delivery devices 111 (shown as signal delivery devices 111a-d) implanted at representative locations. For purposes of illustration, multiple signal delivery devices 111 are shown in FIG. 1B implanted in a single patient. In actual use, any given patient will likely receive fewer than all the signal delivery devices 111 shown in FIG. 1B.


The spinal cord 191 is situated within a vertebral foramen 188, between a ventrally located ventral body 196 and a dorsally located transverse process 198 and spinous process 197. Arrows V and D identify the ventral and dorsal directions, respectively. The spinal cord 191 itself is located within the dura mater 199, which also surrounds portions of the nerves exiting the spinal cord 191, including the ventral roots 192, dorsal roots 193 and dorsal root ganglia 194. In one embodiment, a single first signal delivery device 111a is positioned within the vertebral foramen 188, at or approximately at the spinal cord midline 189. In another embodiment, two second signal delivery devices 111b are positioned just off the spinal cord midline 189 (e.g., about 1 mm. offset) in opposing lateral directions so that the two signal delivery devices 111b are spaced apart from each other by about 2 mm. In still further embodiments, a single signal delivery device or pairs of signal delivery devices can be positioned at other locations, e.g., at the dorsal root entry zone as shown by a third signal delivery device 111c, or at the dorsal root ganglia 194, as shown by a fourth signal delivery device 111d.


In any of the foregoing embodiments, it is important that the signal delivery device 111 be placed at a target location that is expected (e.g., by a practitioner) to produce efficacious results in the patient when activated. The following disclosure describes techniques and systems for improving the level of accuracy with which the devices are positioned.



FIG. 2 is a partially schematic illustration of a representative signal delivery device 111 that includes a lead 112 carrying a plurality of ring-shaped therapy contacts 126 positioned toward a distal end to deliver a therapy signal to the patient when the lead 112 is implanted. The lead 112 includes internal wires (not visible in FIG. 2) that extend between the therapy contacts 126 at the distal end of the lead 112, and corresponding connection contacts 127 positioned at the lead proximal end. After implantation, the connection contacts 127 are connected to the external programmer 120 or the implanted pulse generator 121 discussed above with reference to FIG. 1A. During implantation, an implanting tool 160 (e.g., a stylet 161) is temporarily coupled to the lead 112 to support the lead 112 as it is inserted into the patient. For example, the implanting tool 160 can include a shaft 162 that is slideably and releasably inserted (via, e.g., a handle 163) into an axially-extending opening in the lead 112. The shaft 162 is generally flexible, but more rigid than the lead 112 to allow the practitioner to insert the lead 112 and control its position during implantation. A stylet stop 128 at the distal end of the lead opening prevents the practitioner from over-inserting the stylet shaft 162.


The lead 112 and/or other portions of the overall system 100 can include features that guide the practitioner when positioning the lead 112 at a target location. For example, the signal transmission system 130 can be carried by the lead 112 and/or the implanting tool 160, and can communicate with the signal detector system 140 located outside the patient's body. In a particular embodiment, the signal transmission system 130 includes one or more signal transmission devices 131. For purposes of illustration, several different signal transmission devices 131 are shown together in FIG. 2 as first, second and third signal transmission devices 131a, 131b, 131c, though in most embodiments, a single or single type of signal transmission device 131 will be implemented. The signal transmission devices 131 communicate with the signal detector system 140 via corresponding locator signals 132 (shown schematically as first, second and third locator signals 132a-132c). The signal transmission devices 131 can generate, emit, and/or reflect the locator signals 132 in a manner that is detected by a signal detector device 141 of the signal detector system 140. The first signal transmission device 131a can be carried by the lead 112, and can be independent of (e.g., electrically isolated from) the therapy contacts 126. The second signal transmission device 131b can also be carried by the lead 112, but can double as one of the therapy contacts 126. In a particular aspect of this embodiment, the second signal transmission device 131b doubles as the distal-most therapy contact 126, located at or near the distal tip of the lead 112. In other embodiments, the second signal transmission device 131b can double as any of the other therapy contacts 126. The third signal transmission device 131c is carried by the implanting tool 160, rather than the lead 112. For example, the third signal transmission device 131c can be located at the distal-most tip of the implanting tool 160.


An advantageous feature of the first signal transmission device 131a is that its independence of therapy contacts 126 frees it from being limited by the particular geometry and arrangement of the therapy contacts 126, which are typically sized, configured and arranged to provide optimal or highly effective and efficient therapy (e.g., modulation) signals. Instead, the first signal transmission device 131a can be tailored to provide effective and efficient first locator signals 132a, e.g., in cases where the locator signals differ significantly from the therapy/modulation signals. Conversely, an advantage of combining the functions of the second signal transmission device 131b with one of the therapy contacts 126 is that it reduces the need for an additional element in the overall patient system 100. An advantage of the third signal transmission device 131c is that it can be removed from the patient's body when it is no longer needed for locating the lead 112. Although the configuration and individual features of the three signal transmission devices 131a, 131b, and 131c in the embodiment of FIG. 2 affords unique advantages, signal transmission system 130 may comprise only a single or single type of signal transmission device 131, two such devices or types of devices 131, or more than three such devices or types of devices 131 in any combination of locations, configurations, and types as herein described.


The locator signals 132 transmitted by the signal transmission device 131 can have any of a variety of characteristics suitable for conveying location information wirelessly through the patient's skin 187 to the signal detector device 141. For example, in a particular embodiment, the locator signal 132 can include a radio frequency (RF) signal having a frequency in the range of from about 10 kHz to about 30 GHz. In other embodiments, the frequency of the locator signal 132 is outside the foregoing range. In still further embodiments, the signal transmission device 131 can be a magnetic device (e.g., a permanent magnet and/or an electromagnet) and can accordingly transmit locator signals 132 by virtue of magnetic fields, which are detected by the signal detector device 141. Accordingly, the term “locator signal” as used herein includes a wide variety of electromagnetic fields and transmissions that can be received or otherwise detected by an appropriate detector device 141. The signal can be generally constant, as in the case of a magnetic field produced by a permanent magnet, or varying, as in the case of an RF signal. In still a further embodiment, the locator signal 132 can be an acoustic signal (e.g., ultrasound) that is transmitted by the signal transmission device 131 and received by the signal detector device 141. In yet another aspect of this embodiment, the locator signal can actually be emitted from a location external to the patient's body, and the signal detector device 141 can receive or detect an echo or return signal, as indicated by fourth (two-way) locator signals 132d. Accordingly, unless otherwise indicated, the term “signal transmission device” includes devices that emit (e.g., actively generate) signals, and devices that reflect signals, with both types of signals selected to be detected by the signal detector device 141.


When the signal includes a reflected ultrasound signal, the signal emitter can be co-housed with the signal detector 141 to simplify use. The signal delivery device 111 and/or the implanting tool 160 can be constructed from materials specifically selected to be highly reflective to ultrasound signals and/or surface treatments to optimize ultrasound reflectivity. Materials having densities different than the densities of the adjacent tissue (which has a significant water content) typically have a higher acoustic impedance and accordingly generate reflections that can be readily distinguished from those produced by the adjacent tissue. Such materials can include polymers such as polyethylene or polyurethane. In other embodiments, the materials can include compositions having higher densities and/or materials that are also radiopaque, so that they can be used with a fluoroscopic detection technique and/or an ultrasonic detection technique. Suitable materials include platinum, iridium, tantalum, titanium and/or alloys of the foregoing materials. The materials can be applied to one or more of several elements of the signal delivery system 110, including the therapy contacts 126, the stylet stop 128, and/or the end of the stylet shaft 162, which can have a ball shape (e.g., a welded ball) to inhibit penetration into the distal end of the lead 112. In other embodiments, a radiopaque and acoustically reflective ink or other coating can be applied to any of the foregoing elements and/or to the outer surface of the stylet shaft 162 and/or to the outer surface of the lead 112. Suitable materials include radiopaque inks available from CJ Medical of Norton, Mass., and sputtered tantalum available from Isoflex Biomed of Rochester, N.Y.


