This disclosure relates generally to systems and methods for tissue monitoring after a surgical procedure. In particular, this disclosure relates to systems and methods for monitoring an anastomosis for early detection of anastomotic leakage.
Colectomy procedures are performed in patients with, for example, cancer, diverticulitis, trauma, and inflammatory bowel disease. Following surgery on the gastrointestinal system, in which a portion of the large intestine is removed and the large intestine undergoes anastomosis, there is an incidence of subsequent leakage from the large intestine into the peritoneal cavity. Anastomotic leakage can occur in about 4-9% of patients, depending upon the colorectal procedure, with the highest percentages associated with low anterior resection. This complication can have serious consequences for the patient, such as peritonitis, that affects the patient's prognosis, impacts the cost of treatment, and prolongs the hospital stay.
Anastomotic leak detection is generally accomplished by monitoring clinical signs of infection, including white blood cell count, fever, malaise, heart rate, etc. A recognized problem of using clinical signs is that there is a lag between the time the leak occurs and the onset of signs or symptoms. This results in the severity of the problem escalating prior to its detection and the appropriate treatment being instituted.
Imaging modalities, such as fluoroscopy, may be utilized to monitor for anastomotic leakage after administering radiopaque dye orally or rectally. Imaging modalities, however, have limitations of sensitivity and specificity, and require significant resources and cost to perform. Additional anastomotic leak detection attempts of measuring effluent from drains have demonstrated some success. Limitations of this approach, however, include the inconsistent use of drains due to concomitant complications (e.g., infection, clogging, migration, etc.) and identification of markers from drain fluid may be delayed after the leak occurs.
This disclosure generally relates to systems and methods for monitoring an anastomosis for acute stage detection of complications associated with the anastomosis thereby enabling early intervention for improved patient outcomes. The systems and methods help detect complications at an early onset (e.g., detecting local infection at the anastomotic site) before the onset of symptoms from systemic infection, thereby enabling a physician to evaluate predictors of morbidity and intervene to minimize severe adverse effects associated with the complication and reduce patient suffering, medical costs associated with treatment, and the length of the hospital stay.
The systems of this disclosure automatically monitor patients post-operatively thereby having direct clinical impact on improving patient recovery and reducing hospital costs. Further, because the systems collect post-surgery physiological data, the physiological data may be aggregated from systems and further used and processed in data analytic scenarios for surgical device and procedure optimization.
In one aspect, the disclosure provides an end effector for a surgical device including a loading unit having a staple cartridge including staple pockets defined therein and staples disposed within the staple pockets. The loading unit includes a sensor assembly coupled to one of the staples. The sensor assembly includes a sensor and a tether interconnecting the sensor and the respective staple.
In aspects, the staple cartridge has an annular configuration including an outer side wall and an inner side wall defining a central aperture therethrough. In some aspects, the sensor of the sensory assembly is disposed within the central aperture of the staple cartridge. In some aspects, the loading unit further includes a knife disposed within the central aperture of the staple cartridge, and the sensor is positioned between the inner side wall of the staple cartridge and an outer wall of the knife. In certain aspects, the staple cartridge includes a tissue facing surface extending across a distal end of the staple cartridge between the outer and inner side walls, and the tether of the sensor assembly extends out of the respective staple pocket, across a portion of the tissue facing surface, and into the central aperture.
In some aspects, the loading unit further includes a housing in which the staple cartridge is positioned, and the sensor of the sensor assembly is disposed against an outer wall of the housing. In certain aspects, the staple cartridge includes a tissue facing surface extending across a distal end of the staple cartridge between the outer and inner side walls, and the tether of the sensor assembly extends out of the respective staple pocket, across a portion of the tissue facing surface, and over an outer edge of the staple cartridge.
In aspects, the tether of the sensor assembly is formed from a bioabsorbable material. In aspects, the sensor is a temperature sensor.
In aspects, the sensor assembly further includes an annular band coupled to the sensor. In some aspects, the annular band is positioned against the inner side wall of the staple cartridge. In some aspects, the loading unit further includes a housing in which the staple cartridge is positioned, and the annular band is positioned around an outer wall of the housing.
In another aspect, the disclosure provides a method of monitoring tissue which includes implanting a sensor into tissue. The sensor is coupled to a staple by a tether and is configured to measure a physiological parameter of the tissue. The method further includes monitoring the physiological parameter of the tissue on a computing device via information transmitted from the sensor to the computing device by a sensor reader.
In aspects, implanting the sensor includes stapling the staple to the tissue.
In yet another aspect, the disclosure provides a tissue monitoring system including a sensor, a sensor reader, and at least one computing device. The sensor is releasably coupled to a staple by a tether and is configured to measure a physiological parameter of tissue and convert the measurement into a signal. The sensor reader is configured to receive the signal from the sensor, and the at least one computing device is configured to receive the signal from the sensor reader and process the signal into physiological data.
In aspects, the at least one computing device includes a display for displaying the physiological data.
In some aspects, the sensor reader is sized and shaped to be worn on a body of a patient and, in some other aspects, the sensor reader is integrated into the at least one computing device.
