Systems and methods for posterior dynamic stabilization of the spine

Information

  • Patent Grant
  • 8025680
  • Patent Number
    8,025,680
  • Date Filed
    Wednesday, May 17, 2006
    18 years ago
  • Date Issued
    Tuesday, September 27, 2011
    13 years ago
Abstract
Systems and devices for dynamically stabilizing the spine are provided. The systems include a superior component for attachment to a superior vertebra of a spinal motion segment and an inferior component for attachment to an inferior vertebral of a spinal motion segment. The interconnection between the two components enables the spinal motion segment to move in a manner that mimics the natural motion of the spinal motion segment while substantially offloading the facet joints of the spine. Methods are also provided for stabilizing the spine and for implanting the subject systems.
Description
FIELD OF THE INVENTION

The present invention is directed towards the treatment of spinal disorders and pain. More particularly, the present invention is directed to systems and methods of treating the spine, which eliminate pain and enable spinal motion, which effectively mimic that of a normally functioning spine.


BACKGROUND OF THE INVENTION


FIGS. 1A and 1B illustrate a portion of the human spine having a superior vertebra 2 and an inferior vertebra 4, with an intervertebral disc 6 located in between the two vertebral bodies. The superior vertebra 2 has superior facet joints 8a and 8b, inferior facet joints 10a and 10b, posterior arch 16 and spinous process 18. Pedicles 3a and 3b interconnect the respective superior facet joints 8a, 8b to the vertebral body 2. Extending laterally from superior facet joints 8a, 8b are transverse processes 7a and 7b, respectively.


Extending between each inferior facet joint 10a and 10b and the spinous process 18 are lamina 5a and 5b, respectively. Similarly, inferior vertebra 4 has superior facet joints 12a and 12b, superior pedicles 9a and 9b, transverse processes 11a and 11b, inferior facet joints 14a and 14b, lamina 15a and 15b, posterior arch 20, spinous process 22.


The superior vertebra with its inferior facets, the inferior vertebra with its superior facets, the intervertebral disc, and seven spinal ligaments (not shown) extending between the superior and inferior vertebrae together comprise a spinal motion segment or functional spine unit. Each spinal motion segment enables motion along three orthogonal axes, both in rotation and in translation. The various spinal motions are illustrated in FIGS. 1C-1E. In particular, FIG. 1C illustrates flexion and extension motions and axial loading, FIG. 1D illustrates lateral bending motion and translation, and FIG. 1E illustrates axial rotational motion. A normally functioning spinal motion segment provides physiological limits and stiffness in each rotational and translational direction to create a stable and strong column structure to support physiological loads.


Traumatic, inflammatory, metabolic, synovial, neoplastic and degenerative disorders of the spine can produce debilitating pain that can affect a spinal motion segment's ability to properly function. The specific location or source of spinal pain is most often an affected intervertebral disc or facet joint, and in particular the nerves in and around the intervertebral disc or facet joint. Often, a disorder in one location or spinal component can lead to eventual deterioration or disorder, and ultimately, pain in another.


Spine fusion (arthrodesis) is a procedure in which two or more adjacent vertebral bodies are fused together once the natural height of the degenerated disc has been restored. It is one of the most common approaches to alleviating various types of spinal pain, particularly pain associated with one or more affected intervertebral discs. However, fusion is only as good as the ability to restore disc height to relieve the pain by taking pressure off the nerves, nerve roots, and/or articulating surfaces—i.e., facet joints and end plates of the vertebral bodies. While spine fusion generally helps to eliminate certain types of pain, it has been shown to decrease function by limiting the range of motion for patients in flexion, extension, rotation and lateral bending. Furthermore, fusion creates increased stresses on adjacent non-fused motion segments and accelerated degeneration of the motion segments. Additionally, pseudarthrosis (resulting from an incomplete or ineffective fusion) may not provide stability of the degenerative spine or the expected pain-relief for the patient. Also, the device(s) used for fusion, whether artificial or biological, may migrate out of the fusion site creating significant new problems for the patient. In addition, fusion of the spine causes the increased transfer of stresses to the anatomical structures above and below the site of fusion. The additional stresses may cause the accelerated degeneration of anatomical structures above and below the original site of fixation, thus necessitating further surgical intervention in order to arrest the degeneration of these levels, to restore stability of the degenerated spine, and to relieve the pain associated with this process.


Various technologies and approaches have been developed to treat spinal pain without fusion in order to maintain or recreate the natural biomechanics of the spine. To this end, significant efforts are being made in the use of implantable artificial intervertebral discs. Artificial discs are intended to replace the natural disc while restoring articulation between vertebral bodies so as to recreate the full range of motion normally allowed by the elastic properties of the natural disc. Unfortunately, the currently available artificial discs do not adequately address all of the mechanics of motion for the spinal column.


It has been found that the facet joints can also be a significant source of spinal disorders and debilitating pain. For example, a patient may suffer from arthritic facet joints, severe facet joint tropism, otherwise deformed facet joints, facet joint injuries, etc. These disorders lead to spinal stenosis, degenerative spondylolithesis, and/or isthmic spondylotlisthesis, pinching the nerves which extend or exit the foramen, i.e., the space between the intervetebral bodies, and between the affected vertebrae.


Current interventions for the treatment of facet joint disorders have not been found to provide completely successful results. One reason may be that facet disorders and degenerative disease are usually preceded by degenerative problems associated with the disc that may result in stensosis, etc. As the disc degenerates, the height of the vertebral disc starts to collapse which increases the stresses on the facet joint, which in turn causes degeneration of the facet joint. Degeneration of the structures in the spine leads to increased stresses on the structures. As a natural response the body attempts to build bone that typically leads to stenosis of the spinal canal or the foramen. Facetectomy (removal of the facet joints) may provide some pain relief, but as the facet joints help to support axial, torsional, and shear loads (approximately 20% of the total load) that act on the spinal column in addition to providing a sliding articulation and mechanism for load transmission, their removal may undesiredly allow hypermobility of the spine. Laminectomy (removal of the lamina, including the spinal arch and the spinous process) may also provide pain relief associated with facet joint disorders; however, the spine is made less stable and is subject to hypermobility. Problems with the facet joints can also complicate treatments associated with other portions of the spine. In fact, contraindications for disc replacement include arthritic facet joints, absent facet joints, severe facet joint tropism, or otherwise deformed facet joints due to the inability of the artificial disc (when used with compromised or missing facet joints) to properly restore the natural height of the disc while allowing natural biomechanics of the spinal motion segment.


While various attempts have been made at facet joint replacement, they have been inadequate. This is due to the fact that prosthetic facet joints preserve existing bony structures and therefore do not address pathologies which affect facet joints themselves. Certain facet joint prostheses, such as those disclosed in U.S. Pat. No. 6,132,464, are intended to be supported on the lamina or the posterior arch. As the lamina is a very complex and highly variable anatomical structure, it is very difficult to design a prosthesis that provides reproducible positioning against the lamina to correctly locate the prosthetic facet joints. In addition, when facet joint replacement involves complete removal and replacement of the natural facetjoint, as disclosed in U.S. Pat. No. 6,579,319, the prosthesis is unlikely to endure the loads and cycling experienced by the vertebra. Thus, the facet joint replacement may be subject to long-term displacement. Furthermore, when facet joint disorders are accompanied by disease or trauma to other structures of a vertebra (such as the lamina, spinous process, and/or transverse processes), facet joint replacement is insufficient to treat the problem(s).


Most recently, surgical-based technologies, referred to as “dynamic posterior stabilization,” have been developed to address spinal pain resulting from more than one disorder, when more than one structure of the spine have been compromised. An objective of such technologies is to provide the support of fusion-based implants while maximizing the natural biomechanics of the spine. This approach helps reduce the amount of stress transmitted or shifted to the level above or below that which is being treated to reduce the acceleration of the degenerative process typically seen in rigid devices used to fuse the spine. Dynamic posterior stabilization systems typically fall into one of two general categories: (1) interspinous spacers and (2) posterior pedicle screw-based systems.


Examples of interspinous spacers are disclosed in U.S. Pat. Nos. Re. 36,211, 5,645,599, 6,695,842, 6,716,245 and 6,761,720. The spacers, which are made of either a hard or compliant material, are placed between adjacent spinous processes. Because the interspinous spacers involve attachment to the spinous processes, use of these types of systems is limited to applications where the spinous processes are uncompromised and healthy.


Examples of pedicle screw-based systems are disclosed in U.S. Pat. Nos. 5,015,247, 5,484,437, 5,489,308, 5,609,636 and 5,658,337, 5,741,253, 6,080,155, 6,096,038, 6,264,656 and 6,270,498. These types of systems involve the use of screws which are positioned in the vertebral body through the pedicle. Certain types of these pedicle screw-based systems may be used to augment compromised facet joints, while others require removal of the spinous process and/or the facet joints for implantation. One such system, the Zimmer Spine Dynesys® employs a cord which is extended between the pedicle screws and a fairly rigid spacer which is passed over the cord and positioned between the screws. While this system is able to provide load sharing and restoration of disc height, because it is so rigid, it is not effective in preserving the natural motion of the spinal segment into which it is implanted. Other pedicle screw-based systems employ articulating joints between the vertebral bodies which are intended to replace the facet joints, and are anchored to the veterbral bodies via the pedicle screws.


With the limitations of current spine stabilization technologies, there is clearly a need for an improved means and method for dynamic posterior stabilization of the spine which address the drawbacks of prior devices. In particular, it would be highly beneficial to have a dynamic stabilization system that enables the spine to mimic the motion of one or more healthy and uncompromised vertebral segments without limiting natural extension/flexion, axial rotational and lateral bending movements. It would be additionally beneficial if such a system could be used to treat all spinal indications regardless of pain source, prevent or slow the deterioration of the intervertebral discs, or even restore disc height, and be used in conjunction with prosthetic intervertebral discs.


SUMMARY OF THE INVENTION

The present invention provides methods, systems and devices for dynamically stabilizing the spine. The systems include a superior component for attachment to a superior vertebra of a spinal motion segment and an inferior component for attachment to an inferior vertebra of a spinal motion segment. The interconnection between the two components enables the spinal motion segment to move in a manner that mimics the natural motion of the spinal motion segment. In various embodiments, the superior and/or inferior components are connected by one or more strut members which interface or adjustably interconnect between the two components. In certain embodiments, the strut or struts include at least one joint which may be compressible and/or distractable. In other embodiments, the length, stiffness or shape of the strut may be adjustable. The systems may be configured to include additional components for the treatment of more than one spinal segment. Moreover, certain of the implementation methods may be configured for implantation without the removal of any portion of the spinal motion segment.


The present invention also includes methods for stabilizing at least one spinal motion segment where the methods involve implantation of the subject systems. attaching the components to the vertebrae.


Certain embodiments of the invention provide a sustaining force to distract the facets to offload the joint which reduces or eliminates facet pain, while allowing maximum mobility of the natural movement of the spine. Targeted and predetermined limitations to mobility may also be provided. The load may be shared with an existing facet or the load may be fully supported by devices according to the invention, which may include axial, torsional, and shearing loads. Devices according to the invention may provide stiffness, e.g., resistance to motion or hypermobility, to limit previous physiological stiffness, e.g., after bone removal, or to further resist motion from current stiffness, e.g., to prevent pain.