In any of the foregoing embodiments, locator signals are generally transmitted (e.g., actively or by reflection) from the signal transmission device 131 to the signal detector device 141. As discussed above, signals can travel in both directions when the detected signal is a reflected signal. In other embodiments, the signal detector device 141 can transmit additional signals to the signal transmission device 131, e.g., to power the signal transmission device 131, and/or to query the signal transmission device 131 for additional information.


In at least some embodiments, the signal detector system 140 can include a single detector device 141, as shown in FIG. 2. In other embodiments (for example, as illustrated in FIG. 3), the signal detector system 140 can include an array 142 or other plurality of detector devices or elements 143, with each detector element 143 capable of detecting and responding to a locator signal. In a particular embodiment, the array 142 is positioned on the patient's skin 187 over the patient's spine 184. Each detector element 143 can be individually placed on the patient's skin 187, or the array 142 can include a flexible support member 139 (e.g., a thin plastic or fabric member or single- or multi-layer plastic or fabric composite, etc.) in which all the detector elements 143 are incorporated or located. For example, if support member 139 is a multi-layer construction of fabric and/or plastic, some or all detector elements 143 may be incorporated between one or more layers thereof and/or affixed to one or both outer surfaces of support member 139. If support member 139 is a single layer of material, detector elements 143 may be affixed to one or both surfaces of member 139. The support member 139 can be releasably attached to the patient's skin 187, e.g., via an adhesive, straps, or another suitable, releasable attachment mechanism. The support member 139 can accordingly maintain a constant or generally constant spacing between neighboring detector elements 143 of the array 142. The array 142 can include one or more index markers 146 that allow the practitioner to locate the array 142 properly relative to the patient's anatomy. For example, the practitioner can palpate and/or visually identify an anatomic feature 186 of the patient (e.g., the spinous process 197 of a specific vertebra 195) and locate the one or more index markers 146 relative to the anatomic feature 186. The detector elements 143 can be coupled to a power source 144 that powers the detector elements 143, and the detector elements 143 can communicate information to other elements of the overall system 100 via a detector output 145.


As the practitioner inserts the signal delivery system 110 along the patient's spine 184, the signal delivery system 110 (e.g., the signal delivery device 111 and associated implanting tool 160) can move in several directions. For example, as shown in FIG. 3, the signal delivery system 110 can move axially (or in a rostral/caudal direction) as indicated by arrows 101, laterally as indicated by arrows 102 and/or in a direct ventral/dorsal direction 103 (viewed end-on in FIG. 3). The direct ventral/dorsal direction 103 corresponds to a direction directly toward or away from the spinal cord. In at least some cases, the lead may tend to migrate around the spinal cord in a spiral fashion, as indicated by arrows 104.


Because the detector elements 143 shown in the array 142 are positioned in a plane (e.g., a generally flat plane) that contains the axial and lateral axes 101, 102, the detector elements 143 tend to be most sensitive to the location of the signal delivery system 110 in these generally orthogonal directions. The detector elements 143 may not be as sensitive to motion along the ventral/dorsal axis 103, and/or motion of the signal delivery system 110 wrapping around the spinal cord. Accordingly, the overall system 100 can include other features that may supplement the information received from the detector elements 143. In a particular embodiment, the overall system 100 can include an insertion tracker 150 (shown schematically in FIG. 3) that tracks the length of the signal delivery device 111 that has been inserted into the patient. In a first embodiment, the insertion tracker 150 can include markings (e.g., a scale) on the signal delivery device 111 or on the implanting tool 160 that the practitioner observes to track the length of the signal delivery device 111 that has been inserted. In another embodiment, the insertion tracker 150 includes a wheel 151 or other suitable mechanical, electromechanical or electro-optic device that automatically determines the length of the signal delivery device 111 inserted into the patient. The inserted length can be presented at a display 152 and/or directed remotely via an output signal 153.


In operation, the information received by the detector elements 143 can be used to estimate a length of the signal delivery device 111 projected into the plane of the array 142. This estimated length can be compared to the length indicated by the insertion tracker 150, either by the practitioner, or in an automated manner by the overall system 100, based on the output signal 153. If the location of the signal delivery device 111 as indicated by the detector elements 143 corresponds to (e.g., is identical or nearly identical to) the inserted length of the signal delivery device 111 identified by the insertion tracker 150, then the signal delivery device 111 has not likely deviated significantly from a plane located just above the spinal cord. Alternatively, if the detector elements 143 indicate that the signal delivery device 111 is not progressing (or progressing slowly) in the lateral or axial directions, but the insertion tracker 150 indicates that the signal delivery device 111 is in fact progressing (or progressing quickly), this can indicate to the practitioner that the signal delivery device 111 is traveling out of the plane of the array 142, e.g., either penetrating toward or into the spinal cord, or wrapping around the spinal cord. Further aspects of this operation are described later with reference to FIG. 5.



FIG. 4 is a partially schematic illustration of the dorsal region of the patient's spinal cord 191, with the vertebrae 195 cut away (as shown in cross-section) and with the array 142 of detector elements 143 shown in position over the patient's spine 184. As discussed above, the array 142 is typically located on the patient's skin, external to the patient's body, but for purposes of clarity, the patient's skin is not shown in FIG. 4. In a particular aspect of this embodiment, the detector elements 143 present information corresponding to a characteristic of the detected locator signals, in addition to detecting/receiving the locator signals. For example, the detector elements 143 can each be co-located with a display element 147 and the display elements 143 together can form a display device 170. The display device 170 presents information corresponding to the strength of the signal received at individual detector elements 143. In one aspect of this embodiment, the individual display elements 147 include an LED or other light source that presents light to the practitioner having a characteristic indicating the signal strength detected at that location. For example, the light can be brighter at a location where the signal is stronger, and dimmer where the signal is weaker. In other embodiments, the light can have one color where the signal is strong and a different color where the signal is weak. In still other embodiments, the light can flash intermittently where the signal is weak and remain steady where the signal is strong (or vice-versa). Combinations of the foregoing characteristics of the light can also be used, with or without other features such as an aural signal indicative of a strong or weak signal. For purposes of illustration, light corresponding to strong signals is indicated in FIG. 4 with a heavier shading.


As shown in FIG. 4, the signal delivery device 111 has been advanced along the patient's spinal cord 191 via an implanting tool 160 that carries a signal transmission device 131 at its distal tip. Accordingly, the display elements 147 located closest to the signal transmission device 131 indicate the highest strength signal, and those further away from the signal transmission device 131 identify weaker signals. In some cases, the practitioner may position the signal delivery device 111 so that the signal transmission device 131 is aligned at a selected target location (e.g., a first target location 185a). In other cases, the target location (e.g., a second target location 185b) may be located apart from the signal emission device 131, for example, in cases for which the practitioner deliberately wishes to have a part of the signal delivery device 111 other than the distal-most tip aligned with the second target location 185b. In either embodiment, the practitioner can use the information presented by the display elements 147 to locate the signal transmission device 131 and, by knowing the relative spacing between the signal transmission device 131 and each of the therapy contacts 126, can locate any given therapy contact 126 with equal or generally equal accuracy.