In aspects, the tissue monitoring system further includes a server configured to store and process the physiological data. In some aspects, the tissue monitoring system further includes a network through which signals are sent and received between the at least one computing device and the server.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the aspects described in this disclosure will be apparent from the description and drawings, and from the claims.
Various aspects of this disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:
Aspects of this disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed aspects are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.
Like reference numerals refer to similar or identical elements throughout the description of the figures. It should be understood that various elements of the disclosure, such as those plainly numbered, correspond to elements of the disclosure similarly prime numbered, such that redundant explanation of similar elements need not be repeated herein. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a clinician, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the clinician. As used herein, the term “patient” should be understood as referring to a human subject or other animal, and the term “clinician” should be understood as referring to a doctor, nurse, or other care provider and may include support personnel.
Turning now to
The surgical device 1 will further be described to the extent necessary to disclose aspects of the disclosure. For a detailed description of the structure and function of exemplary surgical devices, reference may be made to U.S. Pat. Nos. 10,327,779 and 10,426,468, the entire contents of each of which are incorporated herein by reference.
With continued reference to
The adapter assembly 20 has a proximal portion 20a including a knob housing 22 configured for operable connection to the handle assembly 10 and an elongate tubular body 24 extending distally from the knob housing 22 that is configured for operable connection to the end effector 30. The elongate tubular body 24 may be flexible or rigid, and/or straight or curved along a portion of the entirety thereof. The adapter assembly 20 is configured to enable communication between the handle assembly 10 and the end effector 30 and to relay power from the handle assembly 10 to the end effector 30.
The loading unit 32 of the end effector 30 is operably mounted and releasably coupled to a distal portion 20b of the adapter assembly 20. The loading unit 32 may be configured to concentrically fit within, or be otherwise connected, to the distal portion 20b of the adapter assembly 20 such that the loading unit 32 is removable and replaceable. The loading unit 32 is a disposable loading unit (“DLU”) that is releasably secured to the elongate tubular body 24 and thus, replaceable with a new loading unit 32. The loading unit 32 may be a single use loading unit (“SULU”) that is used one time and then replaced. For example, during a surgical procedure, the surgical device 1 can be used to staple and cut tissue, and the entire SULU is replaced after each staple and cut operation of the surgical device 1. The loading unit 32 may be a multi-use loading unit (“MULU”) that is re-useable a predetermined number of times. For example, during a surgical procedure, the surgical device 1 can be used to staple and cut tissue, and a reload assembly (e.g., a staple cartridge 42 as seen in
The anvil assembly 34 includes an anvil rod 36 and an anvil head 38 extending distally from the anvil rod 36. The anvil rod 36 is releasably connectable to the distal portion 20b of the adapter assembly 20. The anvil rod 36 may be connected to a trocar assembly 26, which extends through and is longitudinally movable relative to the elongate tubular body 24, to move the anvil assembly 34 away from the elongate tubular body 24 (e.g., to an open position), allowing tissue to be placed or released from between the anvil assembly 34 and the loading unit 32, and towards the elongate tubular body 24 (e.g., to a closed or approximated position), allowing tissue to be secured (e.g., clamped) between the anvil assembly 34 and the loading unit 32.
With reference now to
The staple cartridge 42 includes a cartridge body 44 and staples 60 supported within staple pockets 45 defined in the cartridge body 44. The cartridge body 44 has an annular configuration and defines a central aperture 47 therethrough. The cartridge body 44 includes an outer side wall 44a, an inner side wall 44b, and a tissue facing surface 46 extending across a distal end of the cartridge body 44 between the outer and inner side walls 44a, 44b. The tissue facing surface 46 has an outer edge 46a and an inner edge 46b. The staple pockets 45 extend through and are open at the tissue facing surface 46 for deployment of the staples 60 therethrough. The staple cartridge 42 is positioned within the housing 40 of the loading unit 32 such that the tissue facing surface 46 is disposed at a distal end of the loading unit 32.
Each of the staple pockets 45 houses one of the staples 60 therein. While the staple cartridge 44 is shown as including three annular rows of staple pockets 45, it should be understood that the staple cartridge 44 may include one or more rows, or partial rows, of staple pockets 45 in a variety of arrangements. It should further be understood that the shape of the staple pockets 45 may vary (e.g., the staple pockets may have a curved or angled shape) to accommodate the positioning of the staples 60 relative to each other, and/or the size of the staple pockets 45 may vary (e.g., one or more rows of staple pockets may be different in size from other row(s) of staple pockets) to accommodate different shaped and/or sized staples 60.
The staple pusher assembly 48 includes a staple pusher actuator 50 and a staple pusher 52 supported by the staple pusher actuator 50. The staple pusher actuator 50 is supported within the housing 40 and is longitudinally movable therein between a retracted position and an advanced position. The staple pusher actuator 50 includes an annular distal end 50a that engages an annular proximal end 52a of the staple pusher 52. The staple pusher 52 has fingers 52b extending distally therefrom, with each finger 52b received within a respective one of the staple pockets 45 of the staple cartridge 42. The fingers 52b are movable through the respective staple pocket 45 to eject the staples 60 from the staple pockets 45 when the staple pusher actuator 50 is moved distally within the housing 40 from the retracted position to the advanced position.