Advantages of certain embodiments of the invention may include one or more of the following. The natural biomechanics and motion of the spine are maintained to a greater degree than in prior systems, including fusion. Load on the facet joints may be offloaded. Spinal motion is preserved, including at least four degrees of freedom including forward flexion and extension, axial rotation, lateral bending and translation. Devices according to the invention may have a low profile and be minimally invasive and they may be conveniently delivered through a cannula. In other words, devices according to embodiments of the invention may be delivered in a minimally invasive way, or in a “mini-open” procedure, or in an open procedure, or all three. The degrees of freedom of certain embodiments of the invention are such that accidental loosening of the pedicle screws over time in use is minimized over that encountered in prior systems.


Systems according to the invention may be employed to treat various spinal disorders and pain, including those involving arthritic facet joints, severe facet joint tropism, facetjoint injuries, deformed facetjoints, scoliosis, etc.


These and other objects, advantages, and features of the invention will become apparent to those persons skilled in the art upon reading the details of the invention as more fully described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity. Included in the drawings are the following figures:



FIGS. 1A and 1B illustrate perspective views of a portion of the human spine having two vertebral segments, where the spinous process and the lamina of the superior vertebra have been resected in FIG. 1B.



FIGS. 1C, 1D and 1E illustrate sagittal, anterior-posterior (A-P), and cephalad-caudal views, respectively, of the spinal segments of FIGS. 1A and 1B under going various motion.



FIG. 2 illustrates a perspective exploded view of an embodiment of a dynamic stabilization system of the present invention.



FIG. 3 illustrates additional features of a swivel and cap feature of FIG. 2.



FIGS. 4A-4D illustrate trimetric, posterior, lateral, and caudad views, respectively, of the system of FIG. 2 implanted into a portion of a human spine such as is depicted in FIGS. 1A and 1B.



FIGS. 5A-5D illustrate trimetric views of another embodiment of a dynamic stabilization system of the present invention, showing in particular pedicle screws and strut systems.



FIGS. 6A-6C illustrate posterior views of a related embodiment of a dynamic stabilization system of the present invention, showing pedicle screws and struts employing a dynamic member, as well as a multiple-level system in a rest position (B) and in a flexed position (C).



FIGS. 7A-7C illustrate perspective views of a further related embodiment of a dynamic stabilization system of the present invention, showing members that clamp onto parts of the vertebrae.



FIGS. 8A and 8B show cross-sectional side views of a further related embodiment of a dynamic stabilization system of the present invention, showing a pedicle screw system with a multiaxial pivoting arm or strut coupled to the same which can be rotated into place following installation into the pedicle. FIG. 8A shows the pivoting rod assembly and FIG. 8B shows a receiving assembly.



FIG. 9 illustrates a cross-sectional side view of a further related embodiment of a dynamic stabilization system of the present invention, showing a pedicle screw system with a pivoting arm or strut coupled to the same which can be rotated into place following installation into the pedicle.



FIGS. 10A and 10B illustrate systems of FIGS. 8 or 9 rotated into receiving assemblies.



FIGS. 11A and 11B illustrate systems similar to those of FIGS. 10A and 10B but including a cross-bar.



FIGS. 12A and 12B illustrate cross-sectional side views of an adjustable vertical distraction member having a minimum and maximum length adjustment, and FIG. 12C illustrates a side view of a tool that may be employed to adjust the distraction of the member of FIG. 12B.



FIGS. 13A and 13B illustrate perspective exploded views of a pedicle screw head design that may be employed in the dynamic stabilization system of the present invention.



FIGS. 14A-14D illustrate various views of a breakaway pedicle screw head design that may be employed in the dynamic stabilization system of the present invention.



FIG. 15 illustrates a coupler for use in a pedicle screw system which may be employed in embodiments of the present invention.



FIG. 16 illustrates details of a pedicle screw system which may be employed in embodiments of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Before the subject devices, systems and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


Thus, for example, reference to “a spinal segment” may include a plurality of such spinal segments and reference to “the screw” includes reference to one or more screws and equivalents thereof known to those skilled in the art, and so forth.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention.


The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


The present invention will now be described in greater detail by way of the following description of exemplary embodiments and variations of the systems and methods of the present invention. While more fully described in the context of the description of the subject methods of implanting the subject systems, it should be initially noted that in certain applications where the natural facet joints are compromised, as illustrated in FIG. 1A, inferior facets 10a and 10b, lamina 5a and 5b, posterior arch 16 and spinous process 18 of superior vertebra 2 may be resected for purposes of implantation of certain of the dynamic stabilization systems of the present invention. In other applications, where possible, the natural facet joints, lamina and/or spinous are spared and left intact for implantation of other dynamic stabilization systems of the present invention.


It should also be understood that the term “system”, when referring to a system of the present invention, most typically refers to a set of components which includes a superior, cephalad or rostral (towards the head) component configured for implantation into a superior vertebra of a vertebral motion segment and an inferior or caudal (towards the feet) component configured for implantation into an inferior vertebra of a vertebral motion segment. A pair of such component sets includes one set of components configured for implantation into and stabilization of the left side of a vertebral segment and another set configured for the implantation into and stabilization of the right side of a vertebral segment. The left set of components may move independently of the right set of components or their motions may be coordinated via an attachment between the two. In other words, they may move in conjunction with one another, with both moving relative to the more fixed attachment between the two. Where multiple spinal segments or units are being treated, the term “system” may refer to two or more pairs of component sets, i.e., two or more left sets and/or two or more right sets of components. Such a multilevel system involves stacking of component sets in which each set includes a superior component, an inferior component, and one or more medial components therebetween. These multilevel systems may include cross member components or strut systems having differing properties, e.g., lengths, limits on travel or other limited range of motion; resistance to motion or other forces, attachment locations, etc.


The superior and inferior components (and any medial components therebetween), when operatively implanted, are engaged or interface with each other in a manner that enables the treated spinal motion segment to mimic the function and movement of a natural healthy segment. The interconnecting strut system, or interface means, includes one or more structures or members which enable, limit and/or otherwise selectively control spinal motion. The structures may perform such functions by exerting various forces on the system components, and thus on the target vertebrae. The manner of coupling, interfacing, engagement or interconnection between the subject system components may involve compression, distraction, rotation or torsion, or a combination thereof. In certain embodiments, the extent or degree of these forces or motions between the components may be intraoperatively selected and/or adjusted to address the condition being treated, to accommodate the particular spinal anatomy into which the system is implanted, and to achieve the desired therapeutic result, such as to restore disc height and offset the facet joints.


In certain embodiments, the superior and inferior components are mechanically coupled to each other by one or more interconnection or interfacing means. In other embodiments, the superior and inferior components interface in an engaging manner which does not necessarily mechanically couple or fix the components together but rather constrains their relative movement and also enables the treated spinal motion segment to mimic the natural function and movement of a healthy segment. Typically, the interconnecting means is a posteriorly positioned component, i.e., one positioned posteriorly of the superior and inferior components, or it may be a laterally positioned component, i.e., one positioned to the outer side of the posterior and inferior components. The structures may involve one or more strut systems and/or joints which provide for dynamic movement of a stabilized spinal motion segment.


Referring now to FIG. 2, there is illustrated a dynamic stabilization system 30 which may be operatively implanted into the vertebral segment of FIGS. 1A and 1B. The system 30 may be made, e.g., of titanium or a titanium alloy, stainless steel, and/or one or more polymers, and may be implanted or clamped onto generally two adjacent spinal segments to stabilize one with respect to the other.


Of course it should be noted that the system may be applied to multi-level segments as well, and various embodiments of this are disclosed below. In some cases, however, it may be undesired or contraindicated to install a pedicle screw in a particular vertebral segment, e.g., the segment may be too diseased for a pedicle screw installation. In this case, one segment of a multilevel system may be skipped, with the segments adjacent to the skipped segment being used to secure the pedicle screw systems. In this case, the strut systems employed may be, e.g., twice as long as for a single segment facet augmentation.


The system 30 includes a superior pedicular cross member component 34 and an inferior pedicular cross member component 32. The lengths of superior pedicular cross member component 34 and inferior pedicular cross member component 32 are generally chosen to accommodate the geometry of a patient's vertebrae and also to accommodate various pedicle screw systems which may affix the cross member components and accompanying systems to the spine. The pedicular cross member components may be chosen to fit closely between the spinous processes, such that removal of parts of the spinous processes is unnecessary. The pedicular cross member components may also be made very small in extent, such that they provide a platform for, e.g., attaching a component, but do not even extend over to another pedicle screw.


The superior pedicular cross member component 34 is connected to the inferior pedicular cross member component 32 by a strut system 40, only one of which is shown in FIG. 2. Note that for clarity no pedicle screws or clamps are shown in FIG. 2. Typically two strut systems are appropriate, one on each side of the spinous process. The length of strut system 40 is chosen generally by the geometry of the patient's spine as well as the range of motion desired. The pedicular cross member components generally have a number of voids formed therein, shown in the figure as two voids, for partially enclosing and capturing the strut systems, shown in FIG. 2 as voids 34a and 34b within superior pedicular cross member component 34 and voids 32a and 32b within inferior pedicular cross member component 32. The voids within the superior pedicular cross member component 34 and the voids within the inferior pedicular cross member component 32 are preferably structured the same; and the cross member components are interchangeable. In an alternative embodiment, the voids within the superior pedicular cross member component may be different such as to provide different ranges of motion or other differing functional properties.


The cross member components may be installed in, e.g., a top-loading, drop-down method in the context of an open or semi-open procedure. The cross-member components may be gripped with a number of different tools and a number of different methods, including laterally, medially, etc., and the gripping tool may be configured such that the same can grasp non-parallel and/or non-linear cross member components. Moreover, the same should be capable of accommodating different spacings, from screw to screw, as screws are seldom parallel.


The strut system 40 includes a cylinder 42 coupled at one end to a spherical swivel or spherical element 44. In this way, the strut system can rotate about its longitudinal axis relative to the pedicular cross member components. The cylinder 42 is separated from the spherical swivel 44 by a stem 43. The spherical swivel 44 may be retained within the void, e.g., void 32b, by retaining ring 36 which may be disposed on the side of the spherical swivel 44 facing the stem 43. Moreover, the spherical swivel 44 may be somewhat flattened at its extremity, i.e., the extremity 36′ opposite an extremity 45, so that the same does not extend beyond or out of the void 32b in the inferior pedicular cross member component 32. The retaining ring 36 engages a corresponding groove within the void. A similar retaining ring (not shown) may be disposed on the side of the spherical swivel 44 opposite the stem 43. However, generally, the spherical swivel 44 may be configured to rotatably sit within the void, and be constrained within the same once the retaining ring 36 is engaged.