In an embodiment shown in FIG. 4, the display elements 147 present information corresponding to the location of the signal transmission device 131 in situ, directly on the patient's skin overlying the spine. In other embodiments, this information can be presented at a remote location, in addition to, or in lieu of being presented in situ. For example, FIG. 5 illustrates a signal detector system 140 that displays information at a position spaced apart from the detector elements 143 (shown in FIG. 4). In a particular embodiment, the signal detector system 140 includes a processor 148 and a memory 149 that receive and store signal detector output 145 from the detector elements 143, and receive and store insertion tracker output 153 from the insertion tracker 150 (FIG. 4). This information is processed (e.g., via instructions contained by a computer-readable medium) and presented at a display device 170a, e.g., an LCD or LED screen. The display device 170a can include a graphical depiction of the patient's spinal cord midline via a midline indicator 171 and can graphically display detector element indicators 172 which are spaced apart from each other in a manner that corresponds to the spacing of the detector elements 143 on the patient's back. The detector element indicators 172 can be illuminated or otherwise presented in a manner that distinguishes strong detected signals from weaker detected signals, e.g, as previously described with respect to the embodiment of FIG. 4. In addition to or in lieu of presenting the detector element indicators 172, the display device 170a can present a signal delivery device indicator 173 that represents the location of the signal delivery device as determined by the signal detector system 140, based on the information received at the detector elements 143 (e.g., using a suitable interpolation scheme). Accordingly, the practitioner can view the display device 170a to obtain a graphical presentation of the location of the signal delivery device (which is not visible) relative to the patient's midline and the receiver elements 143 (which are visible).


The foregoing information received from the detector elements 143 can be combined with information received via the insertion tracker output 153 to indicate when the signal delivery device 111 (FIG. 4) moves out of plane. As discussed above, it is expected that the signal delivery device 111 will be out of plane when the lead length determined via the array 142 of detector elements 143 is less than the lead length determined by the insertion tracker 150. This information can be presented via an out-of-plane indicator 174 that illuminates when the lead is out of plane. This information can also be conveyed to the practitioner via an inserted length display 176 which compares the calculated length of the signal delivery device in the plane of the array 142, with the measured length of the signal delivery device actually inserted into the patient. The information presented at the display device 170a can still further include an intrathecal penetration indicator 175, which indicates that the dura around the spinal cord has been penetrated. Further information corresponding to this aspect of the system is described further below with reference to FIG. 6.



FIG. 6 schematically illustrates an intrathecal penetration detector 180 that can be used alone or in conjunction with other features of the overall patient system 100 described above to aid the practitioner in identifying the location of the signal delivery device 111. The intrathecal penetration detector 180 take advantage of the low impedance that cerebral spinal fluid (CSF) has relative to the surrounding tissue in the spinal cord region. In particular, the intrathecal penetration detector 180 can use the impedance difference between CSF and the surrounding tissue to determine whether the dura 199 around the spinal cord 191 has been penetrated. In a particular embodiment, the intrathecal penetration detector 180 can detect an unexpectedly low impedance of a circuit that includes the signal delivery device 111 and the adjacent patient tissue, and identify this event to the practitioner as an indication that the signal delivery device 111 has potentially damaged or penetrated through the dura 199 of the patient's spinal cord 191. In most applications, it is undesirable to penetrate the dura 199 and therefore providing an indication of intrathecal penetration can allow the practitioner to withdraw and reposition the signal delivery device 111, optionally repair the damaged dura 199, and complete the process of implanting the signal delivery device 111.


In a particular embodiment, the intrathecal penetration detector 180 includes a power source 181 that applies a detection signal to a detection circuit 183. The detection circuit 183 includes patient tissue, and can further include one or more of the therapy contacts 126 in contact with the patient tissue. Using the therapy contacts 126 as part of the impedance circuit 183 reduces the need for adding additional features to the signal delivery device 111; nevertheless, in another embodiment, the signal delivery device 111 can carry contacts that are dedicated to impedance detection. In a particular embodiment, the detection circuit 183 can include two selected therapy contacts 126 and the patient tissue located between the two therapy contacts 126. In another embodiment, the detection circuit 183 can include a single therapy contact 126 and ground (e.g., a patient ground pad).


The intrathecal penetration detector 180 further includes an impedance detector 182 in the detection circuit 183 that identifies the impedance of the circuit 183. The impedance detector 182 can be connected to the processor 148, memory 149, and display device 170a described above with reference to FIG. 5 or to another processor and/or output device. In operation, the power source 181 provides a detection signal (e.g., a pulsed subthreshold signal with a current amplitude of about 0.2 milliamps, a pulse width of about 80 microseconds). The detection signal can be subthreshold to avoid inadvertently stimulating the patients' motor and/or sensory neural pathways. The pulses can be delivered in bursts at any suitable frequency, e.g., a frequency provided by the external programmer 120 (FIG. 1A). In a representative embodiment, the frequency can coincide with a representative therapy frequency (e.g., about 3 kHz to about 50 kHz) and in other embodiments, can have other values.


It is generally expected that the impedance of a circuit that includes two therapy contacts 126, as shown schematically in FIG. 6, will have an impedance of less than 1000 ohms, and typically an impedance in the range of about 300 ohms to about 600 ohms. If the impedance falls below a first threshold (e.g., about 200 ohms), the detector 180 and/or other elements of the system 100 can issue a warning, calling the practitioner's attention to the possibility of a CSF leak. If the impedance falls below a second threshold, e.g., about 50 ohms, the detector 180 and/or other elements of the system 100 can indicate a likely intrathecal penetration by the contact(s) 126a that are included in the detection circuit 183. As discussed above with reference to FIG. 5, this indication can be presented at the display device 170. In other embodiments, the indication can be presented in other manners, e.g., aurally. In still further embodiments, the foregoing threshold levels may have different values. For example, if the implant procedure includes using large amounts of saline, the “typical” impedance may fall from 300-600 ohms to 180 ohms, in which case the practitioner may require a lower threshold level (e.g., 150 ohms rather than 200 ohms) for an indication of CSF leakage. In other patients, e.g., patients with a significant amount of scar tissue, the “typical” impedance may be much larger than 1000 ohms, e.g., 200 ohms.


In a particular embodiment, the practitioner can select from any of the therapy contacts 126 to be included in the impedance detection circuit 183. In at least some embodiments, the practitioner may wish to include the distal-most therapy contact (e.g., at the distal tip of the signal delivery device 111) in the detection circuit 183 to provide an early indication that the signal delivery device 111 has penetrated the dura 199. If the signal delivery device 111 does not include a therapy contact 126 at the tip, a special-purpose contact can be added to the signal delivery device 111, or the practitioner can use the therapy contact 126 closest to the tip. In other embodiments, the practitioner may wish to include one or more of the other therapy contacts 126 in the circuit, for example, to identify the extent and/or rate of a cerebral spinal fluid leak, and/or for other diagnostic purposes.