The knife assembly 54 includes a knife pusher 56 and a knife 58 supported by the knife pusher 56. The knife pusher 56 is supported within the housing 40 and is longitudinally movable therein between a retracted position and an advanced position. The knife pusher 56 includes an annular distal end portion 56a that engages an annular proximal end portion 58a of the knife 58. The knife 58 has a cylindrical shape with a distal rim defining a knife blade 59. The knife assembly 54 is disposed radially inwardly of the staple pusher assembly 48 so that, in use, as the staple pusher assembly 48 is advanced distally (e.g., axially outwardly) from the retracted position to the advanced position, the knife assembly 54 is also advanced distally such that the staples 60 are driven through tissue captured between the loading unit 32 and the anvil assembly 34 (
With continued reference to
The first and second legs 64a, 64b of the staple 60 extend in the same direction from the backspan 62 and are substantially parallel when in an unformed condition (e.g., having a U-like configuration). The first and second legs 64a, 64b are bent towards each other and the backspace 62 when in a formed condition (e.g., having a B-like configuration). In this manner, the staples 60 are introduced into tissue while in the unformed condition and then are formed or fastened onto the tissue to secure the staples thereto. It should be understood that the staples 60 may have other configurations, as is within the purview of those skilled in the art. Additionally, it should be understood that other types of tissue fasteners (e.g., clips, tacks, etc.) may be utilized with aspects of the disclosure.
As further seen in
The tether 70 has a first end portion 70a coupled (e.g., secured) to the staple 60 and a second end portion 70b coupled (e.g., secured) to the sensor 110. In aspects, the first end portion 70a of the tether 70 is coupled to the backspan 62 of the staple 60 and, in some aspects, the first end portion 70a of the tether 70 is coupled to a center 62c of the backspan 62. It is envisioned that the first end portion 70a of the tether 70 may be coupled to any portion of the staple 60. The tether 70 may be secured to the staple 60 by, for example, tying the first end portion 70a of the tether 70 around the staple 60, welding the first end portion 70a of the tether 70 to the staple 60, utilizing adhesives or coatings to secure the first end portion 70a of the tether 70 to the staple 60, among other techniques within the purview of those skilled in the art. The second end portion 70b of the tether 70 may be similarly secured to the sensor 110.
The sensor 110 includes a sensing assembly 112 (shown in phantom) disposed within a housing 114 (e.g., a capsule). In aspects, the sensing assembly 112 is an electronics assembly (e.g., a microchip) configured to measure a physiological parameter or property of the tissue or tissue environment in which the sensor 110 is placed and, in some aspects, is programmed to include patient identifying information. The sensing assembly 112 converts the measurement into a signal which is transmitted to a sensor reader 120 (
The housing 114 of the sensor 110 is formed from a biocompatible material that has suitable physical properties for the intended use in vivo. The biocompatible material should be non-fouling and non-damaging to surrounding tissue, and resistant to device-related infection. In aspects, the housing 114 is fabricated from a material which will not trigger a fibrotic response over the term of use such that the sensor 110 may be placed, e.g., made indwelling, in a temporary fashion adjacent a tissue of interest in a location which allows the sensor 110 to detect the physiological parameter of interest. The housing 114 may be formed from a polymer (e.g., polycarbonate, polyethyelene, or polysiloxane) and, in some aspects, is transparent or translucent. As an alternative to the housing 114, the sensor 110 may include a biocompatible coating encapsulating the sensing assembly 112.
The sensor 110 may be any type of sensor within the purview of those skilled in the art for measuring and/or identifying a physiological condition or state related to complications that may arise post-surgery (e.g., tissue perfusion, tissue ischemia and/or reperfusion, pH, bacterial load, temperature, among other physiological parameters of interest). The sensor 110 may be, for example, an optical sensor, an electrical sensor, a biochemical sensor, an acoustic sensor, a light sensor, etc. The sensors 110 disposed within the loading unit 32 (
As shown in
While the sensor assemblies 68 are all associated with staples 60 disposed within an innermost annular row of the staple pockets 45, it should be understood that the sensor assemblies 68 may be associated with staples 60 disposed in any of the staple pockets 45 (e.g., in a middle or outer annular row), and the length of the tethers 70 are adjusted accordingly to retain the position of the sensors 110 between the staple cartridge 42 and the knife 58. Further, while the sensors 110 are shown in a configuration that are evenly spaced relative to each other around the knife 58, it should be understood that the number, position, and/or pattern of the sensors 110 may vary depending upon the desired functionality once implanted into tissue, as is within the purview of those skilled in the art. Further still, while the sensors 110 are shown disposed adjacent to the inner side wall 44b of the staple cartridge 42, it should be understood that the sensors 110 may be otherwise positioned.