The spherical swivel, which is a partially spherically shaped element, may allow for, e.g., about 8 o of polyaxial movement from the vertical, or a total of about 16 o from one side to another. Of course, even within the same device, different spherical elements or swivels may have differing degrees of movement as dictated by the requirements of the treatment. In one exemplary installation technique, the spherical swivel or element may be captured by the void such that the former may be initially installed in, or removed from, the latter at a predetermined angle, and then at other angles the former is prohibited from being removed from the latter. The predetermined angle may be chosen such that it is not an angle that is encountered in normal physical motion.


Within the cylinder 42 is disposed a cylindrical bushing 46 having a lip 47 annularly depending therefrom. The lip 47 engages a groove within the cylinder 42, where the groove is generally adjacent an extremity 45 of the cylinder 42. In this way, the cylindrical bushing 46 is secured within the cylinder 42. The cylindrical bushing 46 may be made, e.g., of a polymer material such as polyethylene, and provides an intermediate surface such that other elements do not deleteriously rub against the cylinder 42. One type of appropriate polymer material is Ultra High Molecular Weight Polyethylene (UHMWPE). PEEK may also be used, as may Acetal Copolymer (Delrin® and Polyethylene. The material for the cylinder 42 may be, e.g., titanium or titanium alloy, stainless steel, or other such high-strength material.


Slidably disposed within the cylindrical bushing 46 is a strut assembly 50. The strut assembly 50 includes a grooved rod 48, which has parallel grooves 49 along at least a portion of an end. The grooves allow for a variety of sizes to be accommodated. The grooved rod 48 is partially disposed and concentric to an assembly 60. The grooved rod 48 is rotatably disposed within the assembly 60, i.e., is free to rotate about its longitudinal axis within the assembly 60.


The assembly 60 includes two attachment rings 62 and 64 as well as a spherical swivel section 52 which is configured to be disposed within the void, e.g., void 34a, in the superior pedicular cross member component 34. The spherical swivel section 52 may be constrained within void 34a by a retaining ring 56 which fits into the void 34a on one side of the superior pedicular cross member component 34, e.g., on the side facing the grooves on the rod 48. The spherical swivel section 52 is constrained within the void 34a translationally but only partially angularly, i.e., the section 52 may rotate and swivel, allowing for a variety of angles to be accommodated.


The operative length of the strut assembly 50 is set by placement of the cap 58 on one of the grooves. Cap 58 is shown in more detail in FIG. 3. Referring to the right-hand-side of the figure, cap 58 has diametrically opposing elements 66 and 68. Element 66 includes “U”-shaped element 78 and lug 76, with corresponding elements on element 68. In a post-installed use, the lug 76 extends through a channel 74 and into one of the grooves 49 on the rod 48 to lock the assembly 60 in one longitudinal position. To install, the lug 76 may be temporarily disposed on a flat 72, which means the lug 76 is not engaging any grooves 49, until such time as the lug 76 is disposed adjacent the desired groove 49. At this point, the cap 66 may be rotated, e.g., by a tool engaging “U”-shaped elements 78, and slightly longitudinally translated such that the lug 76 drops into the channel 74 and the desired groove 49. The lug 76 then locks the swivel section 52 onto one of the grooves 49. The description of the cap and its engagement on the left-hand-side of the figure is similar, and is shown in FIG. 3 with primed components.


Besides a cap locking onto a groove, other method of securing the system may be employed. For example, a nut and screw threads may be employed in some embodiments, in which case rotation of the nut adjusts the maximum extension. In another embodiment, a plurality of through holes may be provided in the rod. A collar and/or pin, e.g., a cotter pin, may then be employed to lock the collar onto a particular through hole to set the length. Other such embodiments may also be envisioned. As noted, the minimum operative length of the strut assembly 50, and thus the minimum distance between the pedicular cross members (when the grooved strut 48 is within the bushing 46 as far as the same will go), is set by placement of the cap 58 on one of the grooves. This minimum distance should be set such that, when installed, the associated superior and inferior facet joints are not in contact or are in contact only by a predetermined amount. The maximum distance should be set such that, when installed and at the point of maximum extension, the grooved strut and the bushing should remain at least partially overlapping. This maximum extension may vary, but is chosen so as to limit the amount of extension according to the patient condition being treated. One way to limit the amount of extension is shown in FIG. 5B, where pin 89 engages holes 83a and 83b.


On the strut assembly or on the spherical swivels or elements may be disposed stops, such as eccentric stops, which allow more motion in one direction than another. Similarly, the opening in the void may be machined to limit motion in one or more different directions as well, e.g., by use of a slot -shaped opening, etc. In this way, the full rotatability of the system is compromised, but the resulting allowed motion better simulates typical patient back motion.


The stops or other motion-limiting features may also be made operator adjustable. That is, various operator-adjustable mechanisms such as operator-adjustable stops may be employed to vary the length or other dimension of the system, limit the resistance to motion, the limits on travel, etc. These types of mechanisms may allow adustability either pre-, peri-, or post-implantation procedure, and allow the system to be significantly customized for a given patient's anatomy.



FIGS. 4A-4D show various views of the system 30 as used to support one vertebrae relative to another. Also shown in these figures are four pedicle screws 80a-80d which are affixed to the pedicular cross members to hold the same onto the pedicles. In general, the pedicle screws attaching the superior pedicular cross member component are disposed at approximately the same level on the vertebra, and the same is true for those attaching the inferior component.



FIGS. 5A-5D show another embodiment of the stabilization device. In this embodiment, a superior pedicular cross member component 34′ and an inferior pedicular cross member component 32′ are shown affixed to pedicle screws 80a-80d. In this embodiment, each cross member component is constituted by at least two lateral segments, e.g., superior pedicular cross member component 34′ is made up of a first component 34x′ and a second component 34y′ which are not collinear but rather meet at an angle θ. Moreover, the centers of the voids 34a′ and 34b′ are no longer on the axes of the cross member components but rather are raised or translated posteriorly or dorsally relative to the patient's spine. Either or both of the angling of the cross members or the raising of the voids may be instituted in any given device according to embodiments of the invention. Both features have the advantage of moving the grooved ends of the grooved struts away from the spinous process and other vertebral features. To meet this objective, exemplary values for θ may be between about 0° and 135°, such as about 120°.



FIG. 5B shows a more detailed view of the strut system. Many of the components are similar to those described in FIG. 2, and only the changed components will be described here. In particular, the cylinder 42 is configured with opposing longitudinal slots 81a and 81b. Similarly, the bushing 46 is provided with opposing longitudinal slots 83a and 83b. The grooved strut 48 is configured with a thru-hole 85 at the end opposite the grooves 49. Once these components are assembled, a pin 89, whose length is greater than the diameter of the cylinder 42, may be press fit though hole 85 and slots 81a, 81b, 83a, and 83b. In this way, the length of slots 81a, 81b, 83a, and 83b limits the distance of travel of the pin 89 and thus of the grooved strut 48.


Another feature of FIG. 5B relates to the engagement of the bushing 46 with the cylinder 42. A lip 47 on bushing 46 is provided for mating with a groove 45 on cylinder 42. In FIG. 5B, a set of opposing pins 87a and 87b are also provided on or adjacent the end of bushing 46 for mating engagement with corresponding grooves 91a and 91b of cylinder 42. Of course, it should be clear to one of skill in the art given this teaching that any of the pins and grooves, or lips and grooves, may be switched without necessarily sacrificing utility or effectiveness. As above, it is also noted that the spherical swivel 44 may be somewhat flattened at its extremity to minimize the profile of the same.



FIG. 5C shows in greater detail components connected to the superior pedicular cross member component 34. Many of the components are similar to those described in FIGS. 5A and 5B, and only the different components will be described here. An assembly 60′ is shown having spherical swivel 52′ and cylindrical ends 53a and 53b. The spherical swivel 52′ forms an annular portion of a sphere. The cylindrical end 53a has at least one slot 55 formed therein. Through the slot 55, a retaining ring 57 may be disposed which holds the slot 55 and thus the assembly 60′ secure at a particular groove 49 on the grooved strut 48. A longitudinal slot 59 formed in the pedicular cross member 34′ allows a tool (not shown) to open and close the retaining ring 57 at the proper position.



FIG. 5D shows a more detailed view of retaining ring 57. In particular, retaining ring 57 is configured such that a central annulus is partially defined in the ring. The central annular section has radial segments 95a′, 95b′, and 95c′, that face inward towards the axis of the ring 57. The central annular section also defines a wedge-shaped void A. The lateral annula 93a-e (for clarity a reference numeral 93f is not indicated in the figure) define two wedge-shaped voids B (only one of which is indicated in the figure). Voids B are larger than void A, and as a result, extensions 95a-c extend generally into the center of the ring. The position of extensions 95a and 95b relative to lateral annula 93a-e may be changed by a tool (not shown) pushing on portions of the central annulus. Manipulated in this way, the retaining ring 57 and in particular extensions 95a-c may be disposed to hold the slot 55 and thus the assembly 60′ secure at a particular groove 49 on the grooved rod 48.



FIGS. 6A-6D show alternate combinations of various components described above. Referring in particular to FIG. 6A, a system is shown with four pedicle screw systems 80a-80d, affixed to pedicle cross members 82a and 82b via set screws 81a-91d. While the strut systems previously described were disposed between the pedicle screws, the strut systems in FIG. 6A are disposed external of the pedicle screws. That is, the distance between the pedicle screws is less than the distance between the strut systems (although it can also be greater than or equal to this distance). Swivel joints 90a-90d connect the pedicle cross members to the strut systems, each of which has a superior component 84a and 84b coupled to an inferior component 86a and 86b through a strut system including a shock absorber 88a and 88b.


Shock absorbers 88a and 88b may provide one or more functions. First, they may provide damped resistance to axial and/or torsional loads. They may also be operator-adjustable, either pre-, peri-, or post-implantation, both of their size and of their resistance to loading. Furthermore, they may accommodate length adjustments and/or range of motion adjustments.



FIG. 6B shows a system similar to that of FIG. 6A but extended to multiple spinal segments. Similarly-numbered components refer to similarly-functioned components in FIG. 6A—only the letter suffix indexing the reference numeral has changed to represent the added components. In FIG. 6B, the strut systems are disposed interior of the pedicles, i.e., the distance between the strut systems is less than the distance between the pedicle screws. Also in FIG. 6B, the lower strut systems having shock absorbers 88c and 88d are disposed interior of the strut systems having shock absorbers 88a and 88b. FIG. 6C shows a system similar to that of FIG. 6B but where the lower strut systems having shock absorbers 88c and 88d are disposed such that shock absorber 88c is interior of shock absorber 88a and where shock absorber 88d is exterior of shock absorber 88b. Moreover, FIG. 6C shows the system where the struts are flexed in a leftward direction, as if the patient were performing a leftward bending motion of their spine.



FIGS. 7A-7C illustrate an alternative embodiment according to the present invention. In this system, a clamp 100 is employed to attach a strut system, or a dynamic rod, to portions of the vertebra. In FIG. 7B, clamps 100 attach strut systems 102 and 102′ to portions of a patient's lamina. In FIG. 7C, clamps 100′ attach strut systems 102 and 102′ to portions of a patient's transverse processes. In FIGS. 7B and 7C, clamps 100 and 100′ differ primarily in size, as they are intended to attach to differently-sized spine features. However, one size, or an adjustable size component, may be used for all spine features, so long as the distance of travel allowed by the components allows for all spine features to be accommodated, i.e., affixed to.