As discussed above, the information received from the impedance detector 182 can be processed to indicate to the practitioner whether or not the dura 199 has been penetrated. The information can be provided in a fairly straightforward manner, e.g., by indicating either no intrathecal penetration or intrathecal penetration, optionally with an intermediate indication of likely CSF leakage. In other embodiments, the intrathecal penetration detector 180 can provide more sophisticated information. For example, the intrathecal penetration detector 180 can employ a multiplex arrangement or other suitable signal processing arrangement to scan over the therapy contacts 126 and identify issues or insipient issues associated with any of the contacts 126. The intrathecal penetration detector 180 can track a rate at which a drop in impedance passes along the signal delivery device 111 (e.g., as detected by multiple therapy contacts 126) to provide the practitioner with an indication of the rate at which CSF is leaking from the dura 199. In other embodiments, the intrathecal penetration detector 180 can include other arrangements. For example, the intrathecal penetration detector 180 can indicate which contacts(s) 126 have lower than expected associated impedance. In a particular example, the tip of the signal delivery device may penetrate the dura 199 by breaking the continuity of the dura 199 without actually proceeding into the subdural space. Leaking CSF may then be indicated by low impedances at proximal therapy contacts 126 as they pass by the break in the dura 199, and/or as CSF flows in a proximal direction, but a normal impedance (at least for a period of time) at the distalmost therapy contact 126.



FIGS. 7A-7D illustrate flow diagrams of methods in accordance with several embodiments of the disclosure described above. As described above, many of the steps in these methods may be performed automatically by instructions contained in one or more computer readable media. FIG. 7A illustrates a process 700a that includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord (process portion 701a). The target location can be a single location or one of multiple locations, and can have axial and lateral coordinates selected to produce a desired patient effect. The process 700a can further include implanting a signal delivery device within a vertebral foramen of the patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location (process portion 702a). In particular embodiments, this accuracy level can be obtained in the axial and/or lateral directions via a single signal detector or via an array of detector elements. The same level of accuracy can be obtained in the dorsal/ventral direction, e.g., via an insertion tracker or other suitable methodology.


The foregoing process can be performed without the use of fluoroscopy (process portion 703a). For example, in particular embodiments, the practitioner can use electromagnetic techniques (e.g., RF or magnetic techniques) or ultrasound techniques to accurately implant the signal delivery device on a consistent, repeatable basis over multiple patients (e.g., a patient population numbering in the tens or hundreds or more). In further particular embodiments, the accuracy of this method can be better than ±5 mm., e.g., ±2 mm. or ±1 mm., depending on factors that include, but are not limited to, the sensitivity of the signal detector or signal detector elements, the unidirectionality of the signal transmitters, and the spacing between signal detector elements. In any of these embodiments, the ability to locate the signal delivery device within the foregoing ranges without the use of fluoroscopy can simplify the implanting process, and can reduce the patient's exposure to x-ray radiation. In addition, fluoroscopy devices can be cumbersome and, due to the protective gear worn by the practitioner, can interfere with the practitioners freedom of movement. Still further, fluoroscopy equipment is generally expensive and not generally available in remote and/or developing parts of the world. The current technology can reduce or eliminate the dependence on fluoroscopy for accurate device placement which can in turn allow the device and associated therapy to be used in a larger number of treatment centers (i.e., those without fluoroscopic equipment) and a concomitant potentially greater number of patients in need of such therapy.


Optionally, the process 700a can be performed with less or no patient feedback (process portion 704a). For example, the increased accuracy with which the signal delivery device is implanted in the first instance can reduce the number of subsequent iterations the practitioner and patient engage in to identify an effective location for the signal delivery device and associated therapy contacts. Such iterations can include moving the signal delivery device and/or selecting different active contacts on the signal delivery device.


Once the signal delivery device is implanted, it can be activated to modulate neural activity at the spinal cord (process portion 705a). In a particular embodiment, the therapy includes RF signals delivered to the patient's spinal cord at a frequency of from about 3 kHz to about 50 kHz to address patient pain. Further details of suitable signal delivery parameters are included in pending U.S. patent application Ser. No. 12/765,747, filed on Apr. 22, 2010 and incorporated herein by reference in its entirety. In other embodiments, the signal delivery device can provide signals in accordance with other signal delivery parameters to treat the same or other patient indications, at the same or other implantation sites.



FIG. 7B is a flow diagram illustrating a process 700b in accordance with another embodiment of the disclosure, which includes implanting an implantable signal delivery system beneath the patient's skin and into a vertebral foramen of at least one of the patient's vertebrae (process portion 701b). The signal delivery system includes a signal delivery device having at least one electrical contact. In process portion 702b, a locator signal is emitted from the signal delivery system. As discussed above, the locator signal can be emitted from the signal delivery device and/or from an implanting tool that temporarily carries the signal delivery device during an implanting process. In process portion 703b, the locator signal is detected from a position external to the patient. In particular embodiments, the locator signal can be detected at a plurality of locations via an array of signal detectors (process portion 704b). In such embodiments, the results can be presented at a display indicating the relative signal strength received at the signal detectors (process portion 705b). Based at least in part on detecting the locator signal, the practitioner can adjust a position of the signal delivery device relative to the patient's spinal cord (process portion 706b) and the practitioner can then direct a therapy signal from the electrical contact (process portion 707b). As discussed above, an advantage of methods performed in accordance with the flow diagram shown in FIG. 7B is that they can allow the practitioner to accurately position the signal delivery device, e.g., without using fluoroscopy.



FIG. 7C illustrates another process 700c in accordance with an embodiment of the disclosure that includes receiving a plurality of indications of the strength of a locator signal from a corresponding plurality of signals detectors (process portion 701c). The signal detectors are positioned in an array external to the patient to form a plane extending laterally and in a rostral/caudal direction (e.g., an axial direction). In process portion 702c, a first length (e.g., a projected length of an implanted portion of the signal delivery device in the plane of the array) is identified, based upon the plurality of indications received in process portion 701c. In process portion 703c, an indication of the second length (e.g., an actual length) of the implanted portion of the signal delivery device is received. For example, process portion 703c can include receiving an indication of the actual implanted length via the insertion tracker discussed above with reference to FIG. 6. In process portion 704c, the second length of the implanted portion of the lead is compared with the first length and, based on a difference between the actual length and the projected length, an indication of a ventral/dorsal location of the signal delivery system is provided. For example, if the actual and projected lengths differ by more than a threshold amount (e.g., one mm. in one embodiment and other values in other embodiments), the foregoing indication can be triggered. The foregoing arrangement can be used to account for the fact that the signal delivery device may move along three different axes, while the detector array is positioned in, or generally in, a two-dimensional plane.



FIG. 7D illustrates a process 700d that may be used independently of or in conjunction with any of the foregoing methods described above with reference to FIGS. 7A-7C. In particular, the process 700d includes introducing an electrical contact into a patient, proximate to the patient's dura (process portion 701d). In process portion 702d, an impedance of an electrical circuit that includes the electrical contact and patient tissue adjacent to the electrical contact is detected. Process portion 703d includes comparing the detected impedance to a predetermined criterion (e.g., a threshold impedance value). If the detected impedance meets the predetermined criterion, then the process 700d can include identifying penetration of the patient's dura based at least in part on the detected impedance (process portion 704d). As discussed above, penetration can include breaking the continuity of the dura, whether or not the electrical contact actually passes through the dura to an intrathecal location. As was also discussed above, the predetermined criterion can include an impedance value at or below which detected impedances correspond to exposure to cerebral spinal fluid. An advantage of the foregoing methodology (and associated computer readable media and methods for programming the computer readable media) is that the practitioner can receive an early indication that the dura has been penetrated, and can take appropriate corrective action. Corrective actions include re-positioning the signal delivery device and possibly repairing damaged dural tissue.