For example, as shown in
The surgical device 1 (
After the anastomosis is complete, and the surgical device 1 (
As shown in
The sensor reader 120 is configured as an extracorporeal device for collecting data from the sensors 110. In some aspects, the sensor reader 120 is sized and shaped to be worn on the body of the patient P. The sensor reader 120 may be, for example, incorporated into a pendant, a wristwatch, a badge, etc., or may be housed within a carrying bag or pouch. In such aspects, the tissue monitoring system 100 allows for patient mobility and, in certain aspects, post-surgical monitoring at home. The sensor reader 120 transmits the signals from the sensors 110 to the local computing device 130 via a wireless communication link. In some other aspects, the sensor reader 120 is integrated into the local computing device 130.
The local computing device 130 is configured to receive and process the signals from the sensor reader 120 into physiological data and to display the physiological data. The local computing device 130 generally includes one or more processors and associated memories, hardware components (e.g., a communications hardware-module for communicating with the sensor reader), software (e.g., computer code stored in the memory and executed by the processor) for applications, such as, for example, receiving, processing and displaying the signals from the sensors as physiological data), and a display (e.g., a screen) to which the physiological data is outputted for viewing by the patient P and/or a clinician.
In some aspects, the local computing device 130 is a portable device, such as a laptop, a netbook, a tablet, a phone, and/or any other suitable device operable to send and receive signals, process the signals from the sensors 110 into physiological data, store and retrieve the signals and/or physiological data, and/or display the physiological data. In some other aspects, the local computing device 130 is a computer workstation (e.g., at a hospital). The local computing device 130 enables the patient P and/or a local clinician to monitor the collected physiological data.
The wireless communication link between the sensors 110, the sensor reader, 120, and the local computing device 130 may transmit data via, for example, frequencies appropriate for a personal area network (such as Bluetooth, WiFi, cellular, or infrared communications), or near-field, local, or wide area network frequencies, such as radio frequencies or medical body area network frequencies.
In a method of using the monitoring system 100, the sensors 110 are implanted in the patient P adjacent an anastomosis site, as described above. The sensor reader 120 is placed within sufficient proximity of the patient P to enable the sensor reader 120 to receive signals from the sensors 110. The patient P and/or a clinician monitors the physiological data on the local computing device 130. In some aspects, the local computing device 130 may provide an alert (e.g., a visual, audible, and/or haptic indication) when the physiological data is indicative of a complication.
The signals produced from the sensors 110 contain information about a specific characteristic of the tissue or tissue environment which, in turn, is processed into physiological data to impart information about the condition or state of the tissue or tissue environment. This information is used to determine a proper course of treatment dependent upon the physiological data received. For example, if one or more sensors 110 transmits information that meets a specified criterion indicating an abnormal physiological condition or state, a course of treatment may be selected, such as, for example, antibiotic therapy, surgical intervention, etc. On the other hand, if the information is within a range of a normal physiological condition or state, no further action is required on the part of the patient P or a clinician.
As shown in
The local computing device 130, the remote computing device 140, and the server 150 are in communication with each other via the network 160, and each receives and/or sends signals over the network 160 via wireless communication links. The network 160 may be the internet, an intranet, a personal, local, or wide area network, etc. The remote computing device 140 may be functionally and/or structurally similar to the local computing device 130 such that the signals from the sensors 110 may be received, processed, and/or displayed by either or both the local and remote computing devices 130, 140, thereby enabling local and/or remote users (e.g., clinician C) to monitor the patient P. The server 150 may perform additional processing on the signals received from the sensors 110 and/or the physiological data received from the local or remote computing devices 130, 140, or may simply forward received information to the local and/or remote computers 130, 140. In some aspects, the server 150 may include databases storing information from sensors 110 implanted in a number of different patients, as well as, for example, electronic health records or personal health records of the patients.
The tissue monitoring system 101 enables real time monitoring of the physiological parameter of interest, such as temperature. For example, temperature readings are taken in real time and compared against self-historic temperature readings and trends to detect changes indicative of anastomotic leak. When a leak-like temperature pattern occurs, the tissue monitoring system 101 generates events to alert the clinician C and/or the patient P to take appropriate action (e.g., go to the hospital, contact the clinician, etc.). In some aspects, a rapid drop in temperature and/or a loss of signal indicates the sensors 110 have exited the body and the monitoring period has ended.
Turning now to
As shown in
As seen in
Alternatively, as shown in
Referring now to
Once positioned within tissue sections T1, T2, the surgical device 1 (
Referring now to
The tether 70′″ is a conductive wire that is a releasably positioned on the tissue facing surface 46 of the staple cartridge 42 and the sensor 110′″ is secured to the first and second end portions 70a′″, 70b′″ (
It should be understood that one or more of the sensor assemblies 68, 68′, 68″, 68′″ may be used together in a loading unit to measure physiological parameters, such as temperature, on the stapled tissue as well as adjacent to the stapled tissue by different monitoring modalities.
Additionally or alternatively, the anvil assembly 34 (
While described as being used in colectomy procedures, it should be understood that the sensors of the disclosure may be utilized in any number of other surgeries that can benefit from early infection detection. The systems and methods may be used, for example, in low anterior resection, hemi-colectomy procedures, jejunostomy, roux-en-Y gastric bypass, hernia repair, and hysterectomy.