Details of the clamp 100 are shown in FIG. 7A. A first component 92 is slidably attached to a second component 94 via attachment 98. The first and second components include “hook”-like features which mate well with spinal features. One or both of the first or second components has a ball end 96 affixed thereto to which an end of strut system 102, such as socket 103, may be attached. Attachment 98 may employ a tongue-and-groove system, with a set screw or other affixation tool, e.g., a tang, detent, ratchet, etc., used to maintain the relative position of the first and second components, once the optimum position is determined.


As in embodiments above, the ball end and socket may be such that the ball end may be initially installed in, or removed from, the socket at a predetermined angle, and then at other angles the former cannot be removed from the latter. In other words, the predetermined angle is chosen such that it is not an angle that will be encountered in normal physical motion. It should be noted that the ball end and socket, or other such attachment devices, can be disposed on opposite elements to those disclosed above. Moreover, the strut system in this embodiment has features similar to the strut systems in other embodiments, including use of a shock absorber. If two strut systems are employed, one on each side of an interspinous process, a cross-member component may be employed to connect the strut systems together.



FIGS. 8A and 8B show a pedicle screw system 110 employing a rotating head with a hinged assembly having a pivoting arm. This embodiment allows rotation of the system after the screw is secured to the pedicle. In particular, the system 110 includes a screw thread 104, which is screwed into a pedicle, and which is attached to a head 106. A rotating hinged assembly 105 including a flat wall 108 and a downwardly-depending annular skirt 112 terminating at a lip 113. Lip 113 engages a corresponding wall on the head 106 to secure the assembly 105 to the head 106 and thus to the pedicle. The connection of the assembly 105 and the head 106 may be tight but loose enough to allow the assembly 105 to rotate relative to head 106.


Depending upwardly from wall 108 is a hinge assembly, which includes slots 109 which engage pins 107 attached at an end of a strut system, such as pivoting rod 114. The hinge assembly allows rotation of the pivoting arm relative to the wall 108 and other fixed components.


The pivoting rod 114 includes a straight section 118 and an adjustment element 116. The adjustment element 116 may allow for length adjustment, may act as a shock absorber such as a component configured to resist axial and/or torsional motion, may include a hydraulic assembly with a needle injection port to control the level of shock absorption, etc. FIG. 8A shows the pivoting rod with a single plane of rotation; however, multiple planes of rotation may also be provided for, as may also be provided for in the connection between the assembly 105 and the head 106. Moreover, “stops” may be provided to limit the range of motion of the pivoting arm, as well as to limit rotation between the assembly 105 and the head 106. Range of motion of pivoting rods, as well as motion between assembly 105 and head 106 may include a force resisting element, such as a spring component attached to resist axial and/or torsional motion. A hole 122 may be provided in the pivoting rod opposite the hinged end to receive a set screw securing the pivoting rod to a receiving assembly (not shown).



FIG. 8B shows a receiving cradle assembly that may be employed with the system of FIG. 8A. In this system, a recess 111 may be provided in the assembly 109′ which depends upward from wall 108′. Recess 111 may hold the pivoting rod (not shown), and wall 108′ may include a threaded hole 124 for securing the pivoting rod via a set screw, etc. In this FIG. 8B, the receiving cradle is rotatably attached to the pedicle screw. The pivoting rod is then captured by the cradle.



FIG. 9 shows a system similar to that of FIG. 8A, having screw thread 126 attached to head 128. In this case, multiple planes of rotation are accommodated as head 128 is a ball disposed within a void 134 formed by socket assembly 132. A detent 131 is formed in head 128 which engages an abutment 133 such that over-rotation is inhibited. Multiple detents and abutments may be provided to inhibit over-rotation in other degrees of freedom, in this embodiment as well as in other embodiments, such as that shown in FIG. 8.


Depending upwardly from socket assembly 132 is hinge assembly 138 which is similar to the hinge assembly in FIG. 8A, and the discussion with respect to that figure is referred to for further explication.


As above, the pivoting rod includes a straight section 136 and an adjustment element 144. The adjustment element 144 is similar to the adjustment element 116 discussed above. A hole 142 may be provided in the pivoting rod opposite the hinged end to receive a set screw securing the pivoting rod to a receiving assembly (not shown but similar to the assembly of FIG. 8B).


The embodiment of FIG. 9 allows multiple planes of rotation to be accommodated following securement to the pedicle. The ball-and-socket arrangement may be replaced by a universal joint arrangement, or another other type of connection, as is true also of the other embodiments. Alternatively, rather than positioning the rotating joint on the pedicle screw side of the system, the same may be placed on the pivoting rod side of the system. Moreover, similar rotating joints may be disposed on the receiving assemblies. In a preferred embodiment, the rotating joints may encounter resistive forces such as those provided by a spring or frictional engagement between the interfacing components. In another preferred embodiment, these resistive forces are adjustable by an operator. In yet another preferred embodiment, the limits of travel of the rotation are adjustable by an operator.



FIGS. 10A and 10B show systems consistent with FIGS. 8A and 9 rotated into receiving assemblies consistent with FIG. 8B. In particular, FIG. 10A shows the elements of FIG. 8A rotated into a receiving assembly 146a and secured thereto by a set screw through hole 122. On the right-hand side of FIG. 10A, corresponding elements are shown including wall 208, assembly 209, and pivoting rod 214 having straight section 218 and adjustment element 216, where the pivoting rod 214 is rotated and secured to receiving assembly 146b. The two complementary systems are shown in opposite orientations, although the same orientation could also be employed. Adjustment element 216 includes adjustment means 156, which may be employed to alter the length, resistance, or other features of the adjustment element 216. FIG. 10B shows the system of FIG. 10A following a head rotation of about 5 degrees, as may occur when a patient laterally bends their spine to the left.



FIGS. 11A and 11B show systems consistent with FIGS. 8 and 9 rotated into a cross bar which is attached to two receiving assemblies. In particular, FIG. 11A shows the elements of FIG. 8A rotated into a cross bar 170 which is then attached at one end to a receiving assembly 146a via set screw 172a and at an opposite end to a receiving assembly 146b via set screw 172b. FIG. 11B shows the system of FIG. 11A following a head rotation of about 5 degrees, as may occur when a patient laterally bends their spine to the left. The use of a cross bar has certain advantages. In particular, the cross-bar in part serves to change where the points of rotation are and how forces are applied to the system. Also, if the crossbar was not present, as the patient moves, the screw heads associated movement may exert enough force on the pedicle screws to tend to cause loosening of the screws in the pedicle. By adding the crossbar from screw to screw, the screws become locked to each other in the same vertebra or at the same level. This way, when one vertebra moves relative to another, the motion placed on the rods does not inadvertently loosen the screws.



FIG. 12A shows a side sectional view of a strut system 180. The strut system 180 has ball or swivel attachments 184 and 208 at each end, for connection to cross bars, cross members, pedicle screws, clamps, etc., as is known and has been described above. Swivel 208 is attached to the housing 196, and swivel 184 is attached to a piston member 182. Piston member 182 moves within the housing 196 and its motion is controlled by several factors, including: set screw 199, which may be placed as shown or in hole 198; set screw 204, which may be placed as shown or in any of holes 202 or 206; springs 192 and 194; and detents 186.


First, the placement of set screw 199 determines the travel of piston 182 since detent 186 cannot move past set screw 199. Second, the placement of set screw 204 determines the travel of piston 182 since the piston itself cannot move past set screw 204. A first spring 194, always attached to piston 182, directly determines the force on the piston 182. A second spring 192, shorter in its rest length than the entire travel of the piston and not attached at the end of the piston opposite ball 184, only engages when and after the piston moves a predetermined distance into the housing. In this way, the second spring 192 provides a heightened restoring force when the system is highly compressed. This in turn leads to a “two-step” resistance force indicated by the inset graph. While the springs in FIG. 12A are shown deployed in a longitudinal fashion, one or both may be replaced or complemented with torsional springs to provide not only an axial spring force but a torsional one as well. In some embodiments, the springs in FIG. 12A may themselves have ends that are bent or secured inside the housing to provide axial and torsional forces.



FIG. 12B shows a system similar to that of FIG. 12A, but with the first spring omitted and the set screw setting the lower limit replaced by a wall against which the piston abuts. The discussion with respect to common elements is not repeated, but the different elements are described here. The piston 182 includes an internal piston 282 which moves within a volume 212. Piston 282 is that which the second spring encircles. Internal piston 282 moves within volume 212 and is influenced by a hydraulic force disposed within the volume 212. For example, a hydraulic fluid may be disposed within the volume 212 and may be inserted therein via a needle injection port 216 coupled to the volume 212 via a channel 214. Alternatively, a set screw (not shown) may be employed to alter the volume or the amount of hydraulic fluid introduced.



FIG. 12C schematically shows the system 180 implanted in a patient. The injection port 216 is shown being accessed by tool 200 including plunger 215, cylinder 213, and needle 211. The tool 200 and in particular the needle 211 can percutaneously penetrate the skin as shown. The location of the system 180 may be indicated via a marker, e.g., magnetic, ultrasonic, or radioopaque markers. The tool 200 can perform one or more functions such as to adjust the resistive forces of an implant, and/or adjust the distraction between two spinal motion segments by introducing or removing hydraulic fluid, or by adjusting a set screw to adjust the volume 212.


The pedicle screw systems which may be employed in embodiments of the present invention may include those disclosed in U.S. patent application Ser. No. 11/362,366, filed on Feb. 23, 2006, entitled “Systems and Methods for Stabilization of Bone Structures” and assigned to the assignee of the present invention. However, other systems may also be employed.


Referring in particular to FIGS. 13A and 13B, a device assembly 210 includes a pivoting rod 238 and a bone anchoring portion 200 including a polyaxial seat 226. A cannula 246 passes through rod 238 and through the bone anchoring portion 200 such that the assembly may be passed, in the orientation shown in the figure, into a patient through a installation cannula (not shown) and over a previously-placed guidewire, such as a “K-wire” commonly used in bone and joint procedures.


At one end of rod 238 is ball end 245, which is rotationally received and captured by a coupler 228. In particular, “U”-shaped grooves 229 are provided which mate with corresponding pins 242 on rod 238 to allow the rod 238 to be pivoted in a perpendicular (or other angular) fashion relative to the rest of the system. Referring to FIG. 16, coupler 228 may be attached to the seat 226 via a retaining ring 306 having lugs 307 which cooperatively and securedly engage corresponding slots 308 in the coupler 228 (and may also engage slots in the seat). The retaining ring 306 is secured to the seat 226 via groove 310 formed in the cylindrical interior of the seat. In this way, the retaining ring and the coupler are press fit together into the seat. The coupler and seat have a keyway (not shown) such that they are aligned with one another. In this way, the coupler is prevented from being misaligned with the seat, and a separate tool is no longer required to align them to each other in order to insert the rod.