From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. For example, in other embodiments, the foregoing systems and methods can be used to locate devices other than spinal cord implants. In a particular embodiment, the intrathecal detection device and methodology described above can be applied to other areas of the patient's body that are surrounded by the dura and contain cerebral spinal fluid, for example, the brain. In still further embodiments, these devices and methodologies can be applied to implantable patient devices other than neural modulators (e.g., other elements configured for patient implantation, with therapy contacts in at least some cases). The implanting tools described above can have configurations other than a stylet (e.g., a catheter) in other embodiments. The locator signal emitters and/detectors can be omnidirectional in certain embodiments or can be unidirectional in other embodiments. In certain embodiments, phase shift and/or phased array techniques can be implemented to enhance system efficacy. The signal delivery system can include one transmission device in certain embodiments, and more than one transmission device in other embodiments.


Certain aspects of the technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the display 170a described above with reference to FIG. 5 may in some embodiments be made thin and flexible enough to be placed directly on the patient's body, with the detector elements integrated into the display medium. Accordingly, the practitioner can obtain the benefit of a graphical representation of the implanted signal delivery device, together with the proximity of the display to the actual location of the signal delivery device. The use of an aural indicator described above in the context of the intrathecal penetration detector can be applied to the technique for locating the signal delivery device relative to other motion axes, in addition to or in lieu of presenting the information via a visual display. For example, the aural indication can be triggered if the signal delivery device exceeds a threshold distance from the patient's midline. Further, while advantages associated with certain embodiments have been described in the context of those embodiments, other embodiments may also exhibit such advantages and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present disclosure. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly described or shown herein.

Claims
  • 1. A patient treatment system, comprising: a signal delivery system that includes a patient-implantable signal delivery device coupleable to a signal generator that generates and delivers a neural modulation therapy signal having therapy signal parameters including a frequency in a frequency range, a pulse width in a pulse width range, and an amplitude in an amplitude range; andan array of external signal detector elements and display elements that is movable relative to the signal delivery device, the external signal detector elements being configured to wirelessly detect signals having the therapy signal parameters delivered by the signal delivery device through the patient's skin, the display elements being operatively coupled to the signal detector elements to display data based on information provided by the detector elements.
  • 2. The treatment system of claim 1, further comprising the signal generator, wherein the signal generator is coupleable to a power source to generate the therapy signal.
  • 3. The treatment system of claim 2, further comprising the power source, wherein the power source transmits power to the signal generator using electromagnetic induction.
  • 4. The treatment system of claim 2, further comprising the power source, wherein the power source includes an external coil that communicates with an internal coil within the signal generator.
  • 5. The treatment system of claim 2, further comprising the power source, wherein the power source is portable.
  • 6. The treatment system of claim 1 wherein an individual display element is co-located with a corresponding individual external signal detector element to present an indication of a signal strength detected at the corresponding external signal detector element.
  • 7. The system of claim 1, further comprising a computer-readable medium containing instructions that, when executed, interpolate results obtained from the plurality of signal detector elements to identify an estimated position of the signal delivery device.
  • 8. The treatment system of claim 1, further comprising an insertion tracker operably coupleable to the signal delivery system to track a length of the signal delivery system inserted into the patient.
  • 9. The treatment system of claim 8 wherein the insertion tracker includes an electromechanical device that is releasably engageable with the signal delivery system.
  • 10. The treatment system of claim 1, further comprising a computer-readable medium containing instructions that, when executed, generate and transmit the neural modulation therapy signal.
  • 11. The treatment system of claim 1 wherein the array has at least one releasable fixation element positioned to releasably secure the array to the patient's skin.
  • 12. The treatment system of claim 1 wherein the array is carried by a flexible, conformable support member.
  • 13. The treatment system of claim 1, further comprising the signal generator, wherein the signal generator includes a pulse generator.
  • 14. The treatment system of claim 1 wherein the frequency range is from about 3 kHz to about 50 kHz.
  • 15. The treatment system of claim 1 wherein the signal delivery device includes a lead having an axial opening.
  • 16. The treatment system of claim 15 wherein a therapy contact is positioned toward a distal end of the lead.
  • 17. A method for treating a patient, comprising: emitting a signal from a therapy signal delivery system positioned beneath a patient's skin, the signal delivery system including a signal delivery device having at least one electrical contact, wherein: the signal delivery device is coupled to a signal generator that generates the signal, andthe signal has therapy signal parameters including a frequency in a frequency range, a pulse width in a pulse width range, and an amplitude in a amplitude range;wirelessly detecting the signal from external to the patient via an array of moveable signal detector elements; andpresenting display data at an array of display elements, based on information provided by the array of signal detector elements.
  • 18. The method of claim 17 wherein emitting the signal includes directing the signal to treat pain in the patient.
  • 19. The method of claim 17 wherein emitting the signal includes emitting the signal from the signal delivery device.
  • 20. The method of claim 17 wherein individual signal detector elements receive corresponding individual indications of the strength of the signal.
  • 21. The method of claim 17 wherein the array of signal detector elements is releasably carried by the patient.
  • 22. The method of claim 17, further comprising releasably attaching the array of signal detector elements to the patient's skin.
  • 23. The method of claim 17, further comprising detecting a location of the signal delivery device based at least in part on detecting the signal.
  • 24. The method of claim 23 wherein detecting the location includes detecting a lateral location and a rostral/caudal location.
  • 25. The method of claim 23 wherein detecting the location includes detecting a dorsal/ventral location.
  • 26. The method of claim 17 wherein the frequency range is from about 3 kHz to about 50 kHz.
  • 27. The method of claim 17 wherein presenting display data is performed during a process for implanting the signal delivery device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/148,987, filed May 6, 2016, which is a continuation of U.S. patent application Ser. No. 14/598,114, now issued as U.S. Pat. No. 9,345,891, filed Jan. 15, 2015, which is a continuation of U.S. patent application Ser. No. 12/895,403, now issued as U.S. Pat. No. 8,965,482, filed Sep. 30, 2010, which are incorporated herein by reference in their entireties.