While illustrated as being used on a handheld powered surgical device hereinabove, it is contemplated, and within the scope of the disclosure for the end effector to be configured for use with handheld manually-actuated surgical devices, as well as other electrosurgical instruments. For example, the end effector may be configured to be detachably coupleable to (or permanently coupled in the case of disposable instruments) and controllable by a handheld manually actuated surgical device, such as those shown and described in U.S. Pat. Nos. 4,473,077 and 5,915,616, the entire content of each of which is incorporated herein by reference. As another example, the end effector may be configured to be detachably coupleable to and controllable by a robotic surgical system, such as the robotic surgical system shown and described in U.S. Patent Appl. Pub. No. 2012/0116416, the entire content of which is incorporated herein by reference.
While aspects of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown and described in connection with certain aspects of the disclosure may be combined with the elements and features of certain other aspects without departing from the scope of the disclosure, and that such modifications and variation are also included within the scope of the disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure and the subject matter of the disclosure is not limited by what has been particularly shown and described. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given.
Number | Name | Date | Kind |
---|---|---|---|
3193165 | Akhalaya et al. | Jul 1965 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3771526 | Rudie | Nov 1973 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4289133 | Rothfuss | Sep 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4319576 | Rothfuss | Mar 1982 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4573468 | Conta et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4646745 | Noiles | Mar 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4717063 | Ebihara | Jan 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4776506 | Green | Oct 1988 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4893662 | Gervasi | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4930674 | Barak | Jun 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
5005749 | Aranyi | Apr 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047039 | Avant et al. | Sep 1991 | A |
5104025 | Main et al. | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5139513 | Segato | Aug 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5188638 | Tzakis | Feb 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5261920 | Main et al. | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5282810 | Allen et al. | Feb 1994 | A |
5285944 | Green et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5314435 | Green et al. | May 1994 | A |
5314436 | Wilk | May 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5346115 | Perouse et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5360154 | Green | Nov 1994 | A |
5368215 | Green et al. | Nov 1994 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447514 | Gerry et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464415 | Chen | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5522534 | Viola et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5609285 | Grant et al. | Mar 1997 | A |
5626591 | Kockerling et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5709335 | Heck | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5749896 | Cook | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5902236 | Iversen | May 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6068636 | Chen | May 2000 | A |
6083241 | Longo et al. | Jul 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6253984 | Heck et al. | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6279809 | Nicolo | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6398795 | McAlister et al. | Jun 2002 | B1 |
6402008 | Lucas | Jun 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450390 | Heck et al. | Sep 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6486588 | Doron et al. | Nov 2002 | B2 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6494877 | Odell et al. | Dec 2002 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520398 | Nicolo | Feb 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6551334 | Blatter et al. | Apr 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605098 | Nobis et al. | Aug 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6631837 | Heck | Oct 2003 | B1 |
6632227 | Adams | Oct 2003 | B2 |
6632237 | Ben-David et al. | Oct 2003 | B2 |
6652542 | Blatter et al. | Nov 2003 | B2 |
6659327 | Heck et al. | Dec 2003 | B2 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6685079 | Sharma et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716222 | McAlister et al. | Apr 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6742692 | Hartwick | Jun 2004 | B2 |
6743244 | Blatter et al. | Jun 2004 | B2 |
6763993 | Bolduc et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6820791 | Adams | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6852122 | Rush | Feb 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6905504 | Vargas | Jun 2005 | B1 |