In an alternative embodiment, as shown in FIG. 15, the “U”-shaped grooves 229 are replaced with a “closed” saddle having receivers 302 and 302′. In this case, during installation of the rod, the pins 242 on the rod 238 push on ramps 303 and 303′ until the pins drop into holes 305 and 305′. Once the pins drop they are captured and generally require a tool for removal. In this way, the end of the rod cannot be displaced when the opposite end of the rod is being captured by a receiving assembly. In this embodiment, the rod is not attached to the coupler prior to installation. Because it not attached, the bone screw can be driven directly through a hole 304 in the coupler (no tangential rotation arrangement is necessary).


Returning to the embodiment of FIGS. 13A and 13B, the coupler mates with the ball end 224 in a snap-fit ball-and-socket arrangement. The screw-ball end-coupler system sits within seat 226 and is at least partially secured therein because coupler lip 251 rests on seat lip 253. The screw-ball end-coupler system may be further secured using retaining ring 236 on top of lip 251.


The rod 238 can be inserted into the saddle of coupler 228, which is assembled to the seat 226, by an operator, or may be provided in a pre-attached state. The arm 238 can be removable from coupler 228 which is assembled to the seat 226, or may be permanently, though rotatably, attached, whether provided in a “to-be-assembled” or a pre-assembled state. The ball and socket design of FIG. 13 allows multi-directional rotation of pivoting arm 238. Alternative designs may allow a single degree of freedom, or may allow more sophisticated trajectories of travel for the distal end of arm 238.


After the rod has been pivoted to a position for use in a patient, the rod may be held in that position by use of the closure element or cap 232 and a set screw 234. The closure element 232 may be snap-fitted into the seat 226 by interaction and engagement of closure element tabs 231 and seat grooves 233. Instead of grooves and tabs, lugs may also be employed. Lugs have the benefit of preventing the seat from splaying and releasing the rod. Furthermore, besides the snap-fit of closure element 232, the same may also be dropped in and captured with set screws or other capture devices. One particular other such capture device includes an integral locking nut/plug combination, which eliminates the need for a plug and set screw set.


A closure element slot 235 may be disposed in the closure element 232 so that the same may be further tightened along the groove 233 if the groove 233 is provided with a ramp system. Of course, various other techniques may also be used to keep closure element 232 within seat 226. The set screw 234 may then be tightened to secure the rod 238 against movement.


Except in arrangements such as that shown in FIG. 15, the screws such as screw 222 are generally driven into place in the bone when the rod 238 is in the position shown in FIG. 13A, that is, coaxial with respect to the axis of the screw thread. The top of the screw head 224 is then rendered inaccessible, although that is where slots for the driving of such screws are generally disposed. For this reason, at least one peripheral slot 247 in the coupler, a flat 249 in the screw head 224, and a flat 244 on the side of the rod 238 may be disposed so that a driver with a cooperating element may be used to rotate the screw 222


In one method of use, the screw 222, the coupler 228, the seat 226, the rod 238, and the corresponding intermediate elements are assembled prior to implantation in the patient. The device is inserted over the guidewire. The screw is then driven into the desired bone by use of a driver (not shown) generally having one or more protrusions which are long enough to pass through the seat 226, through intermediate elements, and to cooperatively engage with the flats 249. Any number of protrusions and flats may be employed. In certain embodiments, 2, 3, 4, 5, or 6 (for hex) flats and a corresponding number of protrusions on the driver may be employed. The flats may be equidistantly disposed about the screw head or may be otherwise disposed arbitrarily. Once the screw is driven into the bone, the rod is pivoted and the closure element and set screw applied.


In another method of use, the screw 222, the coupler 228, the seat 226, and the corresponding intermediate elements are assembled prior to implantation in the patient. The screw is driven into the desired bone by use of a driver which cooperatively engages with the hole 304 (see FIG. 15). Once the screw is driven into the bone, the rod is inserted, captured, and then may be pivoted and the closure element and set screw applied.



FIGS. 14A-14D show a “breakaway” minimally-invasive screw design. A screw 252 having a ball-shaped head 258 is disposed within a seat 262. The head 258 is connected via a breakaway stem 270 to a pivoting rod 264 having a proximal end 268 with a larger diameter than a hole 266 in the seat 262 through which the rod passes. When the system is initially assembled, a common guidewire cannula 254 extends through the components.


After installation, the pivoting rod 264 may be broken away from the head 258 at the breakaway stem 270. To perform this breaking away, the rod may be rotated about its axis while the screw is held (e.g., by the bone) or angled away from the axis of the screw 252. Once broken away, the pivoting rod 264 and seat 262 may move relative to the screw head 258, and in particular may be rotated such that a neck 257 disposed between screw head 258 and a lip 256 is disposed substantially within a void 274 formed in the seat 262. The void 274 has a smaller area than the cross-sectional area of the screw head 258 so that the seat 262 is substantially affixed to the screw head 258, at least within a normal or typical range of motion. By use of another void diametrically opposed to void 274, shown in FIG. 14D as void 274′, a multi-level system may be provided, as a distal end 276 of an adjacent pivoting rod 278 may be engagingly disposed within the void 274′. In any case, the size of the opening 266 may be chosen so as to limit the angular travel of the pivoting rods to a predetermined desired amount.


In all cases, upon implant, the strut system can be selectively distracted or compressed to achieve the desired intervertebral spacing or distraction. As such, the length of the portion of the strut between the components may be adjusted to accommodate the natural and/or desired vertebral spacing, and provides sufficient flexibility, compression and distraction to accommodate and facilitate spinal motion.


Moreover, in this embodiment as well, the strut system may include a dynamic element along its length, e.g., to resist axial and/or torsional forces, and this dynamic element may be adjustable by the operator pre-, peri-, or post-implantation. The strut system may have a variable length or variable other dimension.


It is additionally noted that the break-away embodiment may be replaced with a frictional-engagement embodiment, in which the rod or strut system is frictionally engaged to the pedicle screw, but it not integral therewith. In this embodiment, the pivoting of the rod may cause the frictional engagement to be reduced or eliminated, e.g., via an eccentric feature that maximizes frictional engagement when the rod is aligned with the screw but reduces this frictional engagement as the rod becomes oriented at a 90 degree angle or pivot with respect to the screw.


Besides the pedicle screws disclosed above, other pedicle screws may be used with the present invention. For example, the screws may have a polyaxial configuration, as is commonly used in affixing implanted devices within the spine—e.g., rods and plates for fusion. These types of screw allow for customizing the position of the implants for the particular spinal anatomy. While conventional pedicle screws are suitable for use with the systems of the present invention, use of such screws may result in complications when used with dynamic stabilization systems that may not otherwise occur with fusion based systems since the former allows motion which, when repetitive, may result in complications at the screw bone interface, along the screw itself, or at the screw rod interface.


The subject devices and systems may be provided in the form of a kit which includes at least one pair of components that can be used on the left or right sides of the above described dynamic stabilization systems. As numerous applications require the treatment of more than one spinal segment or unit, the subject kits may include as many sets of components of the subject systems that may be used to treat the application hand. Typically, however, no more than about two to three sets are implanted in any one surgical application. The kits may further include pedicle screws for securing the above-described systems to the vertebral bodies as well as other instrumentation for implanting the systems. The screws may be pre-fixed to the respective superior and inferior components, or may be provided separate from these components and subsequently fixed to the components upon implantation into the vertebrae. Instructions for implanting the various devices and systems may also be provided with the kits. Such instructions may include, for example, the manner in which the interconnecting members of the system components are secured to the respective base members, and may further provide protocols for determining the most suitable length, stiffness/flexibility, shape or the compressive/distractive forces imposed on a strut member of the various system, and making adjustments to these characteristics accordingly. Such kits will also typically include strut systems of various sizes, and may further include devices such as guidewires, cannula, trocars, scopes, drug delivery devices, inflation devices, distraction devices, expandable devices, cutting instruments, holding devices for delivery, screwdrivers, or expansion media.


The devices and systems of the present invention may be implanted through open surgical approaches, limited open surgical approaches, minimally invasive approaches as well as percutaneous approaches. Generally, open placement or implantation of pedicle screw-based systems involves dissection of the tissue and fascia and may involve the removal of all of the posterior element or elements if not some of the posterior elements of the affected spinal segments—including the lamina, the spinous process, facet complex, and transverse processes. However, removal of some or all of these parts may not be necessary and is determined by the physician on a case-by-case basis.


With any approach, e.g., open, minimally invasive or percutaneous approach, after insertion of the pedicle screws, the stabilization system is inserted. The engagement between the system components and their respective screws may be accomplished in one of two ways. The connection between the screw and the system components may be prefabricated where the two are provided as an integral unit or the screws may be provided as modular components discrete from the system components.


For systems in which the length, stiffness, shape and/or positioning of the interface or strut member are not adjustable, fixation of the superior and inferior components to the vertebrae on both the left and right sides of the spinal motion segment substantially completes the implantation procedure. For those systems including such an adjustable interconnecting or strut member, the member is engaged with the superior and inferior components (as described above in the respective descriptions of these various systems) and its length, stiffness, shape and/or position is adjusted accordingly. A separate tool may be used to facilitate the adjustments. For example, a device may be employed to selectively tighten the strut segments. After the strut characteristics and features are confirmed, the strut is locked into place.


Distraction may occur prior to locking, such as via patient flexion or via a distraction device. The distraction device may be a balloon being inflated, and the same may be secured to portions of the superior and inferior vertebra or may be secured to installed pedicle screws or secured to other components between the pedicle screws.


The implantation procedure may be combined with other procedures, including fusion, dynamic stabilization, disk repair, disk augmentation, disk replacement, spinal stenosis repair, laminectomy, spondylolisthesis repair, fracture repair, tumor resection, and vertebral repair. The devices according to embodiments of the present invention may also be used to replace prior-installed devices, or stabilization rods may be employed to replace prior-installed embodiments of the present invention.


The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. For example, while a rotatable strut system is shown, the same type of rotatable segment may be accomplished using a universal joint system. Moreover, the strut system and cross member components disclosed herein may be made entirely adjustable as described, and may be adjusted before, during, or after implantation. While the strut systems have been disclosed to be straight, they may also be curved to more closely simulate the curvature of the spine to help facilitate the alignment of the screw heads for rod insertion, and may accommodate shock-absorber type constructions. In most cases, the strut systems should be made to allow flexion and extension of vertebra. The strut systems have been disclosed as having the potential to act as shock absorbers, and it should be understood that such shock absorber designs may include spring-loading, multiple springs to provide different distraction forces, torsional springs, and may also be provided with an elastic memory alloy that is sensitive to temperature change where the shape changes to a preformed shape to “close” or “tighten up”, or other types of temperature sensitive materials, e.g., a Nitinol alloy, so that the same “warms up” over time, similar to the way a natural bone and ligament would. Other structures may be attached to either the cross member components or the strut systems, such as artificial facets or artificial interspinous processes, etc. Coatings or reservoirs or radioactive seeds may be provided on or in the cross member components or the strut systems to promote or prevent ingrowth, prevent infection, provide an anti-rejection functionality, etc. Threaded holes may be provided in the cross member components or the strut systems to allow the same to interconnect to other systems and devices, including another facet augmentation device. While the cross member components have been shown herein as having a length so as to traverse at least the width of a vertebra, such length is not required. The cross member components may be very small, e.g., defining only one void, and in this case only one strut system would be required. While the rod has been disclosed as being cannulated to allow attachment of the rod to the coupler prior to implantation, in many situations it is desired to attach the rod following implantation. In this case, no cannulation is then required.


Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A strut system configured to extend between a superior and inferior pedicular cross member component, the strut system including an adjustable vertical distraction member having a minimum length and a maximum length, comprising: a first attachment element configured to connect with one of the superior and inferior pedicular components during use, the first attachment element including a receiving portion;a second attachment element configured to connect with the other of the superior and inferior pedicular components during use, the second attachment element including a piston partially disposed within an interior of and concentric to the receiving portion of the first attachment element during use, wherein the piston is configured to travel longitudinally within the interior of the receiving portion during use, and wherein a distal end of the piston includes a detent; anda retaining mechanism configured to engage the detent of the piston during use to inhibit longitudinal movement of the piston, thereby limiting a longitudinal travel distance of the piston within the receiving portion, wherein the retaining mechanism is selectively positionable in one of at least a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the piston to a second distance greater than the first distance when positioned in the second discrete position, and wherein the receiving portion has an exterior wall and wherein the retaining mechanism comprises a pin member extending through the wall into an interior of the receiving portion.
  • 2. The strut system of claim 1 wherein the superior and inferior pedicular components are superior and inferior cross member components.
  • 3. The strut system of claim 1 wherein the receiving portion is a cylindrical housing having a hollow interior section.
  • 4. The strut system of claim 1 wherein the retaining mechanism is aset screw.
  • 5. The strut system of claim 1 wherein the piston is moveable longitudinally from at least a first position to a second position during use.
  • 6. The strut system of claim 1, further comprising an internal piston concentric with the piston and the receiving portion, the internal piston positionable at the distal end of the piston of the second attachment element and contained within the receiving portion of the first attachment element.
  • 7. The strut system of claim 6 wherein the distal end of the piston includes a recess configured to partially receive the internal piston.
  • 8. The strut system of claim 6, further comprising a second retaining mechanism configured to releasably engage the internal piston wherein the second retaining mechanism is selectively positionable in one of at least a first discrete position and a second discrete position, wherein the second retaining mechanism limits the longitudinal travel of the internal piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the internal piston to a second distance greater than the first distance when positioned in the second discrete position.
  • 9. The strut system of claim 6 further comprising a spring having a larger internal diameter than an external diameter of the internal piston, and wherein the spring is disposed concentrically about the exterior of the internal piston such that the spring during use such that the spring encircles the internal piston, and wherein the spring is configured to at least partially restrict longitudinal movement of the piston relative to the housing.
  • 10. A strut system configured to extend between a superior and inferior pedicular component, comprising: a first attachment element configured to connect with one of the superior and inferior pedicular components during use, the first attachment element having a proximal end and a distal end, wherein the proximal end has a swivel attachment and the distal end has a receiving portion;a second attachment element configured to connect with the other of the superior and inferior pedicular components during use, the second attachment element having a proximal end and a distal end, wherein the proximal end has a swivel attachment;a first piston partially disposed within and concentric to the receiving portion of the first attachment element, wherein a distal end of the first piston is at least partially contained within the receiving portion of the first attachment element, wherein the first piston is configured to travel longitudinally within the interior of the receiving portion during use, and wherein the portion of the first piston of the first piston at least partially contained within the receiving portion of the first attachment element includes a detent;an engagement element configured to engage the detent of the first piston during use to inhibit longitudinal movement of the piston, thereby limiting a longitudinal travel distance of the first piston within the receiving portion;a retaining mechanism selectively positionable in one of at least a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the first piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the first piston to a second distance greater than the first distance when positioned in the second discrete position; anda second piston fully disposed within and concentric to the receiving portion of the first attachment element, the second piston having a diameter less than a diameter of the first piston, wherein the first piston includes a recess at a distal end configured to partially receive the second piston.
  • 11. The strut system of claim 10 wherein the receiving portion is a cylindrical housing having a hollow interior section.
  • 12. The strut system of claim 11, further comprising an internal spring concentric with the housing, the first piston and the second piston, the internal spring having a larger internal diameter than an external diameter of the second piston, and wherein the spring is disposed concentrically about the exterior of the second piston during use such that the spring encircles the second piston.
  • 13. The strut system of claim 12, further comprising a second spring concentric with the housing, the first piston and the second piston, the second spring having a smaller diameter than the diameter of the second piston, and wherein the second spring extends longitudinally from an end of the second piston and is retained in a second recess portion of the first attachment element.
  • 14. The strut system of claim 10, further comprising an engagement element configured to engage the second piston during use to inhibit longitudinal movement of the second piston, thereby limiting a longitudinal travel distance of the second piston within the receiving portion, wherein the retaining mechanism is selectively positionable in one of at least a first position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the second piston to a first distance when positioned in the first position and limits the longitudinal travel of the second piston to a second distance greater than the first distance when positioned in the second position.
  • 15. The strut system of claim 10 wherein the engagement element is a set screw.
  • 16. A dynamic stabilizing system configured to be coupled between a first vertebra and a second vertebra of a human spine, the dynamic stabilizing device comprising: a first member configured to be coupled to the first vertebra during use, wherein the first member comprises a wall defining a longitudinal recess;a second member configured to be coupled to the second vertebra during use, wherein the second member comprises: an elongated protrusion configured to be disposed within the longitudinal recess of the first member during use; anda detent feature extending radially from the longitudinal protrusion,wherein the elongated protrusion is configured to travel longitudinally within the longitudinal recess to facilitate movement of the first vertebra relative to the second vertebra during use; anda retaining mechanism comprising a member extending through a hole in the wall and into an interior of the receiving portion during use, such that at least an end portion of the member enages the detent of the second member to at least partially inhibit longitudinal movement of the elongated protrusion within the longitudinal recess during use, thereby limiting a longitudinal travel distance of the longitudinal protrusion within the longitudinal recess during use, wherein the retaining mechanism is selectively positionable in either one of a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of longitudinal protrusion within the longitudinal recess to a first distance when positioned in the first discrete position and limits the longitudinal travel of longitudinal protrusion within the longitudinal recess to a second distance greater than the first distance when positioned in the second discrete position.
  • 17. The dynamic stabilizing system of claim 16 further comprising a spring disposed about a circumference of at least a portion of the elongated protrusion, wherein longitudinal movement of the elongated protrusion within the longitudinal recess is configured to engage the spring to at least partially inhibit movement of the first member relative to the second member.
  • 18. A strut system configured to extend between a superior and inferior pedicular cross member component, the strut system including an adjustable vertical distraction member having a minimum length and a maximum length, comprising: a first attachment element configured to connect with one of the superior and inferior pedicular components during use, the first attachment element including a receiving portion;a second attachment element configured to connect with the other of the superior and inferior pedicular components during use, the second attachment element including a piston partially disposed within an interior of and concentric to the receiving portion of the first attachment element during use, wherein the piston is configured to travel longitudinally within the interior of the receiving portion during use, and wherein a distal end of the piston includes a detent;an internal piston concentric with the piston and the receiving portion, the internal piston positionable at the distal end of the piston of the second attachment element and contained within the receiving portion of the first attachment element; anda retaining mechanism configured to engage the detent of the piston during use to inhibit longitudinal movement of the piston, thereby limiting a longitudinal travel distance of the piston within the receiving portion, wherein the retaining mechanism is selectively positionable in one of at least a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the piston to a second distance greater than the first distance when positioned in the second discrete position.
  • 19. The strut system of claim 18 wherein the receiving portion has an exterior wall and wherein the retaining mechanism comprises a pin member extending through the wall into an interior of the receiving portion.
  • 20. The strut system of claim 18 wherein the superior and inferior pedicular components are superior and inferior cross member components.
  • 21. The strut system of claim 18 wherein the receiving portion is a cylindrical housing having a hollow interior section.
  • 22. The strut system of claim 18 wherein the retaining mechanism is a set screw.
  • 23. The strut system of claim 18 wherein the piston is moveable longitudinally from at least a first position to a second position during use.
  • 24. The strut system of claim 18 wherein the distal end of the piston includes a recess configured to partially receive the internal piston.
  • 25. The strut system of claim 18 further comprising a second retaining mechanism configured to releasably engage the internal piston wherein the second retaining mechanism is selectively positionable in one of at least a first discrete position and a second discrete position, wherein the second retaining mechanism limits the longitudinal travel of the internal piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the internal piston to a second distance greater than the first distance when positioned in the second discrete position.
  • 26. The strut system of claim 18 further comprising a spring having a larger internal diameter than an external diameter of the internal piston, and wherein the spring is disposed concentrically about the exterior of the internal piston such that the spring during use such that the spring encircles the internal piston, and wherein the spring is configured to at least partially restrict longitudinal movement of the piston relative to the housing.
  • 27. A strut system configured to extend between a superior and inferior pedicular component, comprising: a first attachment element configured to connect with one of the superior and inferior pedicular components during use, the first attachment element having a proximal end and a distal end, wherein the proximal end has a swivel attachment and the distal end has a receiving portion;a second attachment element configured to connect with the other of the superior and inferior pedicular components during use, the second attachment element having a proximal end and a distal end, wherein the proximal end has a swivel attachment;a first piston partially disposed within and concentric to the receiving portion of the first attachment element, wherein a distal end of the first piston is at least partially contained within the receiving portion of the first attachment element, wherein the first piston is configured to travel longitudinally within the interior of the receiving portion during use, and wherein the portion of the first piston of the first piston at least partially contained within the receiving portion of the first attachment element includes a detent;an engagement element configured to engage the second piston during use to inhibit longitudinal movement of the second piston, thereby limiting a longitudinal travel distance of the second piston within the receiving portion;a retaining mechanism selectively positionable in one of at least a first position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the second piston to a first distance when positioned in the first position and limits the longitudinal travel of the second piston to a second distance greater than the first distance when positioned in the second position; anda second piston fully disposed within and concentric to the receiving portion of the first attachment element, the second piston having a diameter less than a diameter of the first piston, wherein the first piston includes a recess at a distal end configured to partially receive the second piston.
  • 28. The strut system of claim 27 wherein the receiving portion is a cylindrical housing having a hollow interior section.
  • 29. The strut system of claim 28, further comprising an internal spring concentric with the housing, the first piston and the second piston, the internal spring having a larger internal diameter than an external diameter of the second piston, and wherein the spring is disposed concentrically about the exterior of the second piston during use such that the spring encircles the second piston.
  • 30. The strut system of claim 29, further comprising a second spring concentric with the housing, the first piston and the second piston, the second spring having a smaller diameter than the diameter of the second piston, and wherein the second spring extends longitudinally from an end of the second piston and is retained in a second recess portion of the first attachment element.
  • 31. The strut system of claim 27, further comprising an engagement element configured to engage the detent of the first piston during use to inhibit longitudinal movement of the piston, thereby limiting a longitudinal travel distance of the first piston within the receiving portion, wherein the retaining mechanism is selectively positionable in one of at least a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of the first piston to a first distance when positioned in the first discrete position and limits the longitudinal travel of the first piston to a second distance greater than the first distance when positioned in the second discrete position.
  • 32. The strut system of claim 27 wherein the engagement element is a set screw.
  • 33. A dynamic stabilizing system configured to be coupled between a first vertebra and a second vertebra of a human spine, the dynamic stabilizing device comprising: a first member configured to be coupled to the first vertebra during use, wherein the first member comprises a longitudinal recess;a second member configured to be coupled to the second vertebra during use, wherein the second member comprises: an elongated protrusion configured to be disposed within the longitudinal recess of the first member during use, wherein the elongated protrusion is configured to travel longitudinally within the longitudinal recess to facilitate movement of the first vertebra relative to the second vertebra during use;a detent feature extending radially from the longitudinal protrusion; anda spring disposed about a circumference of at least a portion of the elongated protrusion, wherein longitudinal movement of the elongated protrusion within the longitudinal recess is configured to engage the spring to at least partially inhibit movement of the first member relative to the second member; anda retaining mechanism configured to engage the detent of the second member to at least partially inhibit longitudinal movement of the elongated protrusion within the longitudinal recess during use, thereby limiting a longitudinal travel distance of the longitudinal protrusion within the longitudinal recess during use, wherein the retaining mechanism is selectively positionable in either one of a first discrete position and a second discrete position, wherein the retaining mechanism limits the longitudinal travel of longitudinal protrusion within the longitudinal recess to a first distance when positioned in the first discrete position and limits the longitudinal travel of longitudinal protrusion within the longitudinal recess to a second distance greater than the first distance when positioned in the second discrete position.
  • 34. The dynamic stabilizing system of claim 33 wherein the second member comprises a wall defining the longitudinal recess, and wherein the retaining mechanism comprises a member extending through a hole in the wall and into an interior of the receiving portion during use, such that at least an end portion of the member engages the detent of the second member to at least partially inhibit longitudinal movement of the elongated protrusion within the longitudinal recess during use.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/033,452, filed on Jan. 10, 2005, which is a continuation-in-part of U.S. patent application Ser. No. 11/006,495, filed on Dec. 6, 2004, which is a continuation-in-part application of U.S. Ser. No. 10/970,366, filed Oct. 20, 2004, incorporated herein by reference.