US Referenced Citations (453)
Number Name Date Kind
3195540 Waller et al. Jul 1965 A
3724467 Avery et al. Apr 1973 A
3774618 Avery Nov 1973 A
3796221 Hagfors Mar 1974 A
4096866 Fischell Jun 1978 A
4136703 Wittkampf Jan 1979 A
4141365 Fischell et al. Feb 1979 A
4282886 King Aug 1981 A
4328813 Ray May 1982 A
4355224 Mesick et al. Oct 1982 A
4422917 Hayfield Dec 1983 A
4432377 Dickhudt Feb 1984 A
4462401 Burgio Jul 1984 A
4462402 Burgio et al. Jul 1984 A
4465079 Dickhudt Aug 1984 A
4498482 Williams Feb 1985 A
4515168 Chester et al. May 1985 A
4538624 Tarjan Sep 1985 A
4573448 Kambin Mar 1986 A
4573481 Bullara Mar 1986 A
4579120 MacGregor Apr 1986 A
4603696 Cross, Jr. et al. Aug 1986 A
4658835 Pohndorf Apr 1987 A
4683895 Pohndorf Aug 1987 A
4721551 Byers et al. Jan 1988 A
4744370 Harris May 1988 A
4744371 Harris May 1988 A
4764132 Stutz, Jr. Aug 1988 A
4796642 Harris Jan 1989 A
4830776 Thompson May 1989 A
4919653 Martinez et al. Apr 1990 A
4920979 Bullara May 1990 A
4926878 Snedeker May 1990 A
4934383 Glumac Jun 1990 A
4940065 Tanagho et al. Jul 1990 A
4961434 Stypulkowski Oct 1990 A
4979511 Terry, Jr. Dec 1990 A
5000194 Van den Honert et al. Mar 1991 A
5007902 Witt Apr 1991 A
5036862 Pohndorf Aug 1991 A
5042486 Pfeiler et al. Aug 1991 A
5046511 Maurer et al. Sep 1991 A
5072458 Suzuki Dec 1991 A
5078140 Kwoh Jan 1992 A
5159926 Ljungstroem Nov 1992 A
5205297 Montecalvo et al. Apr 1993 A
5211165 Dumoulin et al. May 1993 A
5257636 White Nov 1993 A
5265608 Lee et al. Nov 1993 A
5273053 Pohndorf Dec 1993 A
5306236 Blumenfeld et al. Apr 1994 A
5314458 Najafi et al. May 1994 A
5325873 Hirschi et al. Jul 1994 A
5351394 Weinberg Oct 1994 A
5351687 Kroll et al. Oct 1994 A
5351697 Cheney et al. Oct 1994 A
5360441 Otten Nov 1994 A
5366489 Burgio et al. Nov 1994 A
5375596 Twiss et al. Dec 1994 A
5425367 Shapiro et al. Jun 1995 A
5458629 Baudino et al. Oct 1995 A
5458631 Xavier Oct 1995 A
5464446 Dreessen et al. Nov 1995 A
5496363 Burgio et al. Mar 1996 A
5527338 Purdy Jun 1996 A
5527358 Mehmanesh et al. Jun 1996 A
5531778 Maschino et al. Jul 1996 A
5562722 Racz et al. Oct 1996 A
5578074 Mirigian Nov 1996 A
5643330 Holsheimer et al. Jul 1997 A
5669882 Pyles Sep 1997 A
5727553 Saad Mar 1998 A
5728148 Bostrom et al. Mar 1998 A
5730628 Hawkins Mar 1998 A
5755750 Petruska et al. May 1998 A
5759471 Malewicz Jun 1998 A
5760341 Laske et al. Jun 1998 A
5769877 Barreras, Sr. Jun 1998 A
5843148 Gijsbers Dec 1998 A
5846226 Urmey Dec 1998 A
5848126 Fujita et al. Dec 1998 A
5865843 Baudino Feb 1999 A
5871487 Warner et al. Feb 1999 A
5902236 Iversen May 1999 A
5927277 Baudino et al. Jul 1999 A
5935159 Cross, Jr. et al. Aug 1999 A
5957965 Moumane et al. Sep 1999 A
5957968 Belden et al. Sep 1999 A
5983126 Wittkampf Nov 1999 A
6052623 Fenner et al. Apr 2000 A
6055456 Gerber Apr 2000 A
6066165 Racz May 2000 A
6078839 Carson Jun 2000 A
6104960 Duysens Aug 2000 A
6106460 Panescu et al. Aug 2000 A
6125291 Miesel et al. Sep 2000 A
6129742 Wu et al. Oct 2000 A
6134459 Roberts et al. Oct 2000 A
6134477 Knuteson Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6154678 Lauro Nov 2000 A
6163727 Errico Dec 2000 A
6178357 Gliner et al. Jan 2001 B1
6185463 Baudino Feb 2001 B1
6192279 Barreras, Sr. et al. Feb 2001 B1
6198952 Miesel Mar 2001 B1
6198963 Haim et al. Mar 2001 B1
6205356 Holcomb Mar 2001 B1
6210417 Baudino et al. Apr 2001 B1
6214016 Williams et al. Apr 2001 B1
6216045 Black et al. Apr 2001 B1
6249965 Bullara et al. Jun 2001 B1
6253109 Gielen Jun 2001 B1
6263230 Haynor et al. Jul 2001 B1
6292702 King et al. Sep 2001 B1
6298265 Burgio Oct 2001 B1
6304785 McCreery et al. Oct 2001 B1
6308103 Gielen Oct 2001 B1
6309401 Redko et al. Oct 2001 B1
6321104 Gielen et al. Nov 2001 B1
6321123 Morris et al. Nov 2001 B1
6366815 Haugland et al. Apr 2002 B1
6393327 Scribner May 2002 B1
6397108 Camps et al. May 2002 B1
6442435 King et al. Aug 2002 B2
6445955 Michelson et al. Sep 2002 B1
6456866 Tyler et al. Sep 2002 B1
6464682 Snoke Oct 2002 B1
6473653 Schallhorn et al. Oct 2002 B1
6474341 Hunter et al. Nov 2002 B1
6477427 Stolz et al. Nov 2002 B1
6493590 Wessman et al. Dec 2002 B1
6493592 Leonard et al. Dec 2002 B1
6516226 Bishay et al. Feb 2003 B1
6516227 Meadows et al. Feb 2003 B1
6516807 Panescu et al. Feb 2003 B1
6522927 Bishay et al. Feb 2003 B1
6522932 Kuzma et al. Feb 2003 B1
6529774 Greene Mar 2003 B1
6546293 Errico et al. Apr 2003 B2
6549797 Leonard et al. Apr 2003 B1
6549810 Leonard et al. Apr 2003 B1
6549812 Smits Apr 2003 B1
6556869 Leonard et al. Apr 2003 B1
6556873 Smits Apr 2003 B1
6560491 Leonard et al. May 2003 B1
6587733 Cross, Jr. et al. Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6609029 Mann et al. Aug 2003 B1
6622051 Bishay et al. Sep 2003 B1
6714822 King et al. Mar 2004 B2
6718211 Smits Apr 2004 B2
6721604 Robinson et al. Apr 2004 B1
6733500 Kelley et al. May 2004 B2
6741892 Meadows et al. May 2004 B1
6741893 Smits May 2004 B2
6754539 Erickson et al. Jun 2004 B1
6785571 Glossop et al. Aug 2004 B2
6847845 Belden Jan 2005 B2
6875571 Crabtree et al. Apr 2005 B2
6895276 Kast et al. May 2005 B2
6895283 Erickson et al. May 2005 B2
6907299 Han Jun 2005 B2
6909918 Stypulkowski Jun 2005 B2
6934589 Sundquist et al. Aug 2005 B2
6970747 Kokones et al. Nov 2005 B2
6980863 Van Venrooij et al. Dec 2005 B2
6981314 Black et al. Jan 2006 B2
6993384 Bradley et al. Jan 2006 B2
6999820 Jordan Feb 2006 B2
7010856 Suda et al. Mar 2006 B2
7035690 Goetz Apr 2006 B2
7047082 Schrom et al. May 2006 B1
7051419 Schrom et al. May 2006 B2
7072719 Vinup et al. Jul 2006 B2