6938814 | Sharma et al. | Sep 2005 | B2 |
6942675 | Vargas | Sep 2005 | B1 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6957758 | Aranyi | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981979 | Nicolo | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059510 | Orban, III | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7122044 | Bolduc et al. | Oct 2006 | B2 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7195142 | Orban, III | Mar 2007 | B2 |
7207168 | Doepker et al. | Apr 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
RE39841 | Bilotti et al. | Sep 2007 | E |
7285125 | Viola | Oct 2007 | B2 |
7297112 | Zhou et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7325713 | Aranyi | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335212 | Edoga et al. | Feb 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7399305 | Csiky et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7401722 | Hur | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7416530 | Turner et al. | Aug 2008 | B2 |
7422137 | Manzo | Sep 2008 | B2 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7431191 | Milliman | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7494038 | Milliman | Feb 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7516877 | Aranyi | Apr 2009 | B2 |
7527185 | Harari et al. | May 2009 | B2 |
7537602 | Whitman | May 2009 | B2 |
7540839 | Butler et al. | Jun 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7559451 | Sharma et al. | Jul 2009 | B2 |
7585306 | Abbott et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7635385 | Milliman et al. | Dec 2009 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686762 | Najafi et al. | Mar 2010 | B1 |
7694864 | Okada et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7743958 | Orban, III | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771440 | Ortiz et al. | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909219 | Cole et al. | Mar 2011 | B2 |
7909222 | Cole et al. | Mar 2011 | B2 |
7909223 | Cole et al. | Mar 2011 | B2 |
7913892 | Cole et al. | Mar 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922062 | Cole et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7931183 | Orban, III | Apr 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942302 | Roby et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7975895 | Milliman | Jul 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006701 | Bilotti et al. | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011554 | Milliman | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8020741 | Cole et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066169 | Viola | Nov 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070037 | Csiky | Dec 2011 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8109427 | Orban, III | Feb 2012 | B2 |
8113405 | Milliman | Feb 2012 | B2 |
8113406 | Holsten et al. | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8181838 | Milliman et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8203782 | Brueck et al. | Jun 2012 | B2 |
8211130 | Viola | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8267301 | Milliman et al. | Sep 2012 | B2 |
8272552 | Holsten et al. | Sep 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8281975 | Criscuolo et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8317073 | Milliman et al. | Nov 2012 | B2 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8328060 | Jankowski et al. | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8343185 | Milliman et al. | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8353930 | Heinrich et al. | Jan 2013 | B2 |
8356740 | Knodel | Jan 2013 | B1 |
8360295 | Milliman et al. | Jan 2013 | B2 |
8365974 | Milliman | Feb 2013 | B2 |
8403942 | Milliman et al. | Mar 2013 | B2 |
8408441 | Wenchell et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8418905 | Milliman | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424535 | Hessler et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8430291 | Heinrich et al. | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8453911 | Milliman et al. | Jun 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8486070 | Morgan et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8529599 | Holsten | Sep 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8567655 | Nalagatla et al. | Oct 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8590763 | Milliman | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8608047 | Holsten et al. | Dec 2013 | B2 |
8616428 | Milliman et al. | Dec 2013 | B2 |
8616429 | Viola | Dec 2013 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8640940 | Ohdaira | Feb 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663258 | Bettuchi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672931 | Goldboss et al. | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8678264 | Racenet et al. | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8684248 | Milliman | Apr 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684251 | Rebuffat et al. | Apr 2014 | B2 |
8684252 | Patel et al. | Apr 2014 | B2 |
8695864 | Hausen | Apr 2014 | B1 |
8708212 | Williams | Apr 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8733611 | Milliman | May 2014 | B2 |