US Referenced Citations (363)
Number Name Date Kind
602580 Haskins et al. Apr 1898 A
802844 Covell et al. Oct 1905 A
2051248 Dunn Aug 1936 A
3807394 Attenborough Apr 1974 A
4611582 Duff Sep 1986 A
4743260 Burton May 1988 A
5015247 Michelson May 1991 A
5092866 Breard et al. Mar 1992 A
5129388 Vignaud et al. Jul 1992 A
5171279 Mathews Dec 1992 A
5180393 Commarmond Jan 1993 A
5282863 Burton Feb 1994 A
5368594 Martin et al. Nov 1994 A
5375823 Navas Dec 1994 A
5387212 Yuan et al. Feb 1995 A
5415661 Holmes May 1995 A
5437669 Yuan et al. Aug 1995 A
5437672 Alleyne Aug 1995 A
5443467 Biedermann et al. Aug 1995 A
5474555 Puno et al. Dec 1995 A
5480401 Navas Jan 1996 A
5484437 Michelson Jan 1996 A
5489308 Kuslich et al. Feb 1996 A
5522843 Zang Jun 1996 A
5527312 Ray Jun 1996 A
5540688 Navas Jul 1996 A
5571191 Fitz Nov 1996 A
5609636 Kohrs et al. Mar 1997 A
5616142 Yuan et al. Apr 1997 A
5645599 Samani Jul 1997 A
5658337 Kohrs et al. Aug 1997 A
5672175 Martin Sep 1997 A
5720751 Jackson Feb 1998 A
5738586 Arriaga Apr 1998 A
5741253 Michelson Apr 1998 A
5776135 Errico et al. Jul 1998 A
RE36211 Nonomura May 1999 E
5964761 Kambin Oct 1999 A
6014588 Fitz Jan 2000 A
6033406 Mathews Mar 2000 A
RE36758 Fitz Jun 2000 E
6080155 Michelson Jun 2000 A
6080157 Cathro et al. Jun 2000 A
6083224 Gertzbein et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6132464 Martin Oct 2000 A
6200322 Branch et al. Mar 2001 B1
6241730 Alby Jun 2001 B1
6264656 Michelson Jul 2001 B1
6267764 Elberg Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6270498 Michelson Aug 2001 B1
6273914 Papas Aug 2001 B1
6287764 Hildebrand et al. Sep 2001 B1
6419703 Fallin et al. Jul 2002 B1
6485518 Cornwall et al. Nov 2002 B1
6530929 Justis et al. Mar 2003 B1
6540747 Marino Apr 2003 B1
6547795 Schneiderman Apr 2003 B2
6558390 Cragg May 2003 B2
6562038 Morrison May 2003 B1
6562046 Sasso May 2003 B2
6565605 Goble et al. May 2003 B2
6579319 Goble et al. Jun 2003 B2
6610091 Reiley Aug 2003 B1
6626904 Jammet et al. Sep 2003 B1
6626905 Schmiel et al. Sep 2003 B1
6626944 Taylor Sep 2003 B1
6645248 Casutt Nov 2003 B2
6669697 Pisharodi Dec 2003 B1
6669729 Chin Dec 2003 B2
6695842 Zucherman et al. Feb 2004 B2
6716245 Pasquet et al. Apr 2004 B2
6749613 Conchy et al. Jun 2004 B1
6749614 Teitelbaum et al. Jun 2004 B2
6761720 Senegas Jul 2004 B1
6783527 Drewry et al. Aug 2004 B2
6802844 Ferree Oct 2004 B2
6802845 Shirado et al. Oct 2004 B2
6805697 Helm et al. Oct 2004 B1
6811567 Reiley Nov 2004 B2
6821277 Teitelbaum Nov 2004 B2
6835205 Atkinson et al. Dec 2004 B2
6835207 Zacouto et al. Dec 2004 B2
6875212 Shaolian et al. Apr 2005 B2
6899716 Cragg May 2005 B2
6902580 Fallin et al. Jun 2005 B2
6949123 Reiley Sep 2005 B2
6966910 Ritland Nov 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
6986771 Paul et al. Jan 2006 B2
6989011 Paul et al. Jan 2006 B2
6991632 Ritland Jan 2006 B2
7011660 Sherman et al. Mar 2006 B2
7011685 Arnin et al. Mar 2006 B2
7029475 Panjabi Apr 2006 B2
7051451 Augostino et al. May 2006 B2
7052497 Sherman et al. May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7060068 Tromanhauser et al. Jun 2006 B2
7066957 Graf et al. Jun 2006 B2
7070598 Lim et al. Jul 2006 B2
7074238 Stinson et al. Jul 2006 B2
7079883 Marino et al. Jul 2006 B2
7083621 Shaolian et al. Aug 2006 B2
7083622 Simonson Aug 2006 B2
7083649 Zucherman et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7090698 Goble et al. Aug 2006 B2
7108705 Davison et al. Sep 2006 B2
7125410 Freudiger et al. Oct 2006 B2
7137985 Jahng Nov 2006 B2
7182783 Trieu Feb 2007 B2
7188626 Foley et al. Mar 2007 B2
7207992 Ritland Apr 2007 B2
7229441 Trieu et al. Jun 2007 B2
7252673 Lim Aug 2007 B2
7282065 Kirschman Oct 2007 B2
7294129 Hawkins et al. Nov 2007 B2
7306603 Boehm, Jr. et al. Dec 2007 B2
7329258 Studer Feb 2008 B2
7335200 Carli et al. Feb 2008 B2
7341587 Molz, IV et al. Mar 2008 B2
7354453 McAfee Apr 2008 B2
7361196 Fallin et al. Apr 2008 B2
7377921 Studer et al. May 2008 B2
7377942 Berry May 2008 B2
7406775 Funk et al. Aug 2008 B2
7476238 Panjabi Jan 2009 B2
7691131 Graf Apr 2010 B2
7776071 Fortin et al. Aug 2010 B2
7828823 Rogeau et al. Nov 2010 B2
7935134 Reglos et al. May 2011 B2
20010037111 Dixon et al. Nov 2001 A1
20020065557 Goble et al. May 2002 A1
20020068975 Teitelbaum et al. Jun 2002 A1
20020072800 Goble et al. Jun 2002 A1
20020082600 Shaolian et al. Jun 2002 A1
20020095154 Atkinson Jul 2002 A1
20020120270 Trieu et al. Aug 2002 A1
20020123806 Reiley Sep 2002 A1
20020133155 Ferree Sep 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004572 Goble et al. Jan 2003 A1
20030028250 Reiley et al. Feb 2003 A1
20030032965 Schneiderman Feb 2003 A1
20030040797 Fallin et al. Feb 2003 A1
20030055427 Graf Mar 2003 A1
20030093078 Ritland May 2003 A1
20030171749 Le Couedic et al. Sep 2003 A1
20030171750 Chin Sep 2003 A1
20030208202 Falahee Nov 2003 A1
20030208203 Lim et al. Nov 2003 A1
20030220642 Freudiger Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030229347 Sherman et al. Dec 2003 A1
20030236520 Lim et al. Dec 2003 A1
20040002708 Ritland Jan 2004 A1
20040006341 Shaolian et al. Jan 2004 A1
20040006344 Nguyen et al. Jan 2004 A1
20040039384 Boehm et al. Feb 2004 A1
20040049189 Le Couedic et al. Mar 2004 A1
20040064140 Taylor et al. Apr 2004 A1
20040073215 Carli Apr 2004 A1
20040080418 Dahlborn et al. Apr 2004 A1
20040082954 Teitelbaum et al. Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040092931 Taylor et al. May 2004 A1
20040116927 Graf Jun 2004 A1
20040127989 Dooris et al. Jul 2004 A1
20040138662 Landry et al. Jul 2004 A1
20040143265 Landry et al. Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040147928 Landry et al. Jul 2004 A1
20040193158 Lim et al. Sep 2004 A1
20040215190 Nguyen et al. Oct 2004 A1
20040225289 Biedermann et al. Nov 2004 A1
20040230201 Yuan et al. Nov 2004 A1
20040230304 Yuan et al. Nov 2004 A1
20040236328 Paul et al. Nov 2004 A1
20040236329 Panjabi Nov 2004 A1
20040267260 Mack et al. Dec 2004 A1
20050010217 Dalton Jan 2005 A1
20050010953 Carney et al. Jan 2005 A1
20050010954 Binder Jan 2005 A1
20050010956 Moon et al. Jan 2005 A1
20050021031 Foley et al. Jan 2005 A1
20050027361 Reiley Feb 2005 A1
20050033295 Wisnewski Feb 2005 A1
20050033434 Berry Feb 2005 A1
20050033439 Gordon et al. Feb 2005 A1
20050038432 Shaolian et al. Feb 2005 A1
20050038440 Larson et al. Feb 2005 A1
20050043742 Bruneau et al. Feb 2005 A1
20050043797 Lee Feb 2005 A1
20050043799 Reiley Feb 2005 A1
20050049705 Hale et al. Mar 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050055096 Serhan et al. Mar 2005 A1
20050056979 Studer et al. Mar 2005 A1
20050065514 Studer Mar 2005 A1
20050065515 Jahng Mar 2005 A1
20050065516 Jahng Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070917 Justis Mar 2005 A1
20050080418 Simonson et al. Apr 2005 A1
20050080486 Fallin et al. Apr 2005 A1
20050085813 Spitler et al. Apr 2005 A1
20050085815 Harms et al. Apr 2005 A1
20050085912 Arnin et al. Apr 2005 A1
20050101953 Simonson May 2005 A1
20050101956 Simonson May 2005 A1
20050102028 Arnin et al. May 2005 A1
20050113927 Malek May 2005 A1
20050119748 Reiley et al. Jun 2005 A1
20050124991 Jahng Jun 2005 A1
20050125066 McAfee Jun 2005 A1