7107104 Keravel et al. Sep 2006 B2
7110827 Sage et al. Sep 2006 B2
7130696 Carter et al. Oct 2006 B2
7133722 Hansen et al. Nov 2006 B2
7142919 Hine et al. Nov 2006 B2
7142925 Bhadra et al. Nov 2006 B1
7146222 Boling Dec 2006 B2
7146224 King Dec 2006 B2
7149585 Wessman et al. Dec 2006 B2
7164951 Ries et al. Jan 2007 B2
7174219 Wahlstrand et al. Feb 2007 B2
7184838 Cross, Jr. Feb 2007 B2
7184840 Stolz et al. Feb 2007 B2
7187981 Tanaka Mar 2007 B2
7206642 Pardo et al. Apr 2007 B2
7211103 Greenberg et al. May 2007 B2
7212867 Van Venrooij et al. May 2007 B2
7236834 Christopherson et al. Jun 2007 B2
7244150 Brase et al. Jul 2007 B1
7282033 Urmey Oct 2007 B2
7299095 Barlow et al. Nov 2007 B1
7363076 Yun et al. Apr 2008 B2
7363089 Vinup et al. Apr 2008 B2
7379776 Chitre et al. May 2008 B1
7381441 Leung et al. Jun 2008 B2
7383090 O'Brien et al. Jun 2008 B2
7386350 Vilims Jun 2008 B2
7421297 Giftakis et al. Sep 2008 B2
7425142 Putz Sep 2008 B1
7455666 Purdy Nov 2008 B2
7463917 Martinez Dec 2008 B2
7493159 Hrdlicka et al. Feb 2009 B2
7499755 Cross, Jr. Mar 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7584004 Caparso et al. Sep 2009 B2
7590454 Garabedian et al. Sep 2009 B2
7613524 Jordan Nov 2009 B2
7617003 Caparso et al. Nov 2009 B2
7623919 Goetz et al. Nov 2009 B2
7676273 Goetz et al. Mar 2010 B2
7689284 Imran et al. Mar 2010 B2
7702379 Avinash et al. Apr 2010 B2
7769472 Gerber Aug 2010 B2
7781806 VanBuskirk et al. Aug 2010 B2
7810233 Krulevitch et al. Oct 2010 B2
7810996 Giphart et al. Oct 2010 B1
7831307 Moffitt Nov 2010 B1
7844343 Wahlstrand et al. Nov 2010 B2
7853330 Bradley et al. Dec 2010 B2
7860568 Deininger et al. Dec 2010 B2
7881806 Horrigan et al. Feb 2011 B2
7957808 Dawant et al. Jun 2011 B2
7996055 Hauck et al. Aug 2011 B2
8010207 Smits et al. Aug 2011 B2
8019439 Kuzma et al. Sep 2011 B2
8036756 Swoyer et al. Oct 2011 B2
8060207 Wallace et al. Nov 2011 B2
8078280 Sage Dec 2011 B2
8131357 Bradley et al. Mar 2012 B2
8197494 Jaggi et al. Jun 2012 B2
8224459 Pianca et al. Jul 2012 B1
8255057 Fang et al. Aug 2012 B2
8303502 Washburn et al. Nov 2012 B2
8355791 Moffitt Jan 2013 B2
8355797 Caparso et al. Jan 2013 B2
8494652 Cantlon et al. Jul 2013 B2
8548601 Chinn et al. Oct 2013 B2
8634934 Kokones et al. Jan 2014 B2
8676331 Parker Mar 2014 B2
8682447 Bradley Mar 2014 B2
8731671 Rodby et al. May 2014 B2
8913804 Blum et al. Dec 2014 B2
8965482 Thacker et al. Feb 2015 B2
9002460 Parker Apr 2015 B2
9345891 Thacker et al. May 2016 B2
9358390 Polefko et al. Jun 2016 B2
9403020 Wingeier Aug 2016 B2
9433795 Lui et al. Sep 2016 B2
9604059 Parker Mar 2017 B2
10076665 Parker et al. Sep 2018 B2
20010023368 Black et al. Sep 2001 A1
20010025192 Gerber et al. Sep 2001 A1
20010027336 Gielen et al. Oct 2001 A1
20010053885 Gielen et al. Dec 2001 A1
20020022872 Gielen et al. Feb 2002 A1
20020052640 Bigus et al. May 2002 A1
20020111661 Cross et al. Aug 2002 A1
20020173718 Frisch Nov 2002 A1
20020177887 Krebs Nov 2002 A1
20030032997 Pianca et al. Feb 2003 A1
20030055476 Vinup et al. Mar 2003 A1
20030083697 Baudino et al. May 2003 A1
20030083724 Jog et al. May 2003 A1
20030097165 Krulevitch et al. May 2003 A1
20030097166 Krulevitch et al. May 2003 A1
20030114752 Henderson et al. Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030136418 Behm Jul 2003 A1
20030199949 Pardo Oct 2003 A1
20030199951 Pardo et al. Oct 2003 A1
20030199952 Stolz et al. Oct 2003 A1
20030199953 Stolz et al. Oct 2003 A1
20030199962 Struble et al. Oct 2003 A1
20030208247 Spinelli et al. Nov 2003 A1
20030229387 Cross et al. Dec 2003 A1
20030233134 Greenberg et al. Dec 2003 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040015206 Bishay et al. Jan 2004 A1
20040024439 Riso Feb 2004 A1
20040024440 Cole Feb 2004 A1
20040087877 Besz et al. May 2004 A1
20040088033 Smits et al. May 2004 A1
20040088034 Smits et al. May 2004 A1
20040093053 Gerber et al. May 2004 A1
20040097803 Panescu May 2004 A1
20040111139 McCreery Jun 2004 A1
20040127942 Yomtov et al. Jul 2004 A1
20040162601 Smits Aug 2004 A1
20040176683 Whitin et al. Sep 2004 A1
20040186528 Ries et al. Sep 2004 A1
20040186543 King et al. Sep 2004 A1
20040186544 King Sep 2004 A1
20040215288 Lee et al. Oct 2004 A1
20040215301 Lokhoff et al. Oct 2004 A1
20040215305 Sage Oct 2004 A1
20040215307 Michels et al. Oct 2004 A1
20040243206 Tadlock Dec 2004 A1
20050004638 Cross Jan 2005 A1
20050004639 Erickson Jan 2005 A1
20050015128 Rezai et al. Jan 2005 A1
20050021119 Sage et al. Jan 2005 A1
20050027325 Lahti et al. Feb 2005 A1
20050027338 Hill Feb 2005 A1
20050027339 Schrom et al. Feb 2005 A1
20050027340 Schrom et al. Feb 2005 A1
20050027341 Schrom et al. Feb 2005 A1
20050033371 Sommer et al. Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050049663 Harris et al. Mar 2005 A1
20050049664 Harris et al. Mar 2005 A1
20050065588 Zhao et al. Mar 2005 A1
20050070982 Heruth et al. Mar 2005 A1
20050070987 Erickson Mar 2005 A1
20050075684 Phillips et al. Apr 2005 A1
20050075707 Meadows et al. Apr 2005 A1
20050085870 Goroszeniuk Apr 2005 A1
20050107859 Daglow et al. May 2005 A1
20050107861 Harris et al. May 2005 A1
20050113882 Cameron et al. May 2005 A1
20050119713 Whitehurst et al. Jun 2005 A1
20050131506 Rezai et al. Jun 2005 A1
20050137667 Omar-Pasha et al. Jun 2005 A1
20050137668 Khan Jun 2005 A1
20050138791 Black et al. Jun 2005 A1
20050138792 Black et al. Jun 2005 A1
20050165465 Pianca et al. Jul 2005 A1
20050171587 Daglow et al. Aug 2005 A1
20050192655 Black et al. Sep 2005 A1
20050203599 Garabedian et al. Sep 2005 A1
20050209667 Erickson et al. Sep 2005 A1