8733615 | Nalagatla et al. | May 2014 | B2 |
8746531 | Wenchell et al. | Jun 2014 | B2 |
8746532 | Nalagatla et al. | Jun 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8821523 | Heinrich et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8833629 | Nalagatla et al. | Sep 2014 | B2 |
8840004 | Holsten et al. | Sep 2014 | B2 |
8844792 | Viola | Sep 2014 | B2 |
8845661 | D'Arcangelo et al. | Sep 2014 | B2 |
8870911 | Williams et al. | Oct 2014 | B2 |
8875974 | Rebuffat et al. | Nov 2014 | B2 |
8893948 | Williams | Nov 2014 | B2 |
8910847 | Nalagatla et al. | Dec 2014 | B2 |
8915866 | Nycz | Dec 2014 | B2 |
8925785 | Holsten et al. | Jan 2015 | B2 |
8925786 | Holsten et al. | Jan 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9095340 | Felder et al. | Aug 2015 | B2 |
9113871 | Milliman et al. | Aug 2015 | B2 |
9113877 | Whitman et al. | Aug 2015 | B1 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9155536 | Hausen et al. | Oct 2015 | B1 |
9161757 | Bettuchi | Oct 2015 | B2 |
9204881 | Penna | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9301763 | Qiao et al. | Apr 2016 | B2 |
9307994 | Gresham et al. | Apr 2016 | B2 |
9326773 | Casasanta, Jr. et al. | May 2016 | B2 |
9351729 | Orban, III et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9370366 | Mozdzierz | Jun 2016 | B2 |
9370367 | Mozdzierz | Jun 2016 | B2 |
9393014 | Milliman | Jul 2016 | B2 |
9408603 | Patel | Aug 2016 | B2 |
9421013 | Patel et al. | Aug 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9451962 | Olson | Sep 2016 | B2 |
9456821 | Bettuchi et al. | Oct 2016 | B2 |
9463022 | Swayze et al. | Oct 2016 | B2 |
9492166 | Kostrzewski | Nov 2016 | B2 |
9498222 | Scheib et al. | Nov 2016 | B2 |
9504470 | Milliman | Nov 2016 | B2 |
9522005 | Williams et al. | Dec 2016 | B2 |
9549738 | Mandakolathur Vasudevan et al. | Jan 2017 | B2 |
9572572 | Williams | Feb 2017 | B2 |
9579102 | Holsten et al. | Feb 2017 | B2 |
9592055 | Milliman et al. | Mar 2017 | B2 |
9592056 | Mozdzierz et al. | Mar 2017 | B2 |
9597081 | Swayze et al. | Mar 2017 | B2 |
9597082 | Stokes et al. | Mar 2017 | B2 |
9603599 | Miller et al. | Mar 2017 | B2 |
9629624 | Hessler et al. | Apr 2017 | B2 |
9636112 | Penna et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649113 | Ma | May 2017 | B2 |
9668740 | Williams | Jun 2017 | B2 |
9675348 | Smith et al. | Jun 2017 | B2 |
9681872 | Jankowski et al. | Jun 2017 | B2 |
9681873 | Smith et al. | Jun 2017 | B2 |
9687234 | Smith et al. | Jun 2017 | B2 |
9693773 | Williams | Jul 2017 | B2 |
9700309 | Jaworek | Jul 2017 | B2 |
9706999 | Motai | Jul 2017 | B2 |
9713469 | Leimbach et al. | Jul 2017 | B2 |
9737304 | Bettuchi et al. | Aug 2017 | B2 |
9743955 | Hill et al. | Aug 2017 | B2 |
9750503 | Milliman | Sep 2017 | B2 |
9763663 | Weisshaupt et al. | Sep 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9833235 | Penna et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9861368 | Racenet et al. | Jan 2018 | B2 |
9883862 | Rebuffat et al. | Feb 2018 | B2 |
9907600 | Stulen et al. | Mar 2018 | B2 |
10039549 | Williams | Aug 2018 | B2 |
10085744 | Williams et al. | Oct 2018 | B2 |
10105137 | Holsten et al. | Oct 2018 | B2 |
10117655 | Scirica et al. | Nov 2018 | B2 |
10117656 | Sgroi, Jr. | Nov 2018 | B2 |
10136888 | Chen et al. | Nov 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10154845 | Williams | Dec 2018 | B2 |
10172622 | Kelley | Jan 2019 | B2 |
10178994 | Lee et al. | Jan 2019 | B2 |
10188386 | Measamer et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
10194911 | Miller et al. | Feb 2019 | B2 |
10226253 | DiNardo et al. | Mar 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10271842 | Fox et al. | Apr 2019 | B2 |
10271843 | Shi et al. | Apr 2019 | B2 |
10307157 | Miller et al. | Jun 2019 | B2 |
10321908 | Carter et al. | Jun 2019 | B2 |
10327779 | Richard et al. | Jun 2019 | B2 |
10342629 | Penna et al. | Jul 2019 | B2 |
10405855 | Stager et al. | Sep 2019 | B2 |
10413299 | Milliman | Sep 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426480 | Scirica et al. | Oct 2019 | B2 |
10433848 | Chen et al. | Oct 2019 | B2 |
10456134 | DiNardo et al. | Oct 2019 | B2 |
10463365 | Williams | Nov 2019 | B2 |
10463373 | Mozdzierz et al. | Nov 2019 | B2 |
10463374 | Sgroi, Jr. | Nov 2019 | B2 |
10470770 | Shelton, IV et al. | Nov 2019 | B2 |
10470771 | D'Agostino et al. | Nov 2019 | B2 |
10499922 | Sgroi, Jr. | Dec 2019 | B2 |
10506920 | Hasser et al. | Dec 2019 | B2 |
10507039 | Williams | Dec 2019 | B2 |
10512467 | Swayze et al. | Dec 2019 | B2 |
10524795 | Nalagatla et al. | Jan 2020 | B2 |
10524798 | Williams | Jan 2020 | B2 |
10524868 | Cooper et al. | Jan 2020 | B2 |
10537331 | Scirica et al. | Jan 2020 | B2 |
10542993 | Guerrera et al. | Jan 2020 | B2 |
10548598 | Prescott et al. | Feb 2020 | B2 |
10561424 | Penna et al. | Feb 2020 | B2 |
10568631 | Rebuffat et al. | Feb 2020 | B2 |
10575847 | Hessler et al. | Mar 2020 | B2 |
10595871 | Racenet et al. | Mar 2020 | B2 |
10595872 | Milliman | Mar 2020 | B2 |
10603042 | Sgroi | Mar 2020 | B2 |
10624646 | Bae et al. | Apr 2020 | B2 |
10639041 | Williams | May 2020 | B2 |
10653414 | Williams | May 2020 | B2 |
10898196 | Sapienza et al. | Jan 2021 | B2 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20030111507 | Nunez | Jun 2003 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040236192 | Necola Shehada et al. | Nov 2004 | A1 |
20040243207 | Olson et al. | Dec 2004 | A1 |
20050004478 | Fitz | Jan 2005 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050107813 | Gilete Garcia | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050158360 | Falotico et al. | Jul 2005 | A1 |
20050165317 | Turner et al. | Jul 2005 | A1 |
20050173490 | Shelton | Aug 2005 | A1 |
20060000869 | Fontayne | Jan 2006 | A1 |
20060011698 | Okada et al. | Jan 2006 | A1 |
20060089547 | Sarussi | Apr 2006 | A1 |
20060200012 | Mansour et al. | Sep 2006 | A1 |
20060200220 | Brown et al. | Sep 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060212069 | Shelton | Sep 2006 | A1 |
20070027371 | Benaron et al. | Feb 2007 | A1 |
20070027473 | Vresh et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070060952 | Roby et al. | Mar 2007 | A1 |
20070084896 | Doll et al. | Apr 2007 | A1 |
20080033273 | Zhou et al. | Feb 2008 | A1 |
20080058652 | Payne | Mar 2008 | A1 |
20080108885 | Colvin | May 2008 | A1 |
20080149685 | Smith et al. | Jun 2008 | A1 |
20080154101 | Jain et al. | Jun 2008 | A1 |
20080154288 | Belson | Jun 2008 | A1 |
20080287788 | Richardson et al. | Nov 2008 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090054908 | Zand et al. | Feb 2009 | A1 |
20090114701 | Zemlok et al. | May 2009 | A1 |
20090130021 | Munch et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090163782 | Shehada et al. | Jun 2009 | A1 |
20090212088 | Okada et al. | Aug 2009 | A1 |
20090234248 | Zand et al. | Sep 2009 | A1 |
20090236392 | Cole et al. | Sep 2009 | A1 |
20090236398 | Cole et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20090299153 | Gerber et al. | Dec 2009 | A1 |
20100019016 | Edoga et al. | Jan 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100081895 | Zand | Apr 2010 | A1 |
20100084453 | Hu | Apr 2010 | A1 |
20100106194 | Bonutti et al. | Apr 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100224668 | Fontayne et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110114697 | Baxte, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20120012638 | Huang | Jan 2012 | A1 |
20120116416 | Neff et al. | May 2012 | A1 |
20120145755 | Kahn | Jun 2012 | A1 |
20120193395 | Pastorelli et al. | Aug 2012 | A1 |
20120193396 | Zemlok et al. | Aug 2012 | A1 |
20120193398 | Williams et al. | Aug 2012 | A1 |
20120232339 | Csiky | Sep 2012 | A1 |
20120273548 | Ma | Nov 2012 | A1 |
20130020372 | Jankowski et al. | Jan 2013 | A1 |
20130020373 | Smith et al. | Jan 2013 | A1 |
20130032628 | Li et al. | Feb 2013 | A1 |
20130060258 | Giacomantonio | Mar 2013 | A1 |
20130105544 | Mozdzierz et al. | May 2013 | A1 |
20130105551 | Zingman | May 2013 | A1 |
20130126580 | Smith et al. | May 2013 | A1 |
20130153631 | Vasudevan et al. | Jun 2013 | A1 |
20130172717 | Halpern et al. | Jul 2013 | A1 |
20130175315 | Milliman | Jul 2013 | A1 |
20130175318 | Felder et al. | Jul 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130181036 | Olson et al. | Jul 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130200131 | Racenet et al. | Aug 2013 | A1 |
20130206816 | Penna | Aug 2013 | A1 |
20130240597 | Milliman et al. | Sep 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130284792 | Ma | Oct 2013 | A1 |
20130289367 | Kruglick et al. | Oct 2013 | A1 |
20140008413 | Williams | Jan 2014 | A1 |
20140046352 | Reboa et al. | Feb 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20140284370 | Sahin | Sep 2014 | A1 |
20150083772 | Miller et al. | Mar 2015 | A1 |
20150173763 | Liu | Jun 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
908529 | Aug 1972 | CA |
2805365 | Aug 2013 | CA |
104039244 | Sep 2014 | CN |
104042288 | Sep 2014 | CN |
104367360 | Feb 2015 | CN |
1057729 | May 1959 | DE |
3301713 | Jul 1984 | DE |
0152382 | Aug 1985 | EP |
0173451 | Mar 1986 | EP |
0190022 | Aug 1986 | EP |
0282157 | Sep 1988 | EP |
0503689 | Sep 1992 | EP |
1354560 | Oct 2003 | EP |
1671597 | Jun 2006 | EP |
2138118 | Dec 2009 | EP |
2168510 | Mar 2010 | EP |
2238926 | Oct 2010 | EP |
2524656 | Nov 2012 | EP |
3023077 | May 2016 | EP |
3381380 | Oct 2018 | EP |
3412225 | Dec 2018 | EP |
3506274 | Jul 2019 | EP |
3549545 | Oct 2019 | EP |
1136020 | May 1957 | FR |
1461464 | Feb 1966 | FR |
1588250 | Apr 1970 | FR |
2443239 | Jul 1980 | FR |
1185292 | Mar 1970 | GB |
2016991 | Sep 1979 | GB |
2070499 | Sep 1981 | GB |
2004147969 | May 2004 | JP |
2013138860 | Jul 2013 | JP |
7711347 | Apr 1979 | NL |
1509052 | Sep 1989 | SU |
8706448 | Nov 1987 | WO |
8900406 | Jan 1989 | WO |
9006085 | Jun 1990 | WO |
9835614 | Aug 1998 | WO |
0154594 | Aug 2001 | WO |
02080781 | Oct 2002 | WO |
2004047654 | Jun 2004 | WO |
2008107918 | Sep 2008 | WO |
2019130087 | Jul 2019 | WO |
2020021433 | Jan 2020 | WO |
Entry |
---|
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2022/058355 dated Dec. 15, 2022, 17 pages. |
Extended European Search Report from Appl. No. 14181908.6 dated May 26, 2015. |
European Examination Report from Appl. No. 14181908.6 dated May 3, 2016. |
Australian Examination Report dated Apr. 16, 2013 in corresponding Australian Application No. 2012202180. |
Number | Date | Country | |
---|---|---|---|
20230076424 A1 | Mar 2023 | US |