20050131405 Molz, IV et al. Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131407 Sicvol et al. Jun 2005 A1
20050131408 Sicvol et al. Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131422 Anderson et al. Jun 2005 A1
20050131537 Hoy et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050131545 Chervitz et al. Jun 2005 A1
20050143737 Pafford et al. Jun 2005 A1
20050143823 Boyd et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050154390 Biedermann et al. Jul 2005 A1
20050154461 Humphreys et al. Jul 2005 A1
20050154464 Humphreys et al. Jul 2005 A1
20050154465 Hodges et al. Jul 2005 A1
20050154466 Humphreys et al. Jul 2005 A1
20050154467 Peterman et al. Jul 2005 A1
20050165396 Fortin et al. Jul 2005 A1
20050171543 Timm et al. Aug 2005 A1
20050171608 Peterman et al. Aug 2005 A1
20050171609 Humphreys et al. Aug 2005 A1
20050171610 Humphreys et al. Aug 2005 A1
20050177156 Timm et al. Aug 2005 A1
20050177157 Jahng Aug 2005 A1
20050177164 Walters et al. Aug 2005 A1
20050177166 Timm et al. Aug 2005 A1
20050177240 Blain Aug 2005 A1
20050182400 White Aug 2005 A1
20050182401 Timm et al. Aug 2005 A1
20050182409 Callahan et al. Aug 2005 A1
20050187548 Butler Aug 2005 A1
20050192574 Blain Sep 2005 A1
20050197700 Boehm, Jr. et al. Sep 2005 A1
20050197705 Arnin et al. Sep 2005 A1
20050203511 Wilson-MacDonald et al. Sep 2005 A1
20050203513 Jahng et al. Sep 2005 A1
20050203514 Jahng et al. Sep 2005 A1
20050203517 Jahng et al. Sep 2005 A1
20050209593 Kolb Sep 2005 A1
20050209694 Loeb Sep 2005 A1
20050215999 Birkmeyer et al. Sep 2005 A1
20050216000 Colleran et al. Sep 2005 A1
20050222569 Panjabi Oct 2005 A1
20050234551 Fallin et al. Oct 2005 A1
20050235508 Augostino et al. Oct 2005 A1
20050240264 Tokish, Jr. et al. Oct 2005 A1
20050240265 Kuiper et al. Oct 2005 A1
20050245928 Colleran et al. Nov 2005 A1
20050245930 Timm et al. Nov 2005 A1
20050249697 Uhrich et al. Nov 2005 A1
20050261682 Ferree Nov 2005 A1
20050261685 Fortin et al. Nov 2005 A1
20050273167 Triplett et al. Dec 2005 A1
20050277921 Eisermann et al. Dec 2005 A1
20050277922 Trieu et al. Dec 2005 A1
20050288670 Panjabi et al. Dec 2005 A1
20060015100 Panjabi et al. Jan 2006 A1
20060036240 Colleran et al. Feb 2006 A1
20060036244 Spitler et al. Feb 2006 A1
20060036255 Pond et al. Feb 2006 A1
20060052785 Augostino et al. Mar 2006 A1
20060058791 Broman et al. Mar 2006 A1
20060079894 Colleran et al. Apr 2006 A1
20060084976 Borgstrom et al. Apr 2006 A1
20060084982 Kim Apr 2006 A1
20060084984 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085072 Funk et al. Apr 2006 A1
20060106380 Colleran May 2006 A1
20060106394 Colleran May 2006 A1
20060142759 Arnin et al. Jun 2006 A1
20060149238 Sherman et al. Jul 2006 A1
20060149239 Winslow et al. Jul 2006 A1
20060149254 Lauryssen et al. Jul 2006 A1
20060149272 Winslow et al. Jul 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060149373 Winslow et al. Jul 2006 A1
20060149374 Winslow et al. Jul 2006 A1
20060149375 Yuan et al. Jul 2006 A1
20060149383 Arnin et al. Jul 2006 A1
20060149389 Romagnoli Jul 2006 A1
20060173454 Spitler et al. Aug 2006 A1
20060189983 Fallin et al. Aug 2006 A1
20060189984 Fallin et al. Aug 2006 A1
20060190083 Arnin et al. Aug 2006 A1
20060195086 Sybert Aug 2006 A1
20060195088 Sacher et al. Aug 2006 A1
20060200137 Soboleski Sep 2006 A1
20060217718 Chervitz et al. Sep 2006 A1
20060217719 Albert et al. Sep 2006 A1
20060235388 Justis et al. Oct 2006 A1
20060235414 Lim et al. Oct 2006 A1
20060241642 Arnin et al. Oct 2006 A1
20060241758 Peterman et al. Oct 2006 A1
20060241759 Trieu Oct 2006 A1
20060241768 Trieu Oct 2006 A1
20060241769 Gordon et al. Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247637 Colleran et al. Nov 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060247769 Molz et al. Nov 2006 A1
20060247773 Stamp Nov 2006 A1
20060260483 Hartmann et al. Nov 2006 A1
20060264934 Fallin Nov 2006 A1
20060264962 Chin et al. Nov 2006 A1
20060265074 Krishna et al. Nov 2006 A1
20060271198 McAfee Nov 2006 A1
20060276801 Yerby et al. Dec 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060282080 Albert et al. Dec 2006 A1
20060293657 Hartmann Dec 2006 A1
20070005062 Lange et al. Jan 2007 A1
20070005063 Bruneau et al. Jan 2007 A1
20070016191 Culbert et al. Jan 2007 A1
20070016193 Ritland Jan 2007 A1
20070016195 Winslow et al. Jan 2007 A1
20070016196 Winslow et al. Jan 2007 A1
20070016218 Winslow et al. Jan 2007 A1
20070016296 Triplett et al. Jan 2007 A1
20070043358 Molz et al. Feb 2007 A1
20070043359 Altarac Feb 2007 A1
20070049931 Justis et al. Mar 2007 A1
20070055257 Vaccaro et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100341 Reglos et al. May 2007 A1
20070118122 Butler et al. May 2007 A1
20070161988 Drewry et al. Jul 2007 A1
20070161997 Thramann et al. Jul 2007 A1
20070239159 Altarac et al. Oct 2007 A1
20080045951 Fanger et al. Feb 2008 A1
20080097441 Hayes et al. Apr 2008 A1
20080154307 Colleran et al. Jun 2008 A1
20080262554 Reglos et al. Oct 2008 A1
20090030465 Altarac et al. Jan 2009 A1
20090228045 Hayes et al. Sep 2009 A1
20100036423 Hayes et al. Feb 2010 A1
Foreign Referenced Citations (76)
Number Date Country
767636 Jan 1999 EP
0951246 Oct 1999 EP
0986339 Mar 2000 EP
1056408 Dec 2000 EP
1138268 Oct 2001 EP
1145602 Oct 2001 EP
1303225 Apr 2003 EP
1399078 Mar 2004 EP
1415602 May 2004 EP
1415603 Jul 2005 EP
1810624 Jul 2007 EP
2728454 Jun 1996 FR
WO-9116018 Oct 1991 WO
WO-9426192 Nov 1994 WO
WO-9600049 Jan 1996 WO
WO-9848717 Nov 1998 WO
WO-9855038 Dec 1998 WO
WO-0062684 Oct 2000 WO
WO-0130248 May 2001 WO
WO-0141681 Jun 2001 WO
WO-0238060 May 2002 WO
WO-02065954 Aug 2002 WO
WO-02067793 Sep 2002 WO
WO-02102259 Dec 2002 WO
WO-03047442 Jun 2003 WO
WO-03075805 Sep 2003 WO
WO-03094699 Nov 2003 WO
WO-03101350 Dec 2003 WO
WO-2004008949 Jan 2004 WO
WO-2004047617 Jun 2004 WO
WO-2005030029 Apr 2005 WO
WO-2005030031 Apr 2005 WO
WO-2005030066 Apr 2005 WO
WO-2005030067 Apr 2005 WO
WO-2005041799 May 2005 WO
WO-2005044152 May 2005 WO
WO-2005046515 May 2005 WO
WO-2005053572 Jun 2005 WO
WO-2005055874 Jun 2005 WO
2005065516 Jul 2005 WO
WO-2005067824 Jul 2005 WO
WO-2005070278 Aug 2005 WO
WO-2005070349 Aug 2005 WO
WO-2005070350 Aug 2005 WO
WO-2005070351 Aug 2005 WO
WO-2005070352 Aug 2005 WO
WO-2005070353 Aug 2005 WO
WO-2005070354 Aug 2005 WO
WO-2005077113 Aug 2005 WO
WO-2005079426 Sep 2005 WO
WO-2005079672 Sep 2005 WO
WO-2005079711 Sep 2005 WO
WO-2005084590 Sep 2005 WO
WO-2005087121 Sep 2005 WO
WO-2005092223 Oct 2005 WO
WO-2005094704 Oct 2005 WO
WO-2006016371 Feb 2006 WO
WO-2006017507 Feb 2006 WO
2006045091 Apr 2006 WO
WO-2006042188 Apr 2006 WO
WO-2006042189 Apr 2006 WO
WO-2006047363 May 2006 WO
WO-2006063107 Jun 2006 WO
WO-2006102443 Sep 2006 WO
WO-2006108067 Oct 2006 WO
WO-2006125142 Nov 2006 WO
2007014119 Feb 2007 WO
WO-2007021588 Feb 2007 WO
WO-2007075375 Jul 2007 WO
2007117366 Oct 2007 WO
2007136612 Nov 2007 WO
2008069835 Jun 2008 WO
2008153747 Dec 2008 WO
2009042489 Apr 2009 WO
2009100190 Aug 2009 WO
2010019791 Feb 2010 WO
Related Publications (1)
Number Date Country
20080097441 A1 Apr 2008 US
Continuation in Parts (3)
Number Date Country
Parent 11033452 Jan 2005 US
Child 11436407 US
Parent 11006495 Dec 2004 US
Child 11033452 US
Parent 10970366 Oct 2004 US
Child 11006495 US