20050222642 Przybyszewski et al. Oct 2005 A1
20050222657 Wahlstrand et al. Oct 2005 A1
20050222658 Hoegh et al. Oct 2005 A1
20050222659 Olsen et al. Oct 2005 A1
20050228221 Hirakawa Oct 2005 A1
20050246003 Black et al. Nov 2005 A1
20050246004 Cameron et al. Nov 2005 A1
20060004429 Mrva et al. Jan 2006 A1
20060052765 Pyles et al. Mar 2006 A1
20060074456 Pyles et al. Apr 2006 A1
20060089692 Cross et al. Apr 2006 A1
20060089695 Bolea et al. Apr 2006 A1
20060089696 Olsen et al. Apr 2006 A1
20060089697 Cross et al. Apr 2006 A1
20060111768 Wessman et al. May 2006 A1
20060127158 Olson et al. Jun 2006 A1
20060168805 Hegland et al. Aug 2006 A1
20060173262 Hegland et al. Aug 2006 A1
20060200218 Wahlstrand Sep 2006 A1
20060247747 Olsen et al. Nov 2006 A1
20060247748 Wahlstrand et al. Nov 2006 A1
20060247749 Colvin Nov 2006 A1
20060253182 King Nov 2006 A1
20060264122 Aman et al. Nov 2006 A1
20060265024 Goetz et al. Nov 2006 A1
20060265025 Goetz et al. Nov 2006 A1
20060265037 Kuzma Nov 2006 A1
20060271137 Stanton-Hicks Nov 2006 A1
20070038052 Swoyer et al. Feb 2007 A1
20070050004 Swoyer et al. Mar 2007 A1
20070050005 Lauro Mar 2007 A1
20070055332 Swoyer Mar 2007 A1
20070100386 Tronnes et al. May 2007 A1
20070100408 Gerber May 2007 A1
20070106144 Squeri May 2007 A1
20070106289 O'Sullivan May 2007 A1
20070112398 Stevenson et al. May 2007 A1
20070112404 Mann et al. May 2007 A1
20070118198 Prager May 2007 A1
20070149048 O'Brien et al. Jun 2007 A1
20070150036 Anderson Jun 2007 A1
20070191903 Bruinstroop Aug 2007 A1
20070191904 Libbus et al. Aug 2007 A1
20070203540 Goetz et al. Aug 2007 A1
20070208394 King et al. Sep 2007 A1
20070249901 Ohline et al. Oct 2007 A1
20070260290 Hara et al. Nov 2007 A1
20080039738 Dinsmoor et al. Feb 2008 A1
20080058875 Greenberg et al. Mar 2008 A1
20080097475 Jaggi et al. Apr 2008 A1
20080125833 Bradley et al. May 2008 A1
20080140087 Barbagli Jun 2008 A1
20080140152 Imran et al. Jun 2008 A1
20080183221 Burdulis Jul 2008 A1
20080215118 Goetz et al. Sep 2008 A1
20080234791 Arle et al. Sep 2008 A1
20080262430 Anderson et al. Oct 2008 A1
20080275467 Liao et al. Nov 2008 A1
20080300651 Gerber et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090024187 Erickson et al. Jan 2009 A1
20090048638 Rey et al. Feb 2009 A1
20090125060 Rivard et al. May 2009 A1
20090198306 Goetz et al. Aug 2009 A1
20090204173 Fang Aug 2009 A1
20090204192 Carlton et al. Aug 2009 A1
20090210029 Tsui Aug 2009 A1
20090248118 Bradley et al. Oct 2009 A1
20090270940 Deininger et al. Oct 2009 A1
20100069736 Finneran et al. Mar 2010 A1
20100094116 Silverstein Apr 2010 A1
20100137944 Zhu Jun 2010 A1
20100137955 Milijasevic et al. Jun 2010 A1
20100152538 Gleason Jun 2010 A1
20100204569 Burnside et al. Aug 2010 A1
20100211135 Caparso et al. Aug 2010 A1
20100222844 Troosters et al. Sep 2010 A1
20100267265 Dilmaghanian Oct 2010 A1
20100274312 Alataris et al. Oct 2010 A1
20100274314 Alataris et al. Oct 2010 A1
20100274315 Alataris et al. Oct 2010 A1
20100274316 Alataris et al. Oct 2010 A1
20100274336 Nguyen-Stella et al. Oct 2010 A1
20100286551 Harlev et al. Nov 2010 A1
20100298905 Simon Nov 2010 A1
20100305631 Bradley et al. Dec 2010 A1
20100324414 Harlev et al. Dec 2010 A1
20100324570 Rooney et al. Dec 2010 A1
20110009927 Parker et al. Jan 2011 A1
20110031961 Durand et al. Feb 2011 A1
20110046617 Thompson et al. Feb 2011 A1
20110054304 Markowitz Mar 2011 A1
20110054551 Zhu et al. Mar 2011 A1
20110060386 Woods et al. Mar 2011 A1
20110066407 Butson et al. Mar 2011 A1
20110093051 Davis Apr 2011 A1
20110106052 Chiang et al. May 2011 A1
20110160568 Seeley Jun 2011 A1
20110178573 Nguyen-Stella et al. Jul 2011 A1
20110245903 Schulte et al. Oct 2011 A1
20110307032 Goetz et al. Dec 2011 A1
20120083709 Parker et al. Apr 2012 A1
20120083856 Thacker et al. Apr 2012 A1
20120083857 Bradley Apr 2012 A1
20120173946 Terry et al. Jul 2012 A1
20120232626 Daglow Sep 2012 A1
20120232810 Kaipio et al. Sep 2012 A1
20130066411 Thacker et al. Mar 2013 A1
20130096642 Wingeier Apr 2013 A1
20130116754 Sharma et al. May 2013 A1
20130261697 Parker Oct 2013 A1
20140303685 Rosenberg et al. Oct 2014 A1
20150012077 Parker et al. Jan 2015 A1
20160059006 Doan et al. Mar 2016 A1
20160302827 Chitre Oct 2016 A1
20160354609 Parker et al. Dec 2016 A1
20160360993 Thacker et al. Dec 2016 A1
20190217096 Parker Jul 2019 A1
Foreign Referenced Citations (7)
Number Date Country
101920065 Dec 2010 CN
0158316 Oct 1985 EP
WO-9003824 Apr 1990 WO
WO-2009097224 Aug 2009 WO
WO-2009129329 Oct 2009 WO
WO-2011014570 Feb 2011 WO
WO-2011143258 Nov 2011 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion for International Patent Application No. PCT/US11/53714, Applicant: Nevro Corporation, dated Aug. 10, 2012, 14 pages.
Kulkarni et al., “A two-layered forward model of tissue for electrical; impedance tomography,” Physiol Meas., 30(6); pp. 1-24, Jun. 2009.
Medtronic “N'Vision Cliniciam (8840) Programmer with Software (8870)—Restore and RestorePRIME Neurostimulation Systems for Pain,” 2006, 109 pages.
Falowski et al. “Spinal Cord Stimulation: An Update,” Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, vol. 5, Jan. 2008, 14 pages.
Shealy et al., “Electrical Inhibition of Pain: Experimental Evaluation,” Anesthesia and Analgesia, vol. 46, No. 3, May-Jun. 1967, 7 pages.
Related Publications (1)
Number Date Country
20190320936 A1 Oct 2019 US
Continuations (3)
Number Date Country
Parent 15148987 May 2016 US
Child 16287486 US
Parent 14598114 Jan 2015 US
Child 15148987 US
Parent 12895403 Sep 2010 US
Child 14598114